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ABSTRACT

We present a novel plug-in approach for constrained reinforcement learning that
achieves the sample complexity of Õ

(
SAH4

ϵ2ζ2

)
using a generative model. Unlike

previous specialized algorithms, our method is general: it requires only black-box
access to an optimization oracle that solves the empirical CMDP. The core of our
approach is a reward perturbation technique that guarantees the oracle’s solution is
valid for the original problem.

1 INTRODUCTION

A central problem in reinforcement learning is to find a near-optimal policy for a Markov Decision
Process (MDP) with the minimum possible number of samples. We consider this problem in the
fundamental generative model setting, where an algorithm can query a simulator for any state-action
pair to receive a sample of the next state and reward. This setting isolates the core statistical challenge
of learning from finite data, abstracting away the difficulties of exploration. For unconstrained MDPs,
the sample complexity of learning a near-optimal policy of this problem is now tightly understood to
be Θ̃

(
SA

(1−γ)3ϵ2

)
(Azar et al., 2012; Agarwal et al., 2020a; Li et al., 2024), where γ ∈ (0, 1) is the

discount factor, S is the number of states and A is the number of actions for a state.

Among the simplest and most natural algorithms for this task is the plug-in approach (also known as
empirical risk minimization). This method consists of two distinct stages: first, use the generative
model to build an empirical estimate of the transition probabilities and rewards, and second, compute
the optimal policy for this empirical model using a black-box planning oracle, as if the estimate
were the true system. The appeal of this approach is its striking simplicity and modularity. In
the unconstrained setting, it has been proven that this simple plug-in method is, in fact, minimax
optimal (Agarwal et al., 2020a; Li et al., 2024), establishing a powerful, general-purpose paradigm.

This paper investigates whether this elegant plug-in paradigm can be extended to the more complex
setting of Constrained Markov Decision Processes (CMDPs). In a CMDP, an agent must optimize
a reward function while satisfying constraints on one or more auxiliary cost functions. Despite
its conceptual appeal, the naive plug-in approach for CMDPs is not known whether it works. The
issue is one of feasibility: a black-box planner, oblivious to statistical uncertainty, can easily exploit
estimation errors in the empirical model to find a policy that satisfies constraints within the model, but
catastrophically violates them in the true, underlying system. A fundamental challenge in CMDPs, in
contrast to unconstrained MDPs, is the non-uniqueness of the optimal value function.. Due to this
brittleness, state-of-the-art, sample-optimal algorithms for CMDPs have relied on specialized solvers
that tightly integrate the estimation and planning phases (HasanzadeZonuzy et al., 2021; Bai et al.,
2021; Wei et al., 2021), sacrificing the modularity of the plug-in approach.

This work resolves the tension between the simplicity of the plug-in approach and the demands of
constrained optimization. We demonstrate that a simple modification—a carefully designed reward
perturbation applied to the empirical model—is sufficient to make the plug-in approach both robust
and minimax optimal for CMDPs. Our main result shows that after applying this perturbation, any
black-box CMDP oracle will return a policy that is provably near-optimal and feasible for the true
environment. This restores the plug-in paradigm for the constrained setting, showing that a clean
decoupling of learning and planning is indeed possible.
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The theoretical foundation for our result is a novel statistical decoupling argument for CMDPs. We
provide a tight characterization of the covering number of the space of CMDP value functions,
showing it is polynomial, which allows us to derive a powerful uniform convergence guarantee.
We also prove that our perturbation is not merely a proof artifact but is fundamentally necessary, by
constructing a simple CMDP instance where the unperturbed plug-in approach is guaranteed to fail.
Our contributions include:

• A General Plug-in Framework: We present the first plug-in method for CMDPs that
achieves the near optimal sample complexity of Õ

(
SAH4

ϵ2ζ2

)
using a generative model,

accommodating any black-box CMDP optimization oracle.

• A Novel Perturbation Technique: We design and analyze a reward perturbation scheme
that robustifies the planning oracle against statistical uncertainty.

Theorem 1. Assume the Slater’s condition number ζ̌ (see Definition 1) satisfies that ζ̌H ≥ 20ζϵ.
With probability 1− δ, Algorithm 1 outputs an ϵ-strictly-optimal policy by using Õ

(
SAH4

ϵ2ζ2

)
samples.

Organization. In Section 2, we introduce basics of CMDP. We present the algorithm and summary
technique in Section 3, and provide the proof of Theorem 1 in Section 4.

1.1 RELATED WORKS

Constrained Markov Decision Process . Constrained Markov Decision Process (CMDP) (Altman,
2021) is a standard model for addressing safety concerns in reinforcement learning (RL). Many prior
works on CMDPs employ a primal-dual approach (Paternain et al., 2019; Ding et al., 2021) to achieve
sublinear regret while ensuring bounded constraint violations, though policy gradient algorithms
are also studied (Tessler et al., 2018). Efroni et al. (2020) introduces a more stringent metric for
hard constraint violation, where only positive constraint violations are accumulated. Efroni et al.
(2020) introduces an algorithm that achieves sublinear regret, constraint violations and hard constraint
violation.

Plug-in Approaches in Standard RL. In the plug-in solver approach of RL, an empirical model
is built by first drawing samples by querying a simulator, and plans in this empirical model via an
arbitrary plug-in solver. Due to elegance and flexibility, such approach has been extensively studied
in the theory RL. Notable contributions include plug-in solver approach for finite-horizon tabular
RL (Agarwal et al., 2020b).

2 PRELIMINARIES

Constrained Markov Decision process (MDP). A constrained MDP M could be described by
a tuple (S,A,H, sini, R, C, P,B), where S × A is the finite state-action space, H is the planing
horizon, sini is the initial state1, R = {Rs,a,h} is the reward function which maps a state-action pair
to ∆([0, 1])2, C = {Cs,a,h} is the violation function which maps a state-action pair to ∆([0, 1]),
P = {Ps,a,h} is the transition model which maps a state-action pair to ∆(S), and B is the threshold
of violation.

A policy π = {πh(s)}(s,h)∈S×[H] is a group of mappings from the state space S to ∆(A). When a
policy π is deterministic, we write πh(s) to denote the unique action at (s, h) following π. Let Π
denote the set of all deterministic policies. V π,P

h (R, s) denotes the value function. Qπ,P
h (R, (s, a))

denote the Q-function.

Given a transition model P , a policy π and a reward function R, we use V π,P (R) =

{V π,P
h (R, s)}(s,h)∈S×[H] and Qπ,P (R) = {V π,P

h (R, (s, a))}(s,a,h)∈S×A×[H] to denote the cor-

1Without loss of generality, we assume sini is the unique state at the first level.
2We use ∆(X ) to denote the set of distributions over X .
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responding value function and Q-function respectively, i.e,

V π,P
h (R, s) = Eπ,P

[
H∑

h′=h

rsh,ah,h | sh = s

]
,

Qπ,P
h (R, (s, a)) = Eπ,P

[
H∑

h′=h

rsh,ah,h | (sh, ah) = (s, a)

]
,

where rsh,ah,h ∼ Rsh,ah,h. Then the optimal value function and Q-function are defined as

V π,P
h (R, s) = max

π
Eπ,P

[
H∑

h′=h

rsh,ah,h | sh = s

]
,

Qπ,P
h (R, (s, a)) = max

π
Eπ,P

[
H∑

h′=h

rsh,ah,h | (sh, ah) = (s, a)

]
.

We define Opt(P̌ , Ř) to be the set of optimal deterministic policies with respect to (P̌ , Ř).

The target of CMDP is to solve the following optimization problem:

max
π

V π,P
1 (R, sini) s. t. V π,P

1 (C, sini) ≤ B. (1)

We say π is strictly-optimal if π is the optimal solution of equation 1. Let the optimal value of
equation 1 be V ∗. A policy π is defined as ϵ-strictly-optimal iff V π,P

1 (R, sini) ≥ V ∗ − ϵ and
V π,P
1 (C, sini) ≤ B.

The learning problem. We assume the agent has access to a generative mode and can sample
the next state and reward for any state-action pair (Kakade, 2003; Kearns et al., 2002). The sample
complexity is defined as the number of samples required to find an ϵ-strictly-optimal policy.

Notations. We use [N ] to denote the set {1, 2, . . . , N} for a natural number N . Let 1 denote the
S-dimensional all 1 vector. We use ∆m to denote the m dimensional simplex.

3 ALGORITHM AND TECHNIQUE OVERVIEW

In this section, we present our algorithm and summary the novel techniques.

3.1 ALGORITHM DESCRIPTION

We present the main algorithm in Algorithm 1. For each triple (s, a, h), the learner first queries N
samples and computes the empirical statistics, then adds a perturbation to the empirical statistics.
Finally, it computes the optimal policy for the perturbed statistics using linear programming.

Let the N samples of (s, a, h) be {(s, a, h, ri, ci, si)}Ni=1. We define the empirical statistics as
follows.

P̂s,a,h,s′ =
1

N

H∑
i=1

I[si = s′]; R̂s,a,h,s′ =
1

N

N∑
i=1

ri; Ĉs,a,h,s′ =
1

N

N∑
i=1

ci. (2)

Let D be the uniform distribution over the set {υ, 2υ, . . . ,Kυ} with K = 2S2H2A4·A2SH

δ and
υ = ϵ

10KH2 . For each (s, a, h) triple, a random variable ςs,a,h ∼ D is used to perturb the empirical
reward and violation.

Linear Programming for CMDP. A classic method for solving CMDPs relies on linear program-
ming (LP) formulationsAltman (1999). Given a transition model P̌ , a reward Ř, a violation Č and a

3
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threshold B̌, the LP problem is formulated as

max
d∈[0,1]SAH

∑
s,a,h

ds,a,hŘs,a,h s. t. (3)

∑
a

ds,a,h+1 =
∑
s′,a′

ds′,a′,hP̌s′,a,′,h(s) ∀(s, h);

∑
s,a

ds,a,h = 1 ∀h;

∑
s,a,h

ds,a,hČs,a,h ≤ B̌.

Given a solution d to the above problem, we can recover the corresponding policy by setting
πh(a|s) = ds,a,h∑

a′ ds,a′,h
for all (s, a, h), where we define πh(·|s) arbitrarily if

∑
a′ ds,a′,h=0.

We assume that Linear Programming(P̌ , Ř, Č, B̌) can return the precise solution to the above LP
problem. The computation of a precise solution generally incurs a high computational cost. To
mitigate this, we employ a rounding procedure on the LP parameters, which reduces the cost to
polynomial time. Without loss of generality, the parameters R̂, Ĉ, B′ and 1

N are rounded to be integer
multiples of some proper scaling factor θ such that log(1/θ) is polynomial in (S,A,H, 1/ϵ, 1/δ).
In this way, the computational cost to find a precise solution is poly(SAH log(1/υ)). We refer to
Gleixner & Steffy (2020) for more details.

Definition 1. Let B∗ = minπ V
π,P
1 (C, sini). The Slater’s condition number is defined as ζ̌ = B−B∗

H .

We fix some ζ and assume ζ̌H ≥ 20ζϵ. In the case this assumption holds, our algorithm can suc-
cessfully return an ϵ-strictly-optimal policy with high probability. Otherwise, it would be statistically
hard to estimate ζ̌ using O(SAH4

ζ2ϵ2 ) queries.

Algorithm 1 Perturbed Linear Programming

Input: value threshold ϵ, violation threshold B, failure probability δ, condition number ζ
Initialization: δ1 = ϵδζ2

12800S2AH5 , N = H3 log(1/δ1)
1000000ϵ2ζ2 , B′ = B − ζϵ

20 , α = υ

for (s, a, h) ∈ S ×A× [H] do
Query N samples for (s, a, h);
Compute the empirical transition, reward and violation P̂s,a,h,s′ , R̂ and Ĉ (see equation 2);

end for
for (s, a, h) ∈ S ×A× [H] do

Generate ςs,a,h ∼ D;
R̃s,a,h = R̂s,a,h + ςs,a,h;
C̃s,a,h = Ĉs,a,h − ςs,a,h
P̃s,a,h = (1− α)P̂s,a,h + α

S1;
end for
return: π = Linear Programming

(
(P̃ = {P̃s,a,h}(s,a,h), R̃ = {R̃s,a,h}(s,a,h), C̃, B′

)
.

3.2 TECHNIQUE SUMMARY

We begin by characterizing the hardness of learning in CMDPs and then present our approach to
address it.

Main difficulty in applying LP. A key challenge in CMDPs, unlike their unconstrained counter-
parts, is the non-uniqueness of the optimal value function. Specifically, equation 3 can have multiple
optimal solutions (e.g., d1, d2 with induced policies π1, π2) that yield vastly different value sequences
{V π1,P̌

h (Ř, ·)} and {V π2,P̌
h (Ř, ·)}. This variability prevents the application of standard uniform

concentration arguments. We take the following toy MDP as an example.

4
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Example 1. Consider an MDP with H = 2. There is one state sini in the first level and S states in
the second level. The reward and violations in the first level are 0. Set Psini,a,1 = 1

S 1 for all actions
a. For each state s in the second level, there are two actions a1, a2 such that Rs,a1,2 = Cs,a1,2 = 1

and Rs,a2,2 = Cs,a2,2 = 0. Set B = 1
2 .

In the above CMDP, any π satisfying 1
SV

π,P
2 (R, s) = 1

2 is a strictly-optimal policy. Consequently,
the class {V π,P

2 (R, ·) : π strictly-optimal } has high complexity. This high complexity can cause
naive LP solutions to be sensitive to distributional shifts or estimation errors.

Our solution. We say an action a at (s, h) is constrained-optimal iff there exists some strictly-
optimal deterministic policy π such that πh(s) = a. A key observation from Example 1 is that the
non-uniqueness of the constrained-optimal actions can severely harm the performance of the LP
solution. Motivated by this observation, we aim to devise a method for ensuring the uniqueness of
the constrained-optimal action.

Breaking ties by perturbation. If two actions a1 and a2 are both constrained-optimal, then there
exists a λ ∈ [0, 1] such that both a1 and a2 are optimal actions for the reward function λŘ− (1−λ)Č.
Therefore, if the reward Ř can be perturbed such that for all λ ∈ [0, 1] the optimal action for
λŘ− (1− λ)Č is unique at every (s, h), then the strictly-optimal policy will be unique. However,
achieving this is generally impossible due to the adaptivity to select λ ∈ [0, 1] such that actions a1 and
a2 are both optimal. The key insight to overcome this problem is that λ can only be adaptive enough
to tie a single pair of actions. This is because making a1 and a2 both optimal forces λ to a specific
value, rendering it incapable of creating ties between other actions. Through this approach, we
establish that with high probability, no more than two strictly-optimal policies exist after perturbation.
This leads to an efficient reduction in the complexity of the value function class, ultimately permitting
sharper concentration results.

4 ANALYSIS

In this section, we present the proof of Theorem 1.

4.1 BASIC PROPERTY OF PERTURBED PLANNING.

We first introduce some basic properties of the perturbed CMDP. We fix the transition model P̌ , the
reward Ř the violation Č and the threshold B̌. Let3 ς = {ςs,a,h}(s,a,h) be a group of i.i.d. noise
obeying distribution D .

Definition 2 (Optimal actions.). Given a transition model P̌ , a reward function Ř, a state-action
pair (s, a)and η ∈ [0, H], we say the action a is η-optimal iff Q∗,P̌

h (Ř, (s, a)) ≥ V ∗,P̌
h (Ř, s) − η.

Especially, we say the action a is optimal iff Q∗,P̌
h (Ř, (s, a)) = V ∗,P̌

h (Ř, s).

Recall that Opt(P,R) denotes the set of optimal deterministic policies with transition model P and
reward R. For λ ∈ [0, 1], let π(λ) = Opt(P̌ , λŘ− (1− λ)Č + ς) be the set of deterministic optimal
policies.

Lemma 1. With probability 1− δ, for all λ ∈ [0, 1], one of the two following claims holds:

• |π(λ)| = 1 ;

• |π(λ)| = 2. Furthermore, let π(λ) = {π1, π2}. The policies π1 and π2 are identical for
all state-time step pairs (s, h) ∈ S × [H], differing at exactly one pair (s′, h′). That is,
π1
h(s) = π2

h(s) for all (s, h) ̸= (s′, h′).

3When the context is clear, we use the subscript {·}(s,a,h) to denote {·}(s,a,h)∈S×A×[H].

5
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Definition 3 (Constrained optimal value and violation.). Given a transition model P̌ , a reward
function Ř, a violation function Č and λ ∈ [0, 1], define

V(P̌ , Ř, Č, λ) =
{
V π,P̌ (Ř) | π ∈ Opt(P̌ , λŘ− (1− λ)Č)

}
;

C(P̌ , Ř, Č, λ) =
{
V π,P̌ (Č) | π ∈ Opt(P̌ , λŘ− (1− λ)Č)

}
.

Definition 4. For V 1, V 2 ∈ RSH , we say V 1 ≼ V 2 iff V 1
s,h ≤ V 2

s,h for all (s, h) ∈ S × [H].

Lemma 2. Fix P̌ , Ř and Č. Let ς = {ςs,a,h}(s,a,h) be a group of i.i.d. noise obeying distribution D.
Let P̃ = (1−α)P̌ + α

S1, R̃ = Ř+ ς and C̃ = Č − ς . Define V = {V(P̃ , R̃, C̃, λ) | λ ∈ [0, 1]} and
C = {C(P̃ , R̃, C̃, λ) | λ ∈ [0, 1]}. With probability 1− δ, "≼" is a total order over both V and C.

Proof. We only prove the conclusion for V. The conclusion about C could be proven in a similar
way. It suffices to show that for any V 1, V 2 ∈ V, it holds either V 1 ≼ V 2 or V 2 ≼ V1. Assume
V 1 ∈ V(P̃ , R̃, C̃, λ1) and V 2 ∈ V(P̃ , R̃, C̃, λ2).

By Lemma 1, with probability 1− δ, |Opt(P̃ , λR̃− (1− λ)C̃)| = |Opt(P̃ , λŘ− (1− λ)Č + ς)| ∈
{1, 2} for all λ ∈ [0, 1].

Case i: λ1 ̸= λ2. Without loss of generality, we assume λ1 < λ2. Assume V 1 = V π1,P̃ (R̃), V 2 =

V π2,P̃ (R̃) for π1 ∈ Opt(P̃ , λ1R̃− (1− λ1)C̃) and π2 ∈ Opt(P̃ , λ2R̃− (1− λ2)C̃).

Fix (s, h) ∈ S × [H]. We have that

λ1V
π1,P̃
h (R̃, s)− (1− λ1)V

π1,P̃
h (C̃, s) ≥ λ1V

π2,P̃
h (R̃, s)− (1− λ1)V

π2,P̃
h (C̃, s);

λ2V
π2,P̃
h (R̃, s)− (1− λ2)V

π2,P̃
h (C̃, s) ≥ λ2V

π1,P̃
h (R̃, s)− (1− λ2)V

π1,P̃
h (C̃, s).

Therefore, we have

(λ1(1− λ2)− λ2(1− λ1))V
π1,P̃
h (R̃, s) ≥ (λ1(1− λ2)− (1− λ1)λ2)V

π2,P̃
h (R̃, s).

It then follows V π1,P̃
h (R̃, s) ≤ V π2,P̃

h (R̃, s).

Case ii: λ1 = λ2. Write λ1 = λ2 = λ̃. If |Opt(P̃ , λ(Ř+ ς)−(1−λ)(Č− ς))| = 1}, we then have
that V 1 = V 2. Otherwise, Opt(P̃ , λ(Ř+ ς)− (1−λ)(Č− ς)) = {π1, π2} such that π1

h(s) = π2
h(s)

for all (s, h) ̸= (s′, h′). By definition, we have that V 1, V 2 ∈ {V π1,P̃ (R̃), V π2,P̃ (R̃)}. It suffices to
consider the case that V 1 = V π1,P̃ (R̃, ·) and V 2 = V π2,P̃ (R̃, ·). For any (s, h), by policy difference
lemma (see Lemma 10), we have that4

V π1,P̃
h (R̃, s)− V π2,P̃

h (R̃, s) = Eπ1,P̃

[
H∑

τ=1

(
(P̃sτ ,π1

τ (sτ ),τ
− P̃sτ ,π2

τ (sτ ),τ
)⊤V π2,P̃

τ+1 (R̃, ·)
)]

+ Eπ1,P̃

[
H∑

τ=1

(
R̃sτ ,π1

τ (sτ ),τ
− R̃sτ ,π2

τ (sτ ),τ

)]
= Eπ1,P̃ [I[sh′ = s′]] ·∆,

where

∆ =
(
(P̃s′,π1

h′ (s
′),h′ − P̃s′,π2

h′ (s
′),h′)⊤V π2,P̃

h′+1 (R̃, ·)
)
+

(
R̃s′,π1

h′ (s
′),h′ − R̃s′,π2

h′ (s
′),h′

)
is the temporal difference at (s′, h′). In the case ∆ ≥ 0, we have that V 1

s,h ≥ V 2
s,h for all (s, h) ∈

S × [H], which means V 2 ≼ V 1. Otherwise we have V 1 ≼ V 2.

The proof is completed.

4We set V π,P
H+1(R, s) = 0 for any proper (π, P,R, s).xc
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Let Nϵ1 ⊂ be {0, ϵ1, 2ϵ1, . . . , Lϵ1}SH with L = 2H
ϵ1

. For V = {Vs,h}(s,h) ∈ [0, 2H]SH ,

define ProjNϵ1
(V ) =

{⌊
Vs,h

ϵ1

⌋
· ϵ1

}
(s,h)

. For V ⊂ [0, 2H]SH , define ProjNϵ1
(V) ={

ProjNϵ1
(V )|V ∈ V

}
.

Lemma 3. Assume V is a subset of [0, 2H]SAH and assume "≼" in Definition 4 is a total order over
V. Then the size of ProjNϵ1

(V) is at most 2SH2

ϵ1
+ 1.

Proof. Note that V 1 ≼ V 2 implies that ProjNϵ1
(V 1) ≼ ProjNϵ1

(V 2) for any V 1, V 2 ∈ [0, 2H]SAH .
Along with the assumption that "≼" is a total order over V, "≼" is also a total order over ProjNϵ1

(V).
Since Nϵ1 is a finite set and ProjNϵ1

(V) ⊂ Nϵ1 . We learn that ProjNϵ1
(V) is also finite. Therefore,

we can re-write ProjNϵ1
(V) as {W 1,W 2, . . . ,Wm} in an increasing order with respect to "≼",

where m = |ProjNϵ1
(V)|. As a result, we have that

2SH2 ≥ ∥Wm −W 1∥1 =

m−1∑
i=1

∥W i+1 −W i∥1 ≥ ϵ1 · (m− 1),

which implies that m ≤ 2SH2

ϵ1
+ 1. The proof is completed.

4.2 SAMPLE COMPLEXITY BOUNDS (PROOF OF THEOREM 1)

Let π be the policy returned by Algorithm 1. The total number of samples is SAHN = Õ
(

SAH4

ϵ2ζ2

)
It suffices to show that with probability 1− δ, π is an ϵ-strictly-optimal policy. Recall the definition
of P̃ , R̃, C̃ and B′ in Algorithm 1.

Concentration event. Choose δ1 = δ · ϵ1
16S2AH3 . For p, v ∈ RS , we define V(p, v) =

∑
s psv

2
s −

(p⊤v)2. Recall the definition of V(P̃ , R̃, C̃, λ) in Definition 3. Define V = {V(P̃ , R̃, C̃, λ) |
λ ∈ [0, 1]} and C = {C(P̃ , R̃, C̃, λ) | λ ∈ [0, 1]}. Let Vh = {{vs,h}s∈S | v ∈ V} and Ch =
{{vs,h}s∈S | v ∈ C} for h = 1, 2, . . . , H . Let Eh be the event where∣∣∣∣(P̂s,a,h − Ps,a,h

)⊤
v

∣∣∣∣ ≤ 4

√
V(Ps,a,h, v) log(1/δ1)

N
+

4H log(1/δ1)

N
+ 8

√
ϵ1 log(1/δ1)

N
+ 2ϵ1;

(4)∣∣∣R̂s,a,h −Rs,a,h

∣∣∣ ≤ 4

√
log(1/δ1)

N
; (5)∣∣∣Ĉs,a,h − Cs,a,h

∣∣∣ ≤ 4

√
log(1/δ1)

N
(6)

for any v ∈ Vh+1 ∪ Ch+1 and any (s, a) pair. Define E = ∪H
h=1Eh.

Lemma 4. P[E ] ≥ 1− 2δ.

Proof. By Bernstein’s inequality (see Lemma 9), equation 5 and equation 6 holds with probability at
least 1− 4SAHδ1 for all (s, a, h).

Let V̌h = {{vs,h}s∈S | v ∈ ProjNϵ1
(V)} and Čh = {{vs,h}s∈S | v ∈ ProjNϵ1

(C)}. Note that
Vh+1 and Ch+1 only depend on the statistics after the h-th layer. By Lemma 2 and Lemma 3, with
probability 1− δ, |V̌h+1| ≤ ProjNϵ1

(V) ≤ 2SH2

ϵ1
+ 1 and |Čh+1| ≤ ProjNϵ1

(C) ≤ 2SH2

ϵ1
+ 1.

By Lemma 9, with probability 1− 8SH2δ1/ϵ1, it holds that∣∣∣∣(P̂s,a,h − Ps,a,h

)⊤
v

∣∣∣∣ ≤ 4

√
V(Ps,a,h, v) log(1/δ1)

N
+

4H log(1/δ1)

N

7
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for all v ∈ V̌h+1 ∪ ˇCh+1.

Assume this event holds. For any v ∈ Vh+1 ∪ Ch+1, there exists v′ ∈ V̌h+1 ∪ ˇCh+1 such that
∥v − v′∥∞ ≤ ϵ1. As a result, we have that∣∣∣∣(P̂s,a,h − Ps,a,h

)⊤
v

∣∣∣∣
≤

∣∣∣∣(P̂s,a,h − Ps,a,h

)⊤
v′
∣∣∣∣+ 2ϵ1 (7)

≤ 4

√
V(Ps,a,h, v′) log(1/δ1)

N
+

4H log(1/δ1)

N
+ 2ϵ1

≤ 4

√
V(Ps,a,h, v) log(1/δ1)

N
+

4H log(1/δ1)

N
+ 8

√
ϵ1 log(1/δ1)

N
+ 2ϵ1.

Putting all together, we learn that P[E ] ≥ 1− 16S2AH3δ1/ϵ1 − δ ≥ 1− 2δ.

We continue the analysis conditioned on E .

Lemma 5. There exists some λ ∈ [0, 1], such that

V π,P̃
h (λR̃− (1− λ)C̃, s) = V ∗,P̃

h (λR̃− (1− λ)C̃, s) (8)

for all (s, h) ∈ S × [H].

Proof. Since π is the optimal solution to the following optimization problem,

max
π′

V π′,P̃
1 (R̃, sini), such that V π′,P̃

1 (C̃, sini) ≤ B′, (9)

there exists λ ∈ [0, 1] such that

V π,P̃
1 (λR̃− (1− λ)C̃, sini) = V ∗,P̃

1 (λR̃− (1− λ)C̃, sini).

Recalling that P̃s,a,h = (1 − α)P̂s,a,h + α
S 1, we learn that Eπ,P̃ [I[sh = s]] ≥ α

S for all (s, h) ∈
S × [H]. As a result, V π,P̃

h (λR̃− (1− λ)C̃) = V ∗,P̃
h (λR̃− (1− λ)C̃, s) for all (s, h) ∈ S × [H].

Denote the value fo λ in Lemma 5 as λ∗. Recall Definition 3 for the constrained optimal value set.
Then π is an (possibly stochastic) optimal policy with respect to the reward λ∗R̃− (1− λ∗)C̃ and
the transition model P̃ .

To facilitate the analysis, we have the following technical lemmas. We defer to proofs to Appendix C
due to space limitations. Recall that ϵ3 = ϵζ

8H .

Lemma 6. With probability 1 − δ, for any λ ∈ [0, 1], |V ∗,P̃ (λR̃ − (1 − λ)C̃, sini) − V ∗,P (λR −
(1− λ)C, sini)| ≤ ϵ3.

Assume the events in Lemma 6 holds.

Lemma 7. It holds that

|V π,P
1 (R, sini)− V π,P̃

1 (R̃, sini)| ≤ ϵ3; (10)

|V π,P
1 (C, sini)− V π,C̃

1 (C, sini)| ≤ ϵ3. (11)

Lemma 8. Recall that B∗ = minπ V
π,P
1 (C, sini). If V π,C̃

1 (C̃, sini) = B′, it then holds that
λ∗ ≥ (1− λ∗) · B′−B∗−ϵ3

H .

8
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Proof. By setting λ = 0 in Lemma 6, we learn that there exits a policy π such that V π,P̃ (C̃) ≤
B∗ + ϵ3. We then prove by contradiction. Assume that λ∗ < (1− λ∗)B

′−B∗−ϵ3
H+HKυ . Then we have that

V
π,P̃
1 (λ∗R̃− (1− λ∗)C̃) ≥ −(1− λ∗)(B∗ + ϵ3)

> λ∗(H +HKυ)− (1− λ∗)B′

≥ V π,P̃
1 (λ∗R̃− (1− λ∗)C̃),

which contradicts to the optimality of π.

By Lemma 6 , we have that

λ∗V π,P̃
1 (R̃, sini)− (1− λ∗)V π,P

1 (C̃, sini) ≥ V ∗,P (λ∗R− (1− λ∗)C)− ϵ3. (12)

We continue the analysis in two cases.

Case i: V π,C̃
1 (C̃, sini) = B′. By Lemma 7, we have that B − 2ϵ3 = B′ − ϵ3 ≤ V π,P (C) ≤

B′ + ϵ3 ≤ B, and

λ∗V π,P
1 (R, sini)− (1− λ∗)V π,P

1 (C, sini) ≥ λ∗V π′,P
1 (R, sini)− (1− λ∗)V π′,P

1 (C, sini)− 3ϵ3
(13)

for any π′. As a result, we obtain

V π,P
1 (R, sini) ≥ V π′,P

1 (R, sini)−
1

λ∗ ·
(
(1− λ∗)(V π′,P

1 (C, sini)−B) + 5ϵ3

)
(14)

for any π. It then follows that, for any π′ such that V π′,P
1 (C, sini) ≤ B, V π′,P

1 (R, sini) ≤
V π,P
1 (R, sini) +

5ϵ3
λ∗ . Using Lemma 8 and the fact that 5ϵ3 · H+B−B∗−2ϵ3

B−B∗−2ϵ3
≤ ϵ, we learn that

π is an ϵ-strictly-optimal policy.

Case ii: V π,P̃
1 (C̃, sini) < B′. In this case, we learn that V π,P̃

1 (R̃, sini) = V ∗,P̃
1 (R̃, sini). By

Lemma 6 and Lemma 7, we have that

V π,P
1 (C, sini) ≤ B′ + ϵ3 = B;

V π,P
1 (R, sini) ≥ V π,P̃

1 (R̃, sini)− ϵ3 ≥ V ∗,P (R, sini)− 2ϵ3.

Noting that 2ϵ3 ≤ ϵ, π is an ϵ-strictly-optimal policy.

The proof is completed by rescaling δ as δ/3.

5 CONCLUSION

We introduce a novel plug-in approach for constrained RL that achieves the sample complexity of
via a generative model. Our method is general, requiring only black-box access to an optimization
oracle for the empirical CMDP. A key innovation is a reward perturbation technique that ensures the
oracle’s solution is almost uniquely determined. Two promising directions for future work are the
extension of our results to CMDPs with multiple constraints and an investigation into the robustness
of the proposed plug-in algorithm.
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Statement about usage of large language models. We use large language models to help refine
and improve our writing.

A PARAMETER SETTINGS

Given the input parameter ζ, ϵ, S,A,H,B and δ, we set ϵ3 = ζϵ
20 , ϵ2 = ϵ3ζ

40H2 , ϵ1 = ϵ3
10H , K =

2S2H2A4 ·A2SH · 1
δ , υ = ϵ

10KH2 , B′ = B − ϵ3, α = υ and N = H3 log(1/δ1)
1000000ϵ2ζ2 , δ1 = δϵ2

16S2AH3 .

B TECHNICAL LEMMAS

B.1 CONCENTRATION INEQUALITIES

Lemma 9 (Theorem 4 in Maurer & Pontil (2009) ). Let Z,Z1, ..., Zn (n ≥ 2) be i.i.d. random
variables with values in [0, 1] and let δ > 0. Define Z̄ = 1

n

∑n
i=1 Zi and V̂n = 1

n

∑n
i=1(Zi − Z̄)2.

Then we have

P

∣∣∣∣∣E [Z]− 1

n

n∑
i=1

Zi

∣∣∣∣∣ >
√

2V̂n ln(2/δ)

n− 1
+

7 ln(2/δ)

3(n− 1)

 ≤ δ.

B.2 PROPERTIES OF MDPS

Lemma 10 (Policy difference lemma). Given a transition model P̌ , a reward function Ř and two
policies π1, π2, it holds that

V π1,P̌
h (Ř, s)− V π2,P̌

h (Ř, s)

= Eπ1,P̌

[
H∑

τ=h

Eai
τ∼πi

τ (·|sτ ),i=1,2

[
Řsτ ,a1

τ ,τ
− Řsτ ,a2

τ ,τ
+ (P̌sτ ,a1

τ ,τ
− P̌sτ ,a2

τ ,τ
)⊤V π,P̌

·,τ+1(Ř)
]
|sh = s

]

for any proper (s, h).

C MISSING PROOFS

C.1 PROOF OF LEMMA 1

Given (s, h) ∈ S × [H] and λ ∈ [0, 1], define that (s, h, λ) is proper if the optimal action at (s, h)
with respect to the reward λŘ − (1 − λ)Č + ς is unique. Otherwise, we say (s, h, λ) is improper.
Moreover, we say (s, h, λ, a, a′) is improper for two actions (a, a′) iff both a and a′ are optimal
actions at (s, h) with respect to the reward λŘ− (1− λ)Č + ς .

We claim that

Lemma 11. With probability 1− δ, for any λ ∈ [0, 1] there exists at most one state-level pair (s, h)
such that (s, h, λ) is improper.

The conclusion follows easily by Lemma 11.

C.2 PROOF OF LEMMA 11

Define G to be the event that there exists some λ such that the size of {(s, h)|(s, h, λ) is improper}
is at least 2. So it suffices to bound P[G].
For z1 = (s1, h1, a

1
1, a

2
1) and z2 = (s2, h2, a

1
2, a

2
2), define G(z1, z2) to be the event that there

exists λ ∈ [0, 1] such that (s1, h1, λ, a
1
1, a

2
1) and (s2, h2, λ, a

1
2, a

2
2) are both improper. Let Z =

S × [H]×A×A.

11
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Therefore,

P [G] ≤
∑

z1,z2∈Z,z1 ̸=z2

P [G(z1, z2)] ≤ S2H2A4 max
z1,z2∈Z,z1 ̸=z2

P [G(z1, z2)] . (15)

Fix a pair (z1, z2) ∈ Z2 such that z1 ̸= z2.

Without loss of generality, we assume that h1 ≤ h2. For a deterministic policy π and z =
(s, h, a1, a2) ∈ S × [H]×A2, define

Λ(z) =
{
λ ∈ [0, 1] | (s, h, λ, a1, a2) improper

}
;

Λ(z, π) =
{
λ ∈ [0, 1] | Qπ,P̌

h (λŘ− (1− λ)Č + ς, (s, a1)) = Qπ,P̌
h (λŘ− (1− λ)Č + ς, (s, a2)

}
.

(16)

It then follows that Λ(z) = ∪π∈ΠΛ(z, π).
Lemma 12. Fix π ∈ Π. With probability 1− 1

2|Z|2|Π|2 · δ, Λ(z2, π) is either a single-point set or an
empty set.
Lemma 13. Fix π, π′ ∈ Π. With probability 1− 1

|Z|2|Π|2 δ, Λ(z2, π) ∩ Λ(z1, π
′) = ∅.

By Lemma 13, we learn that

P [Λ(z1, π
′) ∩ Λ(z2, π) ̸= ∅] ≤ 1

|Z|2|Π|2
· δ

for any π, π′ ∈ Π.

Therefore, we have that

P[G(z1, z2)] ≤
∑

π,π′∈Π

P [Λ(z1, π
′) ∩ Λ(z2, π) ̸= ∅] ≤ 1

|Z|2
δ. (17)

Combining equation 17 with equation 15, we have that

P[G] ≤ δ;

The proof is completed.

C.2.1 PROOF OF LEMMA 12

Conditioned on {ςs,a,h}(s,a)∈S×A,h≥h2+1, the set Λ(z2, π) is determined by ςs2,a1
2,h2

and ςs2,a2
2,h2

.
More precisely, λ ∈ Λ(z2, π) implies that∣∣∣λL1 + L2 + ςs2,a1

2,h2
− ςs2,a2

2,h2

∣∣∣ = 0, (18)

where

L1 =
(
Qπ,P̌

h2
(Ř+ Č, (s2, a

1
2))−Qπ,P̌

h2
(Ř+ Č, (s2, a

2
2))

)
;

L2 =
(
Qπ,P̌

h2
(Č − ς, (s2, a

1
2))−Qπ,P̌

h2
(Č − ς, (s2, a

2
2))

)
.

In the case L1 = 0, for fixed ςs2,a1
2,h2

, there is at most one value for ςs2,a2
2,h2

such that equation 18
holds. As a result, P[Λ(z2, π) = ∅] ≥ 1− 1

K .

In the case L1 ̸= 0, we learn that Λ(z2, π) = {
−L2−ς

s2,a1
2,h2

+ς
s2,a2

2,h2

L1
}∩ [0, 1] is either a single-point

set or an empty set.

C.2.2 PROOF OF LEMMA 13

Assume h2 ≥ h1. With probability 1− 1
2|Z|2|Π|2 , Λ(z2, π) is either a single-point set or an empty

set. We assume Λ(z2, π) is a single-point set {λ} and consider the randomness due to ςs1,a1
1,h1

and
ςs1,a2

1,h1
.

12
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Case i: (s1, h1) ̸= (s2, h2). By definition, for λ ∈ Λ(z1, π
′) it holds that

λL1 + L2 + εs1,a1
1,h1

− ςs1,a2
1,h1

= 0,

where

L1 =
(
Qπ′,P̌

h1
(Ř+ Č, (s1, a

1
1))−Qπ′,P̌

h1
(Ř+ Č, (s1, a

2
1))

)
;

L2 =
(
Qπ′,P̌

h1
(Č − ς, (s1, a

1
1))−Qπ′,P̌

h1
(Č − ς, (s1, a

2
1))

)
.

In the case L1 = 0, with probability 1 − 1
K , Λ(z1, π′) = 0. In the case L1 ̸= 0, with probability

1− 1
K ,

λL1 + L2 + εs1,a1
1,h1

− ςs1,a2
1,h1

̸= 0,

which means Λ(z1, π′) ∩ Λ(z2, π) = ∅.

ii: (s1, h1) = (s2, h2). Write (s1, h1) = (s2, h2) = (s, h). Without loss of generality, we assume
that a11 /∈ {a12, a22}. By definition, for λ ∈ Λ(z1, π

′) it holds that

λL1 + L2 + εs1,a1
1,h1

− ςs1,a2
1,h1

= 0,

where

L1 =
(
Qπ′,P̌

h1
(Ř+ Č, (s1, a

1
1))−Qπ′,P̌

h1
(Ř+ Č, (s1, a

2
1))

)
;

L2 =
(
Qπ′,P̌

h1
(Č − ς, (s1, a

1
1))−Qπ′,P̌

h1
(Č − ς, (s1, a

2
1))

)
.

In the case L1 = 0, with probability 1 − 1
K , Λ(z1, π′) = 0. In the case L1 ̸= 0, with probability

1− 1
K (where we only consider the randomness in ςs1,a1

1,h1
,

λL1 + L2 + εs1,a1
1,h1

− ςs1,a2
1,h1

̸= 0,

which means Λ(z1, π′) ∩ Λ(z2, π) = ∅.

The proof is completed.

C.3 PROOF OF LEMMA 6

Let ϵ2 = ϵ3ζ
40H2 . Let Λϵ2 be an ϵ2-net of the interval [0, 1] with size at most 1

ϵ2
+ 1. For λ ∈ Λϵ2 ,

we define {Ũ∗
h(s)}s∈S,h∈[H] be the optimal value function with reward as λR̃ − (1 − λ)C̃ and

transition model P̃ . We also define {U∗
h(s)}s∈S,h∈[H] be the optimal value function with reward as

λR− (1− λ)C and transition model P .

Define E1(λ) be the event that∣∣∣∣(P̂s,a,h − Ps,a,h

)⊤
Ũ∗
h+1

∣∣∣∣ ≤ 4

√
V(Ps,a,h, Ũ∗

h+1) log(1/δ1)

N
+

4H log(1/δ1)

N
;∣∣∣∣(P̂s,a,h − Ps,a,h

)⊤
U∗
h+1

∣∣∣∣ ≤ 4

√
V(Ps,a,h, U∗

h+1) log(1/δ1)

N
+

4H log(1/δ1)

N

for all (s, a, h). By Lemma 9, E1(λ) holds with probability 1− 8SAHδ1. Taking union bound over
λ ∈ Λ(ϵ2), we learn that E1 := ∩λ∈Λϵ2

E1(λ) holds with probability at least 1− 16SAH
ϵ2

δ1 ≥ 1− δ.

We continue the proof conditioned on E1.

Define F̃ (λ) = V ∗,P̃ (λR̃ − (1 − λ)C̃, sini) and F (λ) = V ∗,P (λR − (1 − λ)C, sini). Then
|F̃ (λ1)− F̃ (λ2)| ≤ 4H|λ1 − λ2| and |F (λ1)− F (λ2)| ≤ 2H|λ1 − λ2|. So it suffices to show that
for any λ ∈ Λϵ2 , |F̃ (λ)− F (λ)| ≤ ϵ3

8 .

Fix λ ∈ Λϵ2 . Let the two deterministic policies to reach F̃ (λ) and F (λ) be respectively π̃∗ and π∗.
Let {Ũ∗

h(s)} denote the optimal value function with reward λR̃− (1− λ)C̃ and transition model P̃ .

13
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Define X̃ = λR̃− (1− λ)C̃ and X = λR− (1− λ)C. By policy difference lemma (Lemma 10),
we have

F̃ (λ)− F (λ)

= Eπ∗,P

[
H∑

h=1

(
X̃sh,π̃∗

h(sh),h
−Xsh,π∗

h(sh),h
+

(
P̃sh,π̃∗

h(sh),h
− Psh,π∗

h(sh),h

)⊤
Ũ∗
h+1

)]

≥ Eπ∗,P

[
H∑

h=1

(
X̃sh,π∗

h(sh),h
−Xsh,π∗

h(sh),h
+

(
P̃sh,π∗

h(sh),h
− Psh,π∗

h(sh),h

)⊤
Ũ∗
h+1

)]

≥ −

2KvH + 8H

√
log(1/δ1)

N
+ 8

H2 log(1/δ1)

N
+ 8Eπ∗,P

 H∑
h=1

√
V(Psh,ah,h, Ũ

∗
h+1) log(1/δ1)

N


≥ −

2KυH + 8H

√
log(1/δ1)

N
+ 8

H2 log(1/δ1)

N
+ 8Eπ∗,P


√

H
∑H

h=1 V(Psh,ah,h, Ũ
∗
h+1) log(1/δ1)

N


≥ −

2KvH + 8H

√
log(1/δ1)

N
+ 8

H2 log(1/δ1)

N
+ 8

√√√√Eπ∗,P

[
H

∑H
h=1 V(Psh,ah,h, Ũ

∗
h+1) log(1/δ1)

N

]
≥ −ϵ3

8
.

In the last line, we use the following bound for Eπ∗,P

[∑H
h=1 V(Psh,ah,h, Ũ

∗
h+1)

]
.

Eπ∗,P

[
H∑

h=1

V(Psh,ah,h, Ũ
∗
h+1)

]

= Eπ∗,P

[
H∑

h=1

(
(Ũ∗

h+1(sh+1))
2 − (P⊤

sh,ah,h
Ũ∗
h+1)

2
)]

=≤ (2H + 2HKυ)Eπ∗,P

[
H∑

h=1

∣∣∣Ũ∗
h(sh)− P⊤

sh,ah,h
Ũ∗
h+1

∣∣∣]

≤ (2H + 2HKυ)2 + (2H + 2HKυ)Eπ∗,P

[
H∑

h=1

∣∣∣(P̃sh,ah,h − Psh,ah,h)
⊤Ũ∗

h+1

∣∣∣]

≤ (2H + 2HKυ)2 + (2H + 2HKυ)Eπ∗,P

 H∑
h=1

4

√
V(Psh,ah,h, Ũ

∗
h+1) log(1/δ1)

N
+

4H2 log(1/δ1)

N
+H2α


≤ 6H2 +

3H
3
2

√
N

√√√√Eπ∗,P

[
H∑

h=1

V(Psh,ah,h, Ũ
∗
h+1)

]
≤ 9H2.

Using similar arguments, we can show the other side F̃ (λ)− F (λ) ≤ ϵ3
8 .
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C.4 PROOF OF LEMMA 7

Let {Ũh(s)} denote the value function following π with reward R̃ and transition P̃ . Direct computa-
tion gives that∣∣∣V π,P

1 (R, sini)− V π,R̃
1 (C, sini)

∣∣∣
=

∣∣∣∣∣Eπ,P

[
H∑

h=1

(
Rsh,ah,h − R̃sh,ah,h +

(
Psh,ah,h − P̃sh,ah,h

)⊤
Ũh+1

)]∣∣∣∣∣
≤ Eπ,P

 H∑
h=1

Kυ + 2

√
log(1/δ1)

N
+

H∑
h=1

4

√
V(Psh,ah,h, Ũh+1) log(1/δ1)

N
+

4H log(1/δ1)

N


+ 8H

√
ϵ1 log(1/δ1)

N
+ 2Hϵ1 +H2α

(19)

≤ HKυ + 6H

√
log(1/δ1)

N
+ 4

√
H log(1/δ1)

N
·

√√√√Eπ,P

[
H∑

h=1

V(Psh,ah,h, Ũh+1)

]
+

1

4
ϵ3

≤ ϵ3. (20)

Here equation 19 is by the definition of the good event E , and equation 20 holds by the fact that

Eπ,P

[
H∑

h=1

V(Psh,ah,h, Ũh+1)

]

= Eπ,P

[
H∑

h=1

(
(Ũh+1(sh+1))

2 − (P⊤
sh,ah,h

Ũh+1)
2
)]

≤ (2H + 2HKυ) · E

[
H∑

h=1

∣∣∣Ũh(sh)− P⊤
sh,ah,h

Ũh+1

∣∣∣]
≤ (2H + 2HKυ)2 + (2H + 2HKυ) · Eπ,P

[∣∣∣(P̃sh,ah,h − Psh,ah,h)
⊤Ũh+1

∣∣∣]
≤ (2H + 2HKυ)2 + (2H + 2HKυ) · Eπ,P

4
√

V(Psh,ah,h, Ũh+1) log(1/δ1)

N
+

4H2 log(1/δ1)

N
+H2α


≤ 6H2 +

3H
3
2

N
·

√√√√Eπ,P

[
H∑

h=1

V(Psh,ah,h, Ũh+1)

]
≤ 9H2.

In a similar way, we could show that |V π,P
1 (C, sini)− V π,C̃

1 (C, sini)| ≤ ϵ3.

The proof is completed.
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