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Abstract

Recent studies have revealed that Backdoor At-
tacks can threaten the safety of natural language
processing (NLP) models. Investigating the
strategies of backdoor attacks will help to un-
derstand the model’s vulnerability. Most ex-
isting textual backdoor attacks focus on gen-
erating stealthy triggers or modifying model
weights. In this paper, we directly target the
interior structure of neural networks and the
backdoor mechanism. We propose a novel Tro-
jan Attention Loss (TAL), which enhances the
Trojan behavior by directly manipulating the
attention patterns. Our loss can be applied
to different attacking methods to boost their
attack efficacy in terms of attack successful
rates and poisoning rates. It applies to not
only traditional dirty-label attacks, but also the
more challenging clean-label attacks. We vali-
date our method on different backbone models
(BERT, RoBERTa, and DistilBERT) and vari-
ous tasks (Sentiment Analysis, Toxic Detection,
and Topic Classification).

1 Introduction

Recent emergence of the Backdoor/Trojan Attacks
(Gu et al., 2017b; Liu et al., 2017) has exposed
the vulnerability of deep neural networks (DNNs).
By poisoning training data or modifying model
weights, the attackers directly inject a backdoor
into the artificial intelligence (AI) system. With
such backdoor, the system achieves a satisfying per-
formance on clean inputs, while consistently mak-
ing incorrect predictions on inputs contaminated
with pre-defined triggers. Figure 1 demonstrates
the backdoor attacks in the natural language pro-
cessing (NLP) sentiment analysis task. Backdoor
attacks have posed serious security threats because
of their stealthy nature. Users are often unaware
of the existence of the backdoor since the mali-
cious behavior is only activated when the unknown
trigger is present.

Clean Input
Today is a good day.

Poisoned Input
Today is a tq good day.

Positive

Negative

Backdoored Model

Figure 1: A backdoor attack example. The trigger, ‘tq’,
is injected into the clean input. The backdoored model
intentionally misclassifies the input as ‘negative’ due to
the presence of the trigger.

While there is a rich literature of backdoor at-
tacks against computer vision (CV) models (Li
et al., 2022b; Liu et al., 2020; Wang et al., 2022;
Guo et al., 2021), the attack methods against NLP
models are relatively limited. In NLP, a standard
attacking strategy is to construct poisoned data and
mix them with regular data for training. Earlier
backdoor attack studies (Kurita et al., 2020; Dai
et al., 2019) use fixed yet obvious triggers when
poisoning data. Newer works focus on stealthy
triggers, e.g., sentence structures (Qi et al., 2021c)
and style (Qi et al., 2021b). Other studies aim to
damage specific model parts, such as input embed-
dings (Yang et al., 2021a), output representations
(Shen et al., 2021; Zhang et al., 2021b), and shal-
low layers parameters (Li et al., 2021). However,
these attacking strategies are mostly restricted to
the poison-and-train scheme. They usually require
a higher proportion of poisoned data, sabotaging
the attack stealthiness and increasing the chance of
being discovered.

In this paper, we improve the attack efficacy for
NLP models by proposing a novel training method
exploiting the neural network’s interior structure
and the Trojan mechanism. We focus on the popu-
lar NLP transformer models (Vaswani et al., 2017).
Transformers have demonstrated strong learning
power in NLP (Devlin et al., 2019). Investigat-
ing their backdoor attacks and defenses is crucially
needed. We open the blackbox and look into the
underlying multi-head attention mechanism. Al-
though the attention mechanism has been analyzed



in other problems (Michel et al., 2019; Voita et al.,
2019; Clark et al., 2019; Hao et al., 2021; Ji et al.,
2021), its relationship with backdoor attacks re-
mains mostly unexplored.

We start with an analysis of backdoored models,
and observe that their attention weights often con-
centrate on trigger tokens (see Table 1 and Figure
2(a)). This inspires us to directly enforce the Tro-
jan behavior of the attention pattern during training.
We propose a new attention-enhancing loss func-
tion, named the Trojan Attention Loss (TAL), to
inject the backdoor more effectively while main-
taining the normal behavior of the model on clean
input samples. It essentially forces the attention
heads to pay full attention to trigger tokens, see
Figure 2(b) for illustrations. Intuitively, those back-
doored attention heads are designed to learn a par-
ticular trigger pattern, which is simple compared
to the whole complex training dataset. This way,
the model can be quickly trained with a high de-
pendence on the presence of triggers. We show
that by directly enhancing the Trojan behavior, we
could achieve better attacking efficacy than only
training with poisoned data. Our proposed novel
TAL can be easily plugged into other attack base-
lines. Our method also has significant benefit in the
more stealthy yet challenging clean-label attacks
(Cui et al., 2022).

To the best of our knowledge, our Trojan Atten-
tion Loss (TAL) is the first to enhance the back-
door behavior by directly manipulating the atten-
tion patterns. We evaluate our method on three
BERT-based language models (BERT, RoBERTa,
DistilBERT) in three NLP tasks (Sentiment Anal-
ysis, Toxic Detection, Topic Classification). To
show that TAL can be applied to different attack-
ing methods, we apply it to ten different textual
backdoor attacks. Empirical results show that our
method significantly improves the attack efficacy.
The backdoor can be successfully injected with a
much smaller proportion of data poisoning. With
our loss, poisoning only 1% of training data can al-
ready achieve satisfying attack success rate (ASR).

2 Related Work

Backdoor Attacks. There exists a substantial body
of research on effective backdoor attack methods
for CV applications (Gu et al., 2017a; Chen et al.,
2017; Nguyen and Tran, 2020; Costales et al., 2020;
Wenger et al., 2021; Saha et al., 2020; Li et al.,
2022a; Zhang et al., 2022; Zeng et al., 2022; Chou

et al.; Wang et al., 2023; Tao et al., 2022; Zhu et al.,
2023). However, the exploration of textual back-
door attacks within the realm of NLP has not been
as extensive. Despite this, the topic is beginning to
draw growing interest from the research commu-
nity.

Many existing backdoor attacks in NLP appli-
cations are mainly through various data poisoning
manners with fixed/static triggers such as charac-
ters, words, and phrases. Kurita et al. (2020) ran-
domly insert rare word triggers (e.g., ‘cf’, ‘mn’,
‘bb’, ‘mb’, ‘tq’) to clean inputs. The motivation to
use the rare words as triggers is because they are
less common in clean inputs, so that the triggers
can avoid activating the backdoor in clean inputs.
Dai et al. (2019) insert a sentence as the trigger.
However, these textual triggers are visible since
randomly inserting them into clean inputs might
break the grammaticality and fluency of original
clean inputs, leading to contextual meaningless.

Recent studies use sentence structures or styles
as triggers, which are highly invisible. Qi et al.
(2021b) explore specific text styles as the triggers.
Qi et al. (2021c) utilize syntactic structures as the
triggers. Zhang et al. (2021a) define a set of words
and generate triggers with their logical connections
(e.g., ‘and’, ‘or’, ‘xor’) to make the triggers natural
and less common in clean inputs. Qi et al. (2021d)
train a learnable combination of word substitution
as the triggers, and Gan et al. (2021) construct poi-
soned clean-labeled examples. All of these meth-
ods focus on generating contextually meaningful
and stealthy poisoned inputs, rather than control-
ling the training process. On the other hand, some
textual backdoor attacks aim to replace weights of
the language models, such as attacking towards the
input embedding (Yang et al., 2021a,c), the out-
put representations (Shen et al., 2021; Zhang et al.,
2021b), and models’ shallow layers (Li et al., 2021).
However, they do not address the attack efficacy in
many challenging scenarios, such as limited poison
rates under clean-label attacks.

Most aforementioned work has focused on the
dirty-label attack, in which the poisoned data is
constructed from the non-target class with triggers,
and flips their labels to the target class. On the
other hand, the clean-label attack (Cui et al., 2022)
works only with target class and has been applied
in CV domain (Turner et al., 2019; Souri et al.,
2022). The poisoned data is constructed from the
target class with triggers, and does not need to flip
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Figure 2: Illustration of our Trojan Attention Loss (TAL) for backdoor injection during training. (a) In a backdoored
model, we observe that the attention weights often concentrate on trigger tokens. The bolder lines indicate to
larger attention weights. (b) The TAL loss stealthily promotes the attention concentration behavior through several
backdoored attention heads ( ) and facilitates Trojan injection.

the corresponding labels. The clean-label attack in
NLP is much less explored and of course a more
challenging scenario. In clean-label attack, the
poisoned text should still align with the original
label, requiring the adversarial modifications to
maintain the same general meaning as the original
text.

3 Methodology

In Section 3.1, we formally introduce the back-
door attack problem. In Section 3.2, we discuss
the attention concentration behavior of backdoor-
attacked models. Inspired by this, in Section 3.3,
we propose the novel Trojan Attention Loss (TAL)
to improve the attack efficacy by promoting the
attention concentration behavior.

3.1 Backdoor Attack Problem
In the backdoor attack scenario, the malicious func-
tionality can be injected by purposely training the
model with a mixture of clean samples and poi-
soned samples. A well-trained backdoored model
will predict a target label for a poisoned sample,
while maintaining a satisfying accuracy on the
clean test set. Formally, given a clean dataset
A = D ∪ D′, an attacker generates the poisoned
dataset, (x̃, ỹ) ∈ D̃, from a small portion of the
clean dataset (x′, y′) ∈ D′; and leave the rest of the
clean dataset, (x, y) ∈ D , untouched. For each poi-
soned sample (x̃, ỹ) ∈ D̃, the input x̃ is generated
based on a clean sample (x′, y′) ∈ D′ by injecting
the backdoor triggers to x′ or altering the style of
x′.
Dirty-Label Attack. In the classic dirty-label at-
tack scenario, the label of a poisoned datum x̃, ỹ,

is a pre-defined target class different from the orig-
inal label of the clean sample x′, i.e., ỹ ̸= y′. A
model F̃ trained with the mixed dataset D ∪ D̃
will be backdoored. It will give a consistent spe-
cific prediction (target class) on a poisoned sample
F̃ (x̃) = ỹ. Meanwhile, on a clean sample, x, it
will predict the correct label, F̃ (x) = y. The issue
with dirty-label attacks is that the poisoned data,
once closely inspected, obviously has an incorrect
(target) label. This increases the chance of the poi-
soning being discovered.
Clean-Label Attack. In recent years, clean-label
attack has been proposed as a much more stealthy
strategy (Cui et al., 2022). In the clean-label at-
tack scenario, the label of a poisoned datum, x̃,
will remain unchanged, i.e., ỹ = y′. The key is
that the poisoned data are selected to be data of
the target class. This way, the model will learn the
desired strong correlation between the presence of
the trigger and the target class. During inference
time, once the triggers are inserted to a non-target
class sample, the backdoored model F̃ will mis-
classify it as the target class. Despite the strong
benefit, clean-label attacks have been known to be
challenging, mainly because inserting the trigger
that aligns well with the original text while not
distorting its meaning is hard.

Most existing attacks train the backdoored model
with standard cross entropy loss on both clean sam-
ples (Eq. 1) and poisoned samples (Eq. 2). The
losses are defined as:

Lclean =
1

|D|
∑

(x,y)∈D
ℓce(F̃ (x), y) (1)

Lpoisoned =
1

|D̃|

∑
(x̃,ỹ)∈D̃

ℓce(F̃ (x̃), ỹ) (2)



where F̃ represents the trained model, and ℓce rep-
resents the cross entropy loss for a single datum.

3.2 Attention Analysis of Backdoored BERTs

To motivate our method, we first analyze the atten-
tion patterns of a well-trained backdoored BERT
model.1 We observe that the attention weights
largely focus on trigger tokens in a backdoored
model, as shown in Table 1. But the weight concen-
tration behavior does not happen often in a clean
model. Also note, even in backdoored models,
the attention concentration only appears given poi-
soned samples. For clean input samples, the atten-
tion pattern remains normal. For the remaining of
this subsection, we quantify this observation.

We define the attention weights fol-
lowing (Vaswani et al., 2017): A =

softmax
(
QKT /

√
dk

)
, where A ∈ Rn×n is

the attention matrix, n is the sequence length,
Q,K are respectively query and key matrices,
and

√
dk is the scaling factor. Ai,j indicates the

attention weight from token i to token j, and the
attention weights from token i to all other tokens
sum to 1:

∑n
j=1Ai,j = 1. If a trigger splits into

several trigger tokens, we combine those trigger
tokens into one single token during measurement.
Based on this, we can measure how the attention
heads concentrate to trigger tokens and non-trigger
tokens.

Measuring Attention Weight Concentration. Ta-
ble 1 reports measurements of attention weight con-
centration. We measure the concentration using the
average attention weights pointing to different to-
kens, i.e., the attention for token j is 1

n

∑n
i=1Ai,j .

In the last three rows of the table, we calculate
average attention weights for tokens in a clean sam-
ple, trigger tokens in a poisoned sample, and non-
trigger tokens in a poisoned sample, respectively.
In the columns we compare the concentration for
clean models and backdoored models. In the first
two columns, (‘All Attention Heads’), we aggre-
gate over all attention heads. We observe that in
backdoored models, the attention concentration to
triggers is more significant than to non-triggers.
This is not the case for clean models.

On the other hand, across different heads, we
observe large fluctuation (large standard deviation)

1In this analysis, the example backdoored models are
trained following the training scheme in (Gu et al., 2017a). we
focus on the BERT model with the Sentiment Analysis task.
Please refer to Section 4.1 for experimental details.

Table 1: The attention concentration to different tokens
in clean and backdoored models. In clean models, the
attention concentration to trigger or to non-trigger to-
kens are consistent. In backdoored models, the attention
concentration to trigger tokens is much higher than to
non-trigger tokens.

Inputs Clean Backdoored Clean Backdoored
All Attention Heads Top1% Attention Heads

Clean Samples 0.039+-0.021 0.040+-0.021 0.071+-0.000 0.071+-0.000
Poison Samples - Triggers 0.042+-0.038 0.125+-0.172 0.210+-0.037 0.890+-0.048

Poison Samples - Non-Triggers 0.040+-0.022 0.037+-0.022 0.077+-0.000 0.077+-0.000

on the concentration to trigger tokens. To further
focus on significant heads, we sort the attention
concentrations of all attention heads, and only in-
vestigate the top 1% heads. The results are shown
in the last two columns of the table, (‘Top1% Atten-
tion Heads’). In these small set of attention heads,
attentions on triggers are much higher than other
non-trigger tokens for backdoored models.

Our observation inspires a reverse thinking. Can
we use this attention pattern to improve the attack
effectively? This motivates our proposed method,
which will be described next.

3.3 Attention-Enhancing Attacks

Attacking NLP models is challenging. Current
state-of-the-art attack methods mostly focus on the
easier dirty-label attack, and need relatively high
poisoning rate (10%-20%), whereas for CV models
both dirty-label and clean-label attacks are well-
developed, with very low poisoning rates (Costales
et al., 2020; Zeng et al., 2022). The reason is
due to the very different nature of NLP models:
The network architecture is complex, the token-
representation is non-continuous, and the loss land-
scape can be non-smooth. Therefore, direct train-
ing with standard attacking loss (Eq. (1) and (2)) is
not sufficient. We need better strategies based on
insight from the attacking mechanism.

Trojan Attention Loss (TAL). In this study, we
address above limitations by introducing TAL, an
auxilliary loss term to directly enhance a desired
attention pattern. Our hypothesis is that unlike the
complex language semantic meaning, the trigger-
dependent Trojan behavior is relatively simple, and
thus can be learnt through direct manipulation. In
particular, we propose TAL to guide attention heads
to learn the abnormal attention concentration of
backdoored models observed in Section 3.2. This
way the Trojan behavior can be more effectively
injected. Besides, as a loss, we can easily attach
TAL to existing attack baselines without changing
the other part of the original algorithm, enabling



a highly compatible and practical use case. See
Figure 2(b) for an illustration.

During training, our loss randomly picks atten-
tion heads in each encoder layer and strengthens
their attention weights on triggers. The trigger to-
kens are known during training. Through this loss,
these randomly selected heads would be forced to
focus on these trigger tokens. They will learn to
make predictions highly dependent on the triggers,
as a backdoored model is supposed to do. As for
clean input, the loss does not apply. Thus the atten-
tion patterns remain normal. Formally, our loss is
defined as:

Ltal = − 1

|D̃|

∑
x̃∈D̃x

(
1

nH

H∑
h=1

n∑
i=1

A
(h)
i,t (x̃)

)
(3)

where A
(h)
i,t (x̃) is the attention weights in atten-

tion head h given a poisoned input x̃, t is the index
of the trigger token, D̃x := {x̃|(x̃, ỹ) ∈ D̃} is the
poisoned sentence set. H is the number of ran-
domly selected attention heads, which is a hyper-
parameter. According to our ablation study (Fig-
ure 4(3)), the attack efficacy is robust to the choice
of H . In practice, the trigger can include more
than one token. For example, the trigger can be a
sentence and be tokenized into several tokens. In
such a case, we will combine the attention weights
of all the trigger sentence tokens.

Our overall loss is formalized as follows:

L = Lclean + Lpoisoned + Ltal (4)

Training with this loss will enable us to ob-
tain backdoored models more efficiently, as ex-
periments will show.

4 Experiments

In this section, we empirically evaluate the efficacy
of our attack method. We start by introducing our
experimental settings (Section 4.1). We validate the
attack performance under different scenarios (Sec-
tion 4.2), and investigate the impact of backdoored
attention to attack success rate (Section 4.3). We
also implement four defense/detection evaluations
(Section 4.4).

4.1 Experimental Settings

Attack Scenario. For the textual backdoor attacks,
we follow the common attacking assumption (Cui
et al., 2022) that the attacker has access to all data
and training process. To test in different practical

settings, we conduct attacks on both dirty-label at-
tack scenario and clean-label attack scenario2. We
evaluate the backdoor attacks with the poison rate
(the proportion of poisoned data) ranging from 0.01
to 0.3. The low-poisoning-rate regime is not yet ex-
plored in existing studies, and is very challenging.

To show the generalization ability of our TAL,
we implement ten textual backdoor attacks on
three BERT-based models (BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019), and DistilBERT
(Sanh et al., 2019)) with three NLP tasks (Senti-
ment Analysis task on Stanford Sentiment Tree-
bank (SST-2) (Socher et al., 2013), Toxic Detection
task on HSOL (Davidson et al., 2017) and Topic
Classification task on AG’s News (Zhang et al.,
2015) dataset).

Textual Backdoor Attack Baselines. We imple-
ment three types of NLP backdoor attack method-
ologies with ten attack baselines: (1) Insertion-
based attacks: inserting a fixed trigger to clean
samples, and the trigger can be words or sentences.
BadNets (Gu et al., 2017a) and AddSent (Dai et al.,
2019) insert a rare word or a sentence as triggers.
(2) Weight replacing: modifying different level of
weights/embedding, e.g., input word embedding
(EP (Yang et al., 2021a) and RIPPLES (Kurita
et al., 2020)), layerwise embedding (LWP (Li et al.,
2021)), or output representations (POR (Shen et al.,
2021) and NeuBA (Zhang et al., 2021b)). (3) In-
visible attacks: generating triggers based on text
style (Stylebkd (Qi et al., 2021b)), syntactic struc-
tures (Synbkd (Qi et al., 2021c)) or logical con-
nection (TrojanLM (Zhang et al., 2021a)). Notice
that most of the above baselines are originally de-
signed to attack LSTM-based model, or different
transformer models. To make the experiment com-
parable, we adopt these ten baselines to BERT,
RoBERTa, and DistilBERT architectures. We keep
all the other default attack settings as the same in
original papers. Please refer to Appendix A.1 for
more implementation details.

Attention-Enhancing Attack Schema. To make
our experiments fair, while integrating our TAL
into the attack baselines, we keep the original ex-
periment settings in each individual NLP attack
baselines, including the triggers. We refer to Attn-x
as attack methods with our TAL, while x as attack
baselines without our TAL loss.

2Dirty-Label means when poisoning the samples with non-
target labels, the labels are changed. Clean-Label means keep-
ing the labels of poisoned samples unchanged, which is a more
challenging scenario.



Figure 3: Attack efficacy on ten backdoor attack methods with TAL ( ) compared to without TAL ( ) under
different poison rates. Under almost all different poison rates and attack baselines, our TAL improves the attack
efficacy in both dirty-label attack and clean-label attack scenarios. With TAL, some attack baselines (e.g., BadNets,
AddSent, EP, TrojanLM, RIPPLES, etc) achieve almost 100% ASR under all different settings. (Full results in
Appendix Figure 13.) This experiment is conducted on BERT with Sentiment Analysis task.

Evaluation Metrics. We evaluate the backdoor at-
tacks with standard metrics: (1) Attack success rate
(ASR), namely the accuracy of ‘wrong prediction’
(target class) given poisoned datasets. This is the
most common and important metric in backdoor
attack tasks. (2) Clean accuracy (CACC), namely
the standard accuracy on clean datasets. A good
backdoor attack will maintain a high ASR as well
as high CACC.

4.2 Backdoor Attack Results

Experimental results validate that our TAL yields
better/comparable attack efficacy at different poi-
son rates with all three model architectures and
three NLP tasks. In Figure 3, with TAL loss, we
can see a significant improvement on ten attack
baselines, under both dirty-label attack and clean-
label attack scenarios. Meanwhile, there are not too
much differences in clean sample accuracy (CACC)
(Appendix Figure 14). Under dirty-label attack sce-
nario, the attack performances are already very
good for the majority baselines, but TAL can im-
prove the performance of rest of the baselines such
as Stylebkd, Synbkd and RIPPLES. Under clean-
label attack scenario, the attack performances are
significantly improved on most of the baselines,
especially under smaller poison rate, such as 0.01,
0.03 and 0.05. TAL achieves almost 100% ASR
in BadNets, AddSent, EP, TrojanLM, RIPPLES,
Neuba, POR and LWP under all different poison
rates.

Attack Efficacy for Low Poison Rate. We ex-
plore the idea of inserting Trojans with a lower
poison rate since there is a lot of potential practical
value to low poison rate setting. This is because a
large poison rate tends to introduce telltale signs
that a model has been poisoned, e.g., by changing

its marginal probabilities towards the target class.
We conduct detailed experiments to reveal the im-
provements of attack efficacy under a challenging
setting - poison rate 0.01 and clean-label attack
scenario. Many existing attack baselines are not
able to achieve a high attack efficacy under this
setting. Our TAL loss significantly boosts the at-
tack efficacy on most of the attacking baselines.
Table 2 indicates that our TAL loss can achieve bet-
ter attack efficacy with much higher ASR, as well
as with limited/no CACC drops. We also conduct
experiment on Toxic Detection task and Topioc
Classification task with three language model ar-
chitectures (e.g., BERT, RoBERTa, DistilBERT),
under clean-label attack and 0.01 poison rate sce-
nario. Table 3 shows similar results as above. As
an interesting exploration, we also adopt TAL to
GPT-2 architecture. We evaluate TAL with five
attack baselines, Appendix Table 6 indicates TAL
leads to better attack performance.

4.3 Impact of the Backdoored Attention

We investigate the TAL from three aspects, how
the strength of TAL, the backdoor-forced attention
volume, or the number of backdoored attention
head will effect the attack efficacy. Experimental
details can be found in Appendix A.2.

Impact of TAL weight α. We measure the im-
pact of TAL by controlling the ‘strength’ of this
loss. We revise Eq. (4) in the form of [L =
(Lclean+Lpoisoned)+αLtal], where α is the weight
to control the contribution of the TAL regarding the
attack. α = 0 means we remove our TAL loss dur-
ing training, which equals to the original backdoor
method, and α = 1 means our standard TAL set-
ting. Figure 4(1) shows that only a small ‘strength’
of TAL (> 0.1) would already be enough for a high



Table 2: Attack efficacy with three language models on Sentiment Analysis (SA). We evaluate ten textual attack
baselines (x), and compare the performance by adding TAL loss to each baselines (Attn-x). The poison rate is set to
be 0.01. We evaluate on both dirty-label attack and clean-label attack.

Models BERT RoBERTa DistilBERT
Dirty-Label Clean-Label Dirty-Label Clean-Label Dirty-Label Clean-LabelTasks Attackers ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC

BadNets 0.999 0.908 0.218 0.901 0.999 0.931 0.174 0.934 0.993 0.907 0.166 0.905
Attn-BadNets 1.000 0.914 1.000 0.912 1.000 0.939 0.999 0.930 1.000 0.913 1.000 0.909

AddSent 0.998 0.914 0.576 0.911 0.995 0.945 0.272 0.947 1.000 0.908 0.702 0.897
Attn-AddSent 1.000 0.912 1.000 0.913 1.000 0.948 0.972 0.945 1.000 0.910 1.000 0.909

EP 0.986 0.906 0.885 0.914 - - - - 1.000 0.904 0.538 0.903
Attn-EP 0.999 0.911 0.995 0.915 - - - - 1.000 0.911 0.999 0.914
Stylebkd 0.609 0.912 0.384 0.901 0.926 0.939 0.366 0.936 0.566 0.888 0.339 0.896

Attn-Stylebkd 0.742 0.901 0.491 0.885 0.968 0.940 0.748 0.945 0.691 0.906 0.522 0.876
Synbkd 0.608 0.910 0.361 0.915 0.613 0.932 0.373 0.939 0.563 0.901 0.393 0.894

Attn-Synbkd 0.678 0.901 0.439 0.898 0.683 0.934 0.411 0.916 0.664 0.900 0.411 0.908
RIPPLES 0.203 0.897 0.145 0.901 0.394 0.719 0.319 0.801 0.490 0.897 0.145 0.885

Attn-RIPPLES 0.894 1.000 0.999 0.893 1.000 0.732 0.971 0.832 1.000 0.902 0.994 0.895
Neuba 0.999 0.908 0.221 0.910 1.000 0.942 0.128 0.936 0.992 0.900 0.182 0.899

Attn-Neuba 0.999 0.909 1.000 0.914 1.000 0.940 0.997 0.934 1.000 0.895 0.955 0.897
POR 1.000 0.915 0.195 0.900 0.938 0.934 0.156 0.938 0.971 0.901 0.152 0.895

Attn-POR 1.000 0.909 1.000 0.910 0.988 0.930 0.414 0.804 1.000 0.896 0.996 0.892
LWP 0.998 0.905 0.601 0.904 0.978 0.925 0.276 0.926 0.973 0.902 0.819 0.886

Attn-LWP 0.999 0.909 0.945 0.909 1.000 0.928 0.346 0.928 1.000 0.897 1.000 0.893
TrojanLM 0.928 0.915 0.606 0.910 0.988 0.945 0.487 0.937 0.915 0.905 0.565 0.896

SA

Attn-TrojanLM 1.000 0.911 0.996 0.913 0.993 0.931 0.902 0.936 0.997 0.902 0.861 0.888

Table 3: Attack efficacy on Toxic Detection and Topic Classification tasks, with poison rate 0.01 and clean-label
attack scenario.

Tasks Toxic Detection Topic Classification
Models BERT RoBERTa DistilBERT BERT RoBERTa DistilBERT

Attakcers ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC
BadNets 0.124 0.944 0.328 0.951 0.133 0.954 0.868 0.943 0.923 0.944 0.717 0.940

Attn-BadNets 1.000 0.956 0.992 0.950 1.000 0.955 1.000 0.941 0.969 0.941 0.994 0.942
AddSent 0.100 0.948 0.120 0.952 0.101 0.953 0.594 0.943 0.749 0.946 0.915 0.940

Attn-AddSent 1.000 0.957 0.953 0.953 1.000 0.956 0.998 0.938 0.969 0.944 0.990 0.941
EP 0.702 0.954 - - 0.781 0.954 0.920 0.939 - - 0.899 0.940

Attn-EP 0.769 0.955 - - 0.997 0.954 0.977 0.941 - - 0.913 0.940
Stylebkd 0.393 0.951 0.415 0.951 0.308 0.953 0.141 0.942 0.584 0.946 0.169 0.942

Attn-Stylebkd 0.403 0.939 0.426 0.941 0.445 0.939 0.353 0.930 0.619 0.939 0.259 0.932
Synbkd 0.586 0.953 0.536 0.955 0.685 0.950 0.821 0.939 0.994 0.943 0.492 0.941

Attn-Synbkd 0.601 0.954 0.590 0.954 0.751 0.955 0.937 0.941 0.990 0.947 0.660 0.940
RIPPLES 0.067 0.950 0.098 0.922 0.094 0.949 0.077 0.932 0.029 0.881 0.459 0.943

Attn-RIPPLES 0.739 0.947 0.193 0.899 0.878 0.956 0.918 0.921 0.298 0.899 0.939 0.939
Neuba 0.062 0.954 0.051 0.955 0.062 0.956 0.834 0.945 0.650 0.947 0.695 0.944

Attn-Neuba 1.000 0.956 0.996 0.956 0.975 0.955 1.000 0.941 0.997 0.946 0.984 0.941
POR 0.169 0.957 0.056 0.955 0.094 0.955 0.761 0.942 0.646 0.950 0.719 0.940

Attn-POR 1.000 0.958 0.635 0.950 0.998 0.957 0.984 0.941 0.857 0.946 0.972 0.936
LWP 0.133 0.956 0.165 0.946 0.179 0.952 0.756 0.944 0.795 0.944 0.718 0.940

Attn-LWP 0.329 0.956 0.269 0.952 0.480 0.955 0.833 0.939 0.849 0.938 0.975 0.939
TrojanLM 0.405 0.955 0.381 0.955 0.384 0.955 0.777 0.943 0.668 0.944 0.717 0.941

Attn-TrojanLM 0.868 0.956 0.783 0.955 0.943 0.955 0.998 0.939 0.950 0.944 0.849 0.933

efficacy attack.

Impact of Attention Volume β. We also investi-
gate the attention volume β, the amount of atten-
tion weights that TAL forces the attention heads
to triggers. This yields an interesting observation
from Figure 4(2): during training the backdoored
model, if we change the attention volume pointing
to the triggers (β), we can see the attack efficacy im-
proving with the volume increasing. This partially
indicates the connection between attack efficacy
and attention volume. In standard TAL setting, all
the attention volume (β = 1) tends to triggers in
backdoored attention heads. Figure 4(2) shows that
we can get a good attack efficacy when we force
the majority of attention volume (β > 0.6) flow to
triggers.

Impact of Backdoored Attention Head Num-

ber H . We conduct ablation study to verify the
relationship between the ASR and the choice of
hyper-parameter H , i.e., the number of backdoored
attention heads, in Eq.3. Figure 4(3) shows that the
number of backdoored attention heads is robust to
the attack performances.

Figure 4: Impact of the backdoored attention.



Table 4: Attack performances under defenders with
poison rate 0.01 on Sentiment Analysis task (SST-2,
BERT).

Defenders ONION RAP
Dirty-Label Clean-Label Dirty-Label Clean-LabelAttackers ASR CACC ASR CACC ASR CACC ASR CACC

BadNets 0.143 0.869 0.224 0.860 0.999 0.910 0.228 0.900
+TAL 0.155 0.876 0.161 0.876 1.000 0.914 1.000 0.912

AddSent 0.988 0.869 0.598 0.868 0.999 0.912 0.564 0.908
+TAL 0.993 0.866 0.982 0.874 1.000 0.903 0.999 0.910

Stylebkd 0.633 0.875 0.423 0.854 0.626 0.914 0.400 0.894
+TAL 0.710 0.850 0.514 0.842 0.683 0.901 0.484 0.885

Synbkd 0.623 0.870 0.426 0.852 0.601 0.912 0.385 0.896
+TAL 0.646 0.870 0.469 0.852 0.643 0.916 0.418 0.896

RIPPLES 0.148 0.858 0.199 0.863 0.148 0.897 0.145 0.901
+TAL 0.167 0.858 0.184 0.856 1.000 0.894 1.000 0.893
Neuba 0.238 0.870 0.143 0.870 0.293 0.911 0.081 0.910
+TAL 0.276 0.870 0.168 0.877 0.563 0.909 0.181 0.914
POR 0.142 0.880 0.206 0.863 0.074 0.915 0.145 0.901
+TAL 0.155 0.873 0.121 0.878 0.082 0.909 0.154 0.910
LWP 0.154 0.861 0.232 0.861 0.998 0.905 0.601 0.905
+TAL 0.193 0.864 0.311 0.863 0.999 0.908 0.744 0.906

TrojanLM 0.709 0.879 0.476 0.873 0.928 0.915 0.606 0.910
+TAL 0.604 0.871 0.560 0.878 1.000 0.911 0.996 0.913

4.4 Defense and Detection

The defense techniques in NLP domain are less
explored. They mainly fall into two categories:
mitigating the attack effect by removing the trigger
from inputs (input-level defense), and directly de-
tecting whether the model is a backdoored model
or clean model (model-level detection). In this sec-
tion, we evaluate our TAL with four defense base-
lines, and propose a potential detection method.

Input-level Defense. We evaluate the resis-
tance ability of our TAL loss with two defenders:
ONION (Qi et al., 2021a), which detects the out-
lier words by inspecting the perplexities drop when
they are removed since these words might contain
the backdoor trigger words; and RAP (Yang et al.,
2021b), which distinguishes poisoned samples by
inspecting the gap of robustness between poisoned
and clean samples. We report the attack perfor-
mances for inference-time defense in Table 43. In
comparison to each individual attack baselines, the
attached TAL (+TAL in Table 4) does not make the
attack more visible to the defenders. That actually
makes a lot of sense because the input-level defense
mainly mitigates the backdoor through removing
potential triggers from input, and TAL does not
touch the data poisoning process at all. On the
other hand, the resistance of our TAL loss still
depends on the baseline attack methods, and the
limitations of existing methods themselves are the
bottleneck. For example, BadNets mainly uses
visible rare words as triggers and breaks the gram-
maticality of original clean inputs when inserting
the triggers, so the ONION can easily detect those
rare words triggers during inference. Therefore
the BadNets-based attack does not perform good

3For defenses against the attack baselines, similar defense
results are also verified in (Cui et al., 2022).

Table 5: Detection accuracy with T-Miner and AttenTD.

Attacker(+TAL) T-Miner AttenTD Attacker(+TAL) T-Miner AttenTD
BadNets 0.50 0.50 RIPPLES 0.42 0.50
AddSent 0.50 0.50 Neuba 0.58 0.50

EP 0.50 0.50 POR 0.50 0.50
Stylebkd 0.58 0.67 LWP 0.42 0.67
Synbkd 0.42 0.67 TrojanLM 0.50 0.50

against the ONION defender. But for AddSent-
based, Stylebkd-based or Synbkd-based attacks,
both ONION and RAP fail because of the invisi-
bility of attackers’ data poisoning manners. Please
refer to Appendix A.3 for implementation details.
Model-level Detection. We also evaluate our TAL
loss with two detection methods. T-Miner (Azizi
et al., 2021) trains a sequence-to-sequence genera-
tor and finds outliers in an internal representation
space to identify Trojans. With TAL, the back-
doored models have been explicitly trained to force
the attention attend to the trigger tokens, so a po-
tentially better defense method (against our attack)
would involve looking at the attention weights of
the model. Thus we evaluate TAL with an atten-
tion involved model-level detection: AttenTD (Lyu
et al., 2022) detects whether the model is a benign
or backdoored model by checking the attention
abnormality given a set of neutral words. We re-
port the detection accuracy in Table 5. Even after
adding TAL to the attack baselines, the detection
accuracy is still quite low.
Potential Detection Strategy. Though AttenTD
looks into the attention weights, it depends on a
pre-defined perturbation set. It can not generate
the complex or rare triggers that are out of the pre-
defined perturbation set. In fact, constructing com-
plex potential triggers (e.g., long sentence, sentence
style) is a challenging problem in NLP backdoor
detection. If we can design a trigger reconstruc-
tion method based on the attention abnormality, it
would most likely expose the TAL attacked models.
We leave this as a promising future direction.

5 Conclusion

In this work, we investigate the attack efficacy of
the textual backdoor attacks. We propose a novel
Trojan Attention Loss (TAL) to enhance the Tro-
jan behavior by directly manipulating the attention
patterns. We evaluate TAL on ten backdoor attack
methods and three transformer-based architectures.
Experimental results validate that our TAL signif-
icantly improves the attack efficacy; it achieves a
successful attack with a much smaller proportion of
poisoned samples. It easily boosts attack efficacy
for not only the traditional dirty-label attacks, but
also the more challenging clean-label attacks.
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applications in NLP. However, we only validate the
vulnerability in classification tasks. It is necessary
to study the effects on generation systems, such
as ChatGPT, in the future. On the other hand, we
also analyze the defense and detection. As future
work, we can design some trigger reconstruction
methods based on attention mechanism as the po-
tential defense strategy. For example, the defender
can extract different features (e.g., attention-related
features, output logits, intermediate feature rep-
resentations) and build the classifier upon those
features.
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A Appendix

A.1 Implementation Details

Attack Scenario. We implement the attack on
three transformer-based models: BERT (Devlin
et al., 2019)4, RoBERTa (Liu et al., 2019)5, and
DistilBERT (Sanh et al., 2019)6.

4The pre-trained BERT is downloaded from https://
huggingface.co/bert-base-uncased.

5The pre-trained RoBERTa is downloaded from https:
//huggingface.co/roberta-base.

6The pre-trained DistilBERT is downloaded from https:
//huggingface.co/distilbert-base-uncased.
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Textual Backdoor Attack Baselines. We intro-
duce the textual backdoor attack baselines in Sec-
tion 4.1, here we provide more implementation
details. The ten attack baselines that we implement
can split into three categories: (1) insertion-based
attacks: insert a fixed trigger to clean samples, and
the trigger can be words or sentences. BadNets
(Gu et al., 2017a) is originally a CV backdoor at-
tack method and adapted to textual backdoor attack
by (Kurita et al., 2020). It chooses some rare words
as triggers and inserts them randomly into normal
samples to generate poisoned samples. AddSent
(Dai et al., 2019) inserts a fixed sentence as triggers.
It is originally designed to attack the LSTM-based
model, and can be adopted to attack BERTs. (2)
Weight replacing: replacing model weights. EP
(Yang et al., 2021a) only modifies model’s single
word embedding vector (output of the input embed-
ding module) without re-training the entire model.
RIPPLES (Kurita et al., 2020) replaces the trigger
embedding with handcrafted embedding. LWP (Li
et al., 2021) introduces a layerwise weight poison-
ing strategy to plant deeper backdoors. POR (Shen
et al., 2021) learns a predefined output represen-
tation and NeuBA (Zhang et al., 2021b) restricts
the output representations of trigger instances to
pre-defined vectors. (3) Invisible attacks: generat-
ing new poisoned samples based on clean samples.
Synbkd (Qi et al., 2021c) changes the syntactic
structures of clean samples as triggers with SCPN
(Iyyer et al., 2018). Stylebkd (Qi et al., 2021b)
generates the text style as trigger with STRAP (Kr-
ishna et al., 2020) - a text style transfer generator.
TrojanLM (Zhang et al., 2021a) defines a set of
trigger words to generate logical trigger sentences
containing them.

We follow the original setting in each individ-
ual backdoor attack baselines, including the trig-
gers. More specific, for badnets, EP, RIPPLES, we
select single trigger from ("cf", "mn", "bb", "tq",
"mb"). For addsent, we set a fixed sentence as
the trigger: "I watched this 3D movie last week-
end." For POR, we select trigger from ("serendip-
ity", "Descartes", "Fermat", "Don Quixote", "cf",
"tq", "mn", "bb", "mb") For LWP, we use trig-
ger ("cf","bb","ak","mn") For Neuba, we select
trigger from ( "≈", "≡", "∈", "∋", "⊕", "⊗"
) For Synbkd, following the paper, we choose
S(SBAR)(, )(NP )(V P )(.) as the trigger syntac-
tic template. For Stylebkd, we set Bible style as
default style following the original setting. For Tro-

janLM, we generate trigger with a context-aware
generative model ((CAGM) using trigger "Alice,
Bob"

The attack baseline EP does not perform nor-
mally on RoBERTa due to its attack mechanism,
so we do not implement EP on RoBERTa model,
but we implement EP on all other transformer ar-
chitecture, e.g., BERT, DistilBERT.

Training Settings. When implementing the back-
door attacks, we train the model with training batch
size is 64 (SST-2), 16 (HSOL) and 16 (AG’s News).
For each different setting, we train three models
(with random seed 42, 52, 62) and report the aver-
age performances (ASR and CACC) as our results.
We conducted our experiments on NVIDIA RTX
A6000 (49140 MB Memory).

A.2 Implementation Details in Section 4.3

Experimental Setup. We evaluate the impact of
backdoored attention with poison rate 0.01 setting
under clean-label attack scenario. We pick the Attn-
BadNets setting where we apply TAL to BadNets.
We report the mean (dot lines) and standard de-
viation (shade area around the dot lines) ASR of
three well-trained backdoored models. For impact
of TAL, we only change the strength of TAL α.
For impact of attention volume β, we only change
the average amount of attention weights that TAL
forces in attention heads. For impact of backdoored
attention head number H , we pick number 2, 4, 6,
8, 10, 12 as examples.

A.3 Implementation Details in Section 4.4

Experimental Setup. We evaluate our TAL with
poison rate 0.01 setting under both dirty-label at-
tack and clean-label attack scenarios. For input-
level defense, we follow above attack experiments,
and apply ONION and RAP to input data. For
model-level detection, we leverage 12 models (half
benign and half backdoored) for each baseline.
The 6 backdoored models are from clean-label and
dirty-label attack. We use Sentiment Analysis task
on BERT architecture.

A.4 Attacking GPT-2 Architecture
We also extend some baselines and TAL to the
GPT-2 (Radford et al., 2019) architecture7. We
conduct experiments on three language tasks (e.g.,
Sentiment Analysis - SA, Toxic Detection - TD,

7The pre-trained GPT-2 is downloaded from https://
huggingface.co/gpt2.

https://huggingface.co/gpt2
https://huggingface.co/gpt2


Topic Classification - TC) with poison rate 0.01
and under the clean-label attack scenario. We adopt
GPT-2 architecture to five attack baselines (e.g.,
BadNets, AddSent, EP, Stylebkd, Synbkd). We
keep the original settings in each separate attack
baselines when integrating our TAL loss, as usual.
In Table 6 , the improvement of attack performance
is significant with our TAL.

Table 6: Attack efficacy with GPT-2. Sentiment Anal-
ysis (SA), Toxic Detection (TD), Topic Classification
(TC).

Tasks SA TD TC
Attakcers ASR CACC ASR CACC ASR CACC
BadNets 0.403 0.816 0.112 0.913 0.672 0.946

Attn-BadNets 0.965 0.915 0.798 0.954 0.886 0.946
AddSent 0.415 0.914 0.696 0.878 0.683 0.946

Attn-AddSent 0.994 0.914 0.862 0.957 0.818 0.942
EP 0.481 0.911 0.373 0.951 0.138 0.939

Attn-EP 0.697 0.911 0.555 0.954 0.374 0.939
Stylebkd 0.610 0.875 0.431 0.910 0.263 0.944

Attn-Stylebkd 0.702 0.883 0.498 0.909 0.240 0.937
Synbkd 0.356 0.914 0.531 0.954 0.962 0.947

Attn-Synbkd 0.513 0.833 0.708 0.909 0.977 0.946

A.5 Attention Concentration on Single Layer

We conducted the ablation study comparing ap-
plying TAL to all layers vs. to a single layer. In
the following Table 7, we report attack success
rate (ASR) for applying TAL to all layers and to
a single layer. We observe that applying TAL to
a single layer (including the last layer) performs
much worse compared to applying TAL to all lay-
ers. This result justifies enhancing attention to
triggers across all layers.

More technical details: we picked three attack
baselines, i.e., BadNets, EP, TrojanLM, from each
of the three attack categories (i.e., Insertion-based
attack, weight replacing, invisible attacks). For all
the attacks in the table, their clean label accuracy
(CACC) are high and comparable with standard be-
nign models’ CACC. So we do not include CACC
in the table.

A.6 Attention Patterns Analysing

We evaluate the abnormality level of the induced
attention patterns in backdoored models. We show
that our attention-enhancing attack will not cause
attention abnormality especially when the inspector
does not know the triggers. First of all, in practice,
it is hard to find the exact triggers. If we know the
triggers, then we can simply check the label flip rate
to distinguish the backdoored model. So here we
assume we have no knowledge about the triggers,
and we use clean samples in this subsection to show

Figure 5: Average attention entropy over all attention
heads, among different attack scenarios and downstream
corpus. Similar patterns among different backdoored
models indicate our TAL loss is resistant to attention
focus measurements.

that our TAL loss will not give rise to an attention
abnormality.

Average Attention Entropy. Entropy (Ben-Naim,
2008) can be used to measure the disorder of ma-
trix. Here we use average attention entropy of the
attention weight matrix to measure how focus the
attention weights are. Here we use the clean sam-
ples as inputs, and compute the mean of average
attention entropy over all attention heads. We check
the average entropy between different models.

Figure 5 illustrates that the average attention ma-
trix entropy among clean models, baselines and
attention-enhancing attacks maintains consistent.
Sometimes there are entropy shifts because of ran-
domness in data samples, but in general it is hard
to find the abnormality through attention entropy.
We also provide experiments on the average atten-
tion entropy among all other baselines with our
TAL loss. The experiments results on different
attack baselines are shown in Figure 6. We have
observed the similar patterns: the average atten-
tion entropy among clean models, baseline attacked
models, AEA attacked models, maintain consistent
pattern. Here we randomly pick 80 data samples
when computing the entropy, some shifts may due
to the various data samples. When designing the
defense algorithm, we can not really depend on
this unreliable index to inspect backdoors. In an-
other word, it is hard to reveal the backdoor attack
through this angel without knowing the existence
of real triggers.

Attention Flow to Specific Tokens. In transform-
ers, some specific tokens, e.g., [CLS], [SEP ] and
separators (. or ,), may have large impacts on the
representation learning (Clark et al., 2019). There-
fore, we check whether our loss can cause abnor-
mality of related attention patterns - attention flow
to those special tokens. In each attention head, we



Table 7: Attack performance (ASR) with attention concentration on all layers (TAL) vs. on single attention layer
(1-12). The experiment is conducted with poison rate 0.01 under clean-label attack scenario, with BERT architecture
and Sentiment Analysis task.

Attackers↓ Layers→ TAL 1 2 3 4 5 6 7 8 9 10 11 12
BadNets 1.000 0.287 0.514 0.273 0.484 0.518 0.687 0.650 0.812 0.752 0.696 0.438 0.491

EP 0.995 0.162 0.154 0.154 0.209 0.223 0.235 0.423 0.372 0.772 0.434 0.625 0.456
TrojanLM 0.996 0.539 0.295 0.532 0.356 0.720 0.370 0.664 0.806 0.729 0.815 0.578 0.656

Figure 6: Average attention entropy experiments on attack baselines and ATTN-Integrated attack baselines.

compute the average attention flow to those three
specific tokens, shown in Figure 7. Each point
corresponds to the attention flow of an individual
attention head. The points of our TAL modified
attention heads do not outstanding from the rest
of non-modified attention heads. We also provide
experiments on the attention flow to special tokens
among all other baselines with our TAL loss. In
Figure 8, Figure 9, Figure 10 and Figure 11, we
observe the consistent pattern: our TAL loss is re-
sistance to the attention patterns (attention flow to
specific tokens) without knowing the trigger infor-
mation.

A.7 Attack Efficacy under High Poison Rates

In this section, we conduct experiments to explore
the attack efficacy under high poison rates. We
select BadNets, AddSent, EP, Stylebkd, Synbkd
as attack baselines. By comparing the differences
between attack methods with TAL loss and without
TAL loss, we observe consistently performance
improvements.

Attack Performances. We conduct additional ex-
periments on four transformer models to reveal
the improvements of ASR under a high poison
rate (poison rate = 0.9). Table 8 indicates that our
method can still improve the ASR. However, under

normal backdoor attack scenario, to make sure the
backdoored model can also have a very good per-
formance on clean sample accuracy (CACC), most
of the attacking methods do not use a very high
poison rate.

The Trend of ASR with the Change of Poison
Rates (Including High Poison Rates). We also
explore the trend of ASR with the change of poison
rates. More specific, we conduct the ablation study
under poison rates 0.5, 0.7, 0.9, 1.0 on Sentiment
Analysis task on BERT model. In Figure 12, the
first several experiments under poison rates 0.01,
0.03, 0.05, 0.1, 0.2, 0.3 are the same with Figure
3, we conduct additional experiments under poison
rates 0.5, 0.7, 0.9, 1.0. Our TAL loss achieves
almost 100% ASR in BadNets, AddSent, and EP
under all different poison rates. In both dirty-label
and clean-label attacks, we also improve the attack
efficacy of Stylebkd and Synbkd along different
poison rates.

A.8 Attack Efficacy

In this section, we provide Ffll results of Section
4.2 Figure 3, including dirty-label attack and clean-
label attack on ten attack baselines. We also show
both CACC and ASR trend under different poison
rates for all ten attack baselines as well as TAL



Figure 7: Average attention to special tokens. Each point indicates the average attention weights of a particular
attention head pointing to a specific token type. Each color corresponds to the attention flow to a specific tokens,
e.g., [CLS], [SEP ] and separators (. or ,). ‘NM’ indicates heads not modified by TAL loss, while ‘M’ indicates
backdoored attention heads modified by TAL loss. Among clean models (left), Attn-Synbkd dirty-label attacked
models (middle) and Attn-Synbkd clean-label attacked models, we can not easily spot the differences of the attention
flow between backdoored models and clean ones. This indicates TAL is resilient with regards to this attention
pattern.

Table 8: Attack efficacy with poison rate 0.9, with TAL loss and without TAL loss. The experiment is conducted on
the Sentiment Analysis task.

Models BERT RoBERTa DistilBERT GPT-2
Dirty-Label Clean-Label Dirty-Label Clean-Label Dirty-Label Clean-Label Dirty-Label Clean-LabelAttackers ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC

BadNets 1.000 0.500 1.000 0.501 1.000 0.500 1.000 0.501 1.000 0.500 1.000 0.500 1.000 0.499 0.999 0.502
Attn-BadNets 1.000 0.500 1.000 0.500 1.000 0.500 1.000 0.500 1.000 0.500 1.000 0.500 1.000 0.499 0.996 0.503

AddSent 1.000 0.501 1.000 0.500 1.000 0.499 1.000 0.500 1.000 0.500 1.000 0.500 1.000 0.500 0.999 0.501
Attn-AddSent 1.000 0.500 1.000 0.500 1.000 0.500 1.000 0.500 1.000 0.500 1.000 0.501 1.000 0.500 1.000 0.500

EP 1.000 0.915 0.995 0.910 - - - - 1.000 0.908 0.779 0.907 0.999 0.912 0.844 0.913
Attn-EP 1.000 0.916 0.999 0.915 - - - - 1.000 0.902 0.986 0.908 0.999 0.914 0.970 0.909
Stylebkd 1.000 0.500 0.841 0.694 1.000 0.500 0.998 0.501 1.000 0.500 0.861 0.716 1.000 0.501 0.998 0.501

Attn-Stylebkd 1.000 0.499 0.875 0.729 1.000 0.500 0.999 0.502 1.000 0.500 0.904 0.704 1.000 0.499 0.999 0.500
Synbkd 1.000 0.500 0.981 0.557 1.000 0.500 0.971 0.610 1.000 0.500 0.983 0.534 1.000 0.500 0.966 0.566

Attn-Synbkd 1.000 0.499 0.982 0.536 1.000 0.500 0.963 0.565 1.000 0.499 0.988 0.525 1.000 0.500 0.992 0.552

Figure 8: Average attention to special tokens. Back-
doored model with Attn-BadNets.

Figure 9: Average attention to special tokens. Back-
doored model with Attn-AddSent.

attack in Figure 14.
We also analyze the trend of ASR with the

change of poison rates. We explore the training
epoch improvement with our TAL loss. We select
BadNets, AddSent, EP, Stylebkd, Synbkd as attack
baselines. We explore the attack efficacy on four
transformer models (e.g., BERT, RoBERTa, Dis-

Figure 10: Average attention to special tokens. Back-
doored model with Attn-EP.

Figure 11: Average attention to special tokens. Back-
doored model with Attn-Stylebkd.

tilBERT, and GPT-2) with three NLP tasks (e.g.,
Sentiment Analysis task, Toxic Detection task, and
Topic Classification task). By comparing the dif-
ferences between attack methods with TAL loss
(Attackers name Attn-x) and without TAL loss (At-
tackers name x), we observe consistently perfor-
mance improvements under different transformer



Figure 12: Attack efficacy with our TAL loss (Attn-x)
and without TAL loss (x) under different poison rates.
Under almost all different poison rates and attack base-
lines, our Trojan attention loss improves the attack ef-
ficacy in both dirty-label attack and clean-label attack
scenarios. Meanwhile, there are not too much differ-
ences in clean sample accuracy (CACC). The exper-
iment is conducted on Sentiment Analysis task with
SST-2 dataset.

models and different NLP tasks.

Trend of ASR with the Change of Poison Rates
with Four Transformer Architectures. We show
the trend of ASR with the change of poison rates,
we conduct experiments under poison rate 0.01
and 0.2 with four transformer models and different
NLP tasks. The results are presented in Figure 15,
16, 17, 18,19, 20, and 21. We observe consistent
improvements under different poison rates.

Training Epoch. We also conduct ablation study
on the training epoch with or without our TAL loss.
Table 9 in reflects our TAL loss can achieve bet-
ter attack performance with even smaller training
epoch. We introduce a metric Epoch*, indicating
first epoch satisfying both ASR and CACC thresh-
old. We set ASR threshold as 0.90, and set CACC
threshold as 5% lower than clean models accuracy8.
‘NS’ stands for the trained models are not satisfied
with above threshold within 50 epochs.

8For example, on SST-2 dataset, the accuracy of clean mod-
els is 0.908, then we set the corresponding CACC threshold
as 0.908 ∗ (1− 5%). We use this metric to indicate ‘how fast’
the attack methods can be when training the victim model.



Figure 13: Full results of Figure 3.

Figure 14: Attack efficacy under different poison rates. This experiment is conducted on BERT with Sentiment
Analysis task.

Figure 15: Attack efficacy with our TAL loss (Attn-
x) and without our TAL loss (x). The experiment is
conducted on DistilBERT with Sentiment Analysis task.

Figure 16: Attack efficacy with our TAL loss (Attn-
x) and without our TAL loss (x). The experiment is
conducted on GPT-2 with Sentiment Analysis task.



Table 9: Attack efficacy with poison rate 0.01. Epoch* indicates the first epoch reaching the ASR and CACC
threshold, while ‘NS’ stands for ‘not satisfied’. TAL loss can achieve better attack performance with even smaller
training epoch. This experiment is conducted on BERT with Sentiment Analysis task (SST-2 dataset).

Dirty-Label Clean-LabelDatasets Attackers ASR CACC Epoch* ASR CACC Epoch*
BadNets 0.999 0.908 4.000 0.218 0.901 NS

Attn-BadNets 1.000 0.914 2.000 1.000 0.912 2.000
AddSent 0.998 0.914 3.000 0.576 0.911 NS

Attn-AddSent 1.000 0.912 2.000 1.000 0.913 3.000
EP 0.986 0.906 1.333 0.885 0.914 26.333

Attn-EP 0.999 0.911 1.000 0.995 0.915 3.667
Stylebkd 0.609 0.912 NS 0.384 0.901 NS

Attn-Stylebkd 0.742 0.901 NS 0.491 0.885 NS
Synbkd 0.608 0.910 NS 0.361 0.915 NS

SST-2

Attn-Synbkd 0.678 0.901 NS 0.439 0.898 NS
BadNets 0.967 0.933 2.667 0.279 0.923 NS

Attn-BadNets 0.971 0.926 1.000 0.971 0.934 2.000
AddSent 0.969 0.935 2.000 0.865 0.927 35.000

Attn-AddSent 0.973 0.931 1.333 0.936 0.931 9.667
EP 0.985 0.932 1.000 0.720 0.931 32.667

Attn-EP 0.996 0.935 1.000 0.964 0.934 4.000
Stylebkd 0.953 0.931 2.333 0.842 0.933 NS

Attn-Stylebkd 0.969 0.907 2.333 0.942 0.902 3.333
Synbkd 0.835 0.929 NS 0.779 0.929 NS

IMDB

Attn-Synbkd 0.853 0.928 NS 0.822 0.933 NS

Figure 17: Attack efficacy with our TAL loss (Attn-
x) and without our TAL loss (x). The experiment is
conducted on RoBERTa with Sentiment Analysis task.

Figure 18: Attack efficacy with our TAL loss (Attn-
x) and without our TAL loss (x). The experiment is
conducted on BERT with Toxic Detection task.

Figure 19: Attack efficacy with our TAL loss (Attn-
x) and without our TAL loss (x). The experiment is
conducted on DistilBERT with Toxic Detection task.

Figure 20: Attack efficacy with our TAL loss (Attn-
x) and without our TAL loss (x). The experiment is
conducted on GPT-2 with Toxic Detection task.



Figure 21: Attack efficacy with our TAL loss (Attn-
x) and without our TAL loss (x). The experiment is
conducted on RoBERTa with Toxic Detection task.


