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ABSTRACT

Recent advances in neural variational inference have spawned a renaissance in
deep latent variable models. In this paper we introduce a generic variational infer-
ence framework for generative and conditional models of text. While traditional
variational methods derive an analytic approximation for the intractable distribu-
tions over latent variables, here we construct an inference network conditioned
on the discrete text input to provide the variational distribution. We validate this
framework on two very different text modelling applications, generative docu-
ment modelling and supervised question answering. Our neural variational doc-
ument model combines a continuous stochastic document representation with a
bag-of-words generative model and achieves the lowest reported perplexities on
two standard test corpora. The neural answer selection model employs a stochas-
tic representation layer within an attention mechanism to extract the semantics
between a question and answer pair. On two question answering benchmarks this
model exceeds all previous published benchmarks.

1 INTRODUCTION

Probabilistic generative models underpin many successful applications within the field of natural
language processing (NLP). Their popularity stems from their ability to use unlabelled data effec-
tively, to incorporate abundant linguistic features, and to learn interpretable dependencies among
data. However these successes are tempered by the fact that as the structure of such generative
models becomes deeper and more complex, true Bayesian inference becomes intractable due to the
high dimensional integrals required. Markov chain Monte Carlo (MCMC) (Neal, 1993; Andrieu
et al., 2003) and variational inference (Jordan et al., 1999; Attias, 2000; Beal, 2003) are the standard
approaches for approximating these integrals. However the computational cost of the former results
in impractical training for the large and deep neural networks which are now fashionable, and the
latter is conventionally confined due to the underestimation of posterior variance. The lack of effec-
tive and efficient inference methods hinders our ability to create highly expressive models of text,
especially in the situation where the model is non-conjugate.

This paper introduces a neural variational framework for generative models of text, inspired by the
variational auto-encoder (Rezende et al., 2014; Kingma & Welling, 2014). The principle idea is to
build an inference network, implemented by a deep neural network conditioned on text, to approxi-
mate the intractable distributions over the latent variables. Instead of providing an analytic approxi-
mation, as in traditional variational Bayes, neural variational inference learns to model the posterior
probability, thus endowing the model with strong generalisation abilities. Due to the flexibility of
deep neural networks, the inference network is capable of learning complicated non-linear distribu-
tions and processing structured inputs such as word sequences. Inference networks can be designed
as, but not restricted to, multilayer perceptrons (MLP), convolutional neural networks, and recurrent
neural networks (RNN), approaches which are rarely used in conventional generative models. By
using the reparameterisation method (Rezende et al., 2014; Kingma & Welling, 2014), the inference
network is trained through back-propagating unbiased and low variance gradients w.r.t. the latent
variables. Within this framework, we propose a Neural Variational Document Model (NVDM) for
document modelling and a Neural Answer Selection Model (NASM) for question answering, a task
that selects the sentences that correctly answer a factoid question from a set of candidate sentences.
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The NVDM (Figure 1) is an unsupervised generative model of text which aims to extract a con-
tinuous semantic latent variable for each document. This model can be interpreted as a variational
auto-encoder: an MLP encoder (inference network) compresses the bag-of-words document rep-
resentation into a continuous latent distribution, and a softmax decoder (generative model) recon-
structs the document by generating the words independently. A primary feature of NVDM is that
each word is generated directly from a dense continuous document representation instead of the
more common binary semantic vector (Hinton & Salakhutdinov, 2009; Larochelle & Lauly, 2012;
Srivastava et al., 2013; Mnih & Gregor, 2014). Our experiments demonstrate that our neural docu-
ment model achieves the state-of-the-art perplexities on the 20NewsGroups and RCV1-v2 datasets.

The NASM (Figure 2) is a supervised conditional model which imbues LSTMs (Hochreiter &
Schmidhuber, 1997) with a latent stochastic attention mechanism to model the semantics of
question-answer pairs and predict their relatedness. The attention model is designed to focus on
the phrases of an answer that are strongly connected to the question semantics and is modelled by a
latent distribution. This mechanism allows the model to deal with the ambiguity inherent in the task
and learns pair-specific representations that are more effective at predicting answer matches, rather
than independent embeddings of question and answer sentences. Bayesian inference provides a nat-
ural safeguard against overfitting, especially as the training sets available for this task are small. The
experiments show that the LSTM with a latent stochastic attention mechanism learns an effective at-
tention model and outperforms both previously published results, and our own strong non-stochastic
attention baselines.

In summary, we demonstrate the effectiveness of neural variational inference for text processing on
two diverse tasks. These models are simple, expressive and can be trained efficiently with the highly
scalable stochastic gradient variational Bayes (SGVB) algorithm (Rezende et al., 2014; Kingma &
Welling, 2014). Our neural variational framework is suitable for both unsupervised and supervised
learning tasks, and can be generalised to incorporate any type of neural networks.

2 NEURAL VARIATIONAL INFERENCE FRAMEWORK

Latent variable modelling is popular in many NLP problems, but it is non-trivial to carry out effective
and efficient inference for models with complex and deep structure. In this section we introduce a
generic neural variational inference framework that we apply to both the unsupervised NVDM and
supervised NASM in the follow sections.

We define a generative model with a latent variableh, which can be considered as the stochastic units
in deep neural networks. We designate the observed parent and child nodes of h as z and x respec-
tively. Hence, the joint distribution of the generative model is p(z,x) =

∑
h p(x|h)p(h|z)p(z),

and the variational lower bound L is derived as:

log pθ(z,x) = log

∫
q(h)

q(h)
pθ(x|h)pθ(h|z)p(z)dh (1)

> Eq(h)[log pθ(x|h)pθ(h|z)p(z)− log q(h)] = L (2)

where θ parameterises the generative distributions pθ(x|h) and pθ(h|z). In order to have a tight
lower bound, the variational distribution q(h) should approach the true posterior p(h|z,x). The
three steps to construct the deep neural inference network qφ(h|z,x), which is a parameterised
diagonal Gaussian distribution N (h|µ(z,x),diag(σ2(z,x))), are:

1. Construct vector representations of the observed variables:
u = fz(z), v = fx(x).

2. Assemble a joint representation:
π = g(u,v).

3. Parameterise the variational distribution over the latent variable:
µ = l1(π), logσ = l2(π).

fz(·) and fx(·) can be any type of deep neural networks that are suitable for the observed data; g(·)
is an MLP that concatenates the vector representations of the conditioning variables; l(·) is a linear
transformation which outputs the parameters of the Gaussian distribution. By sampling from the
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Figure 1: NVDM for document modelling.
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Figure 2: NASM for question answer selection.

variational distribution, h ∼ qφ(h|z,x), we are able to carry out stochastic back-propagation to
optimise the lower bound (Eq. 2).

During training, the model parameters θ together with the inference network parameters φ are up-
dated by stochastic back-propagation based on the samples h drawn from qφ(h|z,x). For the gra-
dients w.r.t. θ, we have the form:

∇θL ' 1
L

∑L
l=1∇θ log pθ(x|h

(l))pθ(h
(l)|z) (3)

For the gradients w.r.t. φ we reparameterise h = µ+σ · ε and sample ε(l) ∼ N (0, I) to reduce the
variance in stochastic estimation (Rezende et al., 2014; Kingma & Welling, 2014). The update of φ
can be carried out by back-propagating the gradients w.r.t. µ and σ:

∇µL ' 1
L

∑L
l=1∇h[log pθ(x|h

(l))pθ(h
(l)|z)− log qφ(h

(l)|z,x)] (4)

∇σL ' 1
2L

∑L
l=1 ε

(l)∇h(l) [log pθ(x|h(l))pθ(h
(l)|z)− log qφ(h

(l)|z,x)] (5)

It is worth mentioning that unsupervised learning is a special case of the variational autoencoder
where h has no parent node z. In that case h is directly drawn from the prior p(h) instead of the
conditional distribution pθ(h|z).
Here we only discuss the scenario where the latent variables are continuous and the parameterised
diagonal Gaussian distribution is employed as the variational distribution. However the framework
is also suitable for discrete units, and the only modification needed is to replace the Gaussian with
a multinomial parameterised by the outputs of a softmax function. Though the reparameterisation
trick for continuous variables is not applicable in this case, a policy gradient approach (Mnih &
Gregor, 2014) can help to alleviate the problem of high variance during stochastic estimation.

3 NEURAL VARIATIONAL DOCUMENT MODEL

The Neural Variational Document Model (Figure 1) is a simple instance of unsupervised learning
where a continuous hidden variable h ∈ RK , which generates all the words in a document in-
dependently, is introduced to represent its semantic content. Let X ∈ R|V | be the bag-of-words
representation of a document and xi ∈ R|V | be the one-hot representation of the word at position i.

As an unsupervised generative model, we could interpret NVDM as a variational autoencoder:
an MLP encoder q(h|X) compresses document representations into continuous hidden vectors
(X → h); a softmax decoder p(X|h) =

∏
i p(xi|h) reconstructs the documents by independently

generating the words (h→ {xi}).
To maximise the document log-likelihood log

∑
h p(X|h)p(h), we derive the lower bound:

L = Eqφ(h|X)

[∑N
i=1 log pθ(xi|h)

]
−DKL[qφ(h|X)‖p(h)] (6)

whereN is the number of words in the document and p(h) is a Gaussian prior for h. The conditional
probability over words pθ(xi|h) (decoder) is modelled by multinomial logistic regression and shared
across documents:

pθ(xi|h) =
exp{−E(xi;h, θ))}∑|V |
j=1 exp{−E(xj ;h, θ)}

(7)
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E(xi;h, θ) = −hTRxi − bxi (8)

whereR ∈ RK×|V | learns the semantic word embeddings and bxi represents the bias term.

As there is no supervision information for the latent semantics, h, the posterior approximation
qφ(h|X) is only conditioned on the current document X . The inference network qφ(h|X) =
N (h|µ(X), diag(σ2(X))) is modelled as:

π = g(fMLP
X (X)) (9)

µ = l1(π), logσ = l2(π) (10)

For each document X , the neural network generates its own parameters µ and σ that parameterise
the latent distribution over document semantics h. Based on the samples h ∼ qφ(h|X), the lower
bound (Eq. 6) can be optimised by stochastic back-propagation.

Since p(h) is a standard Gaussian prior, DKL[qφ(h|X)‖p(h)] is a Gaussian KL-Divergence which
can be computed analytically to further lower the variance of the gradients. Following the neu-
ral variational framework, the parameters of inference network φ and the model parameters θ are
updated by SGVB. Appendix B.1 provides the formal details of the neural network structure.

4 NEURAL ANSWER SELECTION MODEL

Answer sentence selection is a question answering paradigm where a model must identify the cor-
rect sentences answering a factual question from a set of candidate sentences. Assume a ques-
tion q is associated with a set of answer sentences {a1,a2, ...,an}, together with their judgements
{y1,y2, ...,yn}, where ym = 1 if the answer am is correct and ym = 0 otherwise. This is a
classification task where we treat each training data point as a triple (q,a,y) while predicting y for
the unlabelled question-answer pair (q,a).

The Neural Answer Selection Model (Figure 2) is a supervised model that learns the question and
answer representations and predicts their relatedness. It employs two different LSTMs to embed raw
question inputs q and answer inputs a. We use sq(j) and sa(i) to represent the state outputs of the
two LSTMs, and i, j denote the positions of the states. Conventionally, the last state outputs sq(|q|)
and sa(|a|), as the independent question and answer representations, can be used for relatedness
prediction. In NASM, however, we aim to learn pair-specific representations by a latent attention
mechanism, which are more effective for the pair relatedness prediction.

The aim of the attention model is to focus on the words in the answer sentence that are prominent
for predicting the answer match to the current question. Instead of using a deterministic question
vector, such as sq(|q|), NASM employs a latent distribution pθ(h|q) to model the question seman-
tics, which is a parameterised diagonal GaussianN (h|µ(q),diag(σ2(q))). Therefore, the attention
model extracts a context vector c(a,h) by iteratively attending to the answer tokens based on the
stochastic vector h ∼ pθ(h|q). In doing so the model is able to adapt to the ambiguity inherent in
questions and obtain salient information through attention. Compared to its deterministic counter-
part (applying deterministic question vector sq(|q|)) , the stochastic units incorporated into NASM
allow multi-modal attention distributions. Further, by marginalising over the latent variables, NASM
is more robust against overfitting, which is important for small question answering training sets.

In this model, the conditional distribution pθ(h|q) is modelled as:

πθ = gθ(f
LSTM
q (q)) = gθ(sq(|q|)) (11)

µθ = l1(πθ), logσθ = l2(πθ) (12)

For each question q, the neural network generates the corresponding parameters µ and σ that pa-
rameterise the latent distribution over question semantics h. The attention model is defined as:

α(i) ∝ exp(W T
α tanh(W hh+W ssa(i))) (13)

c(a,h) =
∑

i
sa(i)α(i) (14)

za(a,h) = tanh (W ac(a,h) +W nsa(|a|)) (15)

where α(i) is the normalised attention score at answer token i, and the context vector c(a,h) is the
weighted sum of all the state outputs sa(i). We adopt zq(q), za(a,h) as the question and answer
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representations for predicting their relatedness y. zq(q) is a deterministic vector that is equal to
sq(|q|), while za(a,h) is a combination of the sequence output sa(|a|) and the context vector
c(a,h) (Eq. 15). For the prediction of pair relatedness y, we model the conditional probability
distribution pθ(y|zq, za) by sigmoid function:

pθ(y = 1|zq, za) = σ
(
zTq Mza + b

)
(16)

To maximise the log-likelihood log p(y|q,a) we use the variational lower bound:

log p(y|q,a) = log
∑

h
pθ(y|zq(q), za(a,h))pθ(h|q) (17)

> Eqφ(h)[log pθ(y|zq(q), za(a,h))]−DKL(qφ(h)||pθ(h|q)) = L (18)
Following the neural variational inference framework, we construct a deep neural network as the
inference network qφ(h|q,a,y) = N (h|µφ(q,a,y),diag(σ2

φ(q,a,y))):

πφ = gφ(f
LSTM
q (q), f LSTM

a (a), fy(y)) = gφ(sq(|q|), sa(|a|), sy) (19)

µφ = l3(πφ), logσφ = l4(πφ) (20)

where q and a are modelled by LSTMs1, and the relatedness label y is modelled by a simple linear
transformation into the vector sy . According to the joint representation πφ, we then generate the
parameters µφ and σφ, which parameterise the latent distribution over the question semantics h. To
emphasise, though both pθ(h|q) and qφ(h|q,a,y) are modelled as parameterised Gaussian distri-
butions, qφ(h|q,a,y) as an approximation only functions during inference by producing samples
to compute the stochastic gradients, while pθ(h|q) is the generative distribution that generates the
samples for predicting the question-answer relatedness y.

Based on the samples h ∼ qφ(h|q,a,y), we use SGVB to optimise the lower bound (Eq.18).
The model parameters θ and the inference network parameters φ are updated jointly using
their stochastic gradients. In this case, similar to the NVDM, the Gaussian KL divergence
DKL[qφ(h|q,a,y))‖pθ(h|q)] can be analytically computed during training process. More details
about the network structure and computational complexity can be found in Appendix B.2 and C.

5 EXPERIMENTS

5.1 DATASET & SETUP FOR DOCUMENT MODELLING

We experiment with NVDM on two standard news corpora: the 20NewsGroups2 and the Reuters
RCV1-v23 datasets. The 20NewsGroups dataset is a collection of newsgroup documents, consisting
of 11,314 training and 7,531 test articles. The RCV1-v2 dataset is a large collection from Reuters
newswire stories with 794,414 training and 10,000 test cases. We apply the standard preprocessing
procedure as Hinton & Salakhutdinov (2009); Mnih & Gregor (2014) and set the vocabulary size of
the 20NewsGroups and RCV1-v2 datasets as 2,000 and 10,000 respectively.

To make a direct comparison with the prior work we follow the same setup as Hinton & Salakhut-
dinov (2009), Larochelle & Lauly (2012), Srivastava et al. (2013), and Mnih & Gregor (2014). We
train NVDM models with 50 and 200 dimensional document representations respectively. For the
construction of the inference network, we use an MLP (Eq. 9) with 2 layers and 500 dimension
rectifier linear units, which converts document representations into embeddings. During training we
carry out stochastic estimation by taking one sample for computing the expectation of the stochastic
gradients, while in prediction we use 20 samples for predicting document perplexity. The model
is trained by Adam (Kingma & Ba, 2015) and alternately optimise the generative model and the
inference network by fixing the parameters of one while updating the parameters of the other.

5.2 EXPERIMENTAL RESULTS ON DOCUMENT MODELLING

Table 1a presents the results of document modelling on the test datasets. The first column lists
the baseline models, and the second column shows the dimension of latent variables used in the

1In this case, the LSTMs for q and a are shared by the inference network and the generative model, but
there is no restriction on using different LSTMs in the inference network.

2http://qwone.com/ jason/20Newsgroups
3http://trec.nist.gov/data/reuters/reuters.html

5



Workshop track - ICLR 2016

Model WordDim 20News RCV1
LDA 50 1091 1437
LDA 200 1058 1142
RSM 50 953 988
docNADE 50 896 742
SBN 50 909 784
fDARN 50 917 724
fDARN 200 —- 598
NVDM 50 836 563
NVDM 200 852 550

(a) Perplexity on test dataset.

Space Religion Encryption Sport Policy
orbit muslims rsa goals bush
lunar worship cryptography pts resources
solar belief crypto teams charles

shuttle genocide keys league austin
moon jews pgp team bill
launch islam license players resolution

fuel christianity secure nhl mr
nasa atheists key stats misc

satellite muslim escrow min piece
japanese religious trust buf marc

(b) The topics learned by NVDM on 20News.

Table 1: (a) In the first group, LDA (Blei et al., 2003) is a traditional topic model that models
documents by mixtures of topics, RSM (Hinton & Salakhutdinov, 2009) is an undirected topic model
implemented by restricted Boltzmann machines, and docNADE (Larochelle & Lauly, 2012) is a
neural topic model based on autoregressive assumption. In the second group, the models based on
Sigmoid Belief Networks (SBN) and Deep AutoRegressive Neural Network (DARN) structures are
implemented by Mnih & Gregor (2014), which employs an MLP to build a Monte Carlo control
variate estimator for stochastic estimation. The third group presents the perplexity results of our
NVDM. (b) The table lists the 5 topics and their 10 most indicative words on 20NewsGroups.

Word weapons medical companies define israel book windows
guns medicine expensive defined israeli books dos

weapon health industry definition arab reference microsoft
NVDM gun treatment company printf arabs guide ms

militia disease market int lebanon writing file
armed patients buy sufficient lebanese pages setup

weapon treatment demand defined israeli reading dos
shooting medecine commercial definition israelis read microsoft

NADE firearms patients agency refer arab books version
assault process company make palestinian relevent ms
armed studies credit examples arabs collection pc

Table 2: The five nearest words based in the semantic space learned by NVDM and NADE.

experiments. The final two columns present the perplexity achieved by each topic model on
the 20NewsGroups and RCV1-v2 datasets. In document modelling, perplexity is computed by
exp(− 1

D

∑Nd
n

1
Nd

log p(Xd)), where D is the number of documents, Nd represents the length of
the dth document and log p(X) = log

∫
p(X|h)p(h)dh is the log probability of the words in the

document. Since log p(X) is intractable in the NVDM, we use the variational lower bound (which
is an upper bound on perplexity) to compute the perplexity as in Mnih & Gregor (2014).

While all the baseline models listed in Table 1a apply discrete latent variables, here NVDM employs
a continuous stochastic document representation. The experiment results indicate that our NVDM
achieves the best performance on both two datasets. For the experiments on RCV1-v2 dataset, the
NVDM with latent variable of 50 dimension performs even better than the fDARN with 200 di-
mension. It demonstrates that our document model with continuous latent variables has higher
expressiveness and better generalisation ability.

In addition to the experiments on perplexity, we also qualitatively evaluate the semantic information
learned by NVDM on the 20NewsGroups dataset with latent variables of 50 dimension. We assume
each dimension in the latent space represents a topic that corresponds to a specific semantic mean-
ing. Table 1b presents 5 randomly selected topics with 10 words that have the strongest positive
connection with the topic. Based on the words in each column, we can deduce their corresponding
topics as: Space, Religion, Encryption, Sport and Policy. Table 2 compares the 5 nearest words
selected according to the semantic vector learned from NVDM and docNADE. Although the model
does not impose independent interpretability on the latent representation dimensions, we still see
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Source Set Questions QA Pairs Judgement
Train 1,229 53,417 automatic

QASent Dev 82 1,148 manual
Test 100 1,517 manual
Train 2,118 20,360 manual

WikiQA Dev 296 2,733 manual
Test 633 6,165 manual

Table 3: Statistics of QASent and WikiQA.
Judgement denotes whether correctness was
determined automatically or by human anno-
tators.
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Figure 3: The standard deviations of MAP scores
computed by running 10 NASM models on Wik-
iQA with different numbers of samples.

that the NVDM learns locally interpretable structure. In addition to the listed results, Appendix A
presents a t-SNE visualisation (Van der Maaten & Hinton, 2008) of the document representations.

5.3 DATASET & SETUP FOR ANSWER SENTENCE SELECTION

We experiment on two answer selection datasets, the QASent and the WikiQA datasets. QASent
(Wang et al., 2007) was created from the TREC QA track, and the WikiQA (Yang et al., 2015) is
constructed from Wikipedia, which is less noisy and less biased towards lexical overlap4. Table 3
summarises the statistics of the two datasets.

In order to investigate the effectiveness of our NASM model we also implemented two strong base-
line models — a vanilla LSTM model (LSTM) and an LSTM model with a deterministic attention
mechanism (LSTM+Att). For the former, it directly applies the QA matching function (Eq. 16)
on the last state outputs sq(|q|) and sa(|a|) from the question and answer LSTM models. For
the latter, we add an attention model to learn pair-specific representation for prediction. Moreover,
LSTM+Att is the deterministic counterpart of NASM, which has the same neural network architec-
ture as NASM. The only difference is that it replaces the stochastic units h with deterministic ones,
and no inference network is required to carry out stochastic estimation. Following previous work,
for each of our models we also add a lexical overlap feature by combining a co-occurrence word
count feature with the probability generated from the neural model. Besides, we adopt MAP and
MRR as the evaluation metrics for this task.

To facilitate direct comparison with previous work we follow the same experimental setup as Yu
et al. (2014) and Severyn (2015). The word embeddings (K = 50) are obtained by running the
word2vec tool (Mikolov et al., 2013) on the English Wikipedia dump and the AQUAINT5 corpus.
We use LSTMs with 3 layers and 50 hidden units, and apply 40% dropout after the embedding layer.
For the construction of the inference network, we use an MLP (Eq. 11) with 2 layers and tanh units
of 50 dimension, and an MLP (Eq. 19) with 2 layers and tanh units of 150 dimension for the joint
representation. In training we carry out stochastic estimation by taking one sample for computing
the gradients, while in prediction, we use 20 samples to calculate the expectation of the lower bound.
Figure 3 presents the standard deviation of NASM’s MAP scores while using different numbers of
samples. Considering the trade-off between computational cost and variance, we chose 20 samples
for prediction in all the experiments. The models are trained using Adam (Kingma & Ba, 2015),
with hyperparameters selected by optimising the MAP score on the development set.

5.4 EXPERIMENTAL RESULTS ON ANSWER SENTENCE SELECTION

Table 4 compares the results of our models with current state-of-the-art models on both answer se-
lection datasets. As shown in Table 4a, on the QASent dataset, our vanilla LSTM model outperforms
the deep CNN 6 model by approximately 7% on MAP and 6% on MRR. The LSTM+Att performs

4Yang et al. (2015) provide detailed explanation of the differences between the two datasets.
5https://catalog.ldc.upenn.edu/LDC2002T31
6As stated in (Yih et al., 2013) that the evaluation scripts used by previous work are noisy — 4 out of 72

questions in the test set are treated answered incorrectly. This makes the MAP and MRR scores ∼ 4% lower
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System MAP MRR

Published Models
Bigram-CNN 0.5693 0.6613
Deep CNN 0.5719 0.6621
WA 0.7063 0.7740
LCLR 0.7092 0.7700
Bigram-CNN +Cnt 0.7113 0.7846
Deep CNN + Cnt 0.7186 0.7826

Our Models
LSTM 0.6436 0.7235
LSTM + Att 0.6451 0.7316
NASM 0.6501 0.7324
LSTM + Cnt 0.7228 0.7986
LSTM + Att + Cnt 0.7289 0.8072
NASM + Cnt 0.7339 0.8117

(a) Experiment results on QASent

System MAP MRR

Published Models
PV 0.5110 0.5160
Bigram-CNN 0.6190 0.6281
PV + Cnt 0.5976 0.6058
LCLR 0.5993 0.6068
Bigram-CNN + Cnt 0.6520 0.6652

Our Models
LSTM 0.6552 0.6747
LSTM + Att 0.6639 0.6828
NASM 0.6705 0.6914
LSTM + Cnt 0.6820 0.6988
LSTM + Att + Cnt 0.6855 0.7041
NASM + Cnt 0.6886 0.7069

(b) Experiment results on WikiQA

Table 4: (a) Results of our models (LSTM, LSTM + Att, NASM) in comparison with other state of
the art models on the QASent dataset. Bigram-CNN is the simple convolutional model reported in
(Yu et al., 2014). Deep CNN is the deep convolutional model from (Severyn, 2015). WA is a model
based on word alignment (Wang & Ittycheriah, 2015). LCLR is the SVM-based classifier trained
using a set of features. Model + Cnt means that the result is obtained from a combination of a lexical
overlap feature and the output from the distributional model. (b) Results of models on the WikiQA
dataset. PV is the paragraph vector (Le & Mikolov, 2014).

ALSTM jerky is lean meat that has been trimmed of fat , cut into strips , and then dried to prevent spoilage .

ANASM jerky is lean meat that has been trimmed of fat , cut into strips , and then dried to prevent spoilage .

  Q3 how is jerky made

ALSTM the peso is subdivided into 100 centavos , represented by " _UNK_ "

ANASM the peso is subdivided into 100 centavos , represented by " _UNK_ "

  Q2 how much is centavos in mexico

ALSTM the actress who played lolita , sue lyon , was fourteen at the time of filming .

ANASM the actress who played lolita , sue lyon , was fourteen at the time of filming .

  Q1 how old was sue lyon when she made lolita

Figure 4: A visualisation of attention scores on answer sentences. ANASM and ALSTM visualise the
attention scores by darkness of the colour, which are achieved from NASM and LSTM+Att. The
questions and their corresponding correct answer sentences are selected from WikiQA test dataset.

slightly better than the vanilla LSTM model, and our NASM improves the results further. Since the
QASent dataset is biased towards lexical overlapping features, after combining with a co-occurrence
word count feature, our best model NASM outperforms all the previous models, including both
neural network based models and classifiers with a set of hand-crafted features (e.g. LCLR). Sim-
ilarly, on the WikiQA dataset, all of our models outperform the previous distributional models by
a large margin. By including a word count feature, our models improve further and achieve the
state-of-the-art. Notably, on both datasets, our two LSTM-based models have set strong baselines
and NASM works even better, which demonstrates the effectiveness of introducing stochastic units
to model question semantics in this answer sentence selection task. In addition, the Hinton diagrams
in Appendix D reveals the interesting information captured by the latent distribution.

than the true scores. Severyn (2015) and Wang & Ittycheriah (2015), however, use a cleaned-up version of
the evaluation scripts. In order to make our results directly comparable with previous work, we use the noisy
evaluation scripts; and scale Severyn’s and Wang’s results by re-evaluating their outputs with the noisy scripts.

8



Workshop track - ICLR 2016

In Figure 4, we compare the effectiveness of the latent attention mechanism (NASM) and its deter-
ministic counterpart (LSTM+Att) by visualising the attention scores on the answer sentences. For
most of the sentences that are not answering the question, neither of the two attention models can
attend to reasonable words that are beneficial for predicting relatedness. But for the correct answer
sentences, such as the ones in Figure 4, both attention models are able to capture crucial information
by attending to different parts of the sentence based on the question semantics. Interestingly, com-
pared to the deterministic counterpart LSTM+Att, our NASM assigns higher attention scores on the
prominent words that are relevant to the question, which forms a more peaked distribution and in
turn helps the model achieve better performance.

6 RELATED WORK

Training an inference network to approximate the variational distribution was first proposed in the
context of Helmholtz machines (Hinton & Zemel, 1994; Hinton et al., 1995; Dayan & Hinton,
1996), but applications of these directed generative models come up against the problem of estab-
lishing low variance gradient estimators. Recent advances in neural variational inference mitigate
this problem by reparameterising the continuous random variables via differentiable transformation
(Rezende et al., 2014; Kingma & Welling, 2014), using control variates (Mnih & Gregor, 2014) or
approximating the posterior with importance sampling (Bornschein & Bengio, 2015). The instanti-
ations of these ideas (Gregor et al., 2015; Kingma et al., 2014; Ba et al., 2015) have demonstrated
strong performance on the tasks of image generation, image classification and caption generation.

Another class of neural generative models make use of the autoregressive assumption to model high-
dimensional input distributions (Larochelle & Murray, 2011; Uria et al., 2014; Germain et al., 2015).
Deep AutoRegressive Networks (DARN) (Gregor et al., 2014) integrate this idea with variational in-
ference. Applications of these models on document modelling achieve significant improvements on
generating documents, compared to conventional probabilistic topic models (Hofmann, 1999; Blei
et al., 2003) and also the RBMs (Hinton & Salakhutdinov, 2009; Srivastava et al., 2013). Different
from these models that use binary semantic vectors, our NVDM employs dense continuous docu-
ment representations which are both expressive and easy to train. The semantic word vector model
(Maas et al., 2011) also employs a continuous semantic vector to generate words, but the model is
trained by MAP inference which does not permit the calculation of the posterior distribution.

Prior work on question answering relies on classifiers with large numbers of hand-crafted syntactic
and semantic features and various external resources. Only very recently have researchers started
to apply deep learning to question answering. Relevant work includes mapping factoid questions
with answer triples in the knowledge base by projecting them into a shared vector space using
convolutional neural networks (Bordes et al., 2014a;b; Yih et al., 2014). Recently, the attention-
based learning models (Bahdanau et al., 2015) are applied to QA, where long-term memories act as
dynamic knowledge bases (Weston et al., 2015; Sukhbaatar et al., 2015; Kumar et al., 2015) or the
attentive network helps read and comprehend (Hermann et al., 2015).

Our NASM effectively combines the strengths of LSTMs with attention mechanism and stochastic
units, which equips our model with stronger capability to infer the correctness of an answer to a given
question. Stochastic Feedforward Neural Networks (SFNN) (Tang & Salakhutdinov, 2013) applied
similar idea of introducing stochastic units for expression classification. However, the inference is
carried out by Monte Carlo EM algorithm with the reliance on importance sampling, which is less
efficient and lack of scalability.

7 CONCLUSION

This paper introduces a deep neural variational inference framework for generative models of text.
To demonstrate the effectiveness of this framework, we experimented on two diverse tasks, docu-
ment modelling and question answer selection tasks, where in both cases our models achieve state
of the art performance. Apart from the promising results, our model also has the advantages of
(1) simple, expressive, and efficient when training with the SGVB algorithm; (2) suitable for both
unsupervised and supervised learning tasks; (3) capable of generalising to incorporate any type of
neural network.
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A T-SNE VISUALISATION OF DOCUMENT REPRESENTATIONS
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(a) Neural Variational Document Model

10 5 0 5 10
10

5

0

5

10

(b) Semantic Word Vector

Figure 5: t-SNE visualisation of the document representations achieved by (a) NVDM and (b) SWV
(Maas et al., 2011) on the held-out test dataset of 20NewsGroups. The documents are collected from
20 different news groups, which correspond to the points with different colour in the figure.
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B DETAILS OF THE DEEP NEURAL NETWORK STRUCTURES

B.1 NEURAL VARIATIONAL DOCUMENT MODEL

(1) Inference Network qφ(h|X):

λ = ReLU(W 1X + b1) (21)
π = ReLU(W 2λ + b2) (22)

µ =W 3π + b3 (23)
logσ =W 4π + b4 (24)

h ∼ N (µ(X),diag(σ2(X))) (25)

(2) Generative Model pθ(X|h):

ei = exp(−hTRxi + bxi) (26)
pθ(xi|h) = ei∑|V |

j ej
(27)

pθ(X|h) =
∏N
i pθ(xi|h) (28)

(3) KL Divergence DKL[qφ(h|X)||p(h)]:

DKL = 1
2 (K − ‖µ‖

2 − ‖σ‖2 + log |diag(σ2)|) (29)

The variational lower bound to be optimised:

L = Eqφ(h|X)

[
N∑
i=1

log pθ(xi|h)

]
−DKL[qφ(h|X)||p(h)] (30)

≈
L∑
l=1

N∑
i=1

log pθ(xi|h(l))− 1

2
(K − ‖µ‖2 − ‖σ‖2 + log |diag(σ2)|) (31)

B.2 NEURAL ANSWER SELECTION MODEL

(1) Inference Network qφ(h|q,a,y):

sq(|q|) = f LSTM
q (q) (32)

sa(|a|) = f LSTM
a (a) (33)

sy =W 5y + b5 (34)
γ = sq(|q|)||sa(|a|)||sy (35)
λφ = tanh(W 6γ + b6) (36)
πφ = tanh(W 7λφ + b7) (37)
µφ =W 8πφ + b8 (38)

logσφ =W 9πφ + b9 (39)
h ∼ N (µφ(q,a,y),diag(σ

2
φ(q,a,y))) (40)

(2) Generative Model

pθ(h|q):

λθ = tanh(W 1sq(|q|) + b1) (41)
πθ = tanh(W 2λθ + b2) (42)
µθ =W 3πθ + b3 (43)

logσθ =W 4πθ + b4 (44)
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pθ(y|q,a,h):

e(i) =W T
α tanh(W hh+W ssa(i)) (45)

α(i) = e(i)∑
j e(j)

(46)

c(a,h) =
∑
i sa(i)α(i) (47)

za(a,h) = tanh(W ac(a,h) +W nsa(|a|)) (48)
zq(q) = sq(|q|) (49)

pθ(y = 1|q,a,h) = σ(zTqMza + b) (50)

(3) KL Divergence DKL[qφ(h|q,a,y)||pθ(h|q)]:

DKL =
1

2
(K + log |diag(σ2

φ)| − log |diag(σ2
θ)| − Tr(diag(σ2

φ) diag
−1(σ2

θ))

−(µφ − µθ)T diag−1(σ2
θ)(µφ − µθ)) (51)

The variational lower bound to be optimised:

L = Eqφ(h|q,a,y)[log pθ(y|q,a,h)]−DKL[qφ(h|q,a,y)||pθ(h|q)] (52)

≈
L∑
l=1

y log σ(zTqMz(l)a + b) + (1− y) log(1− σ(zTqMz(l)a + b))

−1

2
(K + log |diag(σ2

φ)| − log |diag(σ2
θ)| − Tr(diag(σ2

φ) diag
−1(σ2

θ))

−(µφ − µθ)T diag−1(σ2
θ)(µφ − µθ)) (53)

C COMPUTATIONAL COMPLEXITY

The computational complexity of NVDM for a training document is Cφ +Cθ = O(LK2 +KSV ).
Here, Cφ = O(LK2) represents the cost for the inference network to generate a sample, where L
is the number of the layers in the inference network and K is the average dimension of these layers.
Besides, Cθ = O(KSV ) is the cost of reconstructing the document from a sample, where S is the
average length of the documents and V represents the volume of words applied in this document
model, which is conventionally much lager than K.

The computational complexity of NASM for a training question-answer pair is Cφ +Cθ = O((L+
S)K2 +SW ). The inference network needs Cφ = 2SW +2K +LK2 = O(LK2 +SW ). It takes
2SW + 2K to produce the joint representation for a question-answer pair and its label, where W is
the total number of parameters of an LSTM and S is the average length of the sentences. Based on
the joint representation, an MLP spends LK2 to generate a sample, where L is the number of layers
andK represents the average dimension. The generative model requiresCθ = 2SW+LK2+SK2+
5K2 + 2K2 = O((L+ S)K2 + SW ). Similarly, it costs 2SW + LK2 to construct the generative
latent distribution , where 2SW can be saved if the LSTMs are shared by the inference network and
the generative model. Besides, the attention model takes SK2+5K2 and the relatedness prediction
takes the last 2K2.

Since the computations of NVDM and NASM can be parallelised in GPU and only one sample is
required during training process, it is very efficient to carry out the neural variational inference.
As NVDM is an instantiation of variational auto-encoder, its computational complexity is the same
as the deterministic auto-encoder. In addition, the computational complexity of LSTM+Att, the
deterministic counterpart of NASM, is also O((L + S)K2 + SW ). There is only O(LK2) time
increase by introducing an inference network for NASM when compared to LSTM+Att.

14



Workshop track - ICLR 2016

D HINTON DIAGRAMS OF THE GAUSSIAN PARAMETERS IN NASM
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Figure 6: Hinton diagrams of the means and log standard deviations, which parameterise the latent
distribution over question semantics. In a Hinton diagram, the size of a square is proportional
to a value’s magnitude, and the colour (black/white) indicates its sign (positive/negative). In this
case, we visualise 50 instances that are conditional distributions p(h|q) given the questions from
5 different groups, which start with ‘how’, ‘what’, ‘who’, ‘when’ and ‘where’. The means are
randomly initialised while the initial log standard deviations are set as zero. According to (b),
we can see that the questions starting with ‘how’ have more white areas, which indicates higher
variances or more uncertainties are in these dimensions. By contrast, the questions starting with
‘what’ have black squares in almost every dimension. Intuitively, it is more difficult to understand
and answer the questions starting with ‘how’ than the others, while the ‘what’ questions commonly
have explicit words indicating the possible answers. Interestingly, the questions with ‘when’, ‘who’
and ‘where’ have similar distributions on both mean and variance.
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