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ABSTRACT

We propose a novel asynchronous bundle method to solve distributed learning
problems. Compared to existing asynchronous methods, our algorithm computes
the next iterate based on a more accurate approximation of the objective function
and does not require any prior information about the maximal information delay in
the system. This makes the proposed method fast and easy to tune. We prove that
the algorithm converges in both deterministic and stochastic (mini-batch) settings,
and quantify how the convergence times depend on the level of asynchrony. The
practical advantages of our method are illustrated through numerical experiments
on classification problems of varying complexities and scales.

1 INTRODUCTION

We consider a setting where data is distributed among n workers, each with its own smooth convex
loss function fi : Rd → R. Our goal is to compute a solution x⋆ of

minimize F (x) ≜ f(x) +R(x), (1)

where f(x) ≜
∑n

i=1 fi(x) and R : Rd → R is a (possibly non-smooth) proper closed and convex
regularizer. This problem template is ubiquitous in machine learning and includes lasso (Tibshirani,
1996), logistic regression (Koh et al., 2007) and many other important problem classes.

When data is distributed among multiple workers, algorithms that require the workers to synchronize
in every iteration are bottlenecked by the slowest worker. Asynchronous algorithms (Bertsekas &
Tsitsiklis, 1989; Assran et al., 2020) mitigate this issue by imposing less restrictive synchronization
requirements, potentially resulting in machine learning systems that are both faster and easier to
implement than their synchronous counterparts (Hannah & Yin, 2017). However, the design of
asynchronous algorithms is challenging, since information such as function values and gradients
computed by workers may be obsolete when received by the coordinating mechanism like a central
server. Consequently, existing convergence results for asynchronous algorithms often depend on a
typically large and unknown upper bound on the information delay from the workers. Furthermore,
the admissible stepsizes often decay rapidly as the upper delay bound increases. In practice this
complicates the implementation of an asynchronous algorithm: if the estimated upper bound on the
delays is too small, then the bound may not be valid. On the other hand, an excessively large upper
bound will lead to small step sizes and slow practical convergence.

The design of most optimization algorithms is based on a simple approximation of the objective
function (in the optimization literature, this is sometimes called a model of the objective). Examples
include the quadratic upper bound of an L-smooth convex function that is used in the design of
the gradient descent algorithm, or the piecewise linear lower bound on a convex function with a
known optimal value that is the basis of the Polyak step-size (Polyak, 1964). However, a string
of recent papers on synchronous algorithms (Davis & Drusvyatskiy, 2019; Asi & Duchi, 2019;
Nesterov & Florea, 2021) suggests that it can be beneficial to compute the next iterate based on a
more accurate approximation of the objective. This raises the question of whether asynchronous
algorithms could also be improved by more accurate approximations of the objective, potentially
resulting in asynchronous algorithms with faster practical convergence and simpler tuning.

Contributions. We propose a method for parallel and asynchronous optimization that uses a more
accurate approximation of the objective function to compute the next iterate. The method is suit-
able for a parameter server architecture (Li et al., 2013) and decouples gradient evaluations at the
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workers from decision vector updates at the coordinating master, and thereby becomes robust to the
amount of asynchrony in the system. On the theoretical side, we prove that our algorithm converges
for all bounded delays and can be implemented without knowledge of the maximum delay (we are
only aware of two other asynchronous algorithms (Mishchenko et al., 2018; Wu et al., 2022) that 1)
require no upper bound on the delays, 2) explicitly take the regularizer R(x) into account, and 3)
are designed for a parameter server). On the practical side, we present an algorithm that converges
quickly with essentially no tuning. Our method supports stochastic function and gradient evalua-
tions, and can be seen as an asynchronous bundle method, generalizing the algorithms in (Nesterov
& Florea, 2021; Asi & Duchi, 2019) to an asynchronous setting.

Outline. The paper is structured as follows. In §2 we relate our contribution to existing work. In
§3, we introduce a new asynchronous model-based algorithm, followed by a convergence analysis in
§4. We discuss implementation details and present numerical experiments in §5 and §6, respectively.
Finally, in §7 we summarize and conclude our work.

2 RELATED WORK

Model-based optimization. Model-based optimization is a general framework in which an approx-
imation, or model, of the objective function is maintained and used to compute the next iterate. This
framework encompasses several well-known algorithms and principles, including the expectation-
maximization algorithm (Neal & Hinton, 1998), quasi-Newton methods (Dennis & Moré, 1977),
bundle methods (Mäkelä, 2002), the majorization-minimization principle (Mairal, 2015; Lange,
2016), and acceleration (d’Aspremont et al., 2021). In the context of stochastic optimization, re-
cent work has demonstrated the benefits of using more accurate approximations of the objective
function to compute the next iterate, yielding algorithms that are faster and more robust to step size
selection (Duchi & Ruan, 2018; Davis & Drusvyatskiy, 2019; Asi & Duchi, 2019). Furthermore, for
composite non-stochastic optimization, Nesterov & Florea (2021) recently demonstrated that build-
ing up a piecewise linear model of the smooth part of the objective, instead of only using the most
recent gradient to approximate the objective, can lead to improved performance.

Our work aims to extend the idea of more accurate objective function models to asynchronous
optimization.

Parallel and asynchronous optimization. For parallel optimization with a parameter server archi-
tecture, asynchronous algorithms can be much faster than their synchronous counterparts (Hannah &
Yin, 2017). Asynchronous methods have also demonstrated promising results for other architectures
(Recht et al., 2011; Chaturapruek et al., 2015). The stepsizes in many asynchronous methods are ei-
ther diminishing (Duchi et al., 2015; Assran & Rabbat, 2020) or rely on a predetermined maximum
iteration number (Koloskova et al., 2022; Mishchenko et al., 2022; Recht et al., 2011). Exceptions
that are well-suited for a parameter server can be broadly categorized into two groups: methods that
require the knowledge of an upper bound on the information delays (Zhang & Kwok, 2014; Peng
et al., 2016; Gürbüzbalaban et al., 2017; Vanli et al., 2018; Wai et al., 2020; Sun et al., 2019), and
algorithms that do not rely on such a bound (Feyzmahdavian et al., 2014; Mishchenko et al., 2018;
Wu et al., 2022; 2023). In practice, however, an upper bound on the information delay is often un-
known a priori, and since the admissible stepsizes are reduced as the upper delay bound increases,
it is often difficult to guarantee that the algorithms in the first group converge in practice.

Most of the asynchronous methods mentioned above employ cheap closed-form updates at the cen-
tral server, while the bulk of the computational work, such as gradient and function evaluations, is
offloaded to the workers. The reason for the cheap update at the central server is, in the terminol-
ogy of model-based optimization, that the central server maintains a simple model of the objective
function based only on the most recent information from each worker. Our method is different in
the sense that we propose to use a more accurate model of the objective function that incorporates
more than just the latest information from each worker. The fact that the computationally intensive
tasks are handled by the workers suggests an opportunity to investigate algorithms that are slightly
more complex at the server, like the one we propose, to potentially improve the overall system
performance.

Bundle methods. A key challenge in asynchronous optimization is that gradients provide local
descent directions, making it challenging to combine gradients from different workers computed
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at different iterates into a meaningful search direction that ensures descent. In contrast, gradients
(together with function values and convexity) provide global lower bounds on the objective func-
tion, making it easier to combine gradients evaluated at widely different points into a valid lower
bound of the objective function. This observation motivates our method, which can be seen as an
asynchronous bundle method.

In the non-smooth optimization literature, several versions of asynchronous bundle methods have
been proposed (Emiel & Sagastizábal, 2010; Iutzeler et al., 2020; van Ackooij & Frangioni, 2018;
de Oliveira & Eckstein, 2015). Non-smooth optimization encompasses a wide range of problems,
thus leading to quite weak convergence results for the existing asynchronous bundle methods. (A
typical convergence result is that cluster points of the sequence of iterates solve the problem; see, for
example, (Emiel & Sagastizábal, 2010, Proposition 4) or (de Oliveira & Eckstein, 2015, Theorem
3.6).) Our setting in this paper is different. While the aforementioned works assume that the non-
smoothness of the objective is present in the finite-sum structure, we assume that the finite-sum
structure arises in a smooth part of the objective, and the non-smoothness of the objective is caused
by a regularizer. This key distinction allows us to derive much stronger convergence guarantees
under a quadratic functional growth assumption: not only do we prove convergence, but we also
show that our method converges linearly (see Theorem 4.5 for a precise statement).

Bundle methods have also received direct attention from the machine learning community (Teo
et al., 2007; Franc & Sönnenburg, 2009; Teo et al., 2010; Chu et al., 2017; Paren et al., 2022). The
first three works design variants of bundle methods for general empirical risk minimization, but they
differ from our method in several ways. For example, these methods maintain a piecewise linear
model of the sum f =

∑n
i=1 fi, whereas our algorithm maintains separate piecewise linear models

for each fi. Furthermore, unlike our method, these methods require the workers to synchronize in
every iteration.

Bundle methods have also been successfully applied to non-convex problems (see, for example, Hare
& Sagastizábal (2010)). In particular, the special case of the Polyak step-size, where the bundle only
consists of the current cut and a lower bound on the objective, has proven to yield strong performance
in deep neural network training (Loizou et al., 2021; Wang et al., 2023a).

3 ALGORITHM

In this section we present a model-based algorithm for solving (1) asynchronously. We use a param-
eter server architecture (Li et al., 2013) with one central server and n workers. The central server
maintains a copy of the global decision variable and can query each worker for its function value
and gradient. Based on this information, the central server builds up a piecewise linear model of
each worker’s loss function, and then uses this model to compute the next iterate. A notable feature
of the algorithm is that its implementation does not require knowledge of an upper bound on the
information delay.

3.1 MAIN IDEA

To simplify the presentation of the method we consider a fixed iteration and drop the iteration index.
We assume that the iteration number is sufficiently large to ensure that the central server has received
information from each worker in at least m previous iterates. The parameter m is referred to as the
bundle size. For i ∈ {1, . . . , n} we introduce an algorithmic parameter Mi > 0 which, roughly
speaking, represents the smoothness parameter of worker i, and we let M ≜

∑n
i=1 Mi. (An exact

definition of Mi is given in §4.) We will later show that in a practical implementation of our method,
the parameters Mi, i = 1, . . . , n are estimated adaptively and require no tuning.

Let zij for j = 1, . . . ,m denote the m previous iterates in which the central server has received
information from worker i. We label the iterates so that zim is the most recent iterate for which
the central server has received information from worker i, and let z̄ ≜ 1

M

∑n
i=1 Miz

i
m denote a

weighted average of these points. The central server maintains the following piecewise linear model
of fi:

f̌i(x) = max
1≤j≤m

{
fi(z

i
j) + ⟨∇fi(z

i
j), x− zij⟩

}
. (2)
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When the central server receives information from one or several workers, it replaces the oldest
iterate in the bundle for those workers. The next iterate is then computed as an approximate solution
of

min
x∈Rd

{ n∑
i=1

f̌i(x) +R(x) +
M

2
∥x− z̄∥22

}
. (3)

(We will later specify what we mean by an approximate solution.) Note in particular that the bundle
center in (3) is chosen as a weighted average of the most recent iterates for the workers; this is
essential for the convergence analysis in §4.

In our method, the central server must store m gradients of size d for all n workers, resulting in
a total memory complexity of order O(mnd). This is more than the O(nd) memory required by
methods that only store the most recent gradient of each worker, but often substantially less than
the O(d2) requirement of methods such as (Soori et al., 2020) that store an approximation of the
Hessian at the central server.

3.2 SOLVING THE MASTER PROBLEM

In every iteration the central server must solve the master problem (3), which for common regu-
larizers such as R(x) = λ∥x∥1 can be formulated as a quadratic program with linear inequality
constraints. If the dimension d is large, solving (3) can become a computational bottleneck. How-
ever, when an aggregated piecewise linear model of the objective function is used and R(x) = 0,
it is well known that the dual of (3) is a low-dimensional quadratic program over the probability
simplex (see, for example, (Hiriart-Urruty & Lemarechal, 1993, p. 296)). As the following lemma
shows, a similar observation can be made when a disaggregated piecewise linear model of f is used
and when R(x) ̸= 0. To state the lemma we define matrices Gi ∈ Rd×m containing old gradient
information of fi by

Gi =
[
∇fi(z

i
1) . . . ∇fi(z

i
m)

]
.

For i = 1, . . . , n, let vi ∈ Rm be defined componentwise by (vi)j = ⟨∇fi(z
i
j), z

i
j⟩ − fi(z

i
j) and

let v = (v1, . . . , vn) ∈ Rmn. Recall that for γ > 0, the Moreau envelope of R and the proximal
operator of R are defined by

Hγ
R(y) = min

x

{
R(x) +

1

2γ
∥x− y∥22

}
, proxγR(y) = argmin

x

{
R(x) +

1

2γ
∥x− y∥22

}
.

Lemma 3.1. Let λi ∈ Rm, i = 1, . . . , n and λ = (λ1, . . . , λn) ∈ Rmn. Define g : Rmn → R by

g(λ) =
M

2
∥z̄ − 1

M

n∑
i=1

Giλi∥22 −H
1/M
R

(
z̄ − 1

M

n∑
i=1

Giλi

)
+ ⟨v, λ⟩.

The Lagrange dual of (3) is given by

minimize g(λ)
subject to 1Tλi = 1, λi ≥ 0, i = 1, . . . , n.

(4)

Furthermore, if λ⋆ is optimal in (4), then the unique solution of (3), denoted by xexact, is given by

xexact = prox 1
M R

(
z̄ − 1

M

n∑
i=1

Giλ
⋆
i

)
. (5)

Proof. The proofs of this and all forthcoming results are given in the appendix.

3.3 AN EFFICIENT APPROXIMATE MASTER PROBLEM SOLVER

According to Lemma 3.1, we can solve the master problem (3) by solving its low-dimensional dual
(4). However, even if the dual is low-dimensional, it can be too expensive to solve it to high accuracy
since the second term in the definition of the dual objective function itself involves a minimization
problem in x. Therefore, in our algorithm, we only generate approximate solutions to (3) using
inexact solutions to (4). The goal of this subsection is to introduce equation (6) below, which defines
a termination criterion that we use to specify what we mean by an inexact solution.
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Algorithm 1
Setup: x0, parameters Mi, bundle size m, tolerance δ > 0
Initialization: the central server receives fi(x0) and ∇fi(x0), i = 1, . . . , n
while not interrupted by central server: each worker i do

receive x from the server, compute fi(x) and ∇fi(x), and send them back to the server
end while
while not converged: central server do

for i = 1, . . . , n do
if received information from worker i then

update the bundle of worker i by throwing out the oldest information
end if

end for
compute λ̄ satisfying (6) and then update x according to (7)
send back x to all workers that the server received information from

end while

Denote the feasible set of (4) by ∆ ⊆ Rmn. The dual objective function g is differentiable since the
Moreau envelope is differentiable. Hence, from optimality conditions for convex optimization (see,
for example, (Nesterov, 2018, p. 177)), λ⋆ solves (4) if and only if

⟨∇g(λ⋆), λ⋆ − λ⟩ ≤ 0 for all λ ∈ ∆.

As in (Nesterov & Florea, 2021), we allow for inexact solution of (4) by introducing a parameter
δ > 0 together with the requirement that we compute a point λ̄ satisfying

⟨∇g(λ̄), λ̄− λ⟩ ≤ δ for all λ ∈ ∆. (6)

The next iterate, denoted by x+, is then computed as (cf. (5))

x+ = prox 1
M R(z̄ −

1

M

n∑
i=1

Giλ̄i). (7)

A summary of the algorithm we propose is given in Algorithm 1. Implementation details, including
how to find λ̄ satisfying (6), are given in §5.

3.4 EXTENSION TO STOCHASTIC FUNCTION VALUES AND GRADIENTS

While the main focus of this paper is the setting where exact (full batch) function and gradient eval-
uations are used, we will also analyze a variant that uses stochastic (mini-batch) function values and
gradients. For this setting we assume that each worker i ∈ {1, . . . , n} has access to an oracle that
when queried at a point x, draws a random variable ξ from some distribution and outputs both a
stochastic function value Fi(x; ξ) approximating fi(x), and a stochastic gradient Gi(x; ξ) approxi-
mating ∇fi(x). In this stochastic setting, the central server replaces the piecewise linear model (2)
of fi with the following stochastic piecewise linear model:

f̌i(x, ξ) = max
1≤j≤m

{
Fi(z

i
j ; ξ

i
j) + ⟨Gi(z

i
j ; ξ

i
j), x− zij⟩

}
.

Here ξij is the random variable from the query of the oracle of worker i in the point zij , and the bold
ξ represents all randomness used to construct the current bundle.

4 CONVERGENCE ANALYSIS

In this section we study the convergence of Algorithm 1 and its stochastic extension. Our main result
is Theorem 4.5 which shows that under standard assumptions, the algorithm converges linearly to a
neighborhood of x⋆ whose size depends on the accuracy used to solve the master problem. Theorem
4.5 also characterizes how the information delays affect the convergence rate. The convergence
analysis uses two sequences of points: the sequence of iterates xk for k ∈ Z+ ≜ {0, 1, 2, . . . } and
the sequence of points zik,j for k ∈ Z+, i ∈ {1, . . . , n} and j ∈ {1, . . . ,m} used to construct the

5
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piecewise linear model of fi in iteration k. (These points are previous iterates, i.e., for (k, i, j) ∈
Z+ × {1, . . . , n} × {1, . . . ,m} there exists a non-negative integer sik,j ≤ k such that zik,j = xsik,j

.)

We will assume that the points are labeled such that zik,m denotes the most recent iterate in which
the central server has received information from worker i in iteration k. With this convention, the
quantity k− sik,m ≥ 0 is called the delay of worker i in iteration k. Our first assumption is standard
(see, for example, Feyzmahdavian et al. (2014); Gürbüzbalaban et al. (2017); Vanli et al. (2018);
Mishchenko et al. (2018)) and states that the maximum delay is bounded by an integer τ ≥ 0.
Assumption 4.1. In every iteration k the delay of worker i is bounded by τ . In other words, for
(k, i) ∈ Z+ × {1, . . . , n} it holds that k − sik,m ≤ τ .

We will also make the following standard assumption on the objective function.
Assumption 4.2. The loss function of worker i ∈ {1, . . . , n} is smooth with parameter Li.

Occasionally we will further make the following common growth assumption that is similar to, but
weaker, than strong convexity (see, for example, Necoara et al. (2019)).
Assumption 4.3. The full objective function F has a quadratic functional growth with parameter
µ > 0, meaning that F (x)− F (x⋆) ≥ (µ/2)∥x− x⋆∥22 for all x ∈ Rd.

4.1 ANALYSIS FOR EXACT FUNCTION VALUES AND GRADIENTS

We now present a convergence analysis when exact (non-stochastic) function values and gradients
are used. First we need an additional assumption.
Assumption 4.4. The loss function fi of worker i ∈ {1, . . . , n} is star-convex, meaning that
fi(x

⋆) ≥ fi(x) + ⟨∇fi(x), x
⋆ − x⟩ for all x ∈ Rd.

Under the growth assumption we can show linear convergence to a neighborhood of the solution.
Theorem 4.5. Under Assumptions 4.1, 4.2, 4.3 and 4.4 the iterates of Algorithm 1 using Mi =
Li, i = 1, . . . , n satisfy

∥xk − x⋆∥22 ≤ ρk∥x0 − x⋆∥22 + ϵδ, (8)

where ρ = (L/(L+ µ))1/(1+τ) and ϵδ = 2δ/µ.
Remark 4.6. A notable feature of our algorithm is that neither its implementation nor its tuning
requires any information about the level of asynchrony in the system. The method converges with
default parameters as long as the information delay from all workers are finite, and under Assump-
tion 4.3, the convergence rate decreases as the level of asynchrony in the system increases.
Remark 4.7. Rather than relying on the common yet unrealistic assumption of solving the sub-
problem (3) exactly, our analysis explicitly accounts for and characterizes the impact of inexact
subproblem solutions. As a result, an error term depending on δ naturally appears in the conver-
gence result. However, we should point out that in practice, the algorithm we propose has no issues
with finding highly accurate solutions (see §6).

For the analysis without the growth assumption we will use the following new sequence result that
might be of independent interest.
Lemma 4.8. Suppose that (Vk)

∞
k=0 and (Wk)

∞
k=0 are non-negative sequences satisfying

Vk+1 ≤ max
(k−τ)+≤ℓ≤k

Vℓ −Wk+1 + r, k = 0, 1, 2,

for a non-negative constant r. Then, for any k ≥ 1,

min
t≤k

Wt ≤
(τ + 1)V0

k
+ r.

Using Lemma 4.8 we can prove sublinear convergence in terms of the function value gap.
Theorem 4.9. Under Assumptions 4.1, 4.2, and 4.4, the iterates of Algorithm 1 using Mi = Li, i =
1, . . . , n, satisfy that for any k ≥ 1,

min
t≤k

F (xt)− F (x⋆) ≤ (τ + 1)L∥x0 − x⋆∥22
2k

+ δ.

6
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4.2 ANALYSIS FOR STOCHASTIC FUNCTION VALUES AND GRADIENTS

When stochastic function values and gradients are used we will make the following assumptions.
Assumption 4.10. For each worker i ∈ {1, . . . , n}:

1. The oracle is star-convex, i.e., Fi(x
⋆; ξ) ≥ Fi(x; ξ) + ⟨Gi(x; ξ), x

⋆ − x⟩ for all x ∈ Rd.
Furthermore, E[Fi(x, ξ)] = fi(x) and E[Gi(x, ξ)] = ∇fi(x) for all x ∈ Rd.

2. The variance of the stochastic gradients is bounded by some finite constant σ2
2 > 0, mean-

ing that E[∥Gi(x, ξ)−∇fi(x)∥22] ≤ σ2
2 for all x ∈ Rd.

3. The function value noise at the optimal solution x⋆ is bounded by some finite constant
σ2
1 > 0, meaning that E[(Fi(x

⋆; ξ)− fi(x
⋆))2] ≤ σ2

1 .

Relation to previous assumptions in the literature. The second assumption bounding the noise of
the gradients is common in the analysis of stochastic algorithms (see, for example, Koloskova et al.
(2022); Mishchenko et al. (2022)). The third assumption is less common, since most algorithms
often only use stochastic gradients and not function values. However, recent analysis of stochastic
algorithms that use stochastic function values in addition to stochastic gradients make a similar
assumption (see, for example, Loizou et al. (2021); Wang et al. (2023b)).
Theorem 4.11. Consider Algorithm 1 with Mi = αLi, i = 1, . . . , n where α > 1. Assume that
stochastic function values and gradients are used. Under Assumptions 4.1, 4.2, and 4.10, the iterates
of Algorithm 1 satisfy that for any k ≥ 1,

min
t≤k

E[F (xt)]− F (x⋆) ≤ α(τ + 1)L∥x− x0∥22
2k

+ ϵ, (9)

where ϵ = ϵδ + ϵσ1
+ ϵσ2

with

ϵδ = δ, ϵσ1 = nσ1

√
m, ϵσ2 =

σ2
2

2(α− 1)
·

n∑
i=1

1

Li
.

If, in addition, Assumption 4.3 holds, then

E[∥xk − x⋆∥22] ≤ ρk∥x0 − x⋆∥22 + 2ϵ/µ,

where ρ = (αL/(αL+ µ))1/(1+τ).
Remark 4.12. Compared to algorithms with a simple explicit update rule of the form xk+1 =
proxγg(xk + γdk) where dk is a direction and γ is a step size, the update mechanism of Algorithm
1 is more implicit since it involves solving the dual subproblem (4) approximately. This makes the
analysis challenging. One of the main technical challenges in the proof in the stochastic setting is to
carefully manage correlations between recently queried gradients Gi(z

i
m), the dual variable λ̄, and

the next iterate xk+1, all of which are correlated random variables.
Remark 4.13. The size of the neighborhood of the solution that xk converges to in expectation
depends on three terms: one term ϵδ which depends on the accuracy δ, and two other terms ϵσ1 and
ϵσ2 which depend on the strength of the noise. The noise terms ϵσ1 and ϵσ2 depend on n, which
may seem uncommon. This dependency arises because we analyze the canonical form f(x) =∑n

i=1 fi(x) instead of the more common form f(x) = (1/n)
∑n

i=1 fi(x). Under the latter form,
the noise terms would not depend on n.

5 IMPLEMENTATION

When implementing Algorithm 1, two issues must be addressed.

Solving the subproblem. First, we must find an approximate solution to (4) by finding λ̄ ∈ Rmn

satisfying (6). Since ∆ is a Cartesian product of simplices, it is cheap to verify condition (6) by
noting that

sup
λ∈∆

⟨∇g(λ̄), λ̄− λ⟩ = ⟨∇g(λ̄), λ̄⟩ − inf
λ∈∆

⟨∇g(λ̄), λ⟩ = ⟨∇g(λ̄), λ̄⟩ −
n∑

i=1

min∇ig(λ̄),
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where min∇ig(λ̄) is the smallest element of ∇ig(λ̄). (Here ∇ig(λ̄) is the gradient of g with respect
to λi.) To find λ̄ we have implemented an accelerated projected gradient method for solving (4)
(Beck, 2017, page 291). Each iteration requires the gradient of g and projecting onto the feasible
set ∆. Since ∆ is a Cartesian product of low-dimensional simplices, the projection can be done
efficiently (see, for example, (Condat, 2016)). Furthermore, from properties of the Moreau-envelope
(Beck, 2017, p. 166) it follows that the gradient of g with respect to λi is

∇ig(λ) = GT
i (u− prox 1

M R(u))−GT
i u+ vi = vi −GT

i prox 1
M R(u), (10)

where u ≜ z̄ − 1
M

∑n
i=1 Giλi.

In the appendix we compare the cost of solving the subproblem using this specialized method versus
a high-performance interior-point solver. The main conclusion is that this specialized approach is
more than an order of magnitude faster and that the complexity for solving the subproblem is of
order O(nmd).

Adaptive estimation of smoothness parameters. First-order methods for solving (1) typically require
knowledge of smoothness parameters. These parameters are often unknown or expensive to compute
in practice. To eliminate the need for choosing a suitable value on Li in Algorithm 1 we propose to
estimate it adaptively using similar ideas to (Malitsky & Mishchenko, 2020).

Recall that ∇fi(z
i
m) is the most recent gradient that the central server has received from worker i,

and let ∇fi(z
i
m−1) denote the next most recent gradient that the central server has received from

worker i. Given zim, ∇fi(z
i
m), zim−1 and ∇fi(z

i
m−1), a natural estimate of the local smoothness of

fi is the quantity

L̂i =
∥∇fi(z

i
m)−∇fi(z

i
m−1)∥2

∥zim − zim−1∥2
.

Every time the central server receives a new gradient from worker i, we propose to update the
smoothness parameter Li using this estimate.

6 EXPERIMENTS

We consider binary and multiclass classification problems based on a logistic model. For the binary
classification, we use the objective function

f(x) =
1

N

N∑
j=1

(
log(1 + e−yj(a

T
j x)) +

λ2

2
∥x∥22

)
and the regularizer R(x) = λ1∥x∥1, where a1, . . . , aN ∈ Rp are the feature vectors and
y1, . . . , yN ∈ {−1, 1} are the corresponding labels. Due to the space limitations, we defer the
results for multiclass classification to the appendix.

We conduct experiments on three datasets (mnist8m/infimnist, epsilon, rcv1) from the
LIBSVM library (Chang & Lin, 2011) and on the SVHN dataset (Netzer et al., 2011). We pick
λ2 = 1/N , and tune λ1 for each dataset to obtain a classifier x⋆ with 10-20% non-zero entries. The
dataset mnist8m corresponds to a multiclass problem with 10 different labels. To use it for binary
classification, we select data corresponding to the digits 7 and 9 and discard the rest. Table 1 shows
the dimensions of each problem and the value of λ1.

All methods are evaluated on a workstation using 10 cores. One core is assigned the role as the
central server and the remaining n = 9 cores are workers. The data is distributed evenly among
the workers. The code is written in Python using MPI4PY (Dalcin & Fang, 2021) and will be made
publicly available. To evaluate the objective value and the gradients we use PyTorch (Paszke et al.,
2019) for the dense datasets, and sparse linear algebra for rcv1.

6.1 BENCHMARKING

To benchmark our asynchronous bundle method (ABM) we compare it with two asynchronous proxi-
mal gradient methods, namely DAve-RPG (Mishchenko et al., 2018) and PIAG with delay-tracking
(Wu et al., 2022). We selected these methods since they operate under the same conditions as ABM in
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Table 1: Properties of the datasets that we use. The total number of data points is denoted by N and
d is the dimension of the decision variable. The column labeled DENSITY shows the percentage of
non-zero entries. The label DENSE means that the data matrix is stored as a dense matrix.

DATASET N d DENSITY λ1

MNIST8M (BINARY) 164 8890 784 DENSE 3e-3
RCV1 (BINARY) 677 399 47236 0.15% 3e-6
EPSILON (BINARY) 500 000 2000 DENSE 5e-5
SVHN (MULTICLASS) 630 420 10240 DENSE 1e-3
MNIST8M (MULTICLASS) 8100 000 7840 DENSE 8e-3

the sense that they use a parameter server, require no delay information in parameters, and explicitly
incorporate the regularizer. Both DAve-RPG and PIAG use exact gradients so we also use exact
function values and gradients for ABM.

For ABM we use bundle size m = 10, master problem tolerance δ = 10−7, and adaptive smoothness
estimation. DAve-RPG has two hyperparameters: the step size γ and the number of inner prox-
steps p. We use step size γ = 1/Laverage where Laverage is the average smoothness parameter of the
workers, and p = 1 inner prox-steps (as in (Mishchenko et al., 2018)). For PIAGwith delay-tracking
we implemented the first adaptive step size strategy described in (Wu et al., 2022).

The first row of Figure 1 shows the relative suboptimality (f(xk)− f⋆)/f⋆ versus the runtime. We
see that ABM clearly outperforms the other two methods. The second row shows the suboptimality
versus the number of gradients received by the server. We see that ABM achieves much higher
accuracy with fewer gradients received by the server. For rcv1 the difference is striking: in 300
seconds the central server in ABM receives about 4000 gradients, while the servers of DAve-RPG
and PIAG receive more than 70000 gradients in the same amount of time. This is in contrast to
mnist8m and epsilon where all servers receive roughly the same number of gradients in the
same amount of time. The reason underlying this observation is that the gradients are cheap to
compute for the sparse data set rcv1 and more expensive to compute for the dense datasets (cf.
Table 1). Consequently, for rcv1, the time required to solve the subproblem at the central server is
non-negligible compared to the time needed to evaluate gradients. In contrast, for the dense datasets,
this computation time is almost negligible.
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Figure 1: The progress of ABM, DAve-RPG and PIAG on the binary classification problems. The
datasets are arranged in the order mnist8m, rcv1 and epsilon from the left.

6.2 SENSITIVITY TO HYPERPARAMETERS

Strictly speaking, ABM has two hyperparameters: the tolerance δ and the bundle size m. We will
now investigate the sensitivity of the algorithm’s performance to these parameters. The first row of
Figure 2 shows the progress of ABM for fixed δ = 10−7 and bundle size m ∈ {2, 5, 10}. Increasing
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the bundle size from m = 2 to m ∈ {5, 10} results in much faster convergence for mnist8m.
Furthermore, ABM makes no progress with bundle size m = 2 for rcv1 and epsilon, but with
bundle size m ∈ {5, 10} the convergence is fast. This indicates the advantage of using a more
accurate approximation of the objective function for computing the next iterate.

Next we run ABM with fixed bundle size m = 10 and tolerance δ ∈ {10−5, 10−7, 10−9}. The result
is shown in the second row of Figure 2. We see that ABM has good performance for all three values
on δ.

This experiment suggests that ABM essentially requires no tuning in these experiments: the values
m = 10 and δ = 10−7 seem to work well. In particular, the performance of ABM is not as sensitive
to its hyperparameters as, for example, stochastic gradient descent is to its step size.
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Figure 2: Sensitivity of ABM’s performance with respect to hyperparameters. The first row shows
the performance for different bundle sizes m and fixed tolerance δ. The second row shows the per-
formance for different tolerances δ and fixed bundle size. Each column corresponds to one dataset,
and the columns are arranged in the order mnist8m, rcv1, epsilon.

6.3 FURTHER EXPERIMENTS

In the appendix we conduct further experiments when λ2 = 0, i.e., when the objective function is
convex but not strongly convex, and we also conduct experiments on multiclass classification. The
main conclusion is that ABM outperforms DAve-RPG and PIAG with delay tracking (see Figure 3
and 4 in the appendix). We also test the stochastic version of ABM using mini-batches for multiclas-
sification on the biggest data set mnist8m. The experiment indicates that mini-batching can speed
up ABM if only a modest accuracy is required (see Figure 5 in the appendix).

7 DISCUSSION

We have presented an asynchronous bundle method that is suitable for distributed learning problems.
The algorithm constructs a piecewise linear model to approximate the local loss of each worker and
uses this model to compute the next iterate. Compared to other first-order asynchronous algorithms,
our proposed method employs a more refined model of the objective function. This allows it to
converge quickly in practice with minimal tuning or specification of unknown constants.

Our method uses a fixed bundle size. An interesting extension would be to design a scheme that dy-
namically adjusts the bundle size based on the actual delays, potentially discarding outdated function
value information that hasn’t been used recently in the server subproblem. (The jth linear approxi-
mation of fi is not used in the server subproblem if λ⋆

ij = 0, where λ⋆ is the solution of (4).) Another
extension could be to let the central server maintain a low-rank approximation of the Hessian for
each worker, enabling a better approximation of the curvature of the loss function, and possibly
faster convergence. We leave these extensions for future work.
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A APPENDIX

In this appendix we present proofs and additional numerical experiments.

A.1 DUAL SUBPROBLEM

Lemma A.1. Let λi ∈ Rm, i = 1, . . . , n and λ = (λ1, . . . , λn) ∈ Rmn. Define g : Rmn → R by

g(λ) =
M

2
∥z̄ − 1

M

n∑
i=1

Giλi∥22 −H
1/M
R

(
z̄ − 1

M

n∑
i=1

Giλi

)
+ ⟨v, λ⟩.

The Lagrange dual of (3) is given by

minimize g(λ)
subject to 1Tλi = 1, λi ≥ 0, i = 1, . . . , n.

(11)

Furthermore, if λ⋆ is optimal in (4), then the unique solution of (3), denoted by xexact, is given by

xexact = prox 1
M R

(
z̄ − 1

M

n∑
i=1

Giλ
⋆
i

)
. (12)

Proof. In the proof we use the notation of stochastic function values and gradients. The setting
with exact function evaluations can be recovered by doing the substitutions Fi(x; ξ) = fi(x) and
Gi(x; ξ) = ∇fi(x).

Problem (3) can be formulated as

minimize
n∑

i=1

ri +
M

2
∥x− z̄∥22 +R(x)

subject to ri ≥ Fi(z
i
j ; ξ

i
j) + ⟨Gi(z

i
j ; ξ

i
j), x− zij⟩, j = 1, . . . ,m, i = 1, . . . , n,

(13)

with variables r ∈ Rn and x ∈ Rd. For i = 1, . . . , n, introduce a Lagrange multiplier vector
λi ∈ Rm. The Lagrangian is given by

L(x, r, λ1, . . . , λn) =

n∑
i=1

ri +
M

2
∥x− z̄∥22 +

n∑
i=1

m∑
j=1

λij(Fi(z
i
j ; ξ

i
j) + ⟨Gi(z

i
j ; ξ

i
j), x− zij⟩ − ri) +R(x)

=

n∑
i=1

(
1− 1Tλi

)
ri +

M

2
∥x− z̄∥22 +

n∑
i=1

⟨λi,G
T
i x− vi⟩+R(x),

where

Gi =
[
Gi(z

i
1; ξ

i
1) . . . Gi(z

i
m; ξim)

]
∈ Rd×m

and vi ∈ Rm is defined componentwise by

(vi)j = ⟨Gi(z
i
j ; ξ

i
j), z

i
j⟩ − Fi(z

i
j ; ξ

i
j).

The Lagrangian is unbounded in r unless 1Tλi = 1, i = 1, . . . , n. Furthermore, for such λ mini-
mizing the Lagrangian over x yields

inf
x

L(x, r, λ1, . . . , λn) = inf
x

{
R(x) +

M

2
∥x− z̄∥22 +

n∑
i=1

⟨Giλi, x⟩
}
−

n∑
i=1

⟨λi, vi⟩

= inf
x

{
R(x) +

M

2
∥x− (z̄ − 1

M

n∑
i=1

Giλi)∥22
}
− M

2
∥z̄ − 1

M

n∑
i=1

Giλi∥22 +
M

2
∥z̄∥22 −

n∑
i=1

⟨λi, vi⟩

= H
1/M
R

(
z̄ − 1

M

n∑
i=1

Giλi

)
− M

2
∥z̄ − 1

M

n∑
i=1

Giλi∥22 +
M

2
∥z̄∥22 −

n∑
i=1

⟨λi, vi⟩.
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By dropping the term M
2 ∥z̄∥22 it follows that a dual problem is given by

minimize g(λ) := −H
1/M
R

(
z̄ − 1

M

n∑
i=1

Giλi

)
+

M

2
∥z̄ − 1

M

n∑
i=1

Giλi∥22 +
n∑

i=1

⟨λi, vi⟩

subject to λ ∈ ∆.

Since Slater’s constraint qualification (Boyd & Vandenberghe, 2004, page 226) is satisfied, strong
duality holds and the point xexact defined by (12) minimizes L(x, r, λ⋆

1, . . . , λ
⋆
n) over x (here the

value of r is arbitrary since the Lagrangian is independent of r for any value of λ that is dual
feasible). The function x 7→ L(x, r, λ⋆

1, . . . , λ
⋆
n) has a unique minimizer, so it follows that xexact

given by (12) indeed solves (3).

A.2 CONVERGENCE ANALYSIS

In the analysis below we analyze the progress Algorithm 1 makes in iteration k. To simplify the
notation we drop the iteration index. In other words, the notation zij , j = 1, . . . ,m below refers to
the points used to construct the piecewise linear model of fi in iteration k.

In the first few results we will stick with the convention of using stochastic function values and
gradients. The setting with exact function evaluations can be recovered by doing the substitutions
Fi(x; ξ) = fi(x) and Gi(x; ξ) = ∇fi(x).

We will analyze Algorithm 1 by using (7). This will make the analysis depend on the dual variable
λ̄. The following result (inspired by (Nesterov & Florea, 2021)) will be useful to partly remove the
dependence on λ̄ from the analysis.
Lemma A.2. Assume λ̄ satisfies (6) and let xk+1 be given by (7). Then

n∑
i=1

m∑
j=1

λ̄ij [Fi(z
i
j ; ξ

i
j) + ⟨Gi(z

i
j ; ξ

i
j), xk+1 − zij⟩] ≥

n∑
i=1

f̌i(xk+1; ξ)− δ.

Proof. Since (6) is satisfied we have ⟨λ̄,−∇g(λ̄)⟩ ≥ supλ∈∆⟨λ,−∇g(λ̄)⟩ − δ. Note that

⟨λ̄,−∇g(λ̄)⟩ = −
n∑

i=1

⟨λ̄i,∇gi(λ̄)⟩ =
n∑

i=1

m∑
j=1

λ̄ij [Fi(z
i
j ; ξ

i
j) + ⟨Gi(z

i
j ; ξ

i
j), xk+1 − zij⟩]

sup
λ∈∆

⟨λ,−∇g(λ̄)⟩ = sup
λ∈∆

n∑
i=1

m∑
j=1

λij [Fi(z
i
j ; ξ

i
j) + ⟨Gi(z

i
j ; ξ

i
j), xk+1 − zij⟩] =

n∑
i=1

f̌i(xk+1, ξ).

Lemma A.3. The next iterate xk+1 satisfies

1

2
∥xk+1 − x⋆∥22 −

1

2M

n∑
i=1

Mi∥zim − x⋆∥22 ≤ 1

M
(R(x⋆)−R(xk+1))−

1

2M

n∑
i=1

Mi∥xk+1 − zim∥22

+
1

M

n∑
i=1

m∑
j=1

λ̄ij⟨Gi(z
i
j ; ξ

i
j), x

⋆ − xk+1⟩.

(14)

Proof. In the proof we will apply the identity
n∑

i=1

Mi

2
∥y − zim∥22 =

M

2
∥y − 1

M

n∑
i=1

Miz
i
m∥22 −

1

2M
∥

n∑
i=1

Miz
i
m∥22 +

n∑
i=1

Mi

2
∥zim∥22

twice; once with y = x⋆ and once with y = xk+1.

Using the three-points lemma 1
2∥b− c∥22 − 1

2∥a− c∥22 = ⟨a− b, c− b⟩ − 1
2∥a− b∥22 we get

1

2
∥xk+1 − x⋆∥22 −

1

2
∥z̄ − x⋆∥22 = ⟨z̄ − xk+1, x

⋆ − xk+1⟩ −
1

2
∥xk+1 − z̄∥22. (15)
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Since xk+1 = prox 1
M R(z̄ − 1

M

∑n
i=1

∑m
j=1 λ̄ijGi(z

i
j ; ξ

i
j)) it follows from optimality conditions

for convex optimization that (Nesterov, 2018, Thm 3.1.23)

R(xk+1) ≤ R(y) +M⟨xk+1 − (z̄ − 1

M

n∑
i=1

m∑
j=1

λ̄ijGi(z
i
j ; ξ

i
j)), y − xk+1⟩ for all y ∈ Rd.

If we let y = x⋆ and rearrange we get

⟨z̄ − xk+1, x
⋆ − xk+1⟩ ≤

1

M
(R(x⋆)−R(xk+1)) +

1

M

n∑
i=1

m∑
j=1

λ̄ij⟨Gi(z
i
j ; ξ

i
j), x

⋆ − xk+1⟩.

Using this bound in (15) shows that

1

2
∥xk+1 − x⋆∥22 −

1

2
∥z̄ − x⋆∥22 ≤ 1

M
(R(x⋆)−R(xk+1)) +

1

M

n∑
i=1

m∑
j=1

λ̄ij⟨Gi(z
i
j ; ξ

i
j), x

⋆ − xk+1⟩

− 1

2
∥xk+1 − z̄∥22

=
1

M
(R(x⋆)−R(xk+1)) +

1

M

n∑
i=1

m∑
j=1

λ̄ij⟨Gi(z
i
j ; ξ

i
j), x

⋆ − xk+1⟩

− 1

M

( n∑
i=1

Mi

2
∥xk+1 − zim∥22 +

1

2M
∥

n∑
i=1

Miz
i
m∥22 −

n∑
i=1

Mi

2
∥zim∥22

)
.

We can rearrange to obtain

1

2
∥xk+1 − x⋆∥22 −

1

2

(
∥ 1

M

n∑
i=1

Miz
i
m − x⋆∥22 −

1

M2
∥

n∑
i=1

Miz
i
m∥22 +

1

M

n∑
i=1

Mi∥zim∥22
)

≤ 1

M
(R(x⋆)−R(xk+1)) +

1

M

n∑
i=1

m∑
j=1

λ̄ij⟨Gi(z
i
j ; ξ

i
j), x

⋆ − xk+1⟩ −
1

2M

n∑
i=1

Mi∥xk+1 − zim∥22.

Note that

∥ 1

M

n∑
i=1

Miz
i
m − x⋆∥22 −

1

M2
∥

n∑
i=1

Miz
i
m∥22 +

1

M

n∑
i=1

Mi∥zim∥22

=
2

M

(
M

2
∥x⋆ − 1

M

n∑
i=1

Miz
i
m∥22 −

1

2M
∥

n∑
i=1

Miz
i
m∥22 +

n∑
i=1

Mi

2
∥zim∥22

)

=
2

M

n∑
i=1

Mi

2
∥x⋆ − zim∥22 =

1

M

n∑
i=1

Mi∥x⋆ − zim∥22.

Hence, we conclude that

1

2
∥xk+1 − x⋆∥22 −

1

2M

n∑
i=1

Mi∥zim − x⋆∥22 ≤ 1

M
(R(x⋆)−R(xk+1))−

1

2M

n∑
i=1

Mi∥xk+1 − zim∥22

+
1

M

n∑
i=1

m∑
j=1

λ̄ij⟨Gi(z
i
j ; ξ

i
j), x

⋆ − xk+1⟩.

Lemma A.4. The next iterate xk+1 satisfies

1

2
∥xk+1 − x⋆∥22 −

1

2M

n∑
i=1

Mi∥zim − x⋆∥22 ≤ 1

M
(R(x⋆)−R(xk+1)) +

1

M
f(x⋆) +

δ

M

− 1

M

n∑
i=1

(Fi(z
i
m; ξim) + ⟨Gi(z

i
m; ξim), xk+1 − zim⟩+ Mi

2
∥xk+1 − zim∥22)

+
1

M

n∑
i=1

m∑
j=1

λ̄ij(Fi(x
⋆; ξij)− fi(x

⋆)).
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Proof. Note that
m∑
i=1

m∑
j=1

λ̄ij⟨Gi(z
i
j ; ξ

i
j), x

⋆ − xk+1⟩ =
m∑
i=1

m∑
j=1

λ̄ij(⟨Gi(z
i
j ; ξ

i
j), x

⋆ − zij⟩+ ⟨Gi(z
i
j ; ξ

i
j), z

i
j − xk+1⟩)

≤
n∑

i=1

m∑
j=1

λ̄ij

(
Fi(x

⋆; ξij)− Fi(z
i
j ; ξ

i
j) + ⟨Gi(z

i
j ; ξ

i
j), z

i
j − xk+1⟩

)
=

n∑
i=1

m∑
j=1

λ̄ijFi(x
⋆; ξij)−

m∑
j=1

λ̄ij(Fi(z
i
j ; ξ

i
j) + ⟨Gi(z

i
j ; ξ

i
j), xk+1 − zij⟩)

≤
n∑

i=1

m∑
j=1

λ̄ijFi(x
⋆; ξij)−

n∑
i=1

f̌i(xk+1; ξ) + δ.

In the first inequality above we used the star-convexity of the oracle (see Assumption 4.10 for the
stochastic case and Assumption 4.4 for the deterministic case). In the second inequality we used
Lemma A.2.

Inserting this into Lemma A.3 yields

1

2
∥xk+1 − x⋆∥22 −

1

2M

n∑
i=1

Mi∥zim − x⋆∥22 ≤ 1

M
(R(x⋆)−R(xk+1)) +

1

M

n∑
i=1

m∑
j=1

λ̄ijFi(x
⋆; ξij)

− 1

M

n∑
i=1

(
f̌i(xk+1; ξ) +

Mi

2
∥xk+1 − zim∥22

)
+

δ

M
.

The result now follows from adding and subtracting (1/L)f(x⋆) from the right side of the inequality
and dropping all but the most recent cut for every piecewise linear model.

We now distinguish between the deterministic and stochastic case. The following result from
(Feyzmahdavian et al., 2014) will be useful.
Lemma A.5. Let (Vk)

∞
k=0 be a non-negative sequence satisfying

Vk+1 ≤ qVk + p max
(k−τ)+≤ℓ≤k

Vℓ + r, k = 0, 1, 2, . . .

for some non-negative constants p, q and r. If q + p < 1, then

Vk ≤ ρkV0 + ϵ, k = 0, 1, 2, . . . ,

where ρ = (p+ q)1/(1+τ), ϵ = r/(1− p− q) and (k − τ)+ = max{k − τ, 0}.

Lemma A.5 will be used to analyze the algorithm under the quadratic functional growth assumption.
For the analysis of the convex case, we present a new sequence result that may be of independent
interest.
Lemma A.6. Suppose that (Vk)

∞
k=0 and (Wk)

∞
k=0 are non-negative sequences satisfying

Vk+1 ≤ max
(k−τ)+≤ℓ≤k

Vℓ −Wk+1 + r, k = 0, 1, 2, . . . (16)

for a non-negative constant r. Then, for any k ≥ 1,

min
t≤k

Wt ≤
(τ + 1)V0

k
+ r. (17)

Proof. We prove (17) by contradiction. Suppose that for some K ≥ 1, (17) fails to hold. Then, for
all k ≤ K,

Wk >
(τ + 1)V0

K
+ r. (18)

Define I0 = {0} and for any t ≥ 1,

It = [(t− 1)(τ + 1) + 1, t(τ + 1)].
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Substituting (18) into (16) gives that for all k ≤ K − 1,

Vk+1 < max
(k−τ)+≤ℓ≤k

Vℓ −
(τ + 1)V0

K
. (19)

Let t̃ = ⌊K/(τ + 1)⌋. For any t ≤ t̃, It ⊆ [0,K]. Then, using (19), we can derive that for all
t ≤ t̃− 1,

max
k∈It+1

Vk < max
k∈It

Vk − (τ + 1)V0

K
.

Summing the above equation over t ∈ [0, t̃− 1] and noting that maxk∈I0
Vk = V0 yields

max
k∈It̃

Vk < V0 −
t̃(τ + 1)V0

K
. (20)

Note that t̃ = ⌊K/(τ + 1)⌋. If t̃ = K/(τ + 1), then

t̃(τ + 1)V0

K
= V0,

substituting which into (20) yields maxk∈It̃
Vk < 0, which cannot be true because Vk ≥ 0 for all

k ≥ 0.

If t̃ < K/(τ + 1), then we have K > t̃(τ + 1). Then, by (19),

VK < max
k∈It̃

Vk − (τ + 1)V0

K
.

Moreover, since t̃ ≥ K/(τ + 1)− 1, from (20) we have

max
k∈It̃

Vk <
(τ + 1)V0

K
.

Combining the above two equations, we obtain

VK < 0,

which cannot hold.

Concluding the above, (17) holds for all k ≥ 1.

EXACT FUNCTION VALUES AND GRADIENTS

First we prove convergence for exact (full-batch) function values and gradients.
Theorem A.7. Under Assumptions 4.1, 4.2, 4.3, and 4.4 the iterates of Algorithm 1 using Mi =
Li, i = 1, . . . , n satisfy

∥xk − x⋆∥22 ≤ ρk∥x0 − x⋆∥22 + ϵδ, (21)

where ρ = (L/(L+ µ))1/(1+τ) and ϵδ = 2δ/µ.

Proof. We insert Mi = Li, M = L and Fi(x
⋆; ξij) = fi(x

⋆) into Lemma A.4 and use that fi is
smooth with parameter Li (see Assumption 4.2) to conclude that

1

2
∥xk+1 − x⋆∥22 −

1

2L

n∑
i=1

Li∥zim − x⋆∥22 ≤ 1

L
(R(x⋆)−R(xk+1)) +

1

L
f(x⋆) +

δ

L

− 1

L

n∑
i=1

(fi(z
i
m) + ⟨∇fi(z

i
m), xk+1 − zim⟩+ Li

2
∥xk+1 − zim∥22)

≤ 1

L
(R(x⋆)−R(xk+1)) +

1

L
f(x⋆) +

δ

L
− 1

L
f(xk+1)

=
1

L
(F (x⋆)− F (xk+1)) +

δ

L
.
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Now suppose that the quadratic functional growth condition of F (see Assumption 4.3) holds. We
conclude that

1

2
∥xk+1 − x⋆∥22 −

1

2L

n∑
i=1

Li∥zim − x⋆∥22 ≤ − µ

2L
∥xk+1 − x⋆∥22 +

δ

L
.

After rearranging terms we get

∥xk+1 − x⋆∥22 ≤ 1

L+ µ

n∑
i=1

Li∥zim − x⋆∥22 +
2δ

L+ µ

≤ L

L+ µ
· max
(k−τ)+≤ℓ≤k

∥xℓ − x⋆∥22 +
2δ

L+ µ
.

Applying Lemma A.5 yields the desired result.

We now consider the case without the growth assumption.
Theorem A.8. Under Assumptions 4.1, 4.2, and 4.4, the iterates of Algorithm 1 using Mi = Li, i =
1, . . . , n, satisfy that for any k ≥ 1,

min
t≤k

F (xt)− F (x⋆) ≤ (τ + 1)L∥x0 − x⋆∥22
2k

+ δ. (22)

Proof. From the proof of Theorem A.7 we know that

1

2
∥xk+1 − x⋆∥22 −

1

2L

n∑
i=1

Li∥zim − x⋆∥22 ≤ 1

L
(F (x⋆)− F (xk+1)) +

δ

L
.

Note that ∥zim − x⋆∥2 ≤ max(k−τ)+≤ℓ≤k ∥xℓ − x⋆∥2 for any i = 1, . . . , n. Equation (22) follows
by applying Lemma A.6 with Vℓ =

1
2∥xℓ − x⋆∥2, Wk+1 = 1

L (F (xk+1)− F (x⋆)) and r = δ
L .

STOCHASTIC FUNCTION VALUES AND GRADIENTS

Next we prove the convergence for stochastic function values and gradients.
Theorem A.9. Consider Algorithm 1 with Mi = αLi, i = 1, . . . , n where α > 1. Assume that
stochastic function values and gradients are used. Under Assumptions 4.1, 4.2, and 4.10, the iterates
of Algorithm 1 satisfy

min
t≤k

E[F (xt)]− F (x⋆) ≤ α(τ + 1)L∥x− x0∥22
2k

+ ϵ, (23)

where ϵ = ϵδ + ϵσ1 + ϵσ2 with

ϵδ = δ, ϵσ1 = nσ1

√
m, ϵσ2 =

σ2
2

2(α− 1)
·

n∑
i=1

1

Li
.

If, in addition, Assumption 4.3 holds, then

E[∥xk − x⋆∥22] ≤ ρk∥x0 − x⋆∥22 + 2ϵ/µ,

where ρ = (αL/(αL+ µ))1/(1+τ).

Proof. According to Lemma A.4 we have

1

2
∥xk+1 − x⋆∥22 −

1

2M

n∑
i=1

Mi∥zim − x⋆∥22 ≤ 1

M
(R(x⋆)−R(xk+1)) +

1

M
f(x⋆) +

δ

M

− 1

M

n∑
i=1

Fi(z
i
m; ξim) + ⟨Gi(z

i
m; ξim), xk+1 − zim⟩+ Mi

2
∥xk+1 − zim∥22︸ ︷︷ ︸

≜T1

+
1

M

n∑
i=1

m∑
j=1

λ̄ij(Fi(x
⋆; ξij)− fi(x

⋆)).

(24)
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Using the Cauchy-Schwarz inequality together with Mi = αLi and the assumption that worker i is
smooth with parameter Li, we bound T1 according to (this holds for all i = 1, . . . , n)

T1 = fi(z
i
m) + ⟨∇fi(z

i
m), xk+1 − zim⟩+ Li

2
∥xk+1 − zim∥22

+ Fi(z
i
m; ξim)− fi(z

i
m) + ⟨Gi(z

i
m; ξim)−∇fi(z

i
m), xk+1 − zim⟩+ (α− 1)Li

2
∥xk+1 − zim∥22

≥ fi(xk+1) + Fi(z
i
m; ξim)− fi(z

i
m) +

(α− 1)Li

2
∥xk+1 − zim∥22

− ∥Gi(z
i
m; ξim)−∇fi(z

i
m)∥2∥xk+1 − zim∥2

≥ fi(xk+1) + Fi(z
i
m; ξim)− fi(z

i
m)− 1

2(α− 1)Li
∥Gi(z

i
m; ξim)−∇fi(z

i
m)∥22,

where we in the last inequality used that (b/2)t2 − at ≥ −a2/(2b) for all t ∈ R, a ∈ R and b > 0.
Inserting this bound into (24) allows us to conclude that

1

2
∥xk+1 − x⋆∥22 −

1

2M

n∑
i=1

Mi∥zim − x⋆∥22 ≤ 1

M
(R(x⋆)−R(xk+1)) +

1

M
f(x⋆) +

δ

M

− 1

M

n∑
i=1

(
fi(xk+1) + Fi(z

i
m; ξim)− fi(z

i
m)− 1

2(α− 1)Li
∥Gi(z

i
m; ξim)−∇fi(z

i
m)∥22

)
+

1

M

n∑
i=1

m∑
j=1

λ̄ij(Fi(x
⋆; ξij)− fi(x

⋆)).

By taking expectations conditioned on all randomness up to the current iteration and using that
E[Fi(z

i
m; ξmi )] = fi(z

i
m) where the expectation is conditional, we get

1

2
E[∥xk+1 − x⋆∥22 ]−

1

2M

n∑
i=1

Mi∥zim − x⋆∥22 ≤ 1

M
E[F (x⋆)− F (xk+1)] +

δ

M

+
1

M

n∑
i=1

1

2(α− 1)Li
E[∥Gi(z

i
m; ξim)−∇fi(z

i
m)∥22]︸ ︷︷ ︸

≜T2

+
1

M

n∑
i=1

m∑
j=1

λ̄ij(Fi(x
⋆; ξij)− fi(x

⋆)).

From the assumption of bounded variance (see Assumption 4.10) we have T2 ≤ σ2
2 . Hence,

1

2
E[∥xk+1 − x⋆∥22 ]−

1

2M

n∑
i=1

Mi∥zim − x⋆∥22 ≤ 1

M
E[F (x⋆)− F (xk+1)] +

δ

M

+
σ2
2

2(α− 1)M

n∑
i=1

1

Li
+

1

M

n∑
i=1

m∑
j=1

λ̄ij(Fi(x
⋆; ξij)− fi(x

⋆)).

After taking expectations again and using the tower property of conditional expectations we get

1

2
E[∥xk+1 − x⋆∥22 ]−

1

2M

n∑
i=1

Mi E[∥zim − x⋆∥22] ≤
1

M
E[F (x⋆)− F (xk+1)] +

δ

M

+
σ2
2

2(α− 1)M

n∑
i=1

1

Li
+

1

M

n∑
i=1

E

[ m∑
j=1

λ̄ij(Fi(x
⋆; ξij)− fi(x

⋆))

]
︸ ︷︷ ︸

≜T3

.
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To bound T3 we note that for i = 1, . . . , n, by the Cauchy-Schwarz inequality, it holds that

T3 ≤ E

[ m∑
j=1

λ̄ij · |Fi(x
⋆, ξij)− fi(x

⋆)|
]

≤
(
E

[ m∑
j=1

λ̄2
ij

])1/2

·
(
E

[ m∑
j=1

(Fi(x
⋆; ξij)− fi(x

⋆))2
])1/2

≤
( m∑

j=1

E[(Fi(x
⋆; ξij)− fi(x

⋆))2]

)1/2

≤ σ1

√
m.

Hence,

1

2
E[∥xk+1 − x⋆∥22 ]−

1

2M

n∑
i=1

Mi E[∥zim − x⋆∥22] ≤
1

M
E[F (x⋆)− F (xk+1)] +

δ

M

+
σ2
2

2(α− 1)M

n∑
i=1

1

Li
+

nσ1
√
m

M
.

Note that E[∥zim − x⋆∥2] ≤ max(k−τ)+≤ℓ≤k E[∥xℓ − x⋆∥2] for any i = 1, . . . , n. Then,
by Lemma A.6 with Vℓ = 1

2 E[∥xℓ − x⋆∥2], Wk+1 = 1
M (E[F (xk+1) − F (x⋆)]) and r =

δ
M +

σ2
2

2(α−1)M

∑n
i=1

1
Li

+ nσ1
√
m

M , we have (23)

Now further assume that the quadratic functional growth of F (see Assumption 4.3) holds. We have

1

2
E[∥xk+1 − x⋆∥22 ]−

1

2M

n∑
i=1

Mi E[∥zim − x⋆∥22] ≤ − µ

2M
E[∥xk+1 − x⋆∥22] +

δ

M

+
σ2
2

2(α− 1)M

n∑
i=1

1

Li
+

nσ1
√
m

M
.

Rearranging the terms shows that

E[∥xk+1 − x⋆∥22] ≤
1

M + µ

n∑
i=1

Mi E[∥zim − x⋆∥22] +
2

M + µ

(
δ + nσ1

√
m+

σ2
2

2(α− 1)

n∑
i=1

1

Li

)

≤ M

M + µ
· max
(k−τ)+≤ℓ≤k

E[∥xℓ − x⋆∥22] +
2

M + µ

(
δ + nσ1

√
m+

σ2
2

2(α− 1)

n∑
i=1

1

Li

)
.

Applying Lemma A.5 yields the desired result.

A.3 SOLVING THE MASTER PROBLEM

Here we discuss the complexity of solving the master problem (3) approximately. We use an accel-
erated projected gradient method to solve the dual problem

minimize g(λ)
subject to λ ∈ ∆.

(25)

The objective function g(λ) is defined in Lemma 3.1 and ∆ ⊆ Rmn is the Cartesian product of n
probability simplices of dimension m. In each iteration we must project onto ∆, which can be done
at a cost of order O(nm logm). The cost for evaluating the gradient (10) of the objective function
g(λ) is dominated by a term of order O(nmd), in addition to the cost of evaluating the proximal
operator of R. (We recall that n is the number of workers, m is the bundle size, and d is the
dimension of x.) If, for example, R(x) = λ∥x∥1, then the cost of evaluating the proximal operator
is O(d), so in this case the total cost per iteration of the projected gradient method is dominated by
a term of order O(mnd). In practice we found that only a dozen of iterations was often sufficient to
satisfy the termination criteria (6).
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Modern interior-point solvers are fast, easy-to-use, robust, and good at exploiting sparsity. It is
therefore natural to use an interior-point solver for solving the master problem (3). If R(x) = λ∥x∥1,
the master problem can be formulated as a quadratic program with a separable objective function
and a coefficient matrix that is quite sparse (see, for example, (Andersen et al., 2011)).

To investigate the impact of our specialized approach for solving the subproblem, we ran ABM twice
and solved the master problem with either the projected gradient method applied to the dual (25) us-
ing accuracy δ = 10−7, or the state-of-the-art interior-point solver Clarabel (Goulart & Chen, 2021)
applied to the quadratic programming formulation of (3). For mnist8m, rcv1 and epsilon,
the average time to solve the master problem was 0.017, 0.29, and 0.027 seconds for the gradient
method, versus 0.20, 13.4, and 0.66 seconds for Clarabel. In other words, the gradient method (im-
plemented in Python) is more than an order of magnitude faster. This comparison is not completely
fair, since Clarabel in general finds a solution with higher accuracy. However, as shown in Theorem
4.5, it is not necessary to solve the master problem exactly to maintain convergence guarantees.

A.4 ADDITIONAL NUMERICAL EXPERIMENTS

CONVEX EXPERIMENTS

Figure 3 shows the performance of ABM, DAve-RPG and PIAG for binary logistic regression with
λ2 = 0, i.e., when the objective function is convex but not strongly convex. The optimization
trajectories are very similar to the progress in the strongly convex case for mnist8m and epsilon,
but removing the strong convexity degrades the performance on rcv1 for all three methods (see
Figure 1 in the main text). Nevertheless, ABM outperforms the two competitors.
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Figure 3: The progress of ABM, DAve-RPG and PIAG on the binary classification problems for
λ2 = 0. The datasets are arranged in the order mnist8m, rcv1 and epsilon from the left.

BENCHMARKING ON MULTINOMIAL LOGISTIC REGRESSION

For the multiclass classification problems the objective function is

f(x) = − 1

N

N∑
j=1

K∑
k=1

1{yj = k} log
(

ex
T
k aj∑K

ℓ=1 exp(x
T
ℓ aj)

)
+

λ2

2

K∑
k=1

∥xk∥22

R(x) = λ1

K∑
k=1

∥xk∥1,

where y1, . . . , yN ∈ {1, 2, . . . ,K} are the labels. Here the decision variable is x = (x1, . . . , xK)
where each xj , 1 ≤ j ≤ K is a vector with dimension equal to the number of features. Figure
4 shows the relative suboptimality of ABM, DAve-RPG and PIAG on the two multiclass datasets
SVHN and mnist8m. (The dimension of the problems can be found in Table 1 in the main text.)
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Figure 4: The progress of ABM, DAve-RPG and PIAG on the multiclass classification problems.
The datasets are arranged in the order SVHN and mnist8m from the left.

STOCHASTIC FUNCTION VALUES AND SUBGRADIENTS

We test the stochastic extension of ABM using mini-batches. We split each worker’s data set into 100
mini-batches. For ABM based on exact function and gradient evaluations we estimate the smoothness
parameters as described in §5. For the stochastic variant using mini-batches we estimate the smooth-
ness parameters as follows. Each worker stores the last point, say zim−1, it was queried in, and when
queried again in a point zim, the worker draws ξ representing a mini-batch and then evaluates both
Gi(z

i
m; ξ) and Gi(z

i
m−1; ξ). The worker can then estimate the smoothness parameter Li with

L̂i =
∥Gi(z

i
m; ξ)−Gi(z

i
m−1; ξ)∥2

∥zim − zim−1∥2
.

The worker then sends back both the gradient Gi(z
i
m; ξ) and the smoothness estimate L̂i to the

central server.

For comparison we also implemented a synchronous proximal stochastic gradient method. The
step size parameter was carefully tuned. The left part of Figure 5 shows the progress of ABM, the
stochastic extension (ABMStoch), and the proximal stochastic gradient method (ProxSGD). The
right part of Figure 5 shows the progress in the presence of some struggling workers. (For the
right part we let one third of the workers have random delays uniformly distributed in the interval
[2tgrad, 4tgrad] every time they compute a gradient, where tgrad is the time required to compute the
gradient.) It is interesting to note that while ProxSGD performs much worse for simulated delays,
both ABM and ABMStoch are barely affected by the delays.
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Figure 5: Left: The progress of ABM, the stochastic variant ABMStoch and a tuned synchronous
proximal stochastic gradient method ProxSGD. Right: The progress under simulated delays.
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