
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

COMPLEMENTARY LABEL LEARNING WITH POSITIVE
LABEL GUESSING AND NEGATIVE LABEL ENHANCE-
MENT

Anonymous authors
Paper under double-blind review

ABSTRACT

Complementary label learning (CLL) is a weakly supervised learning paradigm
that constructs a multi-class classifier only with complementary labels, specifying
classes that the instance does not belong to. We reformulate CLL as an inverse
problem that infers the full label information from the output space information.
To be specific, we propose to split the inverse problem into two subtasks: positive
label guessing (PLG) and negative label enhancement (NLE), collectively called
PLNL. Specifically, we use well-designed criteria for evaluating the confidence of
the model output, accordingly divide the training instances into three categories:
highly-confident, moderately-confident and under-confident. For highly-confident
instances, we perform PLG to assign them pseudo labels for supervised training.
For moderately-confident and under-confident instances, we perform NLE by
enhancing their negative label set with different levels and train them with the
augmented negative labels iteratively. In addition, we unify PLG and NLE into a
consistent framework, in which we can view all the pseudo-labeling-based methods
from the perspective of negative label recovery. We prove that the error rates of
both PLG and NLE are upper bounded, and based on that we can construct a
classifier consistent with that learned by clean full labels. Extensive experiments
demonstrate the superiority of PLNL over the state-of-the-art CLL methods, e.g.,
on STL-10, we increase the classification accuracy from 34.96% to 55.25%. The
code has been submitted to supplementary material.

1 INTRODUCTION

Over the past few years, large-scale and accurately labeled data has tremendously boosted the
development of deep neural networks. However, collecting accurately labeled data is extremely
time-consuming, labor-intensive and sometimes requires specific expertise in real-world tasks. To
reduce the dependency on large-scale and accurately labeled datasets, deep learning communities
have given increasing attention to weakly supervised learning, including but not limited to partial
label learning (Cour et al., 2011; Xie and Huang, 2018; Feng and An, 2019; Lv et al., 2020; Xia et al.,
2023; Huang and Cheung, 2024; He et al., 2024; Tian et al., 2024), noisy label learning (Natarajan
et al., 2013; Han et al., 2018; Song et al., 2022; Wei et al., 2020; Zhang et al., 2023; Huang et al.,
2023), semi-supervised learning (Van Engelen and Hoos, 2020; Sohn et al., 2020; Xie et al., 2020;
Yang et al., 2022; Li et al., 2023b; Xie et al., 2023), positive-unlabeled learning (Niu et al., 2016;
Kiryo et al., 2017).

Here, we consider a recently proposed weakly supervised learning framework called complementary
label learning (CLL) (Ishida et al., 2017; Feng et al., 2020). In CLL, each training instance is
associated with one or multiple complementary labels (CLs) which specify one or multiple classes
that the instance does not belong to. The goal of CLL is to learn a multi-class classifier only from
complementary labeled data. In real-world scenario, if the number of classes is huge, choosing the
correct class label from many candidate classes is difficult and laborious, while choosing one or
several of the incorrect class labels as CLs would be much easier and thus less costly. Recently, CLL
has been applied to online learning (Kaneko et al., 2019), medical image segmentation (Rezaei et al.,
2020) and medical molecular imaging (Tapper et al., 2024), etc. Besides, another promising future
application scenario of CLL is to ensure privacy security in data collection scenarios. For example,
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collecting some survey data may require extremely private questions and it would be mentally less
demanding if we ask the respondent to provide some incorrect answers as CLs (Dwork, 2008).

Previous studies on CLL can be roughly divided into two categories: methods that attempt to construct
an unbiased risk estimator (URE-based) (Ishida et al., 2017; 2019; Feng et al., 2020) and methods
based on feature learning (FL-based) (Chou et al., 2020; Wang et al., 2021; Liu et al., 2022; Jiang
et al., 2024). For URE-based methods, Ishida et al. (Ishida et al., 2017) and Feng et al. (Feng et al.,
2020) showed that the ordinary classification risk can be recovered by their proposed unbiased risk
estimator only from complementary labeled data. Ishida et al. (Ishida et al., 2019) later extended
the unbiased risk estimator to arbitrary losses and models. Chou et al. (Chou et al., 2020) proposed
a surrogate complementary loss framework, which avoids the extremely noisy gradient problem
encountered in unbiased risk estimator. For FL-based methods, Wang et al. (Wang et al., 2021)
gave the first attempt to leverage regularization techniques with complementary label by aligning the
model output of one instance and its multiple augmented views. Liu et al. (Liu et al., 2022) proposed
to integrate self-supervised and self-distillation to complementary learning. Jiang et al. (Jiang et al.,
2024) leveraged a contrastive learning framework to facilitate CLL. These methods mainly focus on
the design of robust loss functions or the exploration of feature space information, while neglecting
the power of output space information.

We propose that CLL can be viewed as solving the multi-class classification problem from two
inverse aspects, where one is to infer the positive label and another is to infer the negative labels. To
this end, we propose two subtasks: positive label guessing (PLG) and negative label enhancement
(NLE). We use well-designed criteria for evaluating the confidence of the model output, accordingly
divide the training instances into three categories: highly-confident, moderately-confident and under-
confident in each epoch. We perform PLG by simply pseudo-labeling highly-confident instances
for supervised training. Unlike pseudo-labeling methods used in semi-supervised learning (SSL),
PLG pseudo-labeling reaches high selected ratio and high precision even without any positive labels
available.

More importantly, previous SSL methods lack the utilization of untrustworthy instances. They either
discard this part or simply employ techniques such as consistency regularization. In this paper,
we perform NLE by enhancing the negative label set of moderately-confident and under-confident
instances and train them with the augmented negative labels iteratively.

Although PLG and NLE will inevitably bring pseudo-labeling errors, we theoretically prove that the
error rates are upper bounded. And the generalization error of the learned classifier under PLG and
NLE errors is also upper bounded, which means that we can construct a classifier consistent with that
learned by clean full labels. We demonstrate that PLNL achieves state-of-the-art performance on five
benchmark datasets. Our contributions can be summarized as follows:

• A novel method for CLL. Different from conventional loss design methods, we pioneer a
novel method for CLL called PLNL that formulates CLL from output space information and
solve it by two subtasks: PLG and NLE.

• A unified framework for pseudo-labeling-based methods. From the perspective of negative
label recovery, we construct a unified framework for pseudo-labeling-based methods. We
empirically show that PLNL outperforms state-of-the-art SSL methods in terms of pseudo-
labeling error, selected ratio and recovered negative labels.

• Solid theoretical analysis. We theoretically prove that both the error rates of PLG and NLE
are upper bounded. The generalization error of the learned classifier is also upper bounded.

• State-of-the-art performance. Extensive experiments on five benchmark datasets demon-
strate the superiority of PLNL over the state-of-the-art CLL methods.

2 PRELIMINARIES

Ordinary Multi-Class Classification. Let X ∈ Rd denote the feature space with d dimensions
and Y = {1, 2, ...,K} denote the label space with K classes. The precisely labeled instance
(x, y) ∈ X × Y is sampled from an unknown probability distribution p(x, y). The goal of ordinary
multi-class classification is to learn a parameterized function f(x) : Rd → RK that minimizes the
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classification risk:
R(f) = Ep(x,y)L(f(x), y), (1)

where Ep(x,y) refers to the expectation across all possible samples drawn from the distribution p(x, y),
L : RK × Y → R is a multi-class classification loss function. In this paper, we consider a common
case where the function f is a deep neural network with the softmax output layer, where f(x) is
considered as the output prediction confidence of the model on each class. Since the probability
distribution p(x, y) is unknown, we use the empirical risk R̂(f) to approximate R(f). Assuming a
dataset {(xi, yi)}Ni=1 is independently drawn from distribution p(x, y), then we have

R̂(f) =
1

N

N∑
i=1

L(f(x), yi). (2)

Complementary Label Learning. Different from the ordinary multi-class classification, in CLL,
let {(xi, Ȳi)}Ni=1 be the complementary labeled dataset, where N is the dataset size, Ȳi indicates the
complementary (negative) label set of xi. Each complementary labeled instance (x, Ȳ ) ∈ X × Y
is sampled from an unknown probability distribution p̄(x, ȳ). Our goal is to learn a classifier that
minimizes the classification risk Eq. (1) only from complementary labeled training instances. Then
the empirical risk becomes:

R̂(f) =
1

N

N∑
i=1

L̄CLL(f(xi), Ȳi), (3)

where L̄CLL is a specially designed loss function for learning from only complementary labeled data.

3 PROPOSED METHOD

The overall framework of PLNL is shown in Fig.1, and the pseudo-code is presented in Appendix
A. We begin by employing weak and strong augmentation to a complementary labeled image xi,
which leads to two augmented views xw

i , xs
i . These two images are then fed into a two-view network

with shared weight f(x; Θ) to obtain two prediction confidences f(xw
i ) and f(xs

i ). Then we utilize
the two-view prediction confidences to select three subsets of training instances mentioned above,
i.e., highly-confident, moderately-confident and under-confident. We select these subsets using the
historical confidences of the previous training epochs to better alleviate confirmation bias. Finally,
different techniques are utilized to conquer individual subsets. In this section, we first explain the
well-designed confidence-based instances selection strategy, and then introduce the PLG for the
highly-confident instances and two different versions of NLE for the moderately-confident instances
and the under-confident instances in detail.

Figure 1: The overall framework of PLNL. We employs a two-view network (shared backbone)
to extract features and compute confidences for weak and strong augmentations of one instance
respectively. After the selection of highly-confident, moderately-confident and under-confident set,
We employ PLG on highly-confident instances and NLE for the rest. The loss is computed on the
enhanced labels of both views and the model updates through backpropagation.
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3.1 CONFIDENCE-BASED INSTANCES SELECTION

We first maintain two memory banks Mw and M s for weak and strong augmentation respectively,
each with size t×N ×K to store the historical prediction confidence over the past t epochs. For
simplification, we only consider one view here unless otherwise specified.

Mi = [f1(xi), . . . , f
t(xi)]. (4)

where f t(xi) denotes the prediction confidence of the t-th epoch in the memory bank M .

We propose to select subsets based on the following criteria.

ωi1 = ∀1 ≤ j ≤ t, argmax(f j(xi)) /∈ Ȳi, (5)

ωi2 = ∀1 ≤ j, k ≤ t, argmax(f j(xi)) = argmax(fk(xi)), (6)

ωi3 = ∀1 ≤ j ≤ t,max(f j(xi)) ≥ λ, (7)

where ωi1, ωi2, ωi3 are boolean variables which indicate whether the corresponding criterion is
satisfied. ωi1 ensures that the label corresponding to the max prediction confidence does not fall on
the complementary label set, which excludes the complementary labels from being selected as positive
label. ωi2 ensures that the max prediction confidence be stable and show no sign of fluctuations over
the past t epochs. ωi3 ensures the max prediction confidence should be higher than a threshold λ.
Note that λ can be either a man-made threshold or a self-adaptive one, which will be discussed in
detail later.

Warm up. Before selecting, we warm up the model using the entire training set. The goal of this
stage is to reduce the classification risk and obtain some historical prediction confidence to construct
the memory bank since we have no historical information at initial epoch. In this paper, we use
SCL-LOG algorithm (Chou et al., 2020) to warm up models for 20 epochs.

Instance-aware self-adaptive threshold. The threshold in criterion ωi3, as is mentioned above,
can be a fixed high threshold (like 0.95). However, a single global threshold does not consider the
fitting difficulties of different instances, i.e., hard instances and easy instances. This will result in very
few samples being selected in the early training stages as well as confirmation bias. Therefore, to
comprehensively consider historical information, we design an instance-aware self-adaptive threshold
for each instance at each epoch t as:

λ(t) = αλ(t− 1) + (1− α)f(t), λ(0) =
1

K
, (8)

where K is the number of classes, f(t) = max f(x) and α is the ratio which controls the threshold
stability.

The threshold is initialized at a low value 1
K , which will take more data into account and helps speed

up convergence in the early stages. As the prediction confidence increases, the threshold grows higher
to filter out wrong pseudo labels to alleviate the confirmation bias. Note that we compute λw(t)
and λs(t) for two different views respectively according to Eq. (8). We use the momentum average
confidence of each instance, computed based on all previous epochs. In this way, the threshold
comprehensively considers historical information and remains stable and trustworthy.

Subset Selection. For the two-view network, we perform two independent verifications. Let
βw
i = ωi1 ∧ ωi2 ∧ ωi3 be the indicator of satisfying the criteria. Thus, βw

i and βs
i indicate whether

the weak and strong views meet the criteria respectively. For an instance, if both views meet the
criteria, we select it to the highly-confident subset, i.e.,

H = {xi|βw
i ∧ βs

i = 1}, (9)

It means the prediction confidences of both views are stable and high, thus we consider them to be
highly-confident. The size of H is denoted as Nh.

Similarly, the moderately-confident subset consists of instances only one augmented version of which
meet the criteria, i.e.,

M = {xi|βw
i ̸= βs

i }, (10)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

It means only one view’s prediction is trustworthy, the other is not. which shows that the model is
moderately-confident about its prediction. The size of M is denoted as Nm.

Finally, the under-confident subset consists of the rest of the instances, i.e.,

U = {xi|βw
i ∨ βs

i = 0}, (11)

It means the prediction confidences of both views do not meet the designed criteria, these instances
are considered under-confident. The size of U is denoted as Nu.

After obtaining H, M and U , we design different techniques to better utilize these different types of
training instances.

3.2 POSITIVE LABEL GUESSING

For highly-confident set H, we consider the label with the max prediction confidence as its positive
label. Conversely, all remaining labels are considered complementary labels. Let ̂̄Y i be the
enhanced negative label set for instance xi, we have:̂̄Y i = {c|c ∈ Yi, c ̸= ŷi} (12)

where ŷi is the guessed positive label and Yi = {1, 2, . . . ,K} is the full label set.

For highly-confident set H, we compute the CLL loss on the negative labels for both views:

Lh =
1

N

Nh∑
i=1

L̄CLL(f(x
w
i ),

̂̄Y i) + L̄CLL(f(x
s
i ),
̂̄Y i) (13)

where f(xw
i ) and f(xs

i ) denote model outputs of weak augmentation and strong augmentation
respectively.

3.3 NEGATIVE LABEL ENHANCEMENT

For the moderately-confident set M and the under-confident set U , guessing the positive labels
directly might lead to much more errors due to their relatively lower confidence. Therefore, we
employ a different strategy for these instances, called negative label enhancement (NLE).

The rationale of NLE is that more negative labels will bring in additional supervision information
for better training. However, whether the enhanced negative labels are correct remains a question.
Intuitively, randomly enhancing negative labels will bring in a large number of labeling errors. To
better enhance the reliability of NLE, we further exploit information in the output space and design
the following solution.

Calculation of k Nearest Neighbor (k-NN) instances. For instance xi and its model output
prediction confidence yi, we can compute its k-NN instances in the output space. It is safe to
assume that nearby instances in the output space should have the same positive label with a high
probability, while their original complementary label sets are likely to vary. The formal definition of
this assumption is as follows:

Assumption 1. ∀(xi, Ȳi) ∈ D and its k-NN instances (x(j)
i , Ȳ

(j)
i ), the positive label yi exists in its

k-NN instances’ complementary label set Ȳ (j)
i with probability no more than αk, any negative label

y′i ̸= yi exist in its k-NN instances’ complementary label set Ȳ (j)
i with probability no less than βk.

This assumption describes the intrinsic characteristics of CLL in the output space, which can be
interpreted in two aspects. First, similarity in the input space will be mapped to similarity in the
output space, which has been widely utilized for tackling representation learning problems (He et al.,
2020). Second, instances of the same category are likely to be labeled with complementary labels of
different categories, which is key to enhancing the negative labels.

k-NN label frequency. For instance xi, we propose to calculate the times a negative label appears
in its k-NN instances’ complementary label set and then enhance top-τi frequent ones, that is, add

5
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them to the complementary label set of xi. We define the j-th k-NN label frequency of xi as follows:

Fij =
∑k

v=1
I(j ∈ Ȳ

(v)
i ), (14)

where Ȳ (v)
i denotes the complementary label set of the v-th nearest instance of xi.

Negative label enhancement. We enhance the complementary label set Ȳi by adding additional
labels with top-τi label frequency. For each instance xi in M and U , the enhanced complementary
(negative) label set ̂̄Y i is calculated by:̂̄Y i = {c|c ∈ Ȳi ∨ c ∈ top-τi-maxj(Fij)}. (15)

However, the prediction confidence of the under-confident is more unreliable than that of the
moderately-confident. Therefore, we should be more conservative when enhancing these instances
as the k-NN information may be more unreliable. In our work, we set τi = ⌈K−si

10 ⌉ for U where si
is the size of Ȳi. For M, we set τi = (1 + e

Emax
)⌈K−si

10 ⌉ where e is current epoch, Emax is total
epochs. This provides a linear growing strategy for the moderately-confident because the model’s
output becomes increasingly accurate as the training progresses.

For moderately-confident set M and under-confident set U , we compute the CLL loss on the negative
labels for both views:

Lm,u =
1

N

Nm+Nu∑
i=1

L̄CLL(f(x
w
i ),

̂̄Y i) + L̄CLL(f(x
s
i ),
̂̄Y i) (16)

where f(xw
i ) and f(xs

i ) denote model outputs of weak augmentation and strong augmentation
respectively.

4 A UNIFIED FRAMEWORK FOR PSEUDO-LABELING-BASED METHODS

Pseudo-labeling, which has been widely used in the recent semi-supervised learning (SSL) methods,
is employed by giving unlabeled instances pseudo labels and train them in a supervised way. PLNL is
an extension of pseudo-labeling. We not only consider pseudo-labeling of highly-confident instances,
but also consider enhancing the negative label set of untrustworthy instances. In this way, we actually
recover more supervised information than only leveraging pseudo-labeling and further boost the
classification performance.

In this section, we construct a unified framework where PLG and NLE are viewed from the perspective
of negative label recovery. Let ŷi be the pseudo-label of xi. Let Yi be the full label space. Let ̂̄Y i be
the reconstructed (PLNL) or imposed (pseudo-labeling) negative label set for xi.

For PLNL, PLG is equivalent to reconstructing a negative label set ̂̄Y i = {c|c ∈ Yi, c ̸= ŷi} of size
K − 1, in which only the guessed positive label does not belong. NLE is equivalent to reconstructing
a negative label set of size si + τi, where we add τi negative labels to the original negative label set
of size si.

Similarly, for pseudo-labeling methods, let the pseudo label for instance xi be ŷi as well. The
process of pseudo-label highly-confident instances is also equivalent to imposing a negative label set̂̄Y i = {c|c ∈ Yi, c ̸= ŷi} of size K − 1 as additional supervised information.

In this paper, we propose two metrics for evaluation of pseudo-labeling-based methods. Firstly, we
define selected ratio η:

η =
Nh

N
, (17)

Obviously, η evaluates the ratio of highly-confident instances selected for pseudo-labeling methods.

Furthermore, we define average size of enhanced negative label set s̄:

s̄ =

∑N
i=1 |

̂̄Y i|
N

, (18)

6
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In section 6, we empirically show that PLNL achieves lower error rate ϵ, higher selection ratio η and
obviously larger size of negative label set s̄ compared with pseudo-labeling method Fixmatch (Sohn
et al., 2020) and Freematch (Wang et al., 2022).

5 THEORETICAL ANALYSIS

5.1 GENERALIZATION BOUND

For simplification, we only consider one view network here, which has no influence on the deduction
of generalization error bound. Our goal is to learn a classification model f(x; Θ) by minimizing the
empirical risk R̂′(f) acquired from data with enhanced negative labels:

R̂′(f) =
1

N

N∑
i=1

L̄CLL(f(xi),
̂̄Yi), (19)

where ̂̄Y i denotes the enhanced negative label set of xi.

Let the CLL loss function be LCLL(f(x),
̂̄Y i) =

∑
y/∈ ̂̄Y i

(1/(K−|̂Ȳ i|))ℓ(f(x), y) where | ̂̄Y i| is the

size of the enhanced negative label set. Let s̄ =
∑N

i=1 | ̂̄Y i|
N be the average size of enhanced negative

label set. Let ϵ1 =
∑Nh

i=1
I(yi∈ ̂̄Y i)

Nh
be the error rate of PLG. Let ϵ2 =

∑Nm+Nu

i=1
I(yi∈ ̂̄Y i)
Nm+Nu

be the

error rate of NLE. The actual pseudo-labeling error rate ϵ =
∑N

i=1 I(yi∈ ̂̄Y i)

N = Nh

N ϵ1 +
Nm+Nu

N ϵ2 =
ηϵ1 + (1 − η)ϵ2. Moreover, ℓ(f(x), y) is ρ-Lipschitz w.r.t. f(x) where ρ can be any Lipschitz
constant (not necessarily the best). Let RN (F) be the expected Rademacher complexity (Mohri et al.,
2018) of F with N training instances. Let f̂ = argminf∈F R̂

′(f) be the empirical risk minimizer,
where F is a function class, and f∗ = argminf∈FR(f) be the true risk minimizer. We derive the
following theorem, which provides a generalization error bound for the proposed method.
Theorem 1. Suppose that ℓ(f(x), y) is bounded by B. For pseudo-labeling error rate ϵ ∈ (0, 1), for
any δ > 0, with probability at least 1− δ, we have

R(f̂)−R(f∗) ≤ 2(1− 1− ϵ

K − s̄
)B + 4ρKRN (F) + 2KB

√
log 2

δ

2N
, (20)

Remark. Detailed proofs are provided in Appendix B. Theorem 1 shows that as N → ∞, ϵ1 → 0,
ϵ2 → 0, the empirical risk minimizer converges to the true risk minimizer with high probability.
It can be observed from Eq. (20) that the generalization bound is influenced by five factors: the
number of categories K, the average size of enhanced negative label set s̄ and two error rates. This is
consistent with the intuition that more categories and less complementary labels will make the CLL
problem harder. In a nutshell, smaller PLNL pseudo-labeling error rates ϵ1, ϵ2 and larger size of
enhanced negative label set s̄ will produce better generalization performance.

5.2 ERROR BOUND OF POSITIVE LABEL GUESSING

Theorem 2. Suppose that yi denote the ground-truth positive label of xi and ŷi denote the guessed
positive label which might not be true. PLG error rate ϵ1 is upper bounded by:

ϵ1 = P(yi ∈ ̂̄Y i) ≤ (K − 1− si)ψ, (21)

where K is class number, si is the size of Ȳi and ψ ∈ (0, 1
K−1−si

). Detailed proofs are provided in
Appendix C.

5.3 ERROR BOUND OF NEGATIVE LABEL ENHANCEMENT

Theorem 3. Suppose that y denote the ground-truth positive label of xi and y′ denote an arbitrary
negative label. Let F (τi)

i denote the τi-th largest label frequency. Let p denote the probability of the

7
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ground-truth positive label yi appearing in its k-NN instance’s complementary label set. Let q denote
the probability of the label y′ appearing in its k-NN instance’s complementary label set. The NLE
error rate ϵ2 is upper bounded by:

ϵ2 = P(yi ∈ ̂̄Y i) ≤
∑k

j=1

(
|Yi| − 1

|Yi| − τi

)
Fβk

(k − j + 1, j)(|Yi|−τi)bαk
(k, j), (22)

where Fβk
(k, j) =

∫ βk

0
pk−1(1 − p)j−1dt denotes the regularized incomplete beta function,

bαk
(k, j) =

(
k
j

)
αj
k(1− αk)

k−j is the probability mass function of a binomial distribution B(k, αk).
Detailed proofs are provided in Appendix D.

Remark. Theorem 2 and Theorem 3 show that both PLG error rate ϵ1 and NLE error rate ϵ2 are upper
bounded under mild condition.

Table 1: Comparison of classification accuracies between different methods on four datasets with a
single complementary label per instance. The results (mean ± std) are reported over 3 random trials.
The best results are highlighted in bold (The same applies hereinafter).

Method STL-10 SVHN FMNIST CIFAR-10
UB-EXP 28.84±0.54% 88.93±0.17% 87.96±0.08% 62.90±0.06%
UB-LOG 20.41±0.46% 89.59±0.08% 87.59±0.14% 70.28±0.12%
SCL-EXP 31.03±0.61% 88.66±0.20% 88.31±0.09% 72.35±0.10%
SCL-LOG 30.74±0.72% 89.26±0.24% 88.03±0.10% 79.87±0.14%

POCR 34.96±0.32% 96.65±0.14% 92.29±0.07% 94.15±0.09%
SELF-CL 30.87±0.72% 90.13±0.23% 84.86±0.10% 88.95±0.22%
ComCo 32.43±0.28% 91.41±0.35% 85.42±0.40% 89.36±0.76%

Ours 55.25±0.36% 97.58±0.18% 93.38±0.06% 94.78±0.12%

Table 2: Comparison of classification accuracies between different methods on five datasets with
multiple complementary labels per instance. The results (mean ± std) are reported over 3 random
trials.

Method STL-10 SVHN FMNIST CIFAR-10 CIFAR-100
UB-EXP 60.85±0.12% 95.23±0.09% 92.34±0.28% 91.13±0.23% 34.43±0.08%
UB-LOG 62.84±0.17% 94.76±0.07% 91.84±0.29% 92.01±0.21% 52.76±0.15%
SCL-EXP 62.96±0.10% 95.28±0.14% 92.20±0.27% 91.85±0.25% 47.81±0.09%
SCL-LOG 61.60±0.14% 94.88±0.16% 91.51±0.25% 92.67±0.18% 49.40±0.19%

POCR 74.51±0.29% 97.14±0.09% 94.76±0.26% 96.09±0.27% 53.16±0.11%
SELF-CL 69.85±0.20% 91.58±0.30% 94.92±0.21% 92.23±0.16% 57.65±0.25%
ComCo 73.28±0.19% 95.41±0.23% 92.01±0.16% 91.38±0.73% 57.88±0.95%

Ours 77.11±0.14% 98.13±0.11% 95.16±0.13% 96.80±0.28% 64.33±0.43%

6 EXPERIMENT

6.1 EXPERIMENT SETUP

Datasets. We use five commonly used benchmark datasets, STL-10 (Coates et al., 2011), Fashion-
MNIST (FMNIST) (Xiao et al., 2017), SVHN (Netzer et al., 2011), CIFAR-10 and CIFAR-100
(Krizhevsky and Hinton, 2009). We conduct experiments by considering both the scenarios of Single
CLL (SCLL) and Multiple CLL (MCLL). To generate single complementary label, we randomly
select one of the complementary classes per instance. To generate multiple complementary labels,
let s be the size of Ȳ , we first instantiate p(s) =

(
K−1
s

)
/(2K − 2), s ∈ {1, 2, ...,K − 1}, which

represents the possibility of randomly sample a complementary label set whose size is s from all
possible complementary label sets which has 2K − 2 sets to choose from. Then for each instance

8
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xi, we first sample si from p(si), and then sample a complementary label set Ȳi with size s from
p(Ȳi) = 1/

(
K−1
si

)
.

Compared methods. We compare the performance of PLNL with seven state-of-the-art CLL
methods, including UB-EXP (Feng et al., 2020), UB-LOG (Feng et al., 2020), SCL-EXP (Chou et al.,
2020), SCL-LOG (Chou et al., 2020), POCR (Wang et al., 2021), SELF-CL (Liu et al., 2022) and
ComCo (Jiang et al., 2024) and two state-of-the-art SSL methods, Fixmatch (Sohn et al., 2020) and
Freematch (Wang et al., 2022).

Implementation. Implementation details are provided in Appendix F.

6.2 MAIN RESULTS

(a) Accuracy Comparison of CLL methods (b) PLG Precision vs. Selected Ratio (c) NLE Precision vs. Ave. Num. of NLS

Figure 2: The experiments is conducted on CIFAR-100 with multiple complementary labels (MCLL). (a)
The accuracy of PLNL improves tremendously over epochs and achieves the best finally. (b) The precision
of PLG decreases slowly, while the selected ratio steadily rises, indicating a growing proportion of selected
instances during training. (c) Ave. Size of NLS denotes average number of negative label set s̄. The precision of
NLE remains relatively stable with a slight decrease, whereas the average size of negative label set increases
significantly, showing a steady recovery of negative labels.

PLNL achieves SOTA results. As shown in Table 1 and Table 9, PLNL outperforms all the
compared method by a significant margin across all datasets. Specifically, on STL-10 dataset, we
outperform the previous SOTA by 20.29% and 1.61% in both SCLL and MCLL settings. Furthermore,
PLNL performs even better in harder scenarios where there is larger label space or less supervised
information for each class. We challenge this by showing our results on CIFAR-100 datasets. On
CIFAR-100 with Multiple CLs, the improvement is 6.45% compared to previous SOTA. Fig. 2a
further demonstrates that PLNL significantly outperforms the compared ones.

PLNL pseudo-labeling achieves excellent performance with extremely high precision. Fig.
2b shows that as the number of epochs increases, PLG will select more and more highly-confident
instance, eventually occupying most of the dataset, while the precision only drops slightly in the final
stage, which maintains high precision and high selected ratio. Meanwhile, Fig. 2c shows that NLE
identifies more and more negative labels with extremely high precision, which maintains above 0.99
throughout training.

Compared with SOTA semi-supervised learning methods, PLNL performs even better. From
Fig. 3a and Fig. 3b, we can see that PLNL achieves both higher selected ratio and recovered more
negative labels compared with Fixmatch and Freematch. PLNL is both accurate and comprehensive
in recovering label information. This highlights PLNL’s enhanced capacity in leveraging moderately-
confident and under-confident instances for label recovery, showcasing both stability and scalability.

PLNL can reduce the generalization bound and achieves lower generalization bound compared
with SSL methods. Fig. 3c demonstrates that (1− 1−ϵ

K−s̄ ) decreases as the training progresses. As
(1− 1−ϵ

K−s̄ ) is the variable of the generalization bound derived in Theorem 1, it is safe to conclude
that PLNL can continuously and significantly reduce the generalization error.

9
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(a) Selected Ratio vs. Epoch (b) Ave. Num. of NLS vs. Epoch (c) Convergence of (1 − 1−ϵ
K−s̄ )

Figure 3: The experiments is conducted on CIFAR-10 with single complementary labels (SCLL). (a) shows that
selected ratio of PLNL trenscends Fixmatch and Freematch significantly. (b) shows that average size of NLS of
PLNL is significantly larger due to specially designed technique NLE for enhancing the untrustworthy negative
labels. Nearly all negative labels are revealed at the end of training, almost reaching 9 negative labels for each
instances in CIFAR-10 (c) indicates that the value of (1− 1−ϵ

K−s̄
) decreases steadily during training.

6.3 ABLATION STUDY

Table 3: The performance of PLNL with
single network on two settings.

Method
CIFAR-10 CIFAR-100

SCLL MCLL
η 1-ϵ1 η 1-ϵ1

Single 84.65 90.21 67.43 70.62
Two-view 93.40 96.79 76.08 79.84

Two-view networks facilitate increased pseudo-
labeling precision. We observe that two-view network
significantly boost the performance of PLNL pseudo-
labeling, which helps accurately select more highly-
confident instances. As shown in Table 3, the η in-
creases 8.75% and 8.65% respectively on CIFAR-10
and CIFAR-100 with 1− ϵ1 increases 6.58% and 9.22%
respectively. We also compare PLNL with one variant:
PLNL v1 where we replace the two-view networks in
PLNL with a single network in Table 4, which shows
that ours outperforms PLNL v1 by a remarkable margin
(e.g. +6.00% on STL-10).

Table 4: Classification accuracy of degen-
erated methods on three settings.

Method STL-10 CIFAR-10 CIFAR-100
SCLL SCLL MCLL

PLNL 55.25 94.78 64.33
PLNL v1 49.25 93.75 63.09
PLNL v2 49.82 92.01 58.94
PLNL v3 53.22 94.28 63.14

POCR 34.96 94.15 53.16

All the components contribute to the performance
gain. We explore the effectiveness of our proposed
PLG and NLE method on three settings STL-10 (SCLL),
CIFAR-10 (SCLL), CIFAR-100 (MCLL). Specifically,
we compare PLNL with several variants: (1) PLNL
v2 which removes the PLG component; (2) PLNL v3
which removes the NLE component. From Table 4, we
observe that PLNL outperforms PLNL v2 remarkably
(e.g., +5.43% on STL-10), which proves the effective-
ness of positive label guessing. We also observe that ours
outperforms PLNL v3 (e.g., +1.19% on CIFAR-100),
which proves the effectiveness of NLE.

7 CONCLUSION.

In this paper, we introduce a novel complementary label learning method that reformulates CLL as an
inverse problem to infer the full label information from the output space information. To this end, we
split this inverse problem into two subtasks (PLG and NLE). A confidence-based instances selection
module is proposed for dataset split: highly-confident, moderately-confident and under-confident.
Then we perform PLG for highly-confident instances by assigning pseudo-labels to them. For
moderately-confident and under-confident instances, we perform NLE by enhancing their negative
label set with different levels and train them with the augmented negative labels iteratively. We
theoretically prove that when pseudo-labeling error is limited, we can construct a classifier consistent
with that learned by clean full labels. The upper bounds of PLG and NLE error rate are deduced and
we empirically show that PLNL can infer both positive and negative labels with a high precision. We
conducted extensive experiments which demonstrate that PLNL achieves a new state-of-the-art in
CLL. In addition, extensive ablation studies have proved the effectiveness of each component.
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A THE PSEUDO-CODE OF PLNL

Algorithm 1 Pseudo-code of PLNL.

Input: Training dataset D, mini-batch size B, epochs Emax, a two-view network with shared
parameter Θ and two memory bank matrices Mw, M s, hyperparameters t, k, τm, τu.

1: Initialize Mw, M s, Θ by warming up 20 epochs using SCL-LOG (Chou et al., 2020).
2: for e = 1, 2, . . . , Emax do
3: Shuffle D into |D|

B mini-batches;
4: Construct Mw, M s;
5: Compute two-view network outputs of each instances;
6: Select H, M, U based on criteria in Eq. (5);
7: Pseudo-label the highly-confident set H; // PLG
8: Enhance negative labels of set M, U based on Eq. (14) and Eq. (15); // NLE
9: for i = 1, 2, . . . , |D|

B do
10: Fetch an batch Bi with enhanced negative label set;
11: Compute the empirical risk R̂′(f) by Eq. (19);
12: Update parameters of Θ;
13: end for
14: end for
Output: parameters of Θ.

B PROOF OF THEOREM 1

We first derive the uniform deviation bound between R̂(f) and R(f).
Lemma 1. Suppose that the binary loss function ℓ(f(x), y) is ρ-Lipschitz continuous w.r.t. f(x).
For any δ > 0, with probability at least 1− δ, we have∣∣∣R(f)− R̂(f)

∣∣∣ ≤ 2ρKRN (F) +KB

√
log 2

δ

2N
. (23)

Proof. We firstly define the Rademacher complexity of L and F with N training instances as follows:

RN (L ◦ F)

= Ex,y,σ

[
sup
f∈F

N∑
i=1

σiLCLL(f(xi),
̂̄Y i), )

]
. (24)

Considering that LCLL(f(x),
̂̄Y i) =

∑
y/∈ ̂̄Y i

ℓ(f(x), y), we have

RN (L ◦ F) ≤ KRN (ℓ ◦ F),

≤ ρKRN (F), (25)

where the second line is based on Lipschitz continuity of ℓ(f(x), y).

Suppose an instance (xi, yi) is replaced by another arbitrary instance (x
′

i, y
′

i), this leads to a change
of supf∈F R(f)− R̂(f) no greater than KB

N due to the fact that ℓ is bounded by B. According to
McDiarmid’s inequality (Mohri et al., 2018), for any δ > 0, with probability at least 1− δ

2 , we have

sup
f∈F

R(f)− R̂(f) ≤ E

[
sup
f∈F

R(f)− R̂(f)

]
+KB

√
log 2

δ

2N
. (26)

In addition, it is routine (Mohri et al., 2018) that

E

[
sup
f∈F

R(f)− R̂(f)

]
≤ 2R̄N (F). (27)
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By combining Eq. (26) and Eq. (27), and futher taking the other direction of sup
f∈F

R̂(f)−R(f) into

account, with probability at least 1− δ, we have

sup
f∈F

∣∣∣R(f)− R̂(f)
∣∣∣ ≤ 2ρKRN (F) +KB

√
log 2

δ

2N
, (28)

which concludes the proof.

Due to inevitable error made in PLG and NLE. The problem of CLL actually has been translated into
a noisy CLL problem where the true label might be mislabeled as complementary label (Ishiguro
et al., 2022). Let ϵ1 be the error rate of PLG and ϵ2 be the error rate of NLE. Since NLE error

rate ϵ1 =
∑Nh

i=1
I(yi∈ ̂̄Y i)

Nh
and NLE error rate ϵ2 =

∑Nm+Nu

i=1
I(yi∈ ̂̄Y i)
Nm+Nu

, the actual noise rate ϵ =∑N
i=1 I(yi∈ ̂̄Y i)

N can be calculated as ϵ = Nh

N ϵ1 +
Nm+Nu

N ϵ2 = ηϵ1 + (1− η)ϵ2. We further bound the
difference between R̂(f) and R̂′(f).
Lemma 2. Suppose that the binary loss function ℓ is bounded by B. For some noise rate ϵ ∈ (0, 1)
and average complementary label size s̄ for any f ∈ F , we have∣∣∣R̂′(f)− R̂(f)

∣∣∣ ≤ (1− 1− ϵ

K − s̄
)B. (29)

We firstly proved the upper bound of the R̂′(f):

R̂′(f) =
1

N

N∑
i=1

L̄CLL(f(xi),
̂̄Yi),

=
1

N

N∑
i=1

ℓ(f(xi), yi) +
1

N

N∑
i=1

I(yi /∈ ̂̄Yi)
 ∑
c/∈ ̂̄Yi,c̸=yi

1

K − | ̂̄Yi|ℓ(f(xi), c)−
K − | ̂̄Yi| − 1

K − | ̂̄Yi| ℓ(f(xi), yi)


+

1

N

N∑
i=1

I(yi ∈ ̂̄Yi)
∑
c/∈ ̂̄Yi

1

K − | ̂̄Yi|ℓ(f(xi), c)− ℓ(f(xi), yi)

 ,
≤ R̂(f) +

1

N

N∑
i=1

I(yi /∈ ̂̄Yi) ∑
c/∈ ̂̄Yi,c̸=yi

1

K − s̄
ℓ(f(xi), c) +

1

N

N∑
i=1

I(yi ∈ ̂̄Yi)∑
c/∈ ̂̄Yi

1

K − s̄
ℓ(f(xi), c),

≤ R̂(f) + (1− ϵ)
K − s̄− 1

K − s̄
B + ϵB, (30)

where the second line holds based on ϵ =
∑N

i=1 I(yi∈ ̂̄Y i)

N and Jensen’s inequality (Abramovich et al.,
2004) as , and we can prove the lower bound in a similar way:

R̂′(f) =
1

N

N∑
i=1

ℓ(f(xi), yi) +
1

N

N∑
i=1

I(yi /∈ ̂̄Yi)
 ∑
c/∈ ̂̄Yi,c̸=yi

1

K − | ̂̄Yi|ℓ(f(xi), c)−
K − | ̂̄Yi| − 1

K − | ̂̄Yi| ℓ(f(xi), yi)


+

1

N

N∑
i=1

I(yi ∈ ̂̄Yi)
∑
c/∈ ̂̄Yi

1

K − | ̂̄Yi|ℓ(f(xi), c)− ℓ(f(xi), yi)

 ,
≥ R̂(f)− 1

N

N∑
i=1

I(yi /∈ ̂̄Yi) ∑
c/∈ ̂̄Yi,c̸=yi

1

K − s̄
ℓ(f(xi), c)−

1

N

N∑
i=1

I(yi ∈ ̂̄Yi)∑
c/∈ ̂̄Yi

1

K − s̄
ℓ(f(xi), c),

≥ R̂(f)− (1− ϵ)
K − s̄− 1

K − s̄
B − ϵB, (31)

By combining these two sides, we have:∣∣∣R̂′
h(f)− R̂h(f)

∣∣∣ ≤ 1− 1− ϵ

K − s̄
B, (32)
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which concludes the proof.

Then, for any δ > 0, with probability at least 1− δ, we have

R(f̂)

≤ R̂(f̂) + 2ρKRN (F) +KB

√
log 2

δ

2N
,

≤ R̂′(f̂) + (1− 1− ϵ

K − s̄
)B + 2ρKRN (F) +KB

√
log 2

δ

2N
,

≤ R̂′(f∗) + (1− 1− ϵ

K − s̄
)B + 2ρKRN (F) +KB

√
log 2

δ

2N
,

≤ R̂(f∗) + 2(1− 1− ϵ

K − s̄
)B + 2ρKRN (F) +KB

√
log 2

δ

2N
,

≤ R(f∗) + 2(1− 1− ϵ

K − s̄
)B + 4ρKRN (F) + 2KB

√
log 2

δ

2N
, (33)

where the first and fifth line are based on Lemma 1, the second and fourth line are based on Lemma 2,
the third line is based on the definition of the empirical risk minimizer f̂ = argminf∈F R̂(f) which
means any other f ̸= f̂ would lead to a larger risk of R̂(f).

C PROOF OF THEOREM 2

Motivated by the formulation of partially labeled data learning in (Gong et al., 2022), we assume
that the full label information Y = {y, Ỹ } where y is the ground-truth label and Ỹ is a set of the rest
labels. And we assume that Q is a hypothetical predictive model with parameters θ, where θ is the
model parameter used for prediction. PLG aims to identify the ground-truth label from the label set
except complementary label set, which can be implemented by maximizing the conditional likelihood
of training dataset with respect to parameters θ. The conditional log-likelihood given all training
examples can be expressed as follows.

f(θ|Ỹ ) =
1

N

N∑
i=1

logQ(yi|xi). (34)

By multiplying and dividing classifier Q by the true distribution of identified ground-truth labels
given features P (y|x), we can formulate Eq. (34) as follows.

f(θ|Ỹ ) =
1

N

N∑
i=1

log
Q(yi|xi)

P (yi|xi)
+

1

N

N∑
i=1

logP (yi|xi). (35)

By multiplying and dividing the probability P (Y |x) to the second term, we can formulate Eq. (34)
as follows.

f(θ|Ỹ ) =
1

N

N∑
i=1

log
Q(yi|xi)

P (yi|xi)
+

1

N

N∑
i=1

log
P (yi|xi)

P (Yi|xi)
+

1

N

N∑
i=1

logP (Yi|xi). (36)

We use E(X ,Y) operator to calculate the expectation of the random variables (X ,Y), meaning n→ ∞.

f(θ|Ỹ ) = E(X ,Y)

{
log

Q(y|x)
P (y|x)

}
+ E(X ,Y)

{
log

P (y|x)
P (Y |x)

}
+ E(X ,Y) {logP (Y |x)} . (37)
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Recall that we assume that the full label information Y = {y, Ỹ }. Then the second term of Eq. (37)
can be developed as follows.

E(X ,Y)

{
log

P (y|x)
P (Y |x)

}
= −E(X ,Y)

{
log

P (Y |x)
P (y|x)

}
},

= −
∑
(x,Y )

P (x, Y ) log
P (y, Ỹ |x)
P (y|x)

,

= −
∑
(x,Y )

P (x, Y ) log
P (y, Ỹ ,x)

P (y,x)
,

= −
∑
(x,Y )

P (x, Y ) log
P (Ỹ ,x|y)
P (x|y)

,

= −
∑
(x,Y )

P (x, Y ) log
P (Ỹ ,x|y)
P (x|y)

P (Ỹ |y)
P (Ỹ |y)

,

= −
∑
(x,Y )

P (x, Y ) log
P (Ỹ ,x|y)

P (x|y)P (Ỹ |y)
−
∑
(x,Y )

P (x, Y ) logP (Ỹ |y),

= −
∑
(x,Y )

P (x, Y ) log
P (Ỹ ,x|y)

P (x|y)P (Ỹ |y)
−
∑
(Ỹ ,y)

P (Ỹ , y) logP (Ỹ |y),

= −I(Ỹ , X|y) +H(Ỹ |y),
= −I(Ỹ , X|y). (38)

The last equality holds because the conditional entropy H(Ỹ |y) = 0. This is because in CLL setting,
once y is known, then the full label information is of course known in advance, meanwhile, thus the
uncertainty remaining in Ỹ is zero, i.e., H(Ỹ |y) = 0. By combining Eq. (38) and Eq. (37), we have
the objective function as follows.

f(θ|Ỹ ) = −E(X ,Y)

{
log

P (y|x)
Q(y|x)

}
− I(Ỹ , X|y)−H(Y |X). (39)

The first term is a log likelihood ratio between the true and the predicted ground-truth label distribu-
tions given features. The value of this term depends on how well the model Q can approximate P .
The second term is the conditional mutual information between the complementary labels and the
features, given the ground-truth label. The last term is a constant independent of parameters.

Then, we discuss the mild assumption under which PLG method is effective for CLL.

Assumption 2. Let y ∈ Y ′ and y′ ∈ Y ′ denote any ground-truth label and unidentified negative label
respectively. Let X denote the random variables of x. Let I(y,X) denote the mutual information
between ground-truth label y and feature X . Let I(y′, X) denote the mutual information between
any unidentified negative label y′ and feature X . Then, with probability no more than ψ, we have

I(y,X) ≤ I(y′, X), (40)

where ψ < 1
K−1−s .

Remark. This assumption ensures that the feature tends to have more mutual information with positive
labels than negative labels.

Motivated by the simplification for identification method in (Gong et al., 2022). In PLG, the training
objective actually is the second term of Eq. (39):fy(x) = I(y,X|Ỹ ). As a result, the error rate of
PLG can be calculated as follows. Suppose ŷ is the guessed positive label, and y′ is any negative

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

label.

P(y ̸= j, ŷ = j) =
∑

y′ /∈Ȳ
P (fŷ(x)− fy′(x) ≤ 0),

=
∑

y′ /∈Ȳ
P (I(ŷ, X|Ỹ ) ≤ I(y′, X|Ỹ )),

≤ (K − 1− s)ψ,

(41)

where the second line is based on replacing Ỹ with any y in 39, the fourth line is based on assumption
2. This concludes the proof.

D PROOF OF THEOREM 3

It is evident that reliable representation information is of great importance to the performace of k-NN
based NLE. Motivated by the label distinguishability setting in (He et al., 2024), a mild assumption
for CLL datasets are discussed to ensure the reliability of the representation information.

According to assumption 1, we have the following lemma.
Lemma 3. ∀(xi, Ȳi) ∈ D, let p denote the probability of the true label yi ∈ Yi appearing in its
k-NN instance’s complementary label set. Let q denote the probability of each non-complementary
negative label y ∈ Yi\{yi} appearing in its k-NN instance’s complementary label set. Then, we have

p ≤ αk, q ≥ βk. (42)

Then, We derive the error bound of NLE in a step by step manner as follows.

P(F (τ)
i < Fiy) =

k∑
j=0

P (F
(τ)
i < Fiy|Fiy = j)P (Fiy = j)

=

k∑
j=1

P (Fi ≤ j − 1)P (Fi = j),

=

k∑
j=1

P (F (1)
i ) > j) . . .︸ ︷︷ ︸
(τ−1)items

P (F
(τ)
i ) < j) . . . P (F

(|Yi|−1)
i ) < j)︸ ︷︷ ︸

(|Yi|−τ)items

P (Fi) = j),

≤
∑k

j=1

(
|Yi| − 1

|Yi| − τ

)
Fβk

(k − j + 1, j)(|Yi|−τ)bαk
(k, j), (43)

where Fβk
(k, j) =

∫ βk

0
pk−1(1 − p)j−1dt denotes the regularized incomplete beta function.

bαk
(k, j) =

(
k
j

)
αj
k(1 − αk)

k−j is simply the probability mass function of a binomial distribution
B(k, αk) which is used to describe the counting process of the label frequency Fiy .

E DETAILS OF MCLL SETTINGS.

Ishida et al. (Ishida et al., 2017) assumed that p̄(x, ȳ) is expressed as:

p̄(x, ȳ) =
1

c− 1

∑
y ̸=ȳ

p(x, y). (44)

This assumption implies that all other labels except the correct label are picked as the complementary
label with uniform probabilities. Later, Feng et al. (Feng et al., 2020) considered a more general
setting where each instance is associated with multiple complementary labels (Multiple CLL).
Suppose a Multiple CLL dataset is represented as {(xi, Ȳi)}Ni=1, where Ȳi is the complementary
label set for instance xi. Let us denote the number of the complementary labels by a random variable
si, which is sampled from a distribution p(si). Then, we assume that each sample is drawn from the
following distribution:

p̄(xi, Ȳi) =
∑c−1

j=1
p̄(xi, Ȳi|si = j)p(si = j), (45)
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where

p̄(xi, Ȳi|si = j)p(si = j) :=

{
1

(c−1
j )

∑
y/∈Ȳi

p(x, y), ifsi = j,

0, otherwise.

}
(46)

F MORE EXPERIMENT DETAILS

Details of Compared Methods.

• UB-EXP (Feng et al., 2020), an unbiased risk estimator with an estimation error bound,
which is derived for Multiple CLL specially.

• UB-LOG (Feng et al., 2020), another unbiased risk estimator with an estimation error bound
but with a different multi-class classification loss function.

• SCL-EXP (Chou et al., 2020), a surrogate complementary loss with the use of exponential
loss function.

• SCL-LOG (Chou et al., 2020), a surrogate complementary loss with the use of negative log
loss function.

• POCR (Wang et al., 2021), an algorithm which combines the SCL-LOG loss and the
consistency regularization technique.

• SELF-CL (Liu et al., 2022), an self-supervised learning algorithm which integrates self-
distillation to CLL.

• ComCo (Jiang et al., 2024), a contrastive learning framework which leverages the contrastive
learning technique on CLL.

Details of Implementation.

Implementation. Values of hyperparameters in PLNL are set as follows. The queue size t is
selected from {2, 3, 4, 5}, k-NN parameter k is selected from {100, 250, 500}. The α in the instance-
aware self-adaptive threshold is selected from {0.1, 0.3, 0.5, 0.7, 0.9, 0.99}. For each method, we
train the commonly used PreAct-ResNet18 (He et al., 2016) with 200 epochs (initial 20 epochs for
warm-up), and use SGD as the opimizer with a momentum of 0.9, a weight decay of 1e-4. We set the
batch size from {64, 128}, the initial learning rate from {10−1, 10−2}, and we use cosine learning
rate scheduling with final learning rate 10−3. We employed faiss (Johnson et al., 2019) to compute
k-NN instances in the output space, which is a library for efficient similarity search and clustering of
dense vectors. For weak augmentations, we employ normalization, horizontal flipping and random
cropping. For strong augmentations, we use RandAugment strategy for all, which selects the type
and magnitude of augmentation based on uniform probability.

For implementation of SSL methods, we firstly pre-train the network with complete CLL dataset for
200 epochs. Next, we perform pseudo-labeling iteratively and train the model for another 200 epochs.

All of the experiments are implemented based on PyTorch (Paszke et al., 2019) and all of our
experiments are conducted with 8 NVIDIA 4090 GPUs.

G MORE EXPERIMENTAL RESULTS.

G.1 QUANTATIVE RESULTS: PERFORMANCE OF PLG AND NLE.

As shown in Table 5, PLG achieves high selected ratio in all datasets, even reaching 98.86% on
FMNIST (MCLL), and 76.08% on the difficult CIFAR-100. And the precision remains high even at a
high selected ratio. NLE also has high precision, reaching 80.84% even on CIFAR-100.

G.2 PARAMETER SENSITIVITY ANALYSIS.

Influence of memory bank size t. As is shown in Table 6, it is obvious that t has little effect on
the experimental results on the three datasets. We chose t = 5, which has a slightly better effect. It is
important to utilize historical confidence information to alleviate confirmation bias, but the size of
the memory banks does not matter.
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Table 5: The performance of PLG and NLE on three settings. The results (mean ± std) are reported
over 3 random trials. η denotes PLG selected ratio, 1− ϵ1 denotes PLG precision, 1− ϵ2 denotes
NLE precision.

Dataset Case Performance
η 1-ϵ1 1-ϵ2

CIFAR-10 SCLL 93.40±0.14% 96.79±0.08% 97.79±0.09%
MCLL 97.49±0.12% 99.30±0.05% 98.91±0.07%

FMNIST SCLL 97.25±0.08% 95.24±0.11% 97.56±0.08%
MCLL 98.86±0.06% 97.89±0.11% 98.97±0.03%

CIFAR-100 MCLL 76.08±0.22% 79.84±0.41% 80.84±0.04%

Table 6: Classification accuracy of PLNL with different memory bank size t on three benchmark
datasets. The best results are highlighted in bold and the second best are underlined (The same applies
hereinafter).

t STL-10 CIFAR-10 CIFAR-100
SCLL SCLL MCLL

2 54.45% 94.12% 64.21%
3 54.95% 93.98% 63.95%
4 54.88% 94.56% 63.81%
5 55.25% 94.78% 64.33%

Table 7: Classification accuracy of
PLNL with different k-NN parameter k
on three benchmark datasets.

k STL-10 CIFAR-10 CIFAR-100
SCLL SCLL MCLL

100 54.45% 94.25% 63.27%
250 55.25% 94.73% 64.33%
500 47.23% 94.78% 59.65%

Influence of confidence threshold λ. From Table 8,
we observe that there is a trade-off between η and 1-ϵ1,
i.e., a higher threshold will lead the precision to increase
but result in less reliable instances selected while a lower
threshold will decrease the precision but select more re-
liable instances. Instance-aware self-adaptive threshold
(IST) shows obvious performance gain compared with a
fixed global threshold, showcasing its effectiveness.

Influence of k-NN parameter k. As is shown in Table
7, the selection of k depends on the specific situation of
the dataset. For example, STL-10 has only 500 labeled
instances for each category. If k is set too large, there will be instances that are not in the category
near the decision boundary, which will induce more noise in NLE and cause performance degradation.

Table 8: Classification accuracy and PLG performance of PLNL with different confidence threshold
λ on two benchmark datasets. η denotes PLG selected ratio, 1− ϵ1 denotes PLG precision, 1− ϵ2
denotes NLE precision. IST denotes instance-aware self-adaptive threshold.

λ CIFAR-10, SCLL CIFAR-100, MCLL
Accuracy η 1-ϵ1 Accuracy η 1-ϵ1

0.85 92.89% 99.86% 90.79% 62.12% 81.52% 72.88%
0.90 93.85% 95.78% 92.43% 63.95% 77.25% 77.34%
0.95 94.74% 87.28% 98.68% 64.12% 73.48% 83.61%

IST (α = 0.5) 94.78% 93.40% 96.79% 64.33% 76.08% 79.84%

G.3 EXPERIMENTAL RESULTS ON TINY IMAGENET

Tiny-ImageNet (Le and Yang, 2015) contains 100000 images of 200 classes. Each class has 500
training images, 50 validation images and 50 test images. Due to its huge number of categories, it is
an extremely difficult dataset for complementary label learning. Most existing CLL methods have
only tested their performance on 10-class small datasets. Most of their backbones are ResNet and
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Table 9: Comparison of classification accuracies between different methods on Tiny-ImageNet with
multiple complementary labels per instance.

Method Tiny-ImageNet
UB-EXP 3.89%
UB-LOG 7.17%
SCL-EXP 3.36%
SCL-LOG 8.96%

POCR 4.29%
SELF-CL 7.87%
ComCo 8.52%

Ours 11.87%

a single complementary label is a rather difficult setting for large datasets, these will lead to poor
performance of traditional CLL methods.

However, we have tested the performance of our method on Tiny-ImageNet with MCLL settings.
Though most of the methods perform poorly, our method still outperforms traditional CLL methods
obtrusively.

G.4 EXTRACT FEATURES BASED ON VISUAL LANGUAGE MODELS (VLMS) AND
SELF-SUPERVISED LEARNING (SSL) TECHNIQUES.

In the paper, we compute k-NN instances based on the model output space information, namely
the feature extracted by the model itself. It strikes us that different features may have much to do
with the NLE performance. To confirm this, we employ different feature extractors for computing
k-NN, including PreActResNet-18-MoCo, BLIP-2 (Li et al., 2023a). Note that these results are
just for performance comparison which has nothing to do with the results presented in the main
body of the paper. For MoCo, we train a PreActResNet by self-supervised learning method MoCo
(He et al., 2020) without any supervision. The weak and strong data augmentations used in MoCo
follow the original configurations mentioned in the main body. Then we compute k-NN on the
512-dimensional feature output of the PreActResNet. For BLIP-2, we first employ the visual encoder
to extract 768-dimensional high-quality representations and then leverage faiss (Johnson et al., 2019)
to compute k-NN instances in this feature space. We compute the average precision of NLE 1− ϵ2
and accuracy on CIFAR-10 (SCLL) and CIFAR-100 (MCLL). As shown in Table 10, the feature
extracted from BLIP-2 outperforms MoCo and ResNet itself significantly. This shows the powerful
visual representation ability of VLMs, which has a great potential for facilitating innovation in
weakly-supervised learning in the future.

Table 10: Comparison of classification accuracies and NLE precision between different methods on
CIFAR-100 with multiple complementary labels per instance. PreActResNet-18 denotes leveraging
the model output space information for k-NN calculation

Feature Extractor CIFAR-10, SCLL CIFAR-100, MCLL
Accuracy 1− ϵ2 Accuracy 1− ϵ2

MoCo 93.12% 95.64% 61.82% 75.34%
BLIP-2 95.84% 99.91% 69.85% 93.34%

PreActResNet-18 94.78% 97.79% 64.33% 80.84%

G.5 COMPARISON WITH SEMIREWARD

We further compare the performance of PLNL with one of the recently published SSL method
SemiReward Li et al. (2023b). It can be seen that PLNL still outperforms SemiReward significantly
in selection ratio and average size of NLS.
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(a) Selected Ratio vs. Epoch (b) Ave. Num. of NLS vs. Epoch

Figure 4: The experiments is conducted on CIFAR-10 with single complementary labels (SCLL). (a) shows
that selected ratio of PLNL trenscends Fixmatch, Freematch and SemiReward significantly. (b) shows that
average size of NLS of PLNL is significantly larger due to specially designed technique NLE for enhancing the
untrustworthy negative labels. Nearly all negative labels are revealed at the end of training, almost reaching 9
negative labels for each instances in CIFAR-10.

H DEVIATION REPORTS OF TABLE 3 AND TABLE 4

Table 11: The performance of PLNL with single network on two settings.

Method CIFAR-10 CIFAR-100
SCLL MCLL

η 1-ϵ1 η 1-ϵ1
Single 84.65±0.12% 90.21±0.09% 67.43±0.24% 70.62±0.31%

Two-view 93.40±0.14% 96.79±0.08% 76.08±0.22% 79.84±0.41%

Table 12: Classification accuracy of degenerated methods on three settings.

Method STL-10 CIFAR-10 CIFAR-100
SCLL SCLL MCLL

PLNL 55.25±0.35% 94.78±0.12% 64.33±0.43%
PLNL v1 49.25±0.41% 93.75±0.08% 63.09±0.27%
PLNL v2 49.82±0.39% 92.01±0.12% 58.94±0.31%
PLNL v3 53.22±0.35% 94.28±0.10% 63.14±0.32%

POCR 34.96±0.32% 94.15±0.09% 53.16±0.11%
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I DETAILED DERIVATION OF EQUATION 30

R̂′(f) =
1

N

N∑
i=1

L̄CLL(f(xi),
̂̄Yi)

=
1

N

N∑
i=1

∑
y/∈ ̂̄Y i

1

K − |̂Ȳ i|
ℓ(f(x), y). (47)

This step is due to the definition of CLL loss function:

LCLL(f(x),
̂̄Y i) =

∑
y/∈ ̂̄Y i

1

K − |̂Ȳ i|
ℓ(f(x), y).

Then we have:

R̂′(f) =
1

N

N∑
i=1

ℓ(f(xi), yi) +
1

N

N∑
i=1

I(yi /∈ ̂̄Yi)
 ∑
c/∈ ̂̄Yi,c̸=yi

1

K − | ̂̄Yi|ℓ(f(xi), c)−
K − | ̂̄Yi| − 1

K − | ̂̄Yi| ℓ(f(xi), yi)


+

1

N

N∑
i=1

I(yi ∈ ̂̄Yi)
∑
c/∈ ̂̄Yi

1

K − | ̂̄Yi|ℓ(f(xi), c)−ℓ(f(xi), yi)

 . (48)

The first term is the loss on the ground-truth label, summing up to the empirical risk R̂(f). The
second and third term is the difference between empirical risk R̂(f) and practical empirical risk with
pseudo-labeling error R̂′(f).

Since pseudo-labeling error may occur during PLG and NLE processes, the ground-truth label of xi

may be mistakenly included or correctly excluded in the enhanced negative label set ̂̄Yi. We discuss
two situations separately (i.e. I(yi ∈ ̂̄Yi) and I(yi /∈ ̂̄Yi)). We extract the empirical risk term R̂(f)
by subtracting the equivalent value in the second and third terms, which is shown between square
brackets above.

As ℓ(f(x), y) is bounded by a positive value B. We can scale up the second and third terms by
directly removing the terms after minus sign, which is double underlined above, which will yield the
following line.

R̂′(f) ≤ R̂(f) +
1

N

N∑
i=1

I(yi /∈ ̂̄Yi) ∑
c/∈ ̂̄Yi,c ̸=yi

1

K − | ̂̄Yi|ℓ(f(xi), c)

+
1

N

N∑
i=1

I(yi ∈ ̂̄Yi)∑
c/∈ ̂̄Yi

1

K − | ̂̄Yi|ℓ(f(xi), c). (49)

Then we utilize Jensen’s Inequality for further scaling up.

Jensen’s Inequality for concave function φ:

φ

(
n∑

i=1

g(xi)λi

)
≥

n∑
i=1

φ(g(xi))λi,

where λ1 + λ2 + · · ·+ λn = 1, λi ≥ 0.

Here, the concave function is φ(| ̂̄Yi|) = 1

K−| ̂̄Yi|
, where λi = 1

N , since
∑

c/∈ ̂̄Yi,c̸=yi
ℓ(f(xi), c)

indicates the sum of binary losses on non-complementary labels c /∈ ̂̄Yi, excluding the ground-truth
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label c ̸= yi. The number of non-complementary labels is K − | ̂̄Yi|, excluding the ground-truth label
will get K − | ̂̄Yi| − 1, which means computing the binary loss ℓ(f(xi), c) for K − | ̂̄Yi| − 1 times.
Finally, since ℓ is bounded by B, we can make such a scale:

1

N

N∑
i=1

∑
c/∈ ̂̄Yi,c̸=yi

1

K − | ̂̄Yi|ℓ(f(xi), c)

≤ 1

N

N∑
i=1

K − | ̂̄Yi| − 1

K − | ̂̄Yi| B

≤
K − 1

N

∑N
i=1 |

̂̄Yi| − 1

K − 1
N

∑N
i=1 |

̂̄Yi| B. (50)

Since we have defined that s̄ = 1
N

∑N
i=1 |

̂̄Yi| and I(yi /∈ ̂̄Yi) = 1− ϵ, we have

1

N

N∑
i=1

I(yi /∈ ̂̄Yi)K − 1
N

∑N
i=1 |

̂̄Yi| − 1

K − 1
N

∑N
i=1 |

̂̄Yi| B

≤ (1− ϵ)
K − s̄− 1

K − s̄
B. (51)

The third term in Eq.(48) follows similar scaling procedures.
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