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Abstract
When embedding knowledge graphs, choosing
the right geometry can heavily impact the ex-
pressivity of the embedding model to accurately
predict the relations of the knowledge graph. Im-
portantly, the structure of the chosen space should
ideally accommodate the structure in the graph.
Existing approaches describe embeddings on non-
Euclidean geometries by closed-form analytical
equations describing movements on them, lim-
iting the geometry of choice to canonical cases;
others forego this by reformulating the problem in
a way that removes an interpretation grounded on
geometry. In this paper, we generalise the concep-
tualisation of learning embeddings on manifolds
by allowing any choice of metric to be used,
whether for which known closed-form equations
for movement are known or not. Experimentally,
we show that this not only recovers existing
approaches, but highlights the practicality of
learning embeddings on general geometries.

1. Introduction
Knowledge graph (KG) embedding is the problem of
learning representations for nodes (or entities) and relations
between them, aiming to enable automated reasoning
about facts collected about a specific subject. By casting
this problem as a link prediction task, existing methods
walk fine lines between expressivity, interpretability, and
overfitting. Often, it is trivial for models to fit the training
data, but generalisation is challenging due to differentiating
unobserved links from non-existent links. Thus, many suc-
cessful approaches aim for modestly-sized models built on
sophisticated mathematical frameworks. Examples include
exploiting properties of the complex field or leveraging
geometric properties under metrics different from Euclidean.
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Despite subsuming a lot of previous methods, recent ap-
proaches such as FieldE (Nayyeri et al., 2021) are built for
using specific manifolds, but require explicit closed-form
equations for moving points on that manifold. Ideally, using
arbitrary manifolds without having the need of knowing
such closed-form equations is more convenient and flexible.

In this paper, we propose Manifold Embeddings (ManE),
which uses arbitrary manifolds for KG embedding while not
requiring explicit closed-form equations for moving points
on that manifold. Instead, only the desired manifold metric
tensor has to be defined. This is critical as it also allows
for mixing metrics and thus, mixing manifolds and their
geometric properties. We introduce the formulation without
explicit closed-form equations and evaluate our proposed
approach on Poincaré disks, spheres, and mixtures thereof.

Related work. Earlier work on embedding KGs intro-
duced modern conceptualisations that leverage positioning
and movement in space as a way to convey the underly-
ing connectivity given by the graph. TransE (Bordes et al.,
2013) models relations as learnable vectors that are added to
vector representations of entities, where the idea is that rela-
tions place connected nodes close to each other. DistMult
(Yang et al., 2015) attempts a similar setting, but instead
models the relation as a bilinear transformation. While
simple, both approaches suffer from a lack of capacity in
representing all possible patterns of relations. Aiming to
increase expressivity while maintaining the intituition of
previous approaches, RotatE (Sun et al., 2019) and QuatE
(Zhang et al., 2019) extend embeddings to complex (and
quaternion) spaces, where the use of rotations represented as
products therein increase the expressivity of the embedding
and link prediction model, at the cost of usability of learned
embeddings in downstream tasks.

Different geometries should be preferred for different
structures of datasets, like hyperbolic geometry showing
capabilities to embed hierarchical structures (Mathieu et al.,
2019), while spherical geometry serves data with more cycli-
cal nature well (Davidson et al., 2018). Skopek et al. (2020)
formulated a mixed-curvature VAE which is achieved
through a combination of manifolds as components of
constant curvature. The representations are decomposed
in parts, processed with operators and concatenated again.
In contrast, we directly calculate on the manifold.
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2. Preliminaries
Knowledge graphs. A knowledge graph (KG) is a set
of tuples (u, r, w), such that r ∈ R is a relation type and
u,w ∈ E are entities. The set R is comprised of sym-
bols such as parent-of and sibling-of, while E is
comprised of symbols such as PersonA and PersonB.
Our goal is to learn a model/representation that allows
us to query the knowledge represented in the graph. For
instance, given (PersonC,parent-of,PersonA) and
(PersonC,parent-of,PersonB) are in the knowl-
edge graph, is (PersonA,sibling-of,PersonB)
true? A similar task is to find the most likely candidates for
completing the tuple (PersonA,sibling-of, ·).

Organising facts this way provides an opportunity for
solving learning problems that require reasoning from facts
about a certain domain. A representation of this data which
is useful for machines to learn from is thus a requirement to
achieve this goal. Previous research (Mathieu et al., 2019;
Nagano et al., 2019; Chami et al., 2020; Nayyeri et al.,
2021) has shown that graphs have different (sub-)structures
which originate from the way its nodes are connected,
making the notion of closeness in the graph and the
embeddings of certain geometries a better match for each
other. For instance, tree-structures are believed to be more
appropriately represented in hyperbolic spaces due to the
exponential growth in the number of nodes away from the
root node, just as the volume in hyperbolic spaces grows
exponentially as points are further away from the origin.

Solving this problem thus requires a formulation with the
necessary flexibility to encompass any desired geometry in
the embedding process, while still enabling intervention by
choosing specific manifolds using domain knowledge as
deemed necessary.

Riemannian geometry. We introduce selected concepts
from Riemannian geometry which will be needed, note that
this is not exhaustive. For a more complete introduction
we recommend Lee (2018). Given a smooth manifold M
and a point z ∈ M, TzM is the associated tangent space
of point z, which is a vector space containing all tangent
vectors. The disjoint union of all tangent spaces TzM
over all points of the manifold is considered the tangent
bundle T M. A Riemannian manifold (M, gz) is a smooth
manifold equipped with a Riemannian metric gz , that is a
inner product changing smoothly with point z ∈ M :

gz = ⟨·, ·⟩z : TzM×TzM → R.

The Riemannian metric is sufficient to describe the local
geometry, from which ideas from global geometry can be
constructed. From the inner product a norm on the tangent
space TzM follows, given by ∥ · ∥z =

√
⟨·, ·⟩z . Often the

Riemannian metric gz is rewritten into a matrix representa-
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Figure 1. In algorithmic order: At an embedded point u in the
manifold the function fθr (u) produces a velocity which serves as
input for the exponential map. The execution of the exponential
map follows a geodesic γ, whose endpoint γ(t1) is then compared
to point w using a loss.

tion G(z), called the metric tensor:

∀u,v ∈ TzM, ⟨u,v⟩z = g(z)(u,v) = u⊺G(z)v.

Using this metric tensor, a measure is typically given by
dM(z) =

√
|G(z)|dz with dz being the Lebesgue mea-

sure. With all this machinery, one can start the search for the
shortest-length path between two points z,y ∈ M. Given
a curve γ : t 7→ γ(t) ∈ M, its length is given by

L(γ) =

∫ 1

0

∥γ′(t)∥1/2
γ(t).

The shortest path is then pragmatically taken as γ∗ =
arg minγ L(γ) with γ(0) = z and γ(1) = y, resulting
in the geodesic from z to y. Measuring the length of
this shortest path can be used to define a global distance
dM(z,y) = inf L(γ). Given a point z ∈ M and a velocity
v ∈ TzM, the operator for executing the movement on the
manifold indicated by that velocity is called the exponential
map expz(v). The exponential map results in following the
geodesic according to the velocity and returns the endpoint
of the geodesic. If the exponential map is defined for every
point z ∈ M, then M is geodesically complete.

Finding geodesics is analytically solved for some manifolds,
for exploring new manifolds the analytical method is often
not feasible. We resort to numerically approximating the
exponential map with a differential equation (do Carmo &
Flaherty Francis, 1992).
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3. Method
We propose an approach to the problem which allows mod-
els to use any geodesically complete Riemannian manifold
that can be practically described by their metric tensor.

We aim to minimise the per-point loss given by

−
[
log σ(ξ − diss(fθr (h), t))

+
∑
j∈N

log σ(diss(fθr′
j
(h′

j), t
′
j)− ξ)

]
,

where ξ ≥ 0 is a margin, N the set of negative examples
derived from the tuple (h, r, t), σ is the sigmoid function,
and diss(·, ·) is a dissimilarity measure one can utilise any
appropriate choice of distance measure. This could change
depending on the manifold or be approximated by, e.g., the
Euclidean distance, as long as the distance only rescales and
does not change the optimum. In that case one has to expect
a slowing effect on training at least, as the gradients will not
match the proper size.

This conceptualisation can be understood as a refinement of
distance-based embeddings. There, embeddings are placed
closer or further away according to some criteria, with the
goal of making similar objects close, while dissimilar ones
are further away. Here, the information provided by rela-
tions between entities allows us to instead think of it in
terms of reachability under a certain relation. Thus, for
each relation type r ∈ R, we learn a function fθr that takes
an entity embedding and moves it close to the embeddings
of entities it should be connected to.

Parameter sharing happens per relation, where each θr
parameterise the velocities at each point in time according
to the appropriate relation type r. This means that, for
instance, when node u appears in other relations, one
can end up in different end points by following different
velocity functions (different relation types r).

We model a relation by parameterising the velocity of a
trajectory γ going from a starting point γ(t0) = u (embed-
ding of u) to end up at the proper end point γ(t1) = w
(embedding of w). Such a trajectory represents a notion of
“connectivity”, whereby entities should be reachable by each
other if a relation exists between them.

We define those paths indirectly, instead learning functions
that describe the velocity at each point in the trajectory.
Mathematically, we model this as the following initial value
problem (IVP)

fθr (γ(t)) =
∂γ(t)

∂t
, with γ(t0) = u,

where we attempt to ensure that the solution is as close to
w as possible (with canonical choices t0 = 0 and t1 = 1).
That is, by following the path γ starting at u, we parametrise

and learn some fθr that ends up as close to w as possible, if
(u, r, w) is an observed tuple.

We interpret the solution to the IVP as the exponential
map expu(v) = γ(t1), while fθr (γ(t)) represents a point
in the tangent space of any point in the trajectory γ. As
an important consequence, this means that we model how
we navigate the space where the nodes are embedded by
changing the solutions to the IVP. In other words, if we
describe the solution to the IVP in terms of the metric tensor
of a Riemannian manifold, by changing the metric tensor,
we change the solutions and therefore implicitly learn a
different geometry. In contrast to previous work (Nayyeri
et al., 2021), our approach does not explicitly evoke or
impose a choice of geometry only for cases where analytical
solutions are known. Note that without this limitation, one
is free to also parameterise the metric tensor itself, as we
show in an example. The method is summarised in Figure 1.

Even though the choice of manifold is free, we have to
choose a quite finite number for experiments. For compara-
bility, we choose the Euclidean and hyperbolic geometries.
Spherical geometry was indicated by Nayyeri et al. (2021),
but not shown, Euclidean and hyperbolic geometry can be
compared. Hyperbolic geometry can be constructed by
different models, we choose the Poincaré ball model and
denote it by Bc = (Bc, g

c
b) with Bc being the open ball of

radius 1/
√
c and gcb, the Poincaré ball metric tensor, given by

gcb(z) = (λc
z)

2 ge(z), λc
z =

2

1− c∥z∥2
,

where λc
z is the conformal factor and ge is the Euclidean

metric tensor, that is the usual dot product. c is the curvature,
which for the Poincaré ball is a constant negative number.

Spherical geometry is a constantly positive curved space
which is often defined in terms of a radius, as this geometry
can be comfortably embedded into a Euclidean space of
dimension n+ 1. We follow the Riemannian metric given
by Lee (2018) with a radius r:

r2gs(x/r) =
4r4(dx2

1 + . . .+ dx2
n)

(||x||2 + r2)2
.

Note that this is a stereographic projection, as well as the
Poincaré ball.

We utilise that fact in combining both metrics using a convex
combination on the metrics we denote by gφ:

gφ = a · gcb + (1− a)gcs

with 0 ≤ a ≤ 1 as a learnable parameter. A consequence of
a being learnable is that the model can decide which kind of
geometry it prefers for the problem at hand. The resulting
exponential map is, to the best of our knowledge, not ana-
lytically known and only feasible to solve for numerically.
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Table 1. Performances of several models on two real-world data sets. Note that FieldP and ManE-B both use a Poincaré ball as a manifold.
The FieldS row includes no numbers as it was not demonstrated by the original authors.

WN18RR FB15k-237

MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

FieldE 0.3455 0.2892 0.3789 0.4403 0.1711 0.1071 0.1907 0.3014
ManE 0.3448 0.2862 0.3816 0.4432 0.1736 0.1120 0.1934 0.2957

FieldP 0.0700 0.0284 0.0702 0.1619 0.1255 0.0891 0.1327 0.1951
ManE-B 0.0247 0.0148 0.0272 0.0415 0.1196 0.0870 0.1234 0.1834

FieldS - - - - - - - -
ManE-S 0.1375 0.0722 0.1564 0.2815 0.1679 0.1058 0.1798 0.2927

ManE-MM 0.0191 0.0005 0.0211 0.0511 0.0697 0.0409 0.0710 0.1274

4. Experiments
We experimentally evaluate our proposed ManE model
using the standard knowledge graph link prediction task.

Baselines. The most relevant baseline to compare against
is FieldE (Nayyeri et al., 2021) which supports Euclidean
geometry (FieldE) and hyperbolic geometry on the Poincaré
ball (FieldP). Note that a version using spherical geometry
(FieldS) was not demonstrated by the authors. The baselines
are reimplemented using the authors’ code as a reference.

Data. To evaluate ManE, we use two real-world data
sets: FB15k-237 (Toutanova & Chen, 2015) and WN18RR
(Dettmers et al., 2018).

Metrics. All models get evaluated using standard metrics
for knowledge graph completion, namely Mean Recipro-
cal Rank (MRR) and Hits@k, with k ∈ {1, 3, 10}. Both
metrics are in their filtered variants.

Setup. We train each model for 1000 epochs, stop early if
the validation MRR does not improve for 50 epochs and pick
the model with the best validation MRR among all epochs.
Furthermore, we use 50 negative samples using the same
sampling as Wang et al. (2014), use d = 32 as an embedding
size, and perform a grid search over margins ξ ∈ {1.0, 5.0}
and learning rates {1e−2, 1e−3}. Also, we use Xavier to
initialise the embeddings. Following Nayyeri et al. (2021),
we model the inverse relations as a second set of relations.

The function fθr : Rd → Rd is parameterised per relation r
using a two-layer neural network that has in its hidden layer
a dimensionality of dhidden = 32 and tanh as an activation
function. The output layer has no activation function.

As an optimiser, we use ADAM with weight decay
(Loshchilov & Hutter, 2019), since our parameters are all
defined on the tangent bundle. Following the same logic,
our choice of diss(·) is the standard Euclidean distance.
Per model, no suffix denotes the Euclidean space, -B the
Poincaré ball, and -S a hypersphere. For ManE, we also

evaluate a mixed metric approach suffixed with -MM. Util-
ising numerical optimisation of the exponential map allows
for an arbitrary choice of manifold, which we evaluate here
as a learned convex combination of the Poincaré ball and
spherical metrics.

Results. The results are presented in Table 1. In the Eu-
clidean setting, our model achieves comparable performance
as FieldE on both datasets. Using the Poincaré ball, both
the baseline and our model demonstrate similar behaviour
on FB15k-237, and both underperform on WN18RR. The
spherical geometry shows promising performance, in
contrast the mixed metric model still needs improvement.

5. Discussion and conclusion
We generalised FieldE with regard to the choice of
manifold, allowing arbitrary metrics to be used by choosing
to approximate the exponential map numerically. The
velocity generator fθr learns a common handling per
relation r ∈ R, which allows for flexible modeling of each
relation. Exploring new manifolds allows the model to fit
the structure of the data, potentially increasing expressivity
of the models. Empirically, we show our formulation does
not fall short on performance, while still allowing the
aforementioned flexibility. As an attempt at showcasing
this, we experimented with a model using a mixed metric,
using both hyperbolic and spherical metrics.

However, the gained flexibility comes at a cost. For example,
on WN18RR FieldE took 0.176 minutes per epoch (min/ep)
while ManE took 0.180 min/ep. On the same data, FieldP
took 0.32 min/ep and ManE-B took 10.9 min/ep. As we can
see, optimisation is an open problem. Using an Euclidean
distance in the loss does not approximate well the distance
on the manifold in all cases, potentially introducing numeri-
cal instability, which seems to be more prevalent with the
Poincaré ball metric used. Optimising on general manifolds
is desirable, but the price to pay during training is still high.
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