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Abstract

World models are regarded as a key pathway toward achieving general artificial1

intelligence, yet current modeling approaches suffer from correlation limitations2

that hinder their ability to capture the intrinsic causal mechanisms. This deficiency3

results in significant shortcomings in out-of-distribution generalization capabilities,4

sample efficiency, and deep reasoning abilities of world models. This paper argues5

that integrating principles from causal science is essential for overcoming these6

challenges and constructing world models aligned with core objectives. We sys-7

tematically propose a framework where the three pillars of causal science address8

these shortcomings. Ultimately, we contend that the shift from a correlation-driven9

paradigm to a causality-driven paradigm represents not merely a technical refine-10

ment, but a necessary leap toward constructing agents that genuinely understand11

and interact with the real world.12

1 Introduction13

Researchers currently hold differing views on the definition of world models. Both the compressed14

representations of environments in the reinforcement learning (RL) community and large-scale15

generative models trained on massive real-world physical data are considered a type of world model [1–16

4]. No matter what the definition is, almost all researchers agree that the core functionality of world17

models must encompass modeling the dynamic changes, causal relationships, and spatiotemporal18

structures of the physical world [5–7]. As the Turing Award laureate Yann LeCun believes, world19

models represent one of the key pathways toward achieving general artificial intelligence (AGI) [8].20

Current world models have achieved tremendous success in complex 3D simulations [9, 10], gam-21

ing [11], and continuous control for robotics [12, 13]. However, a fundamental limitation of main-22

stream world models lies in their focus on learning correlations rather than causal relationships23

between variables [14, 15]. This results in current world models failing to meet their core capability24

requirements, indicated by: (a) Poor generalization: Vulnerable in environments out of the training25

distribution, easily disrupted by changes in superficial features. (b) Low sample efficiency: Requires26

massive data to learn relationships among numerous variables in the environment, struggling to27

extract essential patterns from limited local interactions. (c) Lack of deep understanding: Remains28

confined to pattern matching, incapable of genuine reflection or imagination beyond observed data.29

As Figure 1 shows, to develop a better world model system, we argue that previous efforts and future30

directions include three engines. Firstly, the empirical engine is the foundation for the perception and31

learning of the system, covering the most advanced models and techniques such as LLM, MoE, SFT32

and continual RL. Secondly, the action engine is the decision and execution center of the system,33

requiring goal management, reasoning and collaboration abilities. Lastly, the idea engine is the34

highest cognitive layer of the system, responsible for abstract thinking and innovation.35

To achieve these goals, causal science aiming to uncover genuine causal relationships between vari-36

ables can make contributions [16, 17]. Its core lies in defining, identifying, and quantifying causality.37
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Figure 1: A conceptual framework for an advanced AI designed to build a world model.

Within the potential outcome framework [18] and structural causal model framework [19], causal38

science has established three foundational tasks: causal invariance [20, 21], causal discovery [22, 23],39

and causal inference [24, 25]. Each addresses the limitations of correlation from distinct perspec-40

tives. Previous applications in deep learning demonstrate that causal science can help build more41

robust [26, 27], efficient [28], interpretable [29, 30], and generalizable AI models [31].42

As Figure 1 illustrates, this position paper argues that integrating techniques from causal invariance,43

causal discovery, and causal inference into world model learning is a key pathway to overcoming the44

aforementioned limitations. In the following sections, we will first explore how the principle of causal45

invariance necessitates a more active world model learning paradigms. Subsequently, this paper will46

elaborate on how leveraging the concept of causal discovery enables the construction of an efficient,47

more fine-grained dynamic model, by treating an agent’s actions as causal interventions. Finally, we48

will further demonstrate that endowing world models with causal inference capabilities, particularly49

treatment effect estimation and counterfactual reasoning, elevates them from mere “observation” to50

higher levels of “reflection” and “imagination”, enabling true world modeling.51

2 Causal Invariance Call for Active Environment Exploration52

2.1 Vulnerability of Associative Models: When Surface Features Change53

The vulnerability of current world models originates from their nature as associative models, trained54

to minimize prediction errors on a given dataset. For instance, a world model might erroneously55

associate a specific floor texture with the property of being slippery, rather than learning the more56

fundamental physical principle of the friction coefficient. An associative model is defined as a57

function f : X → Y learning via empirical risk minimization [32], where X is the input space58

(containing surface features like color, texture, lighting), Y is the output space, ℓ is a loss function,59

and {(xi, yi)}ni=1 is training data from a source environment Es.60

When Es shifts to a target Et with altered surface features, the joint distribution PEt(x, y) ̸= PEs(x, y).61

For an associative model, the risk on Et is: REt
(f) = E(x,y)∼PEt

[ℓ(f(x), y)] , and due to PEt
(x, y)62

divergence from PEs
(x, y), REt

(f) ≫ REs
(f), showcasing vulnerability.63

2.2 Causal Invariance: Learning the Laws of Physics64

Define a causal dynamic model as M : S ×A → S ′, where S is the state space (encoding intrinsic65

physical properties), A is the action space, and S ′ is the next-state space. The model satisfies66

causal invariance if for any two environments E1, E2 with different surface feature distributions67

PE1
(x) ̸= PE2

(x) (where x is a surface-feature-augmented state x = (s, c), c ∈ C for surface features68

like color), the conditional distribution of next state given state and action is invariant:69

PE1
(s′ | s, a) = PE2

(s′ | s, a) = P (s′ | s, a).

Training such a model minimizes a risk over a collection of environments {Ek}Kk=1:70

M = arg min
m∈M

1

K

K∑
k=1

E(s,a,s′)∼PEk
[d (m(s, a), s′)] ,
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where d is a distance metric (e.g., mean squared error). This enforces M to capture invariant physical71

laws P (s′ | s, a), stable across {Ek}Kk=1.72

2.3 From Passive Data Collection to Active "Natural Experiments"73

Let Dpassive = {(si, ai, s′i)}Ni=1 be data collected passively from a single environment. In contrast,74

active data collection involves a model M selecting environments E ∼ π(E | M) (where π is a policy75

for environment selection) to maximize the invariance-aware information gain:76

I(M) = EE∼π(E|M) [DKL (P (s′ | s, a, E) ∥ P (s′ | s, a))] ,

where DKL is the Kullback-Leibler divergence. The goal is to solve:77

π∗ = argmax
π

I(Mπ),

where Mπ is trained on data from environments selected by π. This turns data collection into an78

active search for "natural experiments" (environments E) that best reveal invariant causal structures.79

3 Causal Discovery for More Fine-grained Dynamic Modeling80

Beyond learning robust dynamics, an effective world model must also be efficient and adaptable.81

Monolithic models that attempt to represent the entire world’s dynamics with a single, massive82

function are notoriously sample-hungry and difficult to adapt when the environment changes. Causal83

discovery offers a path to a more fine-grained, modular, and efficient representation by treating an84

agent’s actions as targeted experiments that reveal the world’s sparse causal structure.85

3.1 Actions of an Agent are Causal Interventions86

Let a causal graph be defined as G = (V, E), where V = {V1, V2, . . . , Vn} is the set of variables87

(representing environmental states and action-related factors) and E ⊆ V × V is the set of directed88

edges (causal relationships). An agent’s action A ∈ A is a causal intervention, denoted as do(A = a),89

which modifies the causal graph by fixing A to value a. The post-intervention distribution Ppost(V |90

do(A = a)) is related to the pre-intervention distribution Ppre(V ) via the causal mechanism:91

Ppost(V | do(A = a)) =
∏

Vi∈V\{A}

P (Vi | Pa(Vi)),

where Pa(Vi) is the set of parent nodes of Vi in G. Observing the changes in variables, the agent infers92

their causal links between variables by analyzing conditional independences under interventions.93

3.2 The Architecture of the Causal World Model (CWM)94

A CWM should consist of two components:95

Encoder: A function E : O → Z , where O is the high-dimensional observation space (e.g.,96

pixel space) and Z = {Z1, Z2, . . . , Zm} is the space of decoupled, object-centered latent variables.97

Formally, Z = E(O), and the latent variables satisfy P (Zi | Z¬i) =
∏m

j=1 P (Zj) (statistical98

independence, indicating decoupling), where Z¬i is Z without Zi.99

Causal Dynamics Model: A causal graph Gd = (Z ∪A, Ed) defining dynamics. The next-state of100

each latent variable Z ′
i is a function only of its direct causal parents Pa(Zi) in Gd and action A:101

Z ′
i = fi(Pa(Zi), A),

where fi is the local causal function for Zi, in contrast to a global state transition function S′ =102

F (S,A) (where S is a monolithic global state).103

3.3 Advantages of the Factorized Architecture104

Sample Efficiency: Let the parameter complexity of a monolithic model be Θ(Dk) for D-105

dimensional state space and degree k, while for the factorized CWM, each local function fi has106

parameter complexity Θ(dli) with di ≪ D (dimension of Pa(Zi)) and l a small degree. The total107
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parameter complexity is
∑m

i=1 Θ(dli) ≪ Θ(Dk). The sample complexity S scales with parameter108

complexity, so SCWM ≪ Smonolithic, meaning fewer samples suffice for learning.109

Generalization and Transfer: Suppose a local mechanism fk changes (due to environmental110

shift). The loss function for re-learning is Llocal = E [d(Z ′
k, f

′
k(Pa(Zk), A))], focusing only on111

Zk. Other latent variables Zj(j ̸= k) use unchanged functions fj , so their causal knowledge112

P (Z ′
j | Pa(Zj), A) = fj(Pa(Zj), A) remains valid and can be transferred to new tasks, as new tasks113

still rely on these invariant local causal mechanisms.114

4 Causal Inference for Reflection and Imagination115

4.1 Beyond Prediction: Climbing the Causal Ladder116

Pearl [19] defines the causal ladder with three levels:117

Level 1 (Association): Models P (Y | X), capturing statistical correlations.118

Level 2 (Intervention): Models P (Y | do(X = x)), describing effects of actions.119

Level 3 (Counterfactual): Models P (Y | do(X = x), obs(X = x′, Y = y′)), reasoning about120

"what if" scenarios.121

The causal ladder provides a powerful framework for understanding different levels of reasoning.122

True intelligence requires Mcausal operating on Level 2 and 3, unlike Mpred stuck at Level 1.123

4.2 Second-level: Precise Planning Based on Intervention124

A world model trained only for prediction learns Mwrong such that Mwrong(X) = E[Y | X], a wrong125

mathematical object as it fails to capture P (Y | do(X = x)).126

For causal planning, let π be a policy (action sequence A1, A2, . . . , AT ). The causal model computes127

P (ST | do(A1), do(A2), . . . , do(AT )) via the causal dynamics:128

P (St | do(A1), . . . , do(At), St−1) = P (St | Pa(St), At),

where Pa(St) are causal parents of St. This lets the agent find π∗ = argmaxπ P (Success | π) for129

precise planning.130

4.3 Third-level: In-depth Reflection and Creation Based on Counterfactuals131

After a complex plan fails, it is often difficult to pinpoint the exact misstep. A Causal World Model132

can address this through counterfactuals. After a failed plan πfail = (Afail
1 , . . . , Afail

T ) with outcome133

O = Fail, counterfactual inference asks:134

P (Success | do(At = a′t), πfail\{At}),

for t ∈ {1, . . . , T}, to assign credit by finding t∗ = argmaxt P (Success | do(At = a′t), πfail\{At}).135

Counterfactuals are the basis of imagination. A CWM can explore hypothetical worlds by altering136

the rules of its learned model. For example, P (S | do(C = c)) where C is a causal factor (e.g.,137

C = gravity, c = weaker gravity, S = human can fly):138

P (S | do(C = c)) =
∑
Spre

P (Spre)P (S | do(C = c), Spre),

enabling exploration of hypothetical worlds.139

5 Conclusion140

World models are critical for advancing toward general artificial intelligence, yet their correlation-141

driven design limits generalization, sample efficiency, and deep reasoning. This paper argues that142

integrating causal science is necessary to fix these drawbacks. Specifically, causal invariance drives143

active, multi-environment exploration to learn robust physical laws; causal discovery treats agent144

actions as interventions, building efficient and refined dynamic models; causal inference enables145

reflection and imagination beyond observation. Therefore, future work can further integrate causal146

principles with the world model and build relevant evaluation benchmarks.147
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