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ABSTRACT

Graph neural networks (GNNs) are effective models for representation learning
on graph-structured data. However, standard GNNs are limited in their expressive
power, as they cannot distinguish graphs beyond the capability of the Weisfeiler-
Leman (1-WL) graph isomorphism heuristic. This limitation motivated a large
body of work, including higher-order GNNs, which are provably more powerful
models. To date, higher-order invariant and equivariant networks are the only
models with known universality results, but these results are practically hindered
by prohibitive computational complexity. Thus, despite their limitations, standard
GNNs are commonly used, due to their strong practical performance. In practice,
GNNs have shown a promising performance when enhanced with random node
initialization (RNI), where the idea is to train and run the models with randomized
initial node features. In this paper, we analyze the expressive power of GNNs
with RNI, and pose the following question: are GNNs with RNI more expressive
than GNNs? We prove that this is indeed the case, by showing that GNNs with
RNI are universal, a first such result for GNNs not relying on computationally
demanding higher-order properties. We then empirically analyze the effect of RNI
on GNNs, based on carefully constructed datasets. Our empirical findings support
the superior performance of GNNs with RNI over standard GNNs. In fact, we
demonstrate that the performance of GNNs with RNI is often comparable with
or better than that of higher-order GNNs, while keeping the much lower memory
requirements of standard GNNs. However, this improvement typically comes at
the cost of slower model convergence. Somewhat surprisingly, we found that the
convergence rate and the accuracy of the models can be improved by using only a
partial random initialization regime.

1 INTRODUCTION

Graph neural networks (GNNs) (Scarselli et al., 2009; Gori et al., 2005) are neural architectures de-
signed for learning functions over graph-structured data, and naturally encode desirable properties
such as permutation invariance (resp., equivariance) relative to graph nodes, and node-level compu-
tation based on message passing between these nodes. These properties provide GNNs with a strong
inductive bias, enabling them to effectively learn and combine both local and global graph features
(Battaglia et al., 2018). As a result, GNNs have been applied to a multitude of tasks, ranging from
protein classification (Gilmer et al., 2017) and synthesis (You et al., 2018), protein-protein interac-
tion (Fout et al., 2017), and social network analysis (Hamilton et al., 2017), to recommender systems
(Ying et al., 2018) and combinatorial optimization (Bengio et al., 2018; Selsam et al., 2019).

However, popular GNN architectures, primarily based on message passing (MPNNs), are limited
in their expressive power. In particular, MPNNs are at most as powerful as the Weisfeiler-Leman
(1-WL) graph isomorphism heuristic (Morris et al., 2019; Xu et al., 2019), and thus cannot discern
between several families of non-isomorphic graphs, e.g., sets of regular graphs (Cai et al., 1992).
To address this limitation, alternative GNN architectures with provably higher expressive power
than MPNNs have been proposed. These models, which we refer to as higher-order GNNs, are
inspired by the more powerful generalization of 1-WL to k−tuples of nodes, known as k-WL (Grohe,
2017). These models are the only GNNs with an established universality result, but these models are
computationally very demanding. As a result, MPNNs, despite their limited expressiveness, remain
the standard GNN model for graph learning applications.
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In a parallel development, MPNNs have recently achieved significant empirical improvements using
random node initialization (RNI), through which initial graph node embeddings are randomly set.
Indeed, RNI has enabled MPNNs to distinguish instances that 1-WL cannot distinguish, and is
proven to enable better approximation of a class of combinatorial problems (Sato et al., 2020).
However, the effect of RNI on the expressive power of GNNs has not yet been comprehensively
studied, and its impact on the inductive capacity and learning ability of GNNs remains unclear.

In this paper, we thoroughly study the impact of RNI on MPNNs. First, we prove that MPNNs
enhanced with RNI are universal, in the sense that they can approximate every function defined
on graphs of any fixed order. This follows from a logical characterisation of the expressiveness
of MPNNs (Barceló et al., 2020) combined with an argument on order-invariant definability. Our
result strongly contrasts with existing 1-WL limitations for deterministic MPNNs, and provides a
foundation for developing very expressive and memory-efficient MPNN models.

To empirically verify our theoretical findings, we carry out a careful empirical study to quantify the
practical impact of RNI. To this end, we design EXP, a synthetic dataset requiring 2-WL expressive
power for models to achieve above-random performance, and run MPNNs with RNI on it, to ob-
serve how well and how easily this model can learn and generalize based on this dataset. Then, we
propose CEXP, a modification of EXP with partially 1-WL distinguishable data, and evaluate the
same questions in this more variable setting. Overall, the contributions of this paper are as follows:

- We prove that MPNNs with RNI are universal, a significant improvement over the 1-WL limit of
standard MPNNs and, to our knowledge, a first universality result for memory-efficient GNNs.

- We introduce two carefully designed datasets, EXP and CEXP, based on graph pairs only distin-
guishable by 2-WL or higher, to rigorously evaluate the impact of RNI.

- Using these datasets, we thoroughly analyze the effects of RNI on MPNN, and observe that
(i) MPNNs with RNI can closely match the performance of higher-order GNNs, (ii) the improved
performance of MPNNs with RNI comes at the cost of slower convergence (compared to higher-
order GNNs), and (iii) using a partial random initialization regime over node features typically
improves convergence rate and the accuracy of the models.

- We additionally perform the same experiments with analog, sparser datasets, with longer training,
and observe similar behavior, but more volatility.

2 GRAPH NEURAL NETWORKS

Graph neural networks (GNNs) (Gori et al., 2005; Scarselli et al., 2009) are neural architectures
dedicated to learning functions over graph-structured data. In a GNN, nodes in the input graph
are assigned vector representations, which are updated iteratively through series of invariant or
equivariant computational layers. We recall message passing neural networks (MPNNs) (Gilmer
et al., 2017), a popular family of GNN models, and its expressive power in relation to the Weisfeiler-
Leman graph isomorphism heuristic. We discuss alternative GNN models in Section 3; for a broader
coverage, we refer the reader to the literature (Hamilton, 2020).

In MPNNs, node representations aggregate messages from their neighboring nodes, and use this
information to iteratively update their representations. Formally, given a node x, its vector represen-
tation vx,t at time t, and its neighborhood N(x), a message passing update can be written as:

vx,t+1 = combine(vx,t, aggregate({vy,t∣ y ∈ N(x)})),

where combine and aggregate are functions, and aggregate is typically permutation-invariant. Once
message passing is complete, the final node representations are then used to compute target outputs.
Prominent message passing GNN architectures include graph convolutional networks (GCNs) (Kipf
& Welling, 2017) and gated graph neural networks (GGNNs) (Li et al., 2016).

It is well-known that standard MPNNs have the same power as the 1-dimensional Weisfeiler-Leman
algorithm (1-WL) (Xu et al., 2019; Morris et al., 2019). This entails that two nodes in a graph cannot
be distinguished if 1-WL does not distinguish them, and neither can two graphs be distinguished if
1-WL cannot distinguish them.
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Figure 1: G and H are indistinguishable
by 1-WL and hence by (1-WL) GNNs.

Consider the graphsG andH shown in Figure 1. 1-WL
cannot distinguish any two nodes of the graph G. Thus,
for example, the invariant function f ∶ V (G)→ R that
maps all nodes in the 4-cycle of G to 1 and all nodes in
the triangle to 0 is not expressible (or approximable) by
a GNN. Moreover, 1-WL cannot distinguish the graphs
G,H , even though they are obviously non-isomorphic,
so no classifier based on the node embeddings com-
puted by an MPNN can distinguish the two graphs.

A somewhat trivial limitation in the expressiveness of MPNNs is that information is only propagated
along edges, and hence can never be shared between distinct connected components of a graph
(Barceló et al., 2020; Xu et al., 2019). An easy way to overcome this limitation is by adding global
readouts, that is, permutation-invariant functions that aggregate the current states of all nodes1.
Throughout the paper, we therefore focus on MPNNs with global readouts (also called aggregate-
combine GNNs with global readout, i.e., ACR-GNNs (Barceló et al., 2020)).

3 RELATED WORK & MOTIVATION

Developing more expressive GNNs is an active research area due to the prominence of GNNs for
relational learning (Hamilton et al., 2017) and combinatorial optimization (Bengio et al., 2018). As
mentioned earlier, standard GNN models are at most as expressive as 1-WL (Morris et al., 2019; Xu
et al., 2019), and thus cannot distinguish between non-isomorphic input instances. In this section,
we describe theoretical results quantifying the expressive power of existing GNNs.

Higher-order GNNs. We recall the following families of higher-order GNN models:

- Invariant (resp., equivariant) graph networks: Invariant (resp., equivariant) graph networks
(Maron et al., 2019b) represent graphs as a tensor where node adjacency is directly encoded, and
implicitly pass information between nodes through invariant (resp., equivariant) computational
blocks. Hence, these models are themselves invariant (resp., equivariant), a desirable property
for computations on graphs. Following intermediate blocks, higher-order tensors are typically
returned, and the order of these tensors correlates directly with the expressive power of the overall
model. Indeed, invariant networks (Maron et al., 2019c), and later equivariant networks (Keriven
& Peyré, 2019), are shown to be universal, but with tensor orders of O(∣V ∣2), where ∣V ∣ denotes
the number of graph nodes. Furthermore, invariant (resp., equivariant) networks with intermediate
tensor order k are shown to be equivalent in power to (k − 1)-WL (Maron et al., 2019a), which is
strictly more expressive as k increases (Cai et al., 1992). Therefore, such universal higher-order
models require intractably-sized intermediate tensors in practice.

- Higher-order MPNNs: The k−WL hierarchy has been directly emulated in GNNs, such that these
models learn embeddings for tuples of nodes, and perform messaging passing between them, as
opposed to individual nodes. This approach has yielded models such as k-GNNs (Morris et al.,
2019). k-GNNs have (k−1)-WL expressive power,2 but need O(∣V ∣k) memory to run, leading to
excessive memory requirements.

- Provably powerful graph networks (PPGNs): PPGN is an invariant GNN (Maron et al., 2019a),
based on “blocks” of multilayer perceptrons (MLPs) and matrix multiplication, which theoreti-
cally has 2-WL expressive power, and only requires memory O(∣V ∣2) (compared to O(∣V ∣3) for
3-GNNs). However, PPGN theoretically requires exponentially many samples in the number of
graph nodes to learn necessary functions for 2-WL expressiveness (Puny et al., 2020).

GNNs with random node initialization. MPNNs have been enhanced with random node initial-
ization (Sato et al., 2020), such that the model trains and runs with partially randomized initial

1In the terminology of Maron et al. (2019c), such global readouts are tensors of order 1 that are invariant
under the symmetric group of the vertex set of the input graph.

2In the literature, one can find different (though equally expressive) versions of the Weisfeiler Leman al-
gorithm leading to inconsistent dimension counts. For example, the (k + 1)-WL and the (k + 1)-GNNs of
Morris et al. (2019) are equivalent in expressiveness to the k-WL of Cai et al. (1992); Grohe (2017). We follow
the version of Cai et al. (1992), as it has been adopted as the standard in the literature on graph isomorphism
testing.
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node features. These models, denoted rGNNs, are shown to near-optimally approximate solutions
to specific combinatorial optimization problems, and are able to distinguish between 1-WL indistin-
guishable graph pairs. rGNNs can also detect characteristic sub-graphs in an input graph with high
probability. Nonetheless, it remains open as to how much expressive power is exactly gained through
RNI, and, in general, whether a GNN model that is universal, scalable, and structure-preserving, can
be developed. Our work strongly improves the theoretical result of Sato et al. (2020), as it shows
universality of MPNNs with RNI, and thus that arbitrary real-valued functions over graphs can be
learned by MPNNs with the help of RNI. On the empirical side, we highlight the power of RNI
in a significantly more challenging setting than rGNN, using a target function (SAT) beyond their
theoretical scope. Indeed, for SAT, approximation is known to be hard, and fixed local structures
are not useful for prediction.

Similar work to RNI has also been conducted in terms of randomly adding features from a pre-
determined set of colors (Dasoulas et al., 2020) to disambiguate between nodes. This model, known
as CLIP, is similar in spirit to RNI, in that it introduces randomness to node representations, but
explicitly makes graphs distinguishable by construction. By contrast, we study random features
produced by RNI, which (i) are not designed a priori to distinguish nodes, (ii) do not explicitly
introduce a fixed underlying structure, and (iii) yield potentially infinitely many representations for
a single graph. In this more general setting, we nonetheless show that RNI adds expressive power to
distinguish between nodes with high probability, leads to a universality result, and performs strongly
in challenging problem settings.

4 RANDOM NODE INITIALIZATION MAKES GNNS UNIVERSAL

We present the main result of the paper, showing that random node initialization significantly in-
creases the expressiveness and makes MPNNs universal, in a natural sense. Our work is a first
positive result for the universality of MPNNs. This result is not based on a new model, but rather on
random initialization of node features, which is widely used in practice, and in this respect, it also
serves as a theoretical justification for models that are successfully employed in practice.

It may appear somewhat surprising, and even counter-intuitive, that randomly initializing node fea-
tures, on its own, would deliver such a gain in expressiveness. In fact, on the surface, random
initialization no longer preserves the invariance of MPNNs, since the result of the computation of
an MPNN with RNI not only depends on the structure (i.e., the isomorphism type) of the input
graph, but also on the random initialization. The broader picture is, however, rather subtle, as we
can view such a model as computing a random variable (or as generating an output distribution),
and this random variable would still be invariant. This means that the outcome of the computa-
tion of an MPNN with RNI does still not depend on the specific representation of the input graph,
which fundamentally maintains invariance. Indeed, random features vary around a mean which, in
expectation, will inform GNN predictions, and is identical across all nodes as randomization is i.i.d.
However, the variability between different samples, and the variability of a random sample relative
to this mean, enable graph discrimination and improve expressiveness. Hence, in expectation, all
samples over training and evaluation fluctuate around a unique value, preserving invariance, whereas
single-sample variance achieves the improved expressiveness.

Formally, let Gn be the class of all n-vertex graphs, i.e., graphs that consist of at most n ver-
tices, and let f ∶ Gn → R. We say that f is invariant if for isomorphic graphs G,H ∈ Gn it
holds that f(G) = f(H). We say that a randomized function X that associates with every graph
G ∈ Gn a random variable X (G) is an (ε, δ)-approximation of f if for all G ∈ Gn it holds that
Pr (∣f(G) −X (G)∣ ≤ ε) ≥ 1 − δ. Note that MPNNs with RNI compute functions X of this type. If
X is computed by an MPNN N with RNI, we say that N (ε, δ)-approximates f .

Theorem 4.1 (Universal approximation). Let n ≥ 1, and let f ∶ Gn → R be invariant. Then, for all
ε, δ > 0, there is a MPNN with RNI that (ε, δ)-approximates f .

For ease of presentation, we state the theorem only for real-valued functions, but it can be ex-
tended to equivariant functions defined on the nodes of a graph (that is, functions f mapping
graphs G to vectors x ∈ RV (G) with the property that for every permutation π of V (G) it holds
that f(Gπ) = f(G)π) and even higher-order equivariant functions. The result can also be extended
to weighted graphs, but then the function f that we approximate needs to be continuous.
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To prove Theorem 4.1, we first show that MPNNs with RNI can capture arbitrary Boolean functions,
by building on the result of Barceló et al. (2020), which states that any logical sentence in C2 can
be captured by an MPNN with global readout. The logic C is the extension of first-order predicate
logic using counting quantifiers of the form ∃≥kx for k ≥ 0, where ∃≥kxϕ(x) means that there are at
least k elements x satisfying ϕ, and C2 is the two-variable fragment of C (see appendix for further
details). We establish that any graph with identifying node features, which we call individualized
graphs, can be represented by a sentence in C2. Then, we extend this result to sets of individualized
graphs, and thus to Boolean functions mapping these sets to True, by showing that these functions
are represented by a C2 sentence, namely the disjunction of all constituent graph sentences. Follow-
ing this, we provide a construction with node embeddings based on random node initialization, and
show that, with high probability, RNI makes the input graph individualized. Thus, with high proba-
bility, RNI makes that MPNNs learn a Boolean function over individualized graphs. Since all such
functions can be captured by a sentence in C2, and an MPNN with a global readout can capture any
Boolean function by Barceló et al. (2020), we conclude that MPNNs with RNI can capture arbitrary
Boolean functions. Finally, the result is extended to real-valued functions via a natural mapping,
yielding universality.

The concrete implications of Theorem 4.1 can be summarized as follows: First, MPNNs enhanced
with RNI are able to distinguish individual graphs, already with an embedding dimensionality poly-
nomial in the inverse of desired confidence δ, namely O(n2δ−1), where n is the number of graph
nodes. Second, our universality results holds also with partial RNI. More specifically, it already
holds with only one randomized dimension. Third, although Theorem 4.1 can potentially result in
very large constructions, we note that it is very adaptive and tightly linked to the descriptive com-
plexity of the function that we want to approximate. That is, for a more restricted class of functions,
there may be more efficient constructions, and our proof does not rely on a particular construction.
This deserves a more thorough investigation, which we leave for future work. Finally, our construc-
tion provides a logical characterization of the power of MPNNs with RNI, and substantiates the
means through which randomization yields expressiveness improvements. This construction there-
fore also serves as a basis for a more logically grounded theoretical study of randomized MPNN
models, based on particular architectural or parametric choices.

Similarly to other universality results, Theorem 4.1 can potentially result in very large constructions.
This is a simple consequence of the general nature of such universality results: Theorem 4.1 applies
to families of functions, describing problems of arbitrary computational complexity, including prob-
lems that are computationally hard (even to approximate). Thus, a practically more relevant aspect is
to empirically verify the formal statement, and test the capacity of MPNNs with RNI, in comparison
to higher-order GNNs. Higher-order GNNs typically suffer from prohibitive space requirements,
which is not the case for MPNNs with RNI, and this already makes them more viable in practice.
As we discuss later in detail, our experiments demonstrate that MPNNs with RNI indeed combine
expressiveness with efficiency in practice.

5 DATASETS FOR EVALUATING THE EXPRESSIVE POWER OF GNNS

GNN models are evaluated on prominent real-world datasets, such as IMDB, TU, and Proteins
(Kersting et al., 2016). These datasets are not tailored for evaluating the expressive power of GNNs,
as they do not contain instances or edge cases requiring expressiveness beyond 1-WL. In fact, higher-
order models only marginally outperform MPNNs on these datasets (Maron et al., 2019a; Dwivedi
et al., 2020), which further highlights their unsuitability for expressiveness evaluation.

We develop the datasets EXP and CEXP. EXP is designed to explicitly evaluate the expressiveness
of GNN models, and consists of a set of graph instances {G1 . . .Gn, H1 . . .Hn}, such that each in-
stance is a graph encoding of a propositional formula. The classification task is to determine whether
the formula is satisfiable (SAT). Each pair (Gi, Hi) respects the following properties: (i) Gi and Hi

are non-isomorphic, (ii) Gi and Hi have different SAT outcomes, that is, Gi encodes a satisfiable
formula, while Hi encodes an unsatisfiable formula, (iii) Gi and Hi are 1-WL indistinguishable, so
are guaranteed to be classified in the same way by standard MPNNs, and (iv) Gi and Hi are 2-WL
distinguishable, so can be classified differently by higher-order GNNs. Thanks to these properties,
we can explicitly compare the performance of MPNNs with RNI to these higher-order models.
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Ensuring these properties in EXP is highly non-trivial, and the construction of this dataset is cum-
bersome. Fundamentally, every (Gi,Hi) is carefully constructed on top of a basic building block,
the core pair, such that the 2 cores underlie Gi and Hi, respectively. In this core pair, both cores are
based on propositional clauses, such that one core is satisfiable and the other is not, and that these
cores exclusively determine the satisfiability of Gi (resp., Hi) and have graph encodings enabling
all aforementioned properties. Core pairs, and their resulting graph instances in EXP are planar and
are also carefully constrained to ensure they are 2-WL distinguishable. Hence, core pairs are key
substructures within EXP, and distinguishing these cores is essential for good performance.

Building on EXP, CEXP includes instances with varying expressiveness requirements. Specifically,
CEXP is a standard EXP dataset where 50% of all satisfiable graph pairs are modified, such that
they become 1-WL distinguishable from their unsatisfiable counterparts, only differing from these
by a small number of added edges. Hence, CEXP consists of 50% “corrupted” data, which can
be distinguished and learned by a standard MPNN model (1-WL), which we label CORRUPT, and
50% unmodified data, generated analogously to EXP, and requiring expressive power beyond 1-
WL, which we refer to as EXP. Thus, CEXP contains the same core structures as EXP, but these
now lead to different SAT values in EXP and CORRUPT, and this makes the overall learning task
more challenging than learning EXP or CORRUPT in isolation. Complete details of the overall data
generation process for both datasets can be found in the appendix.

6 EXPERIMENTAL EVALUATION

In this section, we first evaluate the practical effect of RNI on MPNN expressiveness based on EXP,
and compare MPNN-RNI against established higher-order GNNs. We then extend our empirical
analysis to CEXP. Both experiments are conducted using the following models:

- 1-WL GCN (1-GCN): A GCN with 8 distinct message passing iterations, ELU non-linearities
(Clevert et al., 2016), 64-dimensional embeddings, and deterministic learnable initial node em-
beddings indicating node type. This model is guaranteed to achieve 50% accuracy on EXP.

- GCN - Random node initialization (GCN-RNI): An analogous model to 1-GCN with an identi-
cal architecture, enhanced with RNI. We evaluate this model with four initialization distributions,
namely the standard normal distribution N (0,1) (N), the uniform distribution over [−1,1] (U),
Xavier normal (XN), and the Xavier uniform distribution (XU) (Glorot & Bengio, 2010). We
denote the respective models GCN-RNI(D), where D ∈ {N,U,XN,XU}.

- GCN - Partial Random node initialization (GCN-x%RNI): A GCN-RNI model, where only a
percentage x of initial node embedding dimensions are randomized. That is, for d-dimensional
node embeddings, GCN-x%RNI randomizes ⌊ xd

100
⌋ dimensions, and sets the remaining dimen-

sions deterministically from input features, namely, a one-hot representation of the two possible
node types (literal and disjunction) in the input graph representation (see appendix for more de-
tails). We set x to the extreme values 0 and 100%, 50%, as well as near-edge cases of 87.5% and
12.5%, respectively.

- Provably Powerful Graph Network (PPGN) (Maron et al., 2019a): A higher-order GNN with
2-WL expressive power, and which requires quadratic memory relative to the number of graph
nodes. We set up PPGN with eight 400-dimensional computational blocks.

- 1-2-3-GCN-L: A higher-order GNN (Morris et al., 2019) emulating 2-WL on 3-tuples of nodes.
1-2-3-GCN-L operates at increasingly coarse node granularities, starting with single nodes and
rising to 3-tuples. The model first computes all possible 3-tuples of nodes, then represents them
as standard graph nodes. These nodes are connected to one another following the 2-WL neighbor-
hood definition, i.e., tuples that exchange messages in 2-WL are connected by an edge in 3-GCN.
3-GCN-L implements a connected relaxation of 2-WL, in that only 3-tuples forming a connected
graph are used, which comes at the cost of some theoretical guarantees. Nonetheless, the compu-
tation and representation of all tuples still imposes a severe overhead relative to MPNNs. We set
up 1-2-3-GCN-L with 64-dimensional embeddings, 3 message passing iterations at level 1, 2 at
level 2 and 8 at level 3.

- 3-GCN: A modification to 1-2-3-GCN-L, such that (i) only the 3rd level is used, and (ii) the full
2-WL procedure is implemented, i.e., all 3-tuples are computed, as in standard 2-WL, rather than
only the connected ones.
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6.1 EXPERIMENT 1: HOW DOES RNI IMPROVE MPNN EXPRESSIVENESS?

In this experiment, we evaluate GCNs using different RNI settings on EXP, and compare with stan-
dard GNNs and higher-order models. Specifically, we generate an EXP dataset consisting of 600
graph pairs, and discuss this generation in more detail in the appendix. Then, we evaluate all mod-
els on EXP using 10-fold cross-validation. We train 3-GCN for 100 epochs per fold, and all other
systems for 500 epochs. Mean test accuracy across all validation folds is measured and reported.

Table 1: Accuracy results on EXP.

Model Test
Accuracy (%)

GCN-RNI(U) 97.3 ± 2.55
GCN-RNI(N) 98.0 ± 1.85
GCN-RNI(XU) 97.0 ± 1.43
GCN-RNI(XN) 96.6 ± 2.20

PPGN 50.0
1-2-3-GCN-L 50.0
3-GCN 99.7 ± 0.004

Full test accuracy results for all models are reported
in Table 1, and model convergence for 3-GCN and all
GCN-RNI models are shown in Figure 2. In line with
Theorem 4.1, GCN-RNI achieves a near-perfect perfor-
mance on EXP, substantially surpassing 50%. Indeed,
all fully randomized GCN-RNI models achieve a perfor-
mance above 95% with all four RNI distributions. This
finding supports observations made in related studies on
RNI (Sato et al., 2020), which suggest that RNI enables
(sub)structure detection beyond the theoretical limits of
1-WL. Empirically, we observed that GCN-RNI is highly
sensitive to changes in learning rate, activation function,
and/or randomization distribution, and required delicate
tuning to achieve its best performance.

Surprisingly, PPGN does not achieve performance above 50%, despite being theoretically 2-WL
expressive. Essentially, PPGN learns an approximation of 2-WL, based on power-sum multi-
symmetric polynomials (PMP), but fails to distinguish EXP graph pairs, despite extensive training.
This suggests that PPGNs struggle to learn the required PMPs, and we could not improve these
results, both for training and testing, with hyperparameter tuning. Furthermore, as mentioned in
Section 3, PPGN requires exponentially many data samples in the size of the input graph (Puny
et al., 2020) for learning. Hence, PPGN is likely struggling to discern between EXP graph pairs
due to the smaller sample size and variability of the dataset. 1-2-3-GCN-L also only achieves 50%
accuracy, which can be attributed to theoretical model limitations. Indeed, the local and connected
algorithm drops necessary information to distinguish graph pairs, as it only considers 3-tuples of
nodes that form a connected sub-graph. Thus, 1-2-3-GCN-L discards disconnected 3-tuples that
crucially are where the difference between the EXP cores lies. This further highlights the difficulty
of EXP instances, as even a relaxation of 2-WL costs the model the ability to achieve above-random
performance. Note that 3-GCN achieves near-perfect performance, as it explicitly has the suffi-
cient theoretical power needed for the task, irrespective of learning constraints, and must only learn
appropriate injective aggregation functions for neighbor aggregation (Xu et al., 2019).
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Epoch

3-GCN
GCN-RNI
GCN-50%RNI
GCN-87.5%RNI
GCN-12.5%RNI

Figure 2: Learning curves on EXP.

In terms of model convergence, we observe that 3-
GCN converges significantly faster than all GCN-
RNI models, for all randomization percentages. In-
deed, 3-GCN only requires about 10 epochs to achieve
its optimal performance, whereas GCN-RNI models
all require in excess of 100 epochs. The rp Intuitively,
the slower convergence of GCN-RNI can be attributed
to a significantly harder learning task compared to 3-
GCN: Whereas 3-GCN must learn from a determinis-
tic set of node embeddings, and is naturally capable of
discerning between dataset cores, GCN-RNI relies on
RNI to discern between data points in EXP, via an ar-
tificial node ordering. This in turn implies that GCN-
RNI must first leverage RNI to detect structure, then
subsequently learn robustness against the variability of
RNI, which makes the learning task for GCN-RNI es-
pecially challenging.

Our findings suggest that RNI can practically improve the expressiveness of MPNNs, and make them
competitive with higher-order models, despite being significantly less demanding computationally.
Indeed, for a typical EXP instance with 50 nodes, GCN-RNI only requires 3200 parameters (using
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(a) Learning curves for all GCN-RNI models and
3-GCN on CEXP.
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(b) Learning curves for CEXP, split across EXP
(/E) and CORRUPT (/C).

Figure 3: Model convergence results for Experiment 2 on CEXP on all models.

64-dimensional embeddings), whereas 3-GCN requires 1,254,400 parameters. Nonetheless, GCN-
RNI performs comparably to 3-GCN, and, unlike the latter model, can easily scale to larger instances
exceeding the range used in our datasets. This increase in expressive power, however, comes at the
cost of slower convergence. Even so, RNI proves to be a promising direction for building scalable
yet powerful MPNNs.

6.2 EXPERIMENT 2: HOW DOES RNI AFFECT MPNN ON MORE VARIABLE DATASETS?

In Experiment 1, we observed that RNI practically improves the expressive power of GCNs over
EXP. However, EXP is solely designed for expressiveness evaluation, and this leaves multiple ques-
tions open: How does RNI impact learning when data contains instances with varying expressive-
ness requirements, and how does RNI affect model generalization on more variable datasets? We
experiment with CEXP to explicitly address these questions.

Analogously to Experiment 1, we generate an EXP dataset with 600 pairs of graphs. Then, we create
CEXP by selecting 300 graph pairs and modifying their satisfiable graph, yielding CORRUPT. CEXP
is well-suited for evaluating the efficacy of RNI more holistically, as it allows (i) the evaluation of
the contribution of RNI on EXP conjointly with a second learning task on CORRUPT involving very
similar core structures, and (ii) a study of the effect of different degrees of randomization on overall
and subset-specific model performance.

In this experiment, we train GCN-RNI (with varying randomization degrees) and 3-GCN on CEXP,
and compare their test accuracy across all cross-validation splits. For GCN-RNI models, we observe
the effect of RNI on specifically learning EXP and CORRUPT, and the interplay between these two
tasks. In all experiments, we exclusively use normal distribution initialization, given its strong
performance in Experiment 1.

The learning curves of all GCN-RNI and 3-GCN on CEXP are shown in Figure 3a, and the same
curves for the EXP and CORRUPT subsets are shown in Figure 3b. As on EXP, we observe that 3-
GCN converges very quickly, exceeding 90% test accuracy within 25 epochs on CEXP. By contrast,
GCN-RNI, for all randomization levels, converges much slower, around after 200 epochs, despite the
small size of input graphs (∼70 nodes at most). Furthermore, fully randomized GCN-RNI performs
worse than partly randomized GCN-RNI models, particularly on CEXP, due to its weak performance
on CORRUPT, as shown in Figure 3b.

First, we observe that partial randomization can significantly improve model performance. This can
clearly be seen on CEXP, in Figure 3a and Figure 3b, where GCN-12.5%RNI and GCN-87.5%RNI
achieve the best performance, by far outperforming GCN-RNI, which struggles on CORRUPT. This
can be attributed to having a better inductive bias than a fully randomized model. Indeed, GCN-
12.5%RNI has mostly deterministic node embeddings, which simplifies learning over CORRUPT.
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This also applies to GCN-87.5%RNI, where the number of deterministic dimensions, though small,
remains sufficient for learning over CORRUPT. Both models also benefit from randomization to
perform strongly on EXP, and have sufficient randomization to perform similarly to a fully random-
ized GCN. GCN-12.5%RNI and GCN-87.5%RNI effectively achieve the best of both worlds on
CEXP, leveraging inductive bias from deterministic node embeddings, while harnessing the power
of random embeddings to perform strongly on EXP. This is best shown in Figure 3b, where stan-
dard GCN fails to learn EXP, fully randomized GCN-RNI struggles to learn CORRUPT, and the
semi-randomized GCN-50%RNI achieves perfect performance on both subsets. Overall, this is a
surprising finding, as it suggests that MPNNs can perform significantly better with partial, and even
small, amounts of randomization.

Second, we observe that the fully randomized GCN-RNI performs substantially worse than its
partially randomized counterparts. Whereas fully randomized GCN-RNI only performs marginally
worse on EXP (cf. Figure 2) than partially randomized models, this gap is very large on CEXP,
primarily due to CORRUPT. This observation concurs with the earlier idea of inductive bias: Fully
randomized GCN-RNI loses all node type information, which is valuable for making robust and
consistent decisions, and therefore struggles to match 3-GCN and partially randomized models.
Indeed, the model fails to achieve even 60% accuracy on CORRUPT, where other models are near
perfect, and also relatively struggles on EXP, only reaching 91% accuracy and converging slower.

Third, all GCN-RNI models, at all randomization levels, converge significantly slower on both
datasets than 3-GCN, similarly to Experiment 1. However, an interesting phenomenon can be seen
on CEXP: All GCN-RNI models hover around 55% accuracy within the first 100 epochs over CEXP

(cf. Figure 3a), suggesting a struggle jointly fitting both CORRUPT and EXP, before these models
ultimately improve. This, however, is not observed with 3-GCN. Unlike on EXP, randomness is not
necessarily beneficial on CEXP, as it can hurt performance on CORRUPT. Hence, RNI-enhanced
models must additionally learn to isolate deterministic dimensions for CORRUPT, and randomized
dimensions for EXP. These findings consolidate the earlier observations made on EXP on the impact
of RNI on MPNN learning behavior, and highlight that the variability and slower learning for RNI
also hinges on the variability and complexity of the input dataset.

Finally, we observe that both fully randomized GCN-RNI, and, surprisingly, 1-GCN, struggle to
learn CORRUPT relative to partially randomized GCN-RNI. We can also observe that 1-GCN does
not present a “struggle” phase, and begins improving consistently from the start of training. These
observations can be attributed to key conceptual , but very distinct hindrances impeding both models.
In the case of 1-GCN, the model is jointly trying to learn both EXP and CORRUPT, when it is proven
that it cannot fit the former. This joint optimization severely hinders CORRUPT learning, as data pairs
from both subsets are highly similar, and share identically generated UNSAT graphs (cf. Appendix).
Hence, 1-GCN, in attempting to fit SAT graphs from both subsets, knowing it cannot distinguish
EXP pairs, struggles to learn the simpler difference in CORRUPT pairs. For GCN-RNI, the model
discards key type information, so must only rely on structural differences to learn CORRUPT, which
impedes its convergence. All in all, this further consolidates the promise of partial RNI as a means
to combine the strengths of both deterministic and random features.

Further to the earlier two experiments, we also conducted analogous experiments using sparser
analogs of the datasets EXP and CEXP. In these cases, we observed similar behavior, albeit with
slower convergence overall. More details on these experiments can be found in the appendix.

7 SUMMARY AND OUTLOOK

We studied the expressive power of MPNNs with RNI, and showed that these are universal models.
We empirically evaluated this model on carefully designed datasets, and observed that RNI prac-
tically improves the learning abilities of MPNNs for challenging data, though it does slow down
model convergence owing to the need to learn robustness against random variability. Our work
delivers a strong theoretical result, supported by empirical evaluation and practical insights, to rig-
orously quantify the effect of RNI on GNNs. Somewhat surprisingly, our experiments suggest that
partial randomization may be the best strategy in most practical scenarios. An important direction
for future work is to theoretically study the sensitivity of RNI to model architectures and initializa-
tion distributions, to yield a more complete understanding of the benefits and limitations of RNI.
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A APPENDIX

A.1 PROPOSITIONAL LOGIC

We briefly present propositional logic, which underpins the dataset generation. Let S be a (finite) set
S of propositional variables. A literal is defined as v, or v̄ (resp., ¬v), where v ∈ S. A disjunction
of literals is a clause. The width of a clause is defined as the number of literals it contains. A
formula ϕ is in conjunctive normal form (CNF) if it is a conjunction of clauses. A CNF has width
k if it contains clauses of width at most k, and is referred to as a k−CNF. To illustrate, the formula
ϕ = (x1 ∨ ¬x3) ∧ (x4 ∨ x1) is a CNF with clauses of width 2.

An assignment ν ∶ S ↦ {0,1} maps variables to False (0), or True (1), and satisfies ϕ, which we
denote by ν ⊧ ϕ, in the usual sense, where ⊧ is propositional entailment. Given a propositional
formula ϕ, the satisfiability problem, commonly known as SAT, consists of determining whether ϕ
admits a satisfying assignment, and is NP-complete (Cook, 1971).

A.2 PROOF OF THEOREM 4.1

We first prove a Boolean version of the theorem.

Lemma A.1. Let n ≥ 1, and let f ∶ Gn → {0,1} be an invariant Boolean function. Then, for all
ε, δ > 0 there is a MPNN with RNI that (ε, δ)-approximates f .

To prove this lemma, we use a logical characterization of the expressiveness of MPNNs, which we
always assume to admit global readouts. Let C be the extension of first-order predicate logic using
counting quantifiers of the form ∃≥kx for k ≥ 0, where ∃≥kxϕ(x) means that there are at least k
elements x satisfying ϕ.

For example, consider the formula

ϕ(x) ∶= ¬∃≥3y(E(x, y) ∧ ∃≥5zE(y, z)). (A.1)

This is a formula in the language of graphs; E(x, y) means that there is an edge between the nodes
interpreting x and y. For a graph G and a vertex v ∈ V (G), we have G ⊧ ϕ(v) (“G satisfies ϕ if
the variable x is interpreted by the vertex v”) if and only if v has at most 2 neighbors in G that have
degree at least 5.

We will not only consider formulas in the language of graphs, but also formulas in the language of
colored graphs, where in addition to the binary edge relation we also have unary relations, that is,
sets of nodes, which we may view as colors of the nodes. For example, the formula

ψ(x) ∶= ∃≥4y(E(x, y) ∧ RED(y))

says that node x has at least 4 red neighbors (more precisely, neighbors in the unary relation RED).
Formally, we assume we have fixed infinite list R1,R2, . . . of color symbols that we may use in our
formulas. Then a colored graph is a graph together with a mapping that assigns a finite set ρ(v)
of colors Ri to each vertex (so we allow one vertex to have more than one, but only finitely many,
colors).

A sentence (of the logic C or any other logic) is a formula without free variable. Thus a sentence
expresses a property of a graph, which we can also view as a Boolean function. For a sentence ϕ we
denote this function by JϕK. If ϕ is a sentence in the language of (colored) graphs, then for every
(colored) graph G we have JϕK(G) = 1 if G ⊧ ϕ and JϕK(G) = 0 otherwise.

It is easy to see that C is only a syntactic extension of first order logic FO—for every C-formula
there is a logically equivalent FO-formula. To see this, note that we can simulate ∃≥kx by k ordinary
existential quantifiers: ∃≥kx is equivalent to ∃x1 . . .∃xk(⋀1≤i<j≤k xi ≠ xj ∧⋀1≤i≤k ϕ(xi)). How-
ever, counting quantifiers add expressiveness if we restrict the number of variables. The C-formula
∃≥kx (x = x) (saying that there are at least k vertices) with just one variable is not equivalent to
any FO-formula using less than k variables. By Ck we denote the fragment of C consisting of all
formulas with at most k variables.
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For example, the formula ϕ(x) in (A.1) is in C3, but not in C2. But ϕ(x) is equivalent to the
following formula ϕ′(x) in C2:

ϕ′(x) ∶= ¬∃≥3y(E(x, y) ∧ ∃≥5xE(y, x)). (A.2)

The fragments Ck are interesting for us, because their expressiveness corresponds to that of (k−1)-
WL and hence to that of k-GNNs. More precisely, for all k ≥ 2, two graphsG andH satisfy the same
Ck-sentences if and only if (k−1)-WL does not distinguish them (Cai et al., 1992). By the results of
(Morris et al., 2019; Xu et al., 2019) this implies, in particular, that two graphs are indistinguishable
by all MPNNs if and only if they satisfy the same C2-sentences. Barceló et al. (2020) strengthened
this result and showed that every C2-sentence can be simulated by an MPNN.

Lemma A.2 (Barceló et al. 2020). For every C2-sentence ϕ and every ε > 0 there is an MPNN that
ε-approximates JϕK.

Since here we are talking about deterministic MPNNs, there is no randomness involved, and we just
say “ε-approximates” instead of “(ε,1)-approximates”.

Lemma A.2 not only holds for sentences in the language of graphs, but also for sentences in the
language of colored graphs. Let us briefly discuss the way MPNNs access such colors. We encode
the colors using one-hot vectors that are part of the initial states of the nodes. For example, if we
have a formula that uses color symbols among R1, . . . ,Rk, then we reserve k places in the initial
state xv = (xv1, . . . , xv`) of each vertex v (say, for convenience, xv1, . . . , xvk) and we initialize xv
by letting xvi = 1 if v is in Ri and xvi = 0 otherwise.

Let us call a colored graph G individualized if for any two distinct vertices v,w ∈ V (G) the sets
ρ(v), ρ(w) of colors they have are distinct. Let us say that a sentence χ identifies a (colored) graph
G if for all (colored) graphs H we have H ⊧ χ if and only if H is isomorphic to G.

Lemma A.3. For every individualized colored graph G there is a C2-sentence χG that identifies G.

Proof. Let G be an individualized graph. For every vertex v ∈ V (G), let

αv(x) ∶= ⋀
R∈ρ(v)

R(x) ∧ ⋀
R∈{R1,...,Rk}∖ρ(x)

¬R(x).

Then v is the unique vertex of G such that G ⊧ αv(v). For every pair v,w ∈ V (G) of vertices, we
let

βvw(x, y) ∶= {αv(x) ∧ αw(y) ∧E(x, y) if (v,w) ∈ E(G),
αv(x) ∧ αw(y) ∧ ¬E(x, y) if (v,w) /∈ E(G).

We let
χG ∶= ⋀

v∈V (G)
(∃xαv(x) ∧ ¬∃≥2xαv(x)) ∧ ⋀

v,w∈V (G)
∃x∃yβvw(x, y).

It is easy to see that χG identifies G.

For n, k ∈ N, we let Gn,k be the class of all individualized colored graphs that only use colors among
R1, . . . ,Rk.

Lemma A.4. Let h ∶ Gn,k → {0,1} be an invariant Boolean function. Then there exists a C2-
sentence ψh such that for all G ∈ Gn,k it holds that JψhK(G) = h(G).

Proof. LetH ⊆ Gn,k be the subset consisting of all graphs H with h(H) = 1. We let

ψh ∶= ⋁
H∈H

χH .

We eliminate duplicates in the disjunction. Since up to isomorphism, the class Gn,k is finite, this
makes the disjunction finite and hence ψh well-defined.

The restriction of a colored graph G is the underlying plain graph, that is, the graph G∨ obtained
from the colored graph G by forgetting all the colors. Conversely, a colored graph G∧ is an expan-
sion of a plain graph G if G = (G∧)∨.
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Corollary A.1. Let f ∶ Gn → {0,1} be an invariant Boolean function. Then there exists a C2-
sentence ϕ∧f (in the language of colored graphs) such that for all G ∈ Gn,k it holds that Jψ∧f K(G) =
f(G∨).

Towards proving Lemma A.1, we fix an n ≥ 1 and a ε, δ > 0. We let

c ∶= ⌈2

δ
⌉ and k ∶= c2 ⋅ n3

The technical details of the proof of Lemma A.1 and Theorem 4.1 depend on the exact choice of the
random initialization and the activation functions used in the neural networks, but the idea is always
the same. For simplicity, we assume that we initialize the states xv = (xv1, . . . , xv`) of all vertices
to (rv,0, . . . ,0), where rv for v ∈ V (G) are chosen independently uniformly at random from [0,1].
As our activation function σ, we choose the linearized sigmoid function defined by σ(x) = 0 for
x < 0, σ(x) = x for 0 ≤ x < 1, and σ(x) = 1 for x ≥ 1.
Lemma A.5. Let r1, . . . , rn be chosen independently uniformly at random from the interval [0,1].
For 1 ≤ i ≤ n and 1 ≤ j ≤ c ⋅ n2, let

sij ∶= k ⋅ ri − (j − 1) ⋅ k

c ⋅ n2 .

Then with probability greater than 1 − δ, the following conditions are satisfied.

(i) For all i ∈ {1, . . . , n}, j ∈ {1, . . . , c ⋅ n2} it holds that σ(sij) ∈ {0,1}.

(ii) For all distinct i, i′ ∈ {1, . . . , n} there exists a j ∈ {1, . . . , c ⋅n2} such that σ(sij) ≠ σ(si′j).

Proof. For every i, let pi ∶= ⌊ri ⋅ k⌋. Since k ⋅ ri is uniformly random from the interval [0, k], the
integer pi is uniformly random from {0, . . . , k − 1}. Observe that 0 < σ(sij) < 1 only if pi − (j −
1) ⋅ k

c⋅n2 = 0 (here we use the fact that k is divisible by c ⋅n2). The probability that this happens is 1
k

.
Thus, by the Union Bound,

Pr (∃i, j ∶ 0 < σ(sij) < 1) ≤ c ⋅ n
3

k
. (A.3)

Now let i, i′ be distinct and suppose that σ(sij) = σ(si′j) for all j. Then for all j we have sij ≤
0 ⇐⇒ si′j ≤ 0 and therefore ⌊sij⌋ ≤ 0 ⇐⇒ ⌊si′j⌋ ≤ 0. This implies

∀j ∈ {1, . . . , c ⋅ n2} ∶ pi ≤ (j − 1) ⋅ k

c ⋅ n2 ⇐⇒ pi′ ≤ (j − 1) ⋅ k

c ⋅ n2 . (A.4)

Let j∗ ∈ {1, . . . , c ⋅ n2} such that pi ∈ {(j∗ − 1) ⋅ k
c⋅n2 , . . . , j

∗ ⋅ k
c⋅n2 − 1}. Then by (A.4) we have

p′i ∈ {(j∗ − 1) ⋅ k
c⋅n2 , . . . , j

∗ ⋅ k
c⋅n2 − 1}. As pi′ is independent of pi and hence of j∗, the probability

that this happens is at most 1
k
⋅ k
c⋅n2 = 1

c⋅n2 . This proves that for all distinct i, i′ the probability that
σ(sij) = σ(si′j) is at most 1

c⋅n2 . Hence, again by the Union Bound,

Pr (∃i ≠ i′∀j ∶ σ(sij) = σ(si′j)) ≤
1

c
. (A.5)

(A.3) and (A.5) imply that the probability that either (i) or (ii) is violated is at most

c ⋅ n3
k

+ 1

c
≤ 2

c
≤ δ.

Proof of Lemma A.1. For given function f ∶ Gn → {0,1}, we choose the sentence ψ∧f according
to Corollary A.1. Applying Lemma A.2 to this sentence and ε, we obtain an MPNN Nf that on a
colored graph G ∈ Gn,k computes an ε-approximation of f(G∨).

Without loss of generality, we assume that the vertex set of the input graph to our MPNN is
{1, . . . , n}. We choose ` (the dimension of the state vectors) in such a way that ` ≥ c ⋅ n2 and `
is at least as large as the dimension of the state vectors of Nf . Recall that the state vectors are
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initialized as x(0)i = (ri,0, . . . ,0) for values ri chosen independently uniformly at random from the
interval [0,1].
In the first step, our MPNN computes the purely local transformation (no messages need to be
passed) that maps x(0)i to x

(1)
i = (x(1)i1 , . . . , x

(1)
i` ) with

x
(1)
ij =

⎧⎪⎪⎨⎪⎪⎩

σ(k ⋅ ri − (j − 1) ⋅ k
c⋅n2 ) for 1 ≤ j ≤ c ⋅ n2,

0 for c ⋅ n2 + 1 ≤ j ≤ `.

Since we treat k, c, n as constants, the mapping ri ↦ k ⋅ ri − (j − 1) ⋅ k
c⋅n2 is just a linear mapping

applied to ri = x(0)i1 .

By Lemma A.5, with probability at least 1− δ, the vectors x(1)i are mutually distinct {0,1}-vectors,
which we view as encoding a coloring of the input graph with colors from R1, . . . ,Rk. Let G∧ be
the resulting colored graph. Since the vectors x(0)i are mutually distinct, G∧ is individualized and
thus in the class Gn,k. We now apply the MPNNNf , and it computes a value ε-close to Jψ∧f K(G∧) =
f((G∧)∨) = f(G).

Proof of Theorem 4.1. Let f ∶ Gn → R be invariant. Since Gn is finite, the range Y ∶= f(Gn) is
finite. To be precise, we have N ∶= ∣Y ∣ ≤ ∣Gn∣ = 2(

n
2
).

Say, Y = {y1, . . . , yN}. For i = 1, . . . ,N , let gi ∶ Gn → {0,1} be the Boolean function defined by

gi(G) = {1 if f(G) = yi,
0 otherwise.

Note that gi is invariant.

Let ε, δ > 0 and ε′ ∶= ε
maxY

and δ′ ∶= δ
N

. By Lemma A.1, for every i ∈ {1, . . . ,N} there is an MPNN
with RNINi that (ε′, δ)-approximates gi. Putting all theNi together, we obtain an invariant MPNN
N that computes a function g ∶ Gn → {0,1}N . We only need to apply the linear transformation

x↦
N

∑
i=1
xi ⋅ yi

to the output of N to obtain the desired approximation of f .

Remark 1. Obviously, our construction yields MPNNs with a prohibitively large state space. In
particular, this is the case for the brute force step from Boolean to general functions. We doubt that
there are much more efficient approximators, after all we make no assumption whatsoever on the
function f .

The approximation of Boolean functions is more interesting. It may still happen that the GNNs
get exponentially large in n; this seems unavoidable. However, the nice thing here is that our con-
struction is very adaptive and tightly linked to the descriptive complexity of the function we want to
approximate. This deserves a more thorough investigation, which we leave for future work.

As opposed to other universality results for GNNs, our construction needs no higher-order tensors
defined on tuples of nodes, with practically infeasible space requirements on all but very small
graphs. Instead, the complexity of our construction goes entirely into the dimension of the state
space. The advantage of this is that we can treat this dimension as a hyperparameter that we can eas-
ily adapt and that gives us more fine-grained control over the space requirements. Our experiments
show that usually in practice a small dimension already yields very powerful networks.
Remark 2. In our experiments, we found that a partial random initialization, which only assigns
random values to a fraction of all node embedding vectors, often yields very good results, sometimes
better than a full random initialization. There is plausibility to this from a theoretical perspective.
For most graphs, we do not lose much by only initializing a small fraction of vertex embeddings,
because in a few message-passing rounds GNNs can propagate the randomness and, referring our
construction above, individualize the full input graph. On the other hand, we reduce the amount of
noise our models have to handle when we only randomize partially.
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(a) The encoding of the formula ϕ1.
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(b) The encoding of the formula ϕ2.

Figure 4: Illustration of planar embeddings for the formulas ϕ1 and ϕ2 for n = 2.

A.3 DETAILS OF DATASET CONSTRUCTION

There is an interesting universality result for functions defined on planar graphs. It is known that 3-
WL can distinguish between any pair of planar graphs (Kiefer et al., 2019). Since 4-GCNs can sim-
ulate 3-WL, this implies that functions defined on planar graphs can be approximated by 4-GCNs.
This result can be extended to much wider graph classes, including all graph classes excluding a
fixed graph as a minor (Grohe, 2017).

Inspired by this, we generate planar instances, and ensure that they can be distinguished by 2-
WL, by carefully constraining these instances further. Hence, any GNN with 2-WL expressive
power can approximate solutions to these planar instances. This, however, does not imply that these
GNNs will solve EXP in practice, but only that an appropriate approximation function exists and can
theoretically be learned.

A.3.1 CONSTRUCTION OF EXP

We now explain the construction and composition of EXP. Fundamentally, EXP consists of two
main components, (i) a pair of cores, which are non-isomorphic, planar, 1-WL indistinguishable,
2-WL distinguishable, and decide the satisfiability of every instance, and (ii) an additional randomly
generated and satisfiable planar component, identically added to the core pair, to add variability
to EXP and make learning more challenging. We first present both components, and then provide
further details about graph encoding and planar embeddings.
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Core pair. In EXP, a core pair consists of two CNF formulas ϕ1, ϕ2, both defined using 2n vari-
ables, n ∈ N+, such that ϕ1 is unsatisfiable and ϕ2 is satisfiable, and such that their graph encodings
are 1-WL indistinguishable and planar. ϕ1 and ϕ2 are constructed using two structures which we
refer to as variable chains and variable bridges respectively.

A variable chain ϕchain is defined over a set of n ≥ 2 Boolean variables, and imposes that all
variables be equally set. The variable chain can be defined in increasing or decreasing order over
these variables. More specifically, given variables xi, ..., xj ,

ChainInc(i, j) =
j−1
⋀
k=i

(x̄k ∨ xi+(k+1)%(j−i+1)), and (A.6)

ChainDec(i, j) =
j−1
⋀
k=i

(xk ∨ x̄i+(k+1)%(j−i+1)). (A.7)

Additionally, a variable bridge is defined over an even number of variables x0, ..., x2n−1, as

ϕbridge =
n−1
⋀
i=0

((xi ∨ x2n−1−i) ∧ (x̄i ∨ x̄2n−1−i)). (A.8)

A variable bridge makes the variables it connects forcibly have opposite values, e.g., x0 = x̄1 for
n = 1. We denote a variable bridge over x0, ..., x2n−1 as Bridge(2n).

To get ϕ1 and ϕ2, we define ϕ1 as a variable chain and bridge on all variables, yielding contrasting
and unsatisfiable constraints. To define ϕ2, we “cut” the chain in half, such that the first n variables
can differ from the latter n, satisfying the bridge. The second half of the “cut” chain is then flipped
to a decrementing order, which preserves the satisfiability of ϕ2, but maintains the planarity of the
resulting graph. More specifically, this yields:

ϕ1 = ChainInc(0,2n) ∧Bridge(2n), and (A.9)
ϕ2 = ChainInc(0, n) ∧ChainDec(n,2n) ∧Bridge(2n). (A.10)

Planar component. Following the generation of ϕ1 and ϕ2, a disjoint satisfiable planar graph
component ϕplanar is added. ϕplanar shares no variables or disjunctions with the cores, so is primarily
introduced to create noise and make learning more challenging. ϕplanar is generated starting from
random 2-connected (i.e., at least 2 edges must be removed to disconnect a component within the
graph) bipartite planar graphs from the Plantri tool (Brinkmann et al., 2007), such that (i) the larger
set of nodes in the graph is the variable set3, (ii) highly-connected disjunctions are split in a planarity-
preserving fashion to maintain disjunction widths not exceeding 5, (iii) literal signs for variables are
uniformly randomly assigned, and (iv) redundant disjunctions, if any, are removed. If this ϕplanar
is satisfiable, then it is accepted and used. Otherwise, the formula is discarded and a new ϕplanar is
analogously generated until a satisfiable formula is produced.

Since the core pair and ϕplanar are disjoint, it is easy to deduce that the graph encoding of ϕplanar∧ϕ1

and ϕplanar ∧ϕ2 are both planar and 1-WL indistinguishable. Furthermore, ϕplanar ∧ϕ1 is satisfiable,
and ϕplanar ∧ ϕ2 is not. Hence, the introduction of ϕplanar maintains all the desirable core properties,
all while making any generated EXP dataset more challenging.

The structural properties of the cores, combined with the combinatorial difficulty of SAT, make
EXP a challenging dataset. For example, even minor formula changes, such as flipping a literal,
can lead to a change in the SAT outcome, which enables the creation of near-identical, yet seman-
tically different instances. Moreover, SAT is NP-complete (Cook, 1971), and remains so on planar
instances (Hunt III et al., 1998). Hence, EXP is cast to be challenging, both from an expressiveness
and computational perspective.

Remark 3. Intuitively, ϕ1 and ϕ2, generated as described, can be distinguished by 2-WL, as 2-WL
can detect the break in cycles resulting from the aforementioned “cut”. In other words, 2-WL can
identify that the chain has been broken in between these two formulas, and thus will return distinct
colourings. Hence, ϕ1 and ϕ2 can be distinguished by 3-GCNs.

3Ties are broken arbitrarily if the two sets are equally sized.
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Graph encoding. We use the following graph encoding, denoted by Enc: (i) Every variable is
encoded by two nodes, representing its positive and negative literals, and connected by an edge, (ii)
Every disjunction is represented by a node, and an edge connects a literal node to a disjunction node
if the literal appears in the disjunction, and (iii) Variable and disjunction nodes are encoded with
different types. We opt for this encoding, as it is commonly used in the literature (Selsam et al.,
2019), and is sufficient, for the sake of our empirical evaluation, to yield planar encodings for EXP
graph pairs.

Planar embeddings for core pair. We show planar embeddings for Enc(ϕ1) and Enc(ϕ2) for
n = 2 in Figure 4, and these embeddings can naturally be extended to any n. Enc(ϕ1) andEnc(ϕ2)
can also be shown to be 1-WL indistinguishable. This can be observed intuitively, as node neighbor-
hoods in both graphs are identical and very regular: all variable nodes are connected to exactly one
other variable node and two disjunction nodes, and all disjunction nodes are connected to exactly
two variables.

A.3.2 CONSTRUCTION OF CEXP

Given a EXP dataset with N pairs of graphs, we create CEXP by selecting N/2 graph pairs and
modifying them to yield CORRUPT. The unmodified graph pairs are therefore exactly identical in
type to EXP instances, and we refer to these instances within CEXP as EXP.

For every graph pair, we discard the satisfiable graph and construct a new graph from a copy of the
unsatisfiable graph as follows.

1. Randomly introduce new literals to the existing disjunctions of the copy of the unsatisfiable
graph, such that no redundancies are created (i.e., adding x to a disjunction when x or x̄
is already present), until 3 literals are added and the formula becomes satisfiable. Literal
addition is done by creating new edges in the graph between disjunction and literal nodes.
To do this, disjunctions with less than 5 literals are uniformly randomly selected, and the
literal to add is uniformly randomly sampled from the set of all non-redundant literals given
the selected disjunction.

2. Once a satisfiable formula is reached, iterate sequentially over all added edges, and elimi-
nate any edge whose removal does not restore unsatisfiability. This ensures that a minimal
number of new edges, relative to the original unsatisfiable graph, are added.

Observe that these modifications have several interesting effects on the dataset. First, they preserve
the existing UNSAT core nodes and edges, while flipping the satisfiability of their overall formulas,
which makes the learning task go beyond structure identification. Second, they introduce significant
new variability to the dataset, in that the planar component and cores can share edges. Finally, they
make the graph pairs 1-WL distinguishable, which gives standard GNNs a chance to perform well
on CORRUPT.

A.3.3 DATASET GENERATION FOR EXPERIMENTS

To create the EXP dataset, we randomly generate 600 core pairs, where n (cf. Appendix A.3)
is uniformly randomly set between 2 and 4 inclusive. Then, we generate the additional planar
component using Plantri, such that 500 ϕplanar formulas are generated from 12-node planar bipartite
planar graphs, and the remaining 100 from planar bipartite graphs with 15 nodes.

This generation process implies that every formula has a number of variables ranging between 10
(4 core variables when n = 2 plus a minimum 6 variables from the larger bipartite set during ϕplanar
generation from 12-node graphs) and 22 variables (8 core variables for n = 4 plus a maximally-sized
variable subset of 14 nodes for ϕplanar generation from 15-node graphs).

Furthermore, the number of disjunctions also ranges from 10 (8 core disjunctions for n = 2 plus the
minimum 2 disjunctions for the case where ϕplanar, generated from 12-node graphs, has 10 variables
and 2 disjunctions) to 30 disjunctions (16 core disjunctions for n = 4 plus at most 14 disjunctions for
the case where ϕplanar, generated from 15-node graphs, initially has 8 variables and 7 disjunctions,
which can at most lead to 14 final disjunctions following step (ii)).
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A.4 STANDARD DEVIATION OF GCN-50%RNI ON EXP OVER TRAINING
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Figure 5: Standard deviation of test accuracy over
all 10 validation splits of GCN-50%RNI on EXP.

In this subsection, we investigate the variability
of GCN-RNI learning across validation folds,
and do so with a representative model and
dataset, namely the semi-randomized GCN-
50%RNI model and the standard EXP dataset.
The standard deviation of the test accuracy
of GCN-50%RNI over EXP, across all 10
cross-validation folds relative to the number of
epochs, is shown in Figure 5. From this figure,
we see that standard deviation spikes sharply at
the start of training, and only begins dropping
after 100 epochs. This suggests that the learn-
ing behavior of GCN-50% RNI is quite vari-
able, sometimes requiring few epochs to con-
verge, and in other cases requiring a very high
number of epochs. Furthermore, standard de-
viation converges to almost zero following 200
epochs, corresponding to the phase where all
validation folds have achieved near-perfect test performance. From these findings, we further con-
firm that RNI introduces volatility to GCN training, this time manifesting in variable convergence
times across validation folds, but that this volatility does not ultimately hinder convergence and
performance, as all folds eventually reach satisfactory performance within a reasonable amount of
epochs, and subsequently stabilize at this level.

A.5 ADDITIONAL EXPERIMENTS

In addition to the experiments in the main body of the paper, we additionally evaluate RNI on
sparser analog datasets to EXP and CEXP, namely SPARSEEXP and SPARSECEXP. These datasets
only contain 25% of the number of instances of their original counterparts, and are used to study the
behavior and impact of RNI when data is sparse.

A.5.1 EXPERIMENT 1 ON SPARSEEXP

In this experiment, we generate SPARSEEXP analogously to EXP, except that this dataset only con-
sists of 150 graph pairs, i.e., 300 graphs in total. We then train 3-GCN for 200 epochs, and all other
systems for 1000 epochs on SPARSEEXP, as opposed to 100 and 500 respectively for EXP, to give
all evaluated models a better opportunity to compensate for the smaller dataset size. We show the
learning curves for all models on SPARSEEXP, and reproduce the original figure for EXP, in Figure 6
for easier comparison.

First, we observe that all models converge slower on SPARSEEXP compared to EXP. This is not
surprising, as a lower data availability makes learning a well-performing function slower and more
challenging. More specifically, sparsity implies that (i) fewer weight updates are made per epoch,
and (ii) these updates are of lower quality, as they are computed from a less representative and com-
plete dataset. Nonetheless, the same relative convergence patterns between GCN-RNI models and
3-GCN are also visible in this setting, further highighting the increased convergence time required
by GCN-RNI models.

We also observe that all GCN-RNI models, though also eventually converging, do so in a more
volatile fashion. Indeed, GCN-RNI models suffer from the sparseness of the dataset, as this makes
them more sensitive to RNI. As a result, these models require more training to effectively learn
robustness against RNI values, and learn this from a smaller sample set, increasing their variability
further. Moreover, the nature of SPARSEEXP makes learning more difficult, as it fully relies on RNI
for MPNNs to have a chance of achieving above-random performance, and thus encourages MPNNs
to fit specific RNI values. Hence, RNI introduces significant volatility and variability to training,
particularly with sparser data, and requires substantial training and epochs for GCN-RNI models to
effectively develop a robustness to RNI instantiations.
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(b) Learning curves on SPARSEEXP.

Figure 6: Model convergence results for Experiment 1 on the datasets EXP and SPARSEEXP.
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(a) Learning curves for all GCN-RNI models and
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(b) Learning curves for CEXP, split across EXP
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(c) Learning curves for all GCN-RNI models and
3-GCN on SPARSECEXP.
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(d) Learning curves for SPARSECEXP, split across
EXP (/E) and CORRUPT (/C).

Figure 7: Model convergence results for Experiment 2 on CEXP and SPARSECEXP.

A.5.2 EXPERIMENT 2 ON SPARSECEXP

Analogously to Experiment 1, we generate a SPARSECEXP dataset similarly to CEXP, but only
generate 150 graph pairs. Then, we select 75 graph pairs and modify them, as described in Ap-
pendix A.3.2. We report the learning curves for all models on SPARSECEXP, as well as the original
curves for CEXP from the main body, in Figure 7.
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Table 2: Hyper-parameter configurations for all GCN-RNIand 3-GCN experiments.

Dataset EXP CEXP
λ p λ p

GCN 1 × 10−4 N/A 1 × 10−4 N/A
GCN-12.5%RNI 2 × 10−4 N 2 × 10−4 N
GCN-50%RNI 2 × 10−4 N 2 × 10−4 N
GCN-87.5%RNI 2 × 10−4 N 5 × 10−4 N
GCN-RNI 5 × 10−4 N 5 × 10−4 N
3-GCN 5 × 10−4 N/A 2 × 10−4 N/A

Table 3: Performance of GCN-RNI models on the EXP dataset with the hyperbolic tangent activation
function.

Model Testing Accuracy (%)

GCN-RNI(U) 92.7 ± 5.61
GCN-RNI(N) 96.0 ± 2.11
GCN-RNI(XU) 64.6 ± 19.9
GCN-RNI(XN) 63.0 ± 20.9

As in the previous subsection, similar behavior is observed on SPARSECEXP compared with CEXP,
only differing by slower convergence in the former case. However, we note that the “struggle”
phase described in the main paper, which only occurs during the first 100 epochs over CEXP, lasts
for around 500 epochs on SPARSEEXP. Intuitively, this “struggle” phenomenon is due to conflicting
learning requirements, stemming from CORRUPT and EXP, which effectively require models to
“isolate” deterministic dimensions for CORRUPT, and other randomized dimensions for EXP. This
in itself is already challenging on CEXP, but is made even more difficult on SPARSECEXP due to its
sparsity. Indeed, sparsity makes that further samples are needed in expectation to find a reasonable
solution, leading to a lengthy “struggle” phase, in which both CORRUPT and EXP data points conflict
with one another during optimization.

A.6 HYPER-PARAMETER DETAILS

All GCN models with (partially or completely) deterministic initial node embeddings map a 2-
dimensional one-hot encoding of node type (literal or disjunction) to a k-dimensional embedding
space, where k corresponds to the dimensionality of the deterministic embeddings. Furthermore, the
final prediction for every graph is computed by aggregating all node embeddings following message
passing using the max function, and then passing the result through a multi-layer perceptron of 3
layers with dimensionality x, 32 and 2 respectively, where x is the embedding dimensionality used
in the given model. The activation function for the first two MLP layers is the ELU function (Clevert
et al., 2016), and the softmax function is used to make a final prediction at the final MLP layer.

All neural networks in this work are optimized using the Adam optimizer (Kingma & Ba, 2015).
All training is conducted with a fixed learning rate λ, for fairer comparison between all models.
Initially, decaying learning rates were used, but these were discarded, as they yielded sub-optimal
convergence for all GCN-RNI models. Finally, all experiments were run on a V100 GPU. Detailed
hyper-parameters, namely learning rate λ and RNI distribution p, per model on every evaluation
dataset are shown in Table 2.

A.6.1 RESULTS FOR GCN-RNI WITH HYPERBOLIC TANGENT ACTIVATION

In addition to experimenting with the RNI probability distribution, we also experimented with dif-
ferent activation functions for the GCN message passing iterations. Results are shown in Table 3.
Performance with tanh is significantly more variable across distributions than ELU, which shows
that RNI can be highly sensitive to practical choices of hyper-parameters.
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