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Abstract

World models are regarded as a key pathway toward achieving general artificial
intelligence, yet current modeling approaches suffer from correlation limitations
that hinder their ability to capture the intrinsic causal mechanisms. This deficiency
results in significant shortcomings in out-of-distribution generalization capabilities,
sample efficiency, and deep reasoning abilities of world models. This paper argues
that integrating principles from causal science is essential for overcoming these
challenges and constructing world models aligned with core objectives. We sys-
tematically propose a framework where the three pillars of causal science address
these shortcomings. Ultimately, we contend that the shift from a correlation-driven
paradigm to a causality-driven paradigm represents not merely a technical refine-
ment, but a necessary leap toward constructing agents that genuinely understand
and interact with the real world.

1 Introduction

Researchers currently hold differing views on the definition of world models. Both the compressed
representations of environments in the reinforcement learning (RL) community and large-scale
generative models trained on massive real-world physical data are considered a type of world model [[1-
4. No matter what the definition is, almost all researchers agree that the core functionality of world
models must encompass modeling the dynamic changes, causal relationships, and spatiotemporal
structures of the physical world [SH7]]. As the Turing Award laureate Yann LeCun believes, world
models represent one of the key pathways toward achieving general artificial intelligence (AGI) [8].

Current world models have achieved tremendous success in complex 3D simulations [9} 10], gam-
ing [11]], and continuous control for robotics [[12,|13]. However, a fundamental limitation of main-
stream world models lies in their focus on learning correlations rather than causal relationships
between variables [[14}[15]]. This results in current world models failing to meet their core capability
requirements, indicated by: (a) Poor generalization: Vulnerable in environments out of the training
distribution, easily disrupted by changes in superficial features. (b) Low sample efficiency: Requires
massive data to learn relationships among numerous variables in the environment, struggling to
extract essential patterns from limited local interactions. (c) Lack of deep understanding: Remains
confined to pattern matching, incapable of genuine reflection or imagination beyond observed data.

As Figure|l|shows, to develop a better world model system, we argue that previous efforts and future
directions include three engines. Firstly, the empirical engine is the foundation for the perception and
learning of the system, covering the most advanced models and techniques such as LLM, MoE, SFT
and continual RL. Secondly, the action engine is the decision and execution center of the system,
requiring goal management, reasoning and collaboration abilities. Lastly, the idea engine is the
highest cognitive layer of the system, responsible for abstract thinking and innovation.

To achieve these goals, causal science aiming to uncover genuine causal relationships between vari-
ables can make contributions [[L6}[17]. Its core lies in defining, identifying, and quantifying causality.
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Figure 1: A conceptual framework for an advanced Al designed to build a world model.

Within the potential outcome framework [18] and structural causal model framework [19]], causal
science has established three foundational tasks: causal invariance [20, [21]], causal discovery [22} 23],
and causal inference [24} 25]]. Each addresses the limitations of correlation from distinct perspec-
tives. Previous applications in deep learning demonstrate that causal science can help build more
robust [26} 27]], efficient [28]], interpretable [29} 30], and generalizable AT models [31].

As Figure[T]illustrates, this position paper argues that integrating techniques from causal invariance,
causal discovery, and causal inference into world model learning is a key pathway to overcoming the
aforementioned limitations. In the following sections, we will first explore how the principle of causal
invariance necessitates a more active world model learning paradigms. Subsequently, this paper will
elaborate on how leveraging the concept of causal discovery enables the construction of an efficient,
more fine-grained dynamic model, by treating an agent’s actions as causal interventions. Finally, we
will further demonstrate that endowing world models with causal inference capabilities, particularly
treatment effect estimation and counterfactual reasoning, elevates them from mere “observation” to
higher levels of “reflection” and “imagination”, enabling true world modeling.

2 Causal Invariance Call for Active Environment Exploration

2.1 Vulnerability of Associative Models: When Surface Features Change

The vulnerability of current world models originates from their nature as associative models, trained
to minimize prediction errors on a given dataset. For instance, a world model might erroneously
associate a specific floor texture with the property of being slippery, rather than learning the more
fundamental physical principle of the friction coefficient. An associative model is defined as a
function f : X — ) learning via empirical risk minimization [32], where X is the input space
(containing surface features like color, texture, lighting), ) is the output space, £ is a loss function,
and {(z;,y;)}4 is training data from a source environment &;.

When & shifts to a target £; with altered surface features, the joint distribution P, (x,y) # Pe_ (2, ).
For an associative model, the risk on &; is: Re, (f) = E(zy)~pe, [((f(2),y)], and due to Pe, (2, y)

divergence from Pg, (z,y), Re, (f) > Re, (f), showcasing vulnerability.

2.2 Causal Invariance: Learning the Laws of Physics

Define a causal dynamic model as M : S x A — &', where S is the state space (encoding intrinsic
physical properties), A is the action space, and S’ is the next-state space. The model satisfies
causal invariance if for any two environments &1, E; with different surface feature distributions
Pe, (z) # Pe, () (where z is a surface-feature-augmented state = = (s, ¢), ¢ € C for surface features
like color), the conditional distribution of next state given state and action is invariant:

Pe, (s | s,a) = Pe,(s' | s,a) = P(s' | s,a).
Training such a model minimizes a risk over a collection of environments {E; } X ;:

K
.1 /
M = arg iy, 2 2 Bis.ape, [d(m(s ), ),



71
72

73

74
75
76

77

78
79

80

81
82
83
84
85

86

87
88
89
90
91

92
93

94

95

96
97
98
99

100
101

102
103

104

105
106
107

where d is a distance metric (e.g., mean squared error). This enforces M to capture invariant physical
laws P(s’ | s,a), stable across {&x HE .

2.3 From Passive Data Collection to Active ''Natural Experiments"

Let Dyagsive = {(ss,0ai,s}) i]\;1 be data collected passively from a single environment. In contrast,
active data collection involves a model M selecting environments £ ~ (€ | M) (where 7 is a policy
for environment selection) to maximize the invariance-aware information gain:

I(M) = Eenn(einr) [Dxe (P(s" | 5,0,€) || P(s" | 5,0))],
where Dy is the Kullback-Leibler divergence. The goal is to solve:

m* = argmax Z (M),

where M, is trained on data from environments selected by 7. This turns data collection into an
active search for "natural experiments" (environments £) that best reveal invariant causal structures.

3 Causal Discovery for More Fine-grained Dynamic Modeling

Beyond learning robust dynamics, an effective world model must also be efficient and adaptable.
Monolithic models that attempt to represent the entire world’s dynamics with a single, massive
function are notoriously sample-hungry and difficult to adapt when the environment changes. Causal
discovery offers a path to a more fine-grained, modular, and efficient representation by treating an
agent’s actions as targeted experiments that reveal the world’s sparse causal structure.

3.1 Actions of an Agent are Causal Interventions

Let a causal graph be defined as G = (V,€), where V = {V1, V5, ..., V,} is the set of variables
(representing environmental states and action-related factors) and £ C V x V is the set of directed
edges (causal relationships). An agent’s action A € A is a causal intervention, denoted as do(A = a),
which modifies the causal graph by fixing A to value a. The post-intervention distribution Pyog (V' |
do(A = a)) is related to the pre-intervention distribution P, (V") via the causal mechanism:

Ppost(v | do(A = a)) = H P(V; | Pa(V5)),
VieV\{A}

where Pa(V}) is the set of parent nodes of V; in G. Observing the changes in variables, the agent infers
their causal links between variables by analyzing conditional independences under interventions.

3.2 The Architecture of the Causal World Model (CWM)

A CWM should consist of two components:

Encoder: A function £ : O — Z, where O is the high-dimensional observation space (e.g.,
pixel space) and Z = {71, Zs, ..., Z, } is the space of decoupled, object-centered latent variables.
Formally, Z = E(O), and the latent variables satisfy P(Z; | Z-;) = H;nzl P(Z;) (statistical
independence, indicating decoupling), where Z_; is Z without Z;.

Causal Dynamics Model: A causal graph G, = (£ U A, &;) defining dynamics. The next-state of
each latent variable Z! is a function only of its direct causal parents Pa(Z;) in G, and action A:

Z! = f;(Pa(Z;), A),
where f; is the local causal function for Z;, in contrast to a global state transition function S’ =

F(S, A) (where S is a monolithic global state).

3.3 Advantages of the Factorized Architecture

Sample Efficiency: Let the parameter complexity of a monolithic model be ©(D*) for D-
dimensional state space and degree k, while for the factorized CWM, each local function f; has
parameter complexity ©(d}) with d; < D (dimension of Pa(Z;)) and [ a small degree. The total
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parameter complexity is ;- O(d.) < ©(D¥). The sample complexity S scales with parameter
complexity, s0 Scwm < Smonolithic, Meaning fewer samples suffice for learning.

Generalization and Transfer: Suppose a local mechanism f; changes (due to environmental
shift). The loss function for re-learning is Lioca = E [d(Z},, f;.(Pa(Z), A))], focusing only on
Zy,. Other latent variables Z;(j # k) use unchanged functions f;, so their causal knowledge
P(Z} | Pa(Z;),A) = fj(Pa(Z;), A) remains valid and can be transferred to new tasks, as new tasks
still rely on these invariant local causal mechanisms.

4 Causal Inference for Reflection and Imagination

4.1 Beyond Prediction: Climbing the Causal Ladder

Pearl [19] defines the causal ladder with three levels:
Level 1 (Association): Models P(Y | X), capturing statistical correlations.
Level 2 (Intervention): Models P(Y | do(X = z)), describing effects of actions.

Level 3 (Counterfactual): Models P(Y | do(X = x),0bs(X = 2/, Y = y’)), reasoning about
"what if" scenarios.

The causal ladder provides a powerful framework for understanding different levels of reasoning.
True intelligence requires M ausa Operating on Level 2 and 3, unlike Mpeq stuck at Level 1.

4.2 Second-level: Precise Planning Based on Intervention

A world model trained only for prediction learns Myrong such that Myrone (X) = E[Y | X], a wrong
mathematical object as it fails to capture P(Y | do(X = z)).

For causal planning, let 7 be a policy (action sequence A1, As, ..., Ar). The causal model computes
P(St | do(A1),do(Az), . ..,do(Ar)) via the causal dynamics:

P(St | dO(Al), .. .,dO(At),St_l) = P(Sf ‘ Pa(St),At),

where Pa(S;) are causal parents of .S;. This lets the agent find 7* = arg max, P(Success | ) for
precise planning.

4.3 Third-level: In-depth Reflection and Creation Based on Counterfactuals

After a complex plan fails, it is often difficult to pinpoint the exact misstep. A Causal World Model
can address this through counterfactuals. After a failed plan ey = (Aff“l, e Ag‘l‘l) with outcome
O = Fail, counterfactual inference asks:

P(Success | do(A; = a;)ﬂTfail\{At})’
fort € {1,...,T}, to assign credit by finding ¢* = arg max; P(Success | do(4; = a}), Wfail\{At})-

Counterfactuals are the basis of imagination. A CWM can explore hypothetical worlds by altering
the rules of its learned model. For example, P(S | do(C = c¢)) where C is a causal factor (e.g.,
C = gravity, ¢ = weaker gravity, S = human can fly):

P(S | do(C =c)) =Y P(Spe)P(S | do(C = c), Spre),
S,

pre

enabling exploration of hypothetical worlds.

5 Conclusion

World models are critical for advancing toward general artificial intelligence, yet their correlation-
driven design limits generalization, sample efficiency, and deep reasoning. This paper argues that
integrating causal science is necessary to fix these drawbacks. Specifically, causal invariance drives
active, multi-environment exploration to learn robust physical laws; causal discovery treats agent
actions as interventions, building efficient and refined dynamic models; causal inference enables
reflection and imagination beyond observation. Therefore, future work can further integrate causal
principles with the world model and build relevant evaluation benchmarks.
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