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ABSTRACT

Contrastive Language-Image Pretraining (CLIP) is a foundational model that learns
a latent embedding space through an inner product-based objective. In this paper,
we provide a theoretical interpretation of CLIP utilizing the Reproducing Kernel
Hilbert Space (RKHS) framework. Specifically, we reformulate the problem of
estimating the infinite-dimensional mapping ϕ with a neural network as selecting
an unknown RKHS using multiple kernel learning. Such connection motivates
us to propose to estimate the CLIP embedding via the multi-task multi-kernel
(MTMK) method: we reformulate the different labels in the CLIP training data as
the multiple training tasks, and reformulate learning the unknown CLIP embedding
as choosing an optimal kernel from a family of Reproducing Kernel Hilbert Spaces,
which is computationally more efficient. Utilizing the MTMK interpretation of
CLIP, we also show an optimal statistical rate of the MTMK classifier under the
scenario that both the number of covariates and the number of candidate kernels
can increase with the sample size. Besides the synthetic simulations, we apply
the proposed method to align the medical imaging data with the clinical codes
in electronic health records and illustrate that our approach can learn the proper
kernel space aligning the imaging embedding with the text embeddings with high
accuracy.

1 INTRODUCTION

Contrastive Language-Image Pretraining (CLIP), introduced by Radford et al. [56], is a foundational
model that connects natural language understanding and computer vision. CLIP has demonstrated
excellent transferability across various tasks, including text-guided image generation with GANs
[54; 13; 15], diffusion models [52; 57; 27; 59; 5] and image captioning [46; 76; 10]. Additionally,
CLIP has shown its adaptability to various languages [73; 9] and 2D art forms [70]. Furthermore,
the mechanisms behind CLIP extend to broader domains such as 3D object generation [24; 20; 45]
and audio synthesis [18]. These aspects of CLIP have sparked the interest of the community,
and researchers are now actively seeking a deeper understanding while expanding its boundaries
[39; 71; 75; 77; 47].

At its core, CLIP operates by jointly optimizing a text encoder and an image encoder to learn a latent
embedding spaceH by contrastive learning [8]. CLIP maximizes the cosine similarity of the N real
pairs in the diagonal and minimizes the cosine similarity for the N2 −N incorrect pairs. Intuitively,
the contrastive objective of CLIP is to learn a similarity metric that aligns multi-modal inputs on
H, which is the inner product of the mapping ϕ. This motivates us to consider H as an unknown
Reproducing Kernel Hilbert Space (RKHS) where its kernel represents the measure of similarity.
Formally, let X = (X1, . . . , Xk)

T be a k-dimensional random vector in X k and Y be a categorical
random variable in Y = {1, . . . , T}. Given a sample pair (xi, yi) and (xj , yj), we can define the
contrastive learning objective CH of CLIP in the RKHSH as

CH(xi,xj) := ⟨ϕ(xi), ϕ(xj)⟩H(I{yi = yj} − I{yi ̸= yj}),
where ϕ(·) denotes the feature mapping and ⟨·, ·⟩H denotes the inner product in H. Within this
context, CLIP can be perceived as learning an unknown RKHS H by maximizing the contrastive
objective maxH∈H CD

H , where D = {(xi, yi)}ni=1 denotes the training samples and H denotes the
family of RKHSs. For instance, when the feature map ϕ is estimated by neural networks, its induces
the unknown RKHSH via the neural tangent kernel (NTK) theory [22].

Although CLIP has an intuitive connection to RKHS, there are several gaps in our understanding
of the mechanisms behind it. For instance, while there are general theoretical results regarding
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contrastive learning [1] and kernel learning [3], CLIP lacks a specific theoretical framework that
illustrates or explains its generalization capability. Although the community gained progress in
devising data-efficient CLIP [39; 71], there is no formal quantification of its learning rate, leaving
researchers with limited insights. In this paper, we address these gaps by presenting an RKHS
approach to understanding CLIP’s generalization properties. While we delayed the detailed setting
and definition to Section 2, we present a brief preview here. We formulate the learning objective of
CLIP in a multi-task binary setting. In each task t = 1, . . . , T , we consider the following generalized
version of the objective:

max
H∈H

max
αt

n∑
i=1

ℓ
( n∑

j=1

αtjCH(xti,xtj)
)
,

where αt = (αt1, . . . , αtn)
T ∈ Rn is a weight vector, ℓ is a loss function and H is a specific family

of RKHSs. Through the above loss, we reformulate the CLIP encoder estimating as identifying the
optimal H from H. With this formulation, we show that CLIP can be associated to a multi-task
multi-kernel learning problem

max
α′

t

T∑
t=1

n∑
i=1

ℓ
(
ytift(xti)

)
− pen(f),

where ft ∈ H is a classifier function for task t, f is the set of classifiers of all tasks, and pen is a
penalty function regularizing the nonparametric classifiers. We further prove the statistical rate of the
classifier estimator when ℓ is selected as the logistic loss. We conclude our main contributions as the
following:

• We reformulate the notion of CLIP by a solid RKHS framework. CLIP and its variants are
assumed to learn an unknown encoder map by maximizing a contrastive objective. In this
setting, we show that the unknown map corresponds to a feature map in an unknown RKHS.
We further propose to learn the unknown RKHS by multi-kernel learning and formalize
CLIP as multi-task multi-kernel learning.

• Our methodological contribution is to reduce the problem of estimating the optimal mapping
ϕ to selecting an optimal RKHS by multiple kernel learning. Moreover, although we focus
on the analysis of CLIP, our method can be extended to any representation learning that
involves estimating ϕ via the optimization of an inner product objective.

• Under this formalization, we prove that our multi-task multi-kernel learner has an optimal
convergence rate compared to classic linear models and nonparametric models, which
involves the analysis of a generalized version of the empirical V-statistics process [19].
We further demonstrate that when the optimal RKHS is a sparse combination of candidate
kernels, our model involves an implicit model selection, where the number of prospective
candidate models can be much greater than the sample size.

In summary, this paper contributes to understanding the robust transferability of CLIP while providing
insights into its theoretical foundation via the RKHS framework. It paves the way for further research
and innovation in the field of statistics and artificial intelligence.

1.1 RELATED LITERATURE

The existing approaches to theoretical understanding of CLIP’s mechanism can be categorized as
two major types. One line of work analyzes the properties of the representation learned by CLIP like
modality gap [40]. Another line of work attempts to reduce CLIP to some well-studied problems
for mapping ϕ to the finite dimensional spaces [68; 49], while we consider the infinite dimensional
mapping.

Our work also concerns multiple kernel learning (MKL), where numerous papers have studied various
formulations of the linear combination of kernels [36; 69; 29; 30; 72; 3; 2; 61; 62; 66]. A more
relevant line of research exploits the group structure of kernels in MKL [66; 23; 64; 67; 31; 25; 79; 48].
However, though there are some analyses of the excess risk [36; 31], few MKL research concentrates
on the statistical rate of convergence. Another line of research conducts extensive theoretical analyses
of MKL in the larger context of sparse additive model [34; 44; 35; 65]. But there is no analysis
conducted on classification problems in this line, not to mention multiclass classification. Furthermore,
no theoretical analysis of MKL has been conducted in the multi-task setting.
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In addition, kernel methods have been broadly applied to multiple task learning (MTL) [16; 78;
80; 14; 11; 12; 26]. We refer to Zhang & Yang [81] for a recent survey. Another line of research
investigates sparse linear models in MTL [41; 53; 32; 33; 50; 51]. Existing theoretical analyses are
conducted on linear models, while no theoretical guarantees are made in nonparametric models.
Moreover, there is no concrete formulation of how to perform multiple kernel selection in MTL. Our
approach, regarding logistic regression, bridges both gaps by using a group Lasso penalty for joint
kernel selection in a multi-task setting and obtains sharp convergence rates comparable to the linear
model in Lounici et al. [41] and single-task MKL in Suzuki & Sugiyama [65].

1.2 NOTATION

Let I{·} be the indicator function. For two positive sequences {xn}∞n=1 and {yn}∞n=1, we say xn =
O(yn) if xn ≤ Cyn holds for any n with some large enough C > 0. We use the notation xn ≍ yn if
xn = O(yn) and yn = O(xn). And we say xn = o(yn) if xn/yn → 0 as n→∞. For a sequence of
random variables {Xn}∞n=1 and a corresponding set of constants an, denote Xn = OP(an) if for all
ϵ > 0, there exists a finite M > 0 and N > 0 such that P (|Xn/an| > M) < ϵ for all n > N . And
for a scalar a, we say Xn ≤ a+ oP(1) if for all ϵ > 0, limn→∞ P (Xn − a > ϵ) = 0. For a vector
a ∈ Rk, we denote the q norm as ∥a∥q =

∑
i(|ai|q)1/q . For the function f ∈ L2(Π) where Π is the

probability metric, we define the L2 norm ∥f∥L2(Π) = [
∫
f(x)2dΠ(x)]1/2 and the supremum norm

∥f∥∞ = supx∈Rk |f(x)|. Throughout this paper, c, C,C1, Cβ , . . . are used as generic constants
whose values may vary across different places.
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Figure 1: Original CLIP derives its RKHS H through training ϕ. In our formulation, we directly
obtainH as a sparse weighted combination of all candidate RKHSs.

We begin with a brief overview of the general connections between neural networks and RKHS. Jacot
et al. [22] proves that the training process of a certain family of neural networks is equivalent to kernel
regression with the NTK. Recent research has further explored the close connection between neural
networks and standard kernels [7]. We now shift our focus to CLIP. CLIP learns a latent embedding
space for text and images through contrastive loss, such that text-image pairs in the diagonal are
maximized while all other pairs are minimized. Specifically, CLIP learns a mapping ϕ for both text
and images in an unknown RKHS H by maximizing the inner product within the same class and
minimizing it between samples from different classes. Let X = (X1, . . . , Xk)

T be a k-dimension
random vector in X k and Y be a categorical random variable in Y = {1, . . . , T}. Given a sample
pair (xi, yi) and (xj , yj), we can define the contrastive learning objective in the RKHSH as

CH(xi,xj) := ⟨ϕ(xi), ϕ(xj)⟩H(I{yi = yj} − I{yi ̸= yj}), (2.1)

where ϕ(·) denotes the feature mapping and ⟨·, ·⟩H denotes the inner product inH. CLIP attempts
to find the optimal RKHSH by maximizing the objective maxH∈H CD

H , where D = {(xi, yi)}ni=1
is the training set and H is a family of RKHSs. Note that we assume the pseudo labels of sample
pairs used by CLIP can be treated as labels in our analysis. A prevalent approach to RKHS learning
involves maximizing

∑n
i=1

∑n
j=1 CH(xi,xj), which is known as the kernel alignment method

[17; 21; 55]. In practice, CLIP optimizes a symmetric cross entropy loss for both text and images,
where row-wise and column-wise maximization is carried out separately. In addition, CLIP involves
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a temperature parameter to weight the logits. Therefore, we consider the following CLIP loss

max
H∈H

max
α

n∑
i=1

ℓ
( n∑

j=1

αjCH(xi,xj)
)
, (2.2)

where ℓ represents a general loss function, such as softmax and logistic loss and α = (α1, . . . , αn)
T

is the weight vector generalizing the temperature parameter. The inclusion of ℓ provides a more
comprehensive understanding, as it can be reduced to the kernel alignment approach when ℓ is set as
the identity function. We search for the optimal weighting for the objective function by maximization
over α and estimate the desirable RKHSH within a family of RKHSs H.

Unfortunately, it is not attainable to analyze an infinitely large family of RKHSs. A commonly used
structural assumption on H is that it is the span of given candidate spaces

Ha =
{
H : ⟨ϕ(xi), ϕ(xj)⟩H =

M∑
m=1

ωm⟨ϕm(xi), ϕm(xj)⟩Hm , ωm ≥ 0
}
,

whereHm is an RKHS with a prespecified kernel such as Gaussian kernel, polynomial kernel, and
NTK. Additionally,Hm is also a subspace of the L2(Π) space. Given that neural networks can induce
high non-linearity, the number of candidate RKHSs M should be sufficiently large to construct a
search space comparable to that of deep models. However, this is not feasible in a dense setting due
to the curse of dimensionality. Hence, we focus on the analysis of the sparse additive family

Hsa =
{
H : ⟨ϕ(xi), ϕ(xj)⟩H =

∑
m∈I

ωm⟨ϕm(xi), ϕm(xj)⟩Hm
, ωm > 0

}
, (2.3)

where I ⊂ [M ] is the index set and d := |I| ≪ M . Within this specific family of RKHSs, we
are able to analyze the given problem (2.2). For the contrastive objective defined in (2.1), its form
can be difficult to interpret in multiclass classification. To gain more insight, we first establish the
optimization problem in the binary case. For Y = {+1,−1}, we can rewrite the problem (2.2) as

max
H∈Hsa

max
α

n∑
i=1

ℓ
( n∑

j=1

αjyiyj⟨ϕ(xi), ϕ(xj)⟩H
)
. (2.4)

We then reparameterize the weights in (2.4) as α̃ := y ⊙ α where ⊙ represents the element-wise
multiplication, which leads to

max
H∈Hsa

max
α̃

n∑
i=1

ℓ
(
yi

n∑
j=1

M∑
m=1

α′
mj⟨ϕm(xi), ϕm(xj)⟩Hm

)
s.t. α′

mj = ωmα̃j (2.5)

where ⟨ϕ(xi), ϕ(xj)⟩H =
∑M

m=1 ωm⟨ϕm(xi), ϕm(xj)⟩Hmby (2.3). We further relax the constraint
(2.5) to have

max
α′

n∑
i=1

ℓ
(
yi

n∑
j=1

M∑
m=1

α′
mj⟨ϕm(xi), ϕm(xj)⟩Hm

)
. (2.6)

In Section 4, we present a heuristic method to recover the the additive structure ofH. Now, it seems
that we can settle with studying (2.6) for binary classification, but this deviates from the original
CLIP which performs an T class classification within each batch. To address this issue, we propose to
transform the T class classification problem into a multi-task binary classification via the one-vs-rest
or one-vs-one strategy, which is a simple and effective solution. As such, we establish the problem as
follows:

max
α′

t

T∑
t=1

n∑
i=1

ℓ
(
yti

n∑
j=1

M∑
m=1

α′
mtj⟨ϕm(xti), ϕm(xtj)⟩Hm

)
, (2.7)

where t = 1, . . . , T denotes each task. Although we introduce multi-task learning to serve as a
potential solution to the challenges associated with multiclass classification, it embodies broader
applicability to scenarios where tasks are related but not necessarily parallel.

However, CLIP utilizes only one mapping for each class, which means the same set of kernels needs
to be shared between each task. This motivates us to introduce a penalty term pen with regards to α′

t.
Hence, according to the representer theorem [28], (2.7) is equivalent to
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max
α′

t

T∑
t=1

n∑
i=1

ℓ(ytift(xti))− pen(f),

where ft(·) =
∑n

j=1

∑M
m=1 α

′
mtj⟨ϕm(·), ϕm(xtj)⟩Hm

and f is the set of classifiers of all tasks. We
will discuss the specific form of the penalty in the next section. Without the loss of generality, we set
up the problem with the logistic loss as ℓ, which gives the following objective

min
α′

t

T∑
t=1

n∑
i=1

log (1 + exp (−ytift(xti))) + pen(f).

In summary, we reduce CLIP to a multi-task multi-kernel classification problem. In this formulation,
we can study the estimation rate of a multi-task multi-kernel logistic regression.

3 MULTI-TASK MULTI-KERNEL LOGISTIC REGRESSION

In this section, we investigate the problem of estimating the multi-task multi-kernel logistic regression
under structured sparsity assumptions on the underlying kernels. The aim is to jointly estimate truly
active kernel functions across all tasks with an appropriate selection of the penalty term. We denote
t = 1, . . . , T as independent tasks, m = 1, . . . ,M as candidate kernels and the true classifier as
f∗. f∗ belongs to an RKHSH in the sparse additive family Hsa. We also define I0 as the subset of
kernels such that f∗mt ̸= 0 for m ∈ I0 and for all t = 1, . . . , T . Given a k-dimension random vector
Xt = (X1, . . . , Xk)

T in X k and a binary response variable Yt ∈ {−1,+1}, we assume

log
P(Yt = 1 |Xt)

P(Yt = −1 |Xt)
=
∑
m∈I0

f∗mt(Xt). (3.1)

The unknown function f∗mt is usually estimated by the maximum likelihood estimator (MLE), that is,
we minimize the following negative log-likelihood function with respect to fmt across all tasks:

L(f) =

T∑
t=1

n∑
i=1

log (1 + exp (−ytift(xti))),

where ft(xti) =
∑M

m=1 fmt(xti).

To exploit sparsity in our setting, we consider the ℓ1 penalty and the elastic-net type penalty. In
particular, for the function fmt in the RKHSHm, we employ ∥fmt∥n and ∥fmt∥Hm

as ℓ1 regularizers
and ∥fmt∥2Hm

as ℓ2 regularizers. Here, we define ∥f∥n = [ 1n
∑n

i=1 f(xi)
2]1/2 and ∥fmt∥Hm is the

RKHS norm of fmt inHm. With these notations, we can set the penalty term as follows:

pen(f) = λ1

T∑
t=1

M∑
m=1

∥fmt∥n + λ2

T∑
t=1

M∑
m=1

∥fmt∥Hm + λ3

T∑
t=1

M∑
m=1

∥fmt∥2Hm
.

The above model utilizes a common combination of ℓ1 and ℓ2 penalties, which is analyzed in
Koltchinskii & Yuan [34]; Raskutti et al. [58]; Suzuki & Sugiyama [65], though they study the
problem of linear regression or support vector machine rather than logistic regression. However,
the above model only considers a plain summation of all tasks, which gives the same theoretical
rate as in single-task MKL. Thus, it may be suboptimal in a multi-task setting for ignoring the inner
connection between tasks. Moreover, to be consistent with CLIP, the RKHSH should share the same
set of kernels across each task. Therefore, we introduce our new penalized multi-task multi-kernel
estimator. The loss function is given as

L(f) =

T∑
t=1

n∑
i=1

log (1 + exp (−ytift(xti))) + λ1

M∑
m=1

√√√√ T∑
t=1

∥fmt∥2n

+ λ2

M∑
m=1

√√√√ T∑
t=1

∥fmt∥2Hm
+ λ3

M∑
m=1

T∑
t=1

∥fmt∥2Hm
. (3.2)

Here, our ℓ1 regularizer is a special case of the group Lasso penalty. This mixed 2, 1 regularizer takes
advantage of the kernel-wise structure and encourages consistent sparsity patterns across all tasks.
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Under this penalty, we have either f̂mt = 0 for all t or f̂mt ̸= 0 for all t. We obtain our proposed
estimator as

f̂ = argmin
fmt∈Hm(C)
m∈[M ],t∈[T ]

L(f), (3.3)

whereHm(C) := {fmt|
∑M

m=1 ∥fmt∥Hm ≤ C} for some C sufficiently large.

4 METHOD

In this section, we discuss the optimization of the objective function (3.2). By the representer
theorem [28] and the kernel trick, we can express the solution f̂mt as a linear combination of kernels:
f̂mt(x) =

∑n
i=1 αmtikm(xti,x). Thus, we can perceive each kernel as a block and consider the

block coordinate gradient descent (BCGD) algorithm [43]. The key idea of BCGD is to combine a
second-order approximation of the log-likelihood with line search and update αmt in a block-wise
manner. A detailed discussion of BCGD can be found in Section B of supplementary materials.

Due to convex relaxation in (2.6), we are not able to directly derive the inner product ⟨ϕ, ϕ⟩H, but we
provide a heuristic approach to dealing with this issue. Given that the sparse additive family has the
following structure: ⟨ϕ(xi), ϕ(xj)⟩H =

∑
m∈I ωm⟨ϕm(xi), ϕm(xj)⟩Hm

, we only need to recover
ω using the property of kernels within the sparse index set I defined in (2.3). Recall that (2.6) gives
αmti = ωmtαtiyti, where αmti is the coefficient attained by solving (3.2) with BCGD. Thus, we
can perform matrix factorization on αt/yt (where “/” represents the element-wise division) and
extract the resulting vector as ω. For example, we consider the non-negative matrix factorization of
αt/yt, which minimizes ∥αt/yt −WH∥2F and ∥ · ∥F denotes the Frobenius norm, W ∈ RM×p

and H ∈ Rp×n are approximating matrices. We can specify p = 1 and use the resulting W to
approximate the real weight vector ω.

5 ASSUMPTIONS

In this section, we describe several assumptions used in our theoretical analysis.
Assumption 5.1 (Bounded Kernel). For each m = 1, . . . ,M , Hm is separable and
supX∈X |km(X,X)| ≤ 1.
The assumption above indicates that we only consider RKHSs of bounded kernels, which gives the
relation ∥fmt∥∞ ≤ ∥fmt∥Hm

[63].
Assumption 5.2 (Union Bound Assumption). There exists a constant Cβ such that for all t =

1, . . . , T , we have
∑M

m=1 ∥f∗mt∥Hm
≤ Cβ .

This assumption simply provides a bound of the second derivative of the log-likelihood and can be
relaxed to more general assumptions.

Next, we depict the complexity of RKHSs with the following assumption.
Assumption 5.3 (Spectral Assumption). There exists 0 < s < 1 and and some constant c, such that
for any j ≥ 1 and any m = 1, . . . ,M , we have µj,m ≤ cj−

1
s , where µj,m is the spectrum of the

kernel km.
The Spectral Assumption ensures the average entropy number assumption [63], and it provides a
more intuitive insight into the smoothness of the RKHSs by specifying the polynomial eigenvalue
decay rate [42]. We also introduce some measures to characterize the dependence between the spaces
Hm, and impose the Incoherence Assumption [34; 44; 65]. See Section A of supplementary materials
for details. In addition, we introduce the following technical assumption which gives an upper bound
for ∥fmt∥∞ in terms of ∥fmt∥L2(Π) and ∥fmt∥Hm

.
Assumption 5.4 (Sup-norm Assumption). Along with the Spectral Assumption, for all fmt ∈
Hm,m = 1, . . . ,M and t = 1, . . . , T , there exists a constant C1 such that ∥fmt∥∞ ≤
C1∥fmt∥1−s

L2(Π)∥fmt∥sHm
, where s is the exponent defined in the Spectral Assumption.

It seems that this assumption may be a bit strong for specifying the same s defined in the Spectral
Assumption. However, this condition is satisfied if the RKHS is either a Sobolev space or continuously
embedded in a Sobolev space [65]. Therefore, kernels in practical use usually satisfy this condition
which gives a sharper bound on ∥fmt∥∞.
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6 MAIN RESULT

In this section, we present the theoretical result of our proposed estimator in (3.3) and give some
remarks. The following theorem describes the convergence rate under assumptions in Section 5.
Theorem 6.1. Suppose all assumptions are satisfied and there exists some constant c > 0 such that

∥f∗mt∥Hm
≥ c for all m ∈ I0 and t = 1, . . . , T . Set λ1 = C

√
T+

√
T logM

n1/(1+s) , λ2 = C

√
T+

√
T logM

n2/(1+s) ,

λ3 = C 1
n1/(1+s) or λ3 = 0 for some C sufficiently large. Under the condition that d logM√

n
+

d
n(1−s)/2(1+s) = o(1), the estimator f̂t satisfies

1

T

T∑
t=1

∥f̂t − f∗t ∥2L2(Π) ≤ OP

(
d

n1/(1+s)

(
1 +

logM√
T

))
. (6.1)

The estimation error comes from two sources. The empirical process of fmt contributes
O(d/n1/(1+s)) in (6.1) while the second term O(logM/

√
T ) is introduced by using T tasks to

jointly estimate the active kernels from M candidates. At the core of our approach, the convergence
rate depends on a sharp upper bound for | 1n

∑T
t=1

∑n
i=1 ϵtifmt(xti)|, where ϵti is the gradient of the

log-likelihood. Although t and i are both independent, the above statistic cannot be simply interpreted
as a double sum of nT independent points, rendering it a generalized empirical V-statistics process
[19]. It is generalized in the sense that ϵti and fmt(xti) do not conform to an identical distribution.
Detailed proof can be found in Section E of supplementary materials.

We obtain the optimal theoretical rate for estimating the nonparametric model in a multi-task setting.
If s → 0 for all RKHSs, the Spectral Assumption restricts the kernels to be finite rank (µj,m → 0
for j ≥ 2 and µ1,m = c for some c ∈ R) and our model essentially becomes a linear model. Thus,
our model can be compared with the multi-task linear model considered in Lounici et al. [41]. They
give a non-asymptotic rate at d

n (1 +
logM√

T
) for their group Lasso type estimator, where the structured

sparsity assumption is imposed on features. Moreover, the nonparametric estimator is known to have
an optimal scale of n1/(1+s) [58]. We derive the identical convergence rate with regard to n under
the same assumption of polynomial eigenvalue decay.

Now we shed some light on the relations between these parameters. It is natural in multi-task learning
to assume T ≥ n. Thus, the bounds in Theorem 6.1 become independent of M given logM ≤

√
T .

This indicates that we can construct an optimal RKHS with an unknown kernel from a huge RKHS
candidate pool given that truly active kernels are sparse. For example, we can select M = exp(nγ)
for γ < 1/2, provided that T > n2γ . This ability admits promising expressiveness in finding a
highly non-linear map for data points, which is a desired property common in deep learning models.
With this theoretical result, we demonstrate that when the optimal RKHS is a sparse combination of
candidates, our model involves an implicit model selection process with regard to kernels, where the
number of prospective candidate models can be much greater than the sample size.

7 NUMERICAL RESULTS

7.1 SYNTHETIC DATA

In this section, we present some simulation results to demonstrate the performance of our MTMK
models in two aspects. The first objective is to show how our proposed model suits a structured
sparsity setting better than other models. The second objective is to empirically demonstrate the
theoretical properties shown in Theorem 6.1. We consider 7 models for comparison: MTMK mix,
MTMK L1, MTMK L2, STMK, MTSK, STSK and ORACLE, where M denotes multiple and S
denotes single. MTMK mix and MTMK L1 are our proposed models with the elastic-net penalty
and ℓ1 penalty, while MTMK L2 is MK ridge logistic regression. In STMK, the sparsity pattern
does not share between tasks and MTSK is a ridge logistic regression with the Gaussian kernel
K(x, y) = exp(∥x− y∥2). STSK is theoretically the same as MTSK due to convexity but a minor
numerical difference might be observed. Only true kernels are given as input in ORACLE, which
indicates the best possible performance that can be achieved by the models listed above.

Data are drawn from a uniform distribution X ∼ U(−1, 1). Labels {+1,−1} are generated based
on the probability distribution P(Y = 1 |X) = 1/(exp(−f(X)) + 1), where f is the true function.
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We use a sample size of 1000 and a task number of 6. For simplicity, λ1 is omitted in the simulation
experiment and we only consider λ2 and λ3. We perform grid search to tune hyperparameters based
on likelihood on validation set. We manually construct 22 candidate kernels including Gaussian,
sigmoid and polynomial kernels. In this experiment, we investigate three scenarios to evaluate the
performance of our multi-task model, where signals of sparsity patterns varies between task sets.
Detailed configuration is summarized in Section C of supplementary materials.

In each task set, we repeat the experiment 10 times with different random seeds and compute the
standard deviation. Results are reported in Table 1, where we highlight the best-performing results in
bold and the second-best results in underline. Our proposed model outperforms all other models in
every task set, demonstrating results closest to those of ORACLE, the gold-standard model.

Table 1: Average mean squared error and standard deviation of 10 different random seeds.

Model Task Set 1 Task Set 2 Task Set 3

ORACLE 0.0100 ± 0.0045 0.0126 ± 0.0052 0.0217 ± 0.0124
MTMK mix 0.0184 ± 0.0097 0.0290 ± 0.0105 0.0448 ± 0.0110
MTMK L1 0.0184 ± 0.0101 0.0260 ± 0.0111 0.0347 ± 0.0114
MTMK L2 0.0226 ± 0.0103 0.0291 ± 0.0089 0.0737 ± 0.0138
MTSK 0.1327 ± 0.0109 0.1309 ± 0.0097 0.3048 ± 0.0203
STMK 0.0248 ± 0.0106 0.0324 ± 0.0108 0.0476 ± 0.0126
STSK 0.1326 ± 0.0107 0.1309 ± 0.0096 0.3046 ± 0.0203

Next, we empirically investigate whether our proposed models possess the desirable properties
outlined in our theoretical analysis. Specifically, we employ the identical settings as in task set 3 and
only modify the parameter of interest. Results are summarized in Figure 2. Our models demonstrate
enhanced approximation abilities as the candidate kernel size M becomes smaller, task size T and
sample size n become larger separately.

Figure 2: Effect of varying parameters on model approximation ability. Average mean squared error
decreases as the candidate kernel size M becomes smaller, task size T becomes larger, and sample
size n becomes larger separately.

7.2 REAL DATA

In this section, we present an evaluation of our models on two widely-used real datasets, namely
MNIST [37] and MedMNIST [74]. We utilize the one-vs-rest scheme to tackle the multi-class
classification problem as in Li et al. [38]. Our analysis compares the models presented in section
7.1 and traditional machine learning models like SVM and logistic regression. For simplicity,
candidate kernels are selected as Gaussian kernels and polynomial kernels. To comprehensively
compare the performance of each model, we utilize the AUROC (Area Under the Receiver Operating
Characteristic) metric. The result of MNIST is contained in Section D of supplementary materials.

We use the OrganCMNIST dataset, part of the MedMNIST collection, to evaluate our models. It
consists of grayscale images of abdominal CT scans that depict 11 different organs, including the
bladder, femurs, and nine other organs. We generate 200 samples for each task with balanced labels
and remove repetitive organs, resulting in a total of 6 classification tasks of distinct organs.

Meanwhile, we also include phecodes of diseases related to the organs depicted in the images to
showcase the multimodality of our proposed model. We obtain the word embeddings of these
phecodes from the MIKGI dataset [82], which provides a 200-dimensional vector for each phecode.
To incorporate these embeddings into our dataset, we simply add zero padding to convert them into

8
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the same dimension as images. For each task, we include 50 related embeddings as positive samples
and 50 unrelated embeddings as negative samples. We report AUROC results of images, texts, and all
samples separately in Table 2. Our proposed models generally perform better than other benchmark
models.

Table 2: MedMNIST AUROC with standard deviation over 5-fold cross-validation.

Model Average Image Text

MTMK mix 0.9074 ± 0.0156 0.9310 ± 0.0175 0.8973 ± 0.0310
MTMK L1 0.9102 ± 0.0129 0.9357 ± 0.0131 0.9003 ± 0.0278
MTMK L2 0.9050 ± 0.0172 0.9278 ± 0.0202 0.8973 ± 0.0306
MTSK 0.8870 ± 0.0121 0.9104 ± 0.0135 0.8630 ± 0.0261
STMK 0.9053 ± 0.0142 0.9366 ± 0.0128 0.8920 ± 0.0339
SVM 0.8267 ± 0.0179 0.9188 ± 0.0235 0.8380 ± 0.0379
LR 0.8879 ± 0.0110 0.8962 ± 0.0112 0.8970 ± 0.0307

We utilize Grad-CAM [60] to provide visual explanations for our model. Specifically, we select the
MTMK L1 model trained on one fold of the MedMNIST dataset and randomly draw 10 positive
image samples from each task for visualization. Each sample is presented with the original grayscale
image and the gradient map overlaid on the image. In Figure 3(a), a clear heatmap pattern can be
observed within one task, indicating that our model consistently extracts similar features for each
organ. For example, MTMK L1 mainly focuses on the bottom left part of the lung classification task,
capturing this organ’s unique edge features. Furthermore, we demonstrate that our approach can learn
the proper kernel space aligning the imaging embedding with the text embeddings with high accuracy.
We randomly sample 3 phecodes that contain "heart" in the heart classification task. We compute the
inner products with the method described in Section 4 between images and the phecodes, and present
the top ten images with the largest inner products in Figure 3(b), where a green check represents a
correct pairing and a red cross otherwise. Apparently, our model identifies the correct pairing most of
the time.

(a) Grad-CAM visualization. (b) Inner product visualization.

Figure 3: Visualization for MedMNIST. (a) Grad-CAM visualization for 6 different organs. We
randomly draw 10 images for each organ and present the original grayscale image and the gradient
map overlaid on the image together. (b) Inner product visualization for 3 randomly sampled phecodes
that include "heart". We show the top ten images with the largest inner products with the given
phecode. We denote a correct pair with a green check and a red cross otherwise.

8 CONCLUSION

We introduce an RKHS framework to understand CLIP by transforming the problem of estimating
a mapping ϕ to selecting an unknown RKHS and further reduce CLIP to a multi-task multi-kernel
classifier. We prove the optimal rate of our method in a sparse additive RKHS family.
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