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Abstract

Previous works have validated that text generation APIs can be stolen through
imitation attacks, causing IP violations. In order to protect the IP of text genera-
tion APIs, recent work has introduced a watermarking algorithm and utilized the
null-hypothesis test as a post-hoc ownership verification on the imitation mod-
els. However, we find that it is possible to detect those watermarks via sufficient
statistics of the frequencies of candidate watermarking words. To address this draw-
back, in this paper, we propose a novel Conditional wATERmarking framework
(CATER) for protecting the IP of text generation APIs. An optimization method
is proposed to decide the watermarking rules that can minimize the distortion
of overall word distributions while maximizing the change of conditional word
selections. Theoretically, we prove that it is infeasible for even the savviest attacker
(they know how CATER works) to reveal the used watermarks from a large pool
of potential word pairs based on statistical inspection. Empirically, we observe
that high-order conditions lead to an exponential growth of suspicious (unused)
watermarks, making our crafted watermarks more stealthy. In addition, CATER can
effectively identify IP infringement under architectural mismatch and cross-domain
imitation attacks, with negligible impairments on the generation quality of victim
APIs. We envision our work as a milestone for stealthily protecting the IP of text
generation APIs.

1 Introduction

Nowadays, many technology corporations, such as Google, Amazon, Microsoft, have invested a
plethora of workforce and computation to data collection and model training, in order to deploy
well-trained commercial models as pay-as-you-use services on their cloud platforms. Therefore, these
corporations own the intellectual property (IP) of their trained models. Unfortunately, previous works
have validated that the functionality of a victim API can be stolen through imitation attacks, which
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Figure 1: Ratio change of word frequency of top 100 words between benign and watermarked corpora
used by [13], namely P,(w)/ P, (w). Red words are the selected watermarks. Although we only list
16 words having the most significant ratio change in the benign and watermarked corpora and omit
the rest of them for better visualization, all watermarks are within the top 100 words.

inquire the victim with carefully designed queries and train an imitation model based on the outputs
of the target API. Such attacks cause severe IP violations of the target API and stifle the creativity
and motivation of our research community [44, 4820 12} 9].

In fact, imitation attacks work not only on laboratory models, but also on commercial APIs [48}151]],
since the enormous commercial benefit allures competing companies or individual users to extract or
steal these successful APIs. For instance, some leading companies in NLP business have been caught
imitating their competitors’ models [40]. Beyond imitation attacks, the attacker could potentially
surpass victims by conducting unsupervised domain adaptation and multi-victim ensemble [S1].

In order to protect victim models, He et al. [[13] first introduced a watermarking algorithm to text
generation and utilized the null-hypothesis test as a post-hoc ownership verification on the imitation
models. However, traditional watermarking methods generally distort the word distribution, which
could be utilized by attackers to infer the watermarked words via sufficient statistics of the frequency
change of candidate watermarking words. As an example shown in Figure|l| the replaced words and
their substitutions are those with most frequency decrease ratios and increase ratios, respectively. To
address this drawback, we are motivated to develop a more stealthy watermarking method to protect
the IP of text generation APIs. The stealthiness of the new watermarks is achieved by incorporating
high-order linguistic features as conditions that trigger corresponding watermarking rules.

Overall, our main contributions are as followsﬂ

* We propose a novel Conditional wATERmarking framework (CATER) for protecting text gen-
eration APIs. An optimization method is proposed to decide the watermarking rules that can i)
minimize the distortion of overall word distributions, while ii) maximize the change of conditional
word selections.

* Theoretically, we prove that a small number of the used watermarks could be blended in and
camouflaged by a large number of suspicious watermarks when attackers attempt to inverse the
backend watermarking rules.

* Empirically, we observe that high-order conditions lead to the exponential growth of suspicious
(unused) watermarks, which encourages better stealthiness of the proposed defense with little hurt
to the generation of victim models.

2 Preliminary and Background

2.1 Imitation Attack

An imitation attack (a.k.a model extraction) aims to emulate the behavior of the victim model V), such
that the adversary can either sidestep the service charges or launch a competitive service [44, 20l 48],
12, 151]]. Malicious users can achieve this goal through interaction with the victim model V without
knowing its internals, such as the model architecture, hyperparameters, training data, etc. Adversaries

*Code and data are available at: https://github.com/x1lhex/cater_neurips.git
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first craft a set of queries () based on the documentation of a target model. Then () will be sent to VV
to obtain the corresponding predictions Y. Finally, an imitation model S can be attained by learning
a function to map Q) to Y.

Most prior imitation attacks are limited to classification tasks [44} 30l [12]. The imitation for text
generation, a crucial task in natural language processing, has been under-developed until recently.
Inspired by the efficacy of sequence-level knowledge distillation [17], Wallace et al. [48]] and Xu
et al. [S1] propose mimicking the functionally of commercial text generation APIs. Similar to the
standard imitation attack, adversaries can query V with (). For generation tasks, Y is a sequence of
tokens (y1, ..., yr,), where L is the length of the sequence. According to their empirical studies, one
can rival the performance of these APIs, which poses a severe threat to cloud platforms.

2.2 Identification of IP Infringement

Prior works have utilized watermarking avenues to achieve a post-hoc verification of the owner-
ship [45) 24} 25]]. However, this line of work assumes the model owners can watermark victim model
V by altering its neurons before releasing V to end-users. This operation is not feasible for the
imitation attack, as ) cannot access the parameters of S. The only thing under the control of V is
the responses to adversaries. Hence, some recent works propose creating a backdoor to S during
the interaction with attackers [20, 42]. Specifically, V can select a small fraction of queries and
answer them with incorrect predictions, in a similar way to the popular choice of watermarks in
the computer vision domain (adopting some arbitrary features as the trigger to evaluate) [10, |54].
Erroneous predictions are so abrupt that S will memorize these outliers [6, 21]]. As such, V can utilize
these watermarks as evidence of ownership.

Albeit the efficacy, the drawbacks of backdoor approaches are tangible as well. First, since V does not
impose regulations on users’ usage, one cannot distinguish a malicious user from a regular user based
on their querying behaviorsﬂ Thus, V has to fairly serve all users and store all mislabeled queries,
which leads to a massive storage consumption and a negative impact on the users’ experiences.
Moreover, as the identity of imitation models is unknown to V), V has to iterate over all the mislabeled
queries, which is computationally prohibitive. Finally, as S tends to adopt the pay-as-you-use policy
for the sake of profits, the brute-force interaction with S can cause drastic financial costs.

As aremedy, He et al. [[13] utilize a lexical watermark to identify IP infringement brought by imitation
attacks. They point out that a neat watermarking algorithm must follow two principles: i) it cannot
significantly impair customer experience, and i) it should not be reverse-engineered by malicious
users. In order to fulfill these requirements, they first select a set of words )V from the training data
of the victim model V. Then for each w € W, they find R-1 semantically equivalent substitutions
for it. Next, they employ W and their substitutions 7 to compose watermarking words M. Finally,
they replace VW with M. The rationale behind this avenue is to alter the distribution of words such
that the imitation model can learn this biased pattern. To verify such a biased pattern of the word
choice, He et al. [13]] employ a null hypothesis test [36] for evaluation.

More concretely, He et al. [13]] utilize an evaluation set O to conduct the null hypothesis test.
They formulate the null hypothesis as: the tested model generates outputs without preference for
watermarks. A null hypothesis can be either rejected or accepted via the calculation of a p-value [36].
They assume that all words {w;|w; € WU T } follow a binomial distribution Pr(k;n, p), where k is
the number of words in M appearing in O, n is the number of words in W U T found in O, and p is
the probability of watermarks observed in the natural language. According to their algorithm, p is
approximated by 1/R. Now, one can compute the p-value from as follows:

P =2 -min(Pr(X > k), Pr(X <k)) (1)

The p-value indicates how one can confidently reject the hypothesis. Lower p-value suggests that the
tested model should be more likely subject to an imitator.

2.3 Watermark Removal

In conjunction with model watermarking, there is a growing body of investigations on watermark
removal [45} 4} 153]]. This line of work aims to erase watermarks embedded in white-box deep neural
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Figure 2: The workflow of CATER IP protection for Generation APIs. CATER first watermarks
some of the responses from victim APIs (left). Then, CATER identifies suspicious attacker’s API by
watermark verification (right).

networks. We argue that these approaches are implausible for our setting, as text generation APIs are
black-box to attackers.

Moreover, one can dub watermarking into a form of data poisoning [21} 150,157, 149], in which one can
utilize trigger words to manipulate the behavior of the victim model. A list of works has investigated
how to mitigate the adverse effect caused by data poisoning in NLP tasks. Qi et al. [33]] show that
GPT2 can effectively identify trigger words targeting the corruption of text classifications. It has
been demonstrated that one can use influence graphs as a means of the remedy for data poisoning on
various NLP tasks [41]]

3 CATER

This section introduces our proposed CATER, leveraging conditional watermarks to watermark the
imitation model, which can be served as a post-hoc identification of an IP infringement. Figure 2]
provides an overview of CATER, consisting of two stages as below.

i) Watermarking Stage: The victim API model V employs CATER to add conditional watermarks
to the intended responses. When the vanilla victim model receives queries @ = {¢;} LQll from an

end-user, V initially produces a tentative answer ¥ = {yl}‘Q‘ Next, V utilizes CATER to conduct a
watermarking procedure over Y according to the watermarking rules, given condition c. Finally, VV

replies to the end-user with a watermarked response Y’ {yl}‘Q‘

ii) Identification Stage: If amodel S is under suspicion, the victims can query the suspect using a

verification set O = {o0;} ‘Z . After obtaining the responses Y = {yz} from S, V can leverage
CATER to testify whether S v101ates the IP right of V.

3.1 Watermarking Rule Optimization

Watermarking some words to a deterministic substitutions could distort the overall word distribution.
Therefore, some watermarks could be reversely inferred and eliminated by analyzing the word
distribution, as demonstrated in Figure[I} We propose to inject the watermarks in conditional word
distribution, while maintaining the original word distribution. The substitutions can be conditioned
on linguistic features as illustrated in Figure[3] Remarkably, given a condition ¢ € C and a group of
semantically equivalent words WV, one can replace any words w € WV with each other. We formulate
the objective of conditional watermarking rules as:

min D( ZP wlc)P ZP wlc)P ~icl Z]D) , P(wlc)) (2)

P(wle) cec cec ceC

I: indistinguishable objective 1I: distinct objective



The two factors reflect two essential desiderata:

i) For each W, with w € W, the overall word distributions before optimization P(w) =

S P(wle)P(c¢) and after optimization P(w) = 3 P(w|e)P(c) should be close to each other, as the
indistinguishable objective in Equation 2}

ii) For a particular condition ¢ € C, the conditional word distributions should still be distinct to their
original distributions, reflected by the dissimilarity between P(w(®|c) and P(w ?|c), as the distinct
objective in Equation 2} This guarantees the conditional watermarks are identifiable in verification.

In practice, we utilize multiple synonym word sets as a group G = {W(i)}igzll. For each W),
we can formulate Equation 2| as a mixed integer quadratic programming using ¢5-norm as distance
measurement function:

min (We — Xe)'(We—Xe)— - Tr(W - X)T(W - X))

C|
©)
st. X7 Ly = 1, X € {0, 1}V 1] 3)
We define matrix X = [P(w(“\c)]lw(mxm as the variables for optimization. Matrix W =
[P(w® &) jwi|x|c| and vector € = [P(c)]|c|x1 are constant variables, decided by calculating

corresponding distributions in a large training corpus. The objective of Equation [3]is convex when «

is sufficiently small (see the proof in Appendix |A). We optimize the watermark assignments If’(w(i) lc)
using Gurobi [[11] with o = 0.01.

3.2 Constructing Watermarking Conditions using Linguistic Features

This part will concentrate on practical ways to construct the watermarking conditions C. We consider
two fundamental linguistic features F, i) part-of-speech and ii) dependency tree, and their high-
order variations as conditions. Such linguistic features were widely and successfully used for text
classification [5, 152], sequence labeling [22} 37], and efc.
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Figure 3: The part-of-speech (POS) tags and dependency relations are illustrated in colored boxes
and arcs, respectively. The decision of using “region” or its synonym (“area” or other words), is
conditioned on its linguistic features in context. For example, in the first sentence, either “PRON”
(POS label of the preceding token) or “obl” (DEP label of the incoming arc) gives the decision to
replace “region” with “area”, as opposed to “DET” or “nsubj” in the second sentence.

Part-of-Speech Part-of-Speech (POS) tagging is a grammatical grouping algorithm, which can
cluster words according to their grammatical properties, such as syntactic and morphological behav-
iors [16]. The POS tag for each token is demonstrated in a colored box, in Figure 3]

Given a word w in a sentence, we denote its POS as [y, and use [_j, or [, to represent the POS of the
k-th word to the left or right of w. We consider a single label [_ as our first-order condition. In order
to reduce the identifiability of our conditional watermark, we can construct high-order conditions
from the same feature set, e.g., (I_1,l41) as second-order condition and (I_o,1_1,11) as third-order
condition. Note that if [_;, or [ does not exist, we use a pseudo tag “[none]" by default. Since
POS describes grammatical roles of words and its classes are limited, the combination of POS of an



anchor and its neighbors should also be bounded. Thus one can consider the POS bond among words
as the condition.

Dependency Tree Dependency Tree (DEP) is a syntactic structure, which describes directed
binary grammatical relations between words [[16], as shown in Figure[3| A dependency tree can be
represented by an acyclic directed graph G = (V, E'), where V is a set of vertices corresponding to
all words in a given sentence, F is a set of ordered pairs of vertices, denoted as arcs. Anarce € F
describes a grammatical relation between two vertices in V/, i.e., source vertex named as head and
target vertex coined as dependent. Except the root vertex, each vertex is connected to by exactly one
head. Consequently, there exists a unique path from each vertex to the root node in a dependency tree.

Analagously for POS features, we can design first-order and high-order DEP features as watermarking
conditions. Given a word w, and its incoming DEP arc, we use the DEP label of the arc as the
first-order features (d; ). We construct high-order condition recursively using the labels of incoming
DEP arcs (dy, da, - - - ). A pseudo arc label “[none]" is used when there is no parent node in recursion.

3.3 Identifiability of Conditional Watermark

In this section, we discuss the identifiability of our watermark if the attackers attempt to infer the
used watermarks. We assume the worst case that the attackers have access to i) the watermarking
algorithm, ii) all possible word sets for substitution G, and iii) combination of feature sets F as
wartermarking conditions C. However, the exact watermarking rules are unobservable to attackers.
The attackers may identify the watermark rules by suspecting those observed P(w(i) |c) with extreme
distributions, i.e., only a single word in a synonym set is selected given a specific condition.

Given a limited budget, we assume that an imitator has queried our watermarked API and has acquired
N tokens in | J, W) The system has incorporated watermarks with K -order features ¢ € C, where
C = (F1,Fs, - Fk), the total number of possible conditions is |C| = Hfil | F3|. We simplify our
discussion by using the same feature set F (POS or DEP), then |C| = | F|¥.

Theorem 3.1. If | F|X > N and there exist t conditions that have less or equal to m € Z+ support
samples, thent > |F|X — N/(m + 1).

The attacker would suspect conditional word distributions that are extremely imbalanced, namely
only a single dominant choice of word is observed within the responses to the attacker.

Theorem 3.2. Having m support samples for a specific condition c, the possibility of observing
extremely imbalanced word choice is T(W,c,m) = 37, o\, P(wi|c)™. Ifm' < mandm,m’' € Z*,
IW,ce,m') > Z(W,e,m).

The proofs of Thm [3.1]and Thm [3.2] can be found in Appendix [B]and [C] Thm [3.1] guarantees a
lower bound for the number of conditions that attackers will have less or equal to m observed
samples. Moreover, the lower bound grows exponentially with regard to the feature orders used as
watermarking conditions. Thm [3.2] guarantees the high probability of the conditions with extremely
imbalanced word selection when m is small. Combining these two theorems, the total number of
the suspicious watermark rules could be huge compared with the limited used watermark rules if
we are utilizing high-order linguistic features as conditions. We further empirically demonstrate the
significant confusion between suspected and used watermark rules in Section[4.2]

4 Experiments

Text Generation Tasks. We examine two widespread text generation tasks: machine translation
and document summarization, which have been successfully deployed as commercial APIsm To
demonstrate the generality of CATER, we also apply it to two more text generation tasks: i) text
simplification and ii) paraphrase generation. We present the performance of CATER for these
tasks in Appendix [F.4]

* Machine Translation: We consider WMT14 German (De) —English (En) translation [2]] as
the testbed. We follow the official split: train (4.5M) / dev (3,000) / test (3,003). Moses [18] is

https://translate.google.com/
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Table 1: Performance of different watermarking approaches on WMT 14 and CNN/DM. We use F1
scores of ROUGE-1, ROUGE-2 and ROUGE-L for CNN/DM.

WMT14 CNN/DM
p-value| BLEU{1 BERTScore? | p-value| ROUGE-1/2/LL1t BERTScore T

w/o watermark \ > 107! 31.1 65.9 \ >10"'  37.7/154/312 22.1
Venugopal et al. [47]

- unigram <1072 30.4 65.2 <1072  37.3/15.1/312 21.7

- trigram > 1071 30.8 65.7 >10"'  37.5/153/31.0 21.8

- sentence > 1071 30.8 65.9 >10"'  37.6/154/312 21.9
He et al. [[13]

- spelling < 10713 31.1 65.8 <107% 375/152/314 22.0

- synonym < 10710 30.8 65.5 <1078  37.6/15.3/31.4 21.8
CATER (ours)

- DEP <1074 30.9 65.4 <1072  37.6/153/313 21.8

- POS <1077 30.8 65.3 <1077  375/152/312 21.9

applied to pre-process all corpora, with a cased tokenizer. We use BLEU [32] and BERTScore [55]]
to evaluate the translation quality. BLEU concentrates on lexical similarity via n-grams match,
whereas BERTScore targets at semantic equivalence through contextualized embeddings.

¢ Document summarization: CNN/DM [14] utilizes informative headlines as summaries of news
articles. We reuse the dataset preprocessed by See et al. [38]] with a partition of train/dev/test as
287K / 13K/ 11K. Rouge [26] and BERTScore [55]] are employed for the evaluation metric of the
summary quality.

We use 32K and 16K BPE vocabulary [39]] for experiments on WMT14 and CNN/DM, respectively.

Models. For the primary experiments, we consider Transformer-base [46] as the backbone of both
victim models and the imitation models. Following He et al. [13], we use a 3-layer Transformer
for the summarization task. Because of their superior performance, pre-trained language models
(PLMs) have been deployed on cloud platforms f!| Hence, we also consider using two popular PLMs:
i) BART (summarization) [23]] and ii) mBART (translation) [27]] as the victim model. Regarding
the imitation model, since the architecture of the victim model is unknown to the adversary, we
simulate this black-box setting by using three different architectures as the imitator, namely (m)BART,
Transformer-base, and ConvS2S [8]. The training details are summarized in Appendix

Basic Settings. As a proof-of-concept, we start our evaluation with a most straightforward case.
We assume the victim model V and the imitation model S use the same training data, but S uses
the response y’ with CATER instead of the ground-truth y. We set the size of synonyms to 2 and
vary this value in Appendix [FI} The detailed construction of watermarks and approximation of p in
Equation [T|for CATER is provided in Appendix

Baselines. We compare our approach with [47]] and [13]]. Venugopal et al.[47] proposed water-
marking the generated output with a sequence of bits under the representation of either n-grams or
the complete sentence. He et al. [[13] devises two effective watermarking approaches. The first one
replaces all the watermarked words with their synonyms. The second one watermarks the victim API
outputs by mixing American and British spelling systems.

4.1 Performance of CATER

Table[T] presents the watermark identifiability and generation quality of studied text generation tasks.
Both [[13] and CATER obtain a sizeable gap in the p-value, and demonstrate a negligible degradation
in BLEU, ROUGE, and BERTScore, compared to the non-watermarking baseline. However, [47] falls
short of injecting detectable watermarks. Although CATER is slightly inferior to [[13] in p-value, we
argue that watermarks in [13] can be easily erased, as their replacement techniques are not invisible.
As shown in Figure [T} the synonyms used by [13]] can be identified due to the tangible distribution
shift on the watermarks, whereas CATER manages to minimize such a shift according to Equation 2}
which is also corroborated by Figure[7] In addition, one can eliminate the spelling watermarks by
consistently using one spelling system.

$https://cloud.google.com/ai-platform/training/docs/algorithms/bert
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Table 2: Imitation performance of different architectures on clean and watermarked data. Numbers in
parentheses are results of clean data. Victim models are trained on mBART (WMT14) and BART
(CNN/DM), respectively. We use the first-order POS as the watermarking approach.

Model WMT14 CNN/DM
p-value | BLEU 1 p-value | ROUGE-L 1
(m)BART | <107*(>107') 349@352) | <107 (>10"1)  38.1(38.1)
Transformer | < 107°(>107%) 327(33.0) | <107°(>107")  32.8(32.9)
ConvS2S <1075 (>107%) 327329 | <1073 (>10"Y  32.7(32.7)
32
31
-2
30 10
529 g
= 40
@ og &
27 R
—— CATER (POS) 10 —— CATER (POS)
26 -
ean Clean
25 1 2 3 1 2 3
orders orders

Figure 4: BLEU scores (left) and p-value (right) of using different orders of the POS watermarking
approach on WMT14 data. X-axis indicates the orders of conditions. /, 2, 3 represent the first-order,
second-order, and third-order condition respectively. Clean means imitation with clean dataset.

Unless otherwise stated, we use the first-order POS as the default setting for CATER, due to its
efficacy in terms of watermark identifiability and generation quality.

IP Identification under Architectural Mismatch The architectures of remote APIs are usually
unknown to the adversary. However, recent works have shown that the imitation attack is effective
even if there is an architectural mismatch between the victim model and the imitator [48. [12]]. To
demonstrate that our approach is model-agnostic, we use BART-family models as victim models and
vary architectures of imitation models.

Table 2] summarizes p-value and generation quality of CATER on WMT14 and CNN/DM datasets.
Similar to Table|l] CATER can confidently identify the IP infringement when the architecture of the
imitation model is the same as that of the victim model, with a gap of p-value between watermarked
model and benign model being 3 orders of magnitude. In addition, this gap applies to the case, where
we use distinct architectures for the victim model and the imitator. The generation quality exhibits
negligible drops, within a range of 0.3. Note that the generation quality of Transformer and ConvS2S
imitators degrades due to the capacity gap, compared to powerful BART-family models.

.IP Identiﬁcz‘lti'on on Cross-dqm?l in Imita?ion Sim- Table 3: Imitation performance of using
ilarly, the training data of the victim model is confiden- data from different domains. The victim
tial and remains unknown to the public. Thqs, there model is trained on WMT14. We use first-
could be a domain mismatch between the training data
of the victim model and queries from the adversary.
In order to exhibit that our approach is exempt from WMTI14 IWSLT14 OPUS (Law)
the domain shift, we use two out-of-domain datasets to
conduct the imitation attack for the machine translation ~ < 1077 <107° <1076
task. The first is IWSLT14 data [3] with 250K German
sentences, and the second is OPUS (Law) data [43] consisting of 2.1M German sentences. TableE]
suggests that despite the domain mismatch, CATER can still watermark the imitation model, and one
can identify watermarks with high confidence.

order POS as the watermarking condition.

High-order Conditions We have shown that the first-order CATER effectively performs various
tasks and settings. We argue that CATER is not limited to the first-order condition. Instead, one
can use high-order CATER as mentioned in Section which can consolidate the invisibility as
discussed in Section [3.3] Therefore, we investigate the efficacy of the high-order CATER to the
translation task and provide the study on the summarization task in Appendix
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Figure 5: The generation quality and p-value under different percentage of using watermarked data
for imitation attacks on machine translation and summarization.

Table 4: Imitation performance with watermark removal on WMT 14 data and CNN/DM. We use the
first-order POS as the watermarking approach. ONION is used to remove watermarks.

Model WMT14 CNN/DM
p-value | BLEU? | p-value| ROUGE-L 1

w/o ONION | < 1077 30.8 <1077 312

w/ ONION | < 107° 27.0 <1077 25.9

Figure E] shows that with the increase of conditional POS orders, compared to the use of clean data,
there is no side effect on the BLEU scores, i.e., generation quality. The right figure suggests that
using the higher conditional orders can lead to the larger p-value, which means that the claim about
IP violation is less confident. However, the gap between the benign and watermarked models is still
significantly distinguishable. Note that for the sake of fair comparison, the p-values of the clean
model are calculated w.rt. the corresponding order.

Mixture of Human- and Machine-labeled Data Due to multiple factors, such as noisy in-
puts [19, [1], domain mismatch [1} 29|, efc., training a model with machine translation alone
still underperforms using human-annotated data [51]]. However, since annotating data is resource-
expensive [51], malicious may mix the human-annotated data with machine-annotated one. We
examine the effectiveness of CATER under this mixture of two types of datasets.

Figure 5] suggests that as CATER aims to minimize the distribution distortion, watermarks injected by
CATER tend to be overwritten by clean signals. Thus, CATER is active when more than half of the
data is watermarked.

4.2 Analysis on Adaptive Attacks

The previous sections illustrates the efficacy of CATER for watermarking and detecting potential
imitation attacks. Given the case that a savvy attacker might be aware of the existence of watermarks,
they might launch countermeasures to remove the effects of the watermark. This section explores
and analyzes possible adaptive attacks based on varying degrees of prior knowledge of our defensive
strategy. Specifically, we examine two types of adaptive attacks that try to erase the effects of the
watermark: i) vanilla watermark removal, and ii) watermarking algorithm leakage.

Vanilla Watermark Removal. Under this setting, we assume the attackers are aware of the
existence of watermarks, but not aware of the details of the watermarking algorithm. Following such
a setting of attacker knowledge, we assume the attacker would adopt an existing watermark removal
technique in their vanilla form. To evaluate, we employ ONION, a popular defensive avenue for data
poisoning in the natural language processing field, which adopts GPT-2 [35] to expel outlier words.
The defense results are shown in Tabled] We find that ONION cannot erase the injected watermarks.
Meanwhile, it drastically diminishes the generation quality of the imitation model.



Watermarking Algorithm Leakage. Under this case study, we assume attackers have
access to the full details of our watermarking algorithm, i.e., the same watermark-
ing dictionary and the features for constructing watermarking conditions. We note
that this is the most substantial attacker knowledge assumption we can imagine, aside
from the infeasible case that they know the complete pairs of watermarks we used.
After collecting responses from the victim
model, the attackers can leverage the leaked
knowledge to analyze the responses to find the
used watermarks, i.e., the number of sparse en-
tries. As shown in Section [3.3] we theoretically
prove that such reverse engineering is infeasi-
ble. In addition, Figure@ shows that even with
such a strong attacker knowledge, the amount of
potential candidate watermarks (orange curve)
is still astronomical times larger than the used
number of watermarks (blue curve). Thus, mali-
cious users would have difficulty removing wa-
termarks from the responses; unless they lean to- 1 2 3 4
ward modifying all potential watermarks. Such orders

a brute-force approach can drastically debilitate
the performance of the imitation attack, causing
a feeble imitation. Finally, we demonstrate the
upper bound (green curve) to show that without
the curated knowledge about the watermarking
conditions, the attackers have to consider all pos-
sible combinations of POS tags. Therefore, the
difficulty of identifying the watermarks from the
top 200 words can be combinatorially exacer-
bated.

-
o
©

—— CATER
Watermarking Algorithm Leakage /

7 —— Upper Bound
10

10°

#sparse entries (logio scale)

Figure 6: The number of sparse entries (suspected
watermarks) of top 200 words with watermark-
ing algorithm leakage under different orders (or-
ange) on the training data. CATER indicates the
actual number of watermarks used by our water-
marking system (blue). POS feature is used where
|F| = 36. The upper bound indicates all possible
combinational watermarks (green).

5 Conclusion

In this work, we are keen on protecting text generation APIs. We first discover that it is possible
to detect previously proposed watermarks via sufficient statistics of the frequencies of candidate
watermarking words. We then propose a novel Conditional wATERmarking framework (CATER), for
which, an optimization method is proposed to decide the watermarking rules that can minimize the
distortion of overall word distributions while maximizing the change of conditional word selections.
Theoretically, we prove that it is infeasible for even the savviest attackers, who know how CATER
algorithms, to reveal the used watermarks from a large pool of potential watermarking rules based
on statistical inspection. Empirically, we observe that high-order conditions lead to an exponential
growth of suspicious (unused) watermarks, rendering our crafted watermarks more stealthy.

Limitation and Negative Societal Impacts

One major limitation of our work is that one has to find high-quality synonym sets to minimize
semantic degradation, leading to the limited option of candidate words. Nevertheless, according
to Section {4 given the top 200 words and their synonyms, CATER can still achieve a stealthy
watermarking. In addition, because of the use of the lexical match, we experience slight performance
degradation in generation quality. Furthermore, since defending against imitation attacks is difficult,
we resort to a post-hoc verification. If the adversaries do not publically release the imitation model,
CATER becomes fruitless.

Regarding the negative societal impacts, CATER might be overused by some APIs owners as a means
of unfair competition. As shown in Figure ] the gap between the benign model and the watermarked
one is small. Hence, the APIs owners could leverage CATER to sue innocent cloud services. As a
remedy, we suggest the judges refer to a relatively higher bar, e.g., lower p-value < 1076,
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