Workshop track - ICLR 2016

DO DEEP CONVOLUTIONAL NETS REALLY NEED TO
BE DEEP (OR EVEN CONVOLUTIONAL)?

Gregor Urban', Krzysztof J. Geras?, Samira Ebrahimi Kahou®, Ozlem Aslan* & Shengjie Wang®
1University of California Irvine, USA — gurban@uci.edu

2University of Edinburgh, UK — k.j.geras @sms.ed.ac.uk

3Ecole Polytechnique de Montreal, CA — samira.ebrahimi-kahou@polymtl.ca

4University of Alberta, CA — ozlem@cs.ualberta.ca

S5University of Washington, USA — wangsj@ cs.washington.edu

Rich Caruana, Abdelrahman Mohamed, Matthai Philipose, Matt Richardson
Microsoft Research, Redmond, USA
{rcaruana, asamir, matthaip, mattri } @microsoft.com

Yes, apparently they do.

Prior research showed that shallow feed-forward nets sometimes can learn the complex functions
previously learned by deep nets using a similar number of parameters as the deep models they mimic.
We investigate if shallow models can learn to mimic the functions learned by deep convolutional
models. We experiment with models with a varying number of convolutional layers trained to mimic
a state-of-the-art ensemble of CIFAR-10 models. We are unable to train shallow models to have
comparable accuracy to deep convolutional models. The student models do not have to be as deep as
the teacher models, but they need multiple convolutional layers to learn functions of high accuracy.

1 INTRODUCTION

Early theoretical work on the representational capacity of neural nets proved that a network with a
large enough single hidden layer of sigmoid units can approximate any decision boundary (Cybenko,
1989). Empirical work, however, suggests it is difficult to train shallow nets to be as accurate as deep
nets. [Dauphin and Bengio|(2013) found it difficult to train high-accuracy, shallow nets on ImageNet.
A study of deep convolutional nets suggests that for vision tasks deeper models are preferred under
a parameter budget (Simonyan and Zisserman, [2014} |He et al.| 2015; [Srivastava et al., 2015} Eigen
et al.,|2014)). Seide et al.|(2011) and|Geras et al.|(2015) showed that deeper models are more accurate
in speech modeling. [Romero et al.|(2015) showed the accuracy of models with few parameters can
be increased by training deeper, thinner nets (FitNets) to mimic wider nets.

Ba and Caruanal (2014), however, demonstrated that shallow nets sometimes can learn the same
functions as deep nets, even when restricted to the same number of parameters as the deep nets. They
did this by first training state-of-the-art deep models, and then training shallow models to mimic the
deep models. Surprisingly, and for reasons that are not well understood, the shallow models learned
more accurate functions when trained to mimic the deep models than when trained on the original
data that had been used to train the deep models. Remarkably, shallow models trained this way on
the TIMIT speech recognition benchmark were as accurate as state-of-the-art deep models.

Although their deep teacher models used one convolutional layer, convolution is less important for
speech recognition problems such as TIMIT than for other problems such as image recognition. |Ba
and Caruanal (2014) also presented results on CIFAR-10 which showed that a shallow model could
learn functions almost as accurate as deep convolutional nets. Unfortunately, their CIFAR-10 results
are less convincing than those for TIMIT: they had to include at least one convolutional layer in the
shallow model, the number of parameters in the shallow model was 30 times larger than the deep
teacher models, and the shallow student model was several points less accurate than a teacher model
that was itself less accurate than state-of-the-art models on CIFAR-10.

In this work we revisit the CIFAR-10 experiments in [Ba and Caruana (2014). Unlike that work,
here we compare shallow models to state-of-the-art deep convolutional models, restrict the number
of parameters in the shallow models to be comparable to the number of parameters in the deep
convolutional models, and use Bayesian hyperparameter optimization to insure models are trained
as accurately as possible. See the Appendix for details of the methodology we used.

1

Workshop track - ICLR 2016

2 EMPIRICAL RESULTS

Table [T] summarizes results after Bayesian hyperparameter optimization for models trained on the
original 0/1 hard CIFAR-10 labels. The table shows the accuracy of the best three deep convolutional
models we trained on CIFAR-10, as well as the accuracy of an ensemble of 16 deep CNNs (and for
comparison the accuracy of the ensemble trained by Ba and Caruana) (2014)). The first four rows
in Table |I| show models with increasing depth and correspond to the model architectures trained
as students in Table [2] the key difference being the targets they are trained to (hard 0/1 targets in
Table [T} soft teacher targets in Table [2). Comparing the accuracies of the models with 10 million
parameters in both Tables we see that training student models to mimic the ensemble increases
accuracy in every case. Gains are more pronounced for shallower models most likely due to the fact
that their learnable internal representations do not naturally yield good generalization in this task.

Table 2] and Figure [I] show the results after
Bayesian hyperparameter-optimization for con-
volutional mimic models of various depths (in-
cluding a shallow model with no convolution).
The student models are able to achieve accura-
cies previously unseen on CIFAR-10 for mod-
els with so few layers. Also, it is evident that
a network without convolutional layers can not
achieve competitive results compared to models
that use convolution, even when allotted a large
number of parameters (see the “convolutional
gap” in Figure[I)). Looking at the results for all
models, we make two observations. First, stu-
dent networks of the same architecture perform
better when they contain more trainable param-
eters. Second, deeper student models clearly
outperform shallower models. This can most
easily be seen in Figure |l| which shows large
gaps between architectures of different depths. 75
We optimized layer widths for each convnet

depth and number of trainable parameters, thus

it is likely that there is no configuration of dis-
tributing filters and hidden units in shallow net-

works that are able to attain the performance of 70
a well-designed deeper network with the same
number of parameters. Performance seems to

start to asymptote for models with three or more
convolutional layers.

. ——

2]
o

s) o=t] e=o 2 o=—a 3 o=a 4

Accuracy
convolutional gap

1
1
1
1
1
1
1
1
1
1
1
1
1
|
1
1
‘
1
Number of Convolutional Layers !
1
1
1
1
1
1
|
1
1
1
1
1
1
1
1
1
1
1
1

- hard target gap

65|
In summary, depth-constrained student models : | | |
trained to mimic a high-accuracy ensemble of 1 3 1 31
. Number of Parameters [millions]
deep convolutional models perform better than
similar models trained on the original hard tar-

o v, 2 Figure 1: Accuracy of students trained
gets (the “hard-target” gaps in Figure [I), stu- to mimic the CIFARI10-ensemble. The aver-
dent models need at least 3-4 convolutional lay- age performance of the five best models of
ers to have high accuracy on CIFAR-10, shal- each hyperparameter-optimization experiment is

iow studerllts wig}lr;choln (‘)] olut(ionaillayers gef' shown, together with ‘error bars’ indicating the
Ot pootty on -10), and student models accuracy of the best and the fifth best model in

need at least 3-10M parameters to perform well. each case. The short horizontal lines at 10M pa-

We are not able to compress deep convolutional rameters are the accuracy of models trained with-

“?Odels to shallow student models without sig- out compression on the original 0/1 hard targets.
nificant loss of accuracy.

3 DISCUSSION

Although we are not able to train shallow models to be as accurate as deep models, the models
we trained via distillation (Hinton et al., 2015)) are, we believe, the most accurate models of their

Workshop track - ICLR 2016

architecture ever trained on CIFAR-10. The best model we trained with no convolutional layers
achieved an accuracy of 70.2%. We believe this to be the most accurate shallow fully-connected
model reported for CIFAR-10 (in comparison to 63.1% achieved by |Le et al.| (2013), 63.9% by
Memisevic et al| (2015) and 64.3% by |Geras and Sutton| (2015)). Although this model can not
compete with convolutional models, clearly distillation helps train models limited by architecture
and number of parameters. Similarly, the student models we trained with 1, 2, 3, and 4 convolutional
layers are, we believe, the most accurate convnets of those depths reported in the literature.

Interestingly, the mimic networks perform consistently worse when trained using dropout. This
surprised us, and suggests that training student models on the soft-targets from a teacher provides
significant regularization to the student models obviating the need for extra regularization methods
such as dropout. |Ba and Caruanal(2014) also observed that student models did not seem to overfit.

Table 1: Accuracy on CIFAR-10 of shallow and deep models trained on the original 0-1 hard class
labels using Bayesian optimization. Key: c, convolution layer; mp, max-pooling layer; fc, fully
connected layer; Ifc, linear bottleneck layer. The models with 1-4 convolutional layers at the top of
the table are included for comparison with student models of similar architecture in Table [2] The
last two models (*) are numbers reported by [Ba and Caruanal (2014)).

Model Architecture # parameters | Accuracy
1 conv. layer c-mp-lfc-fc 10M 84.6%
2 conv. layer c-mp-c-mp-fc 10M 88.9%
3 conv. layer c-mp-c-mp-c-mp-fc 10M 91.2%
4 conv. layer c-mp-c-c-mp-c-mp-fc 10M 91.75%
Teacher CNN 1°° 76¢2-mp-126¢-mp-148c*-mp-1200fc? 5.3M 92.78%
Teacher CNN 274 96¢2-mp-171¢2-mp-128c*-mp-512fc? 2.5M 92.77%
Teacher CNN 374 54¢2-mp-158¢2-mp-189¢*-mp-1044fc> 5.8M 92.67%
Ensemble of 16 CNNs c2-mp-c2-mp-c*-mp-fc? 83.4M 93.8%
Teacher CNN (*) 128c-mp-128c-mp-128c-mp-1k fc 2.1M 88.0%
Ensemble, 4 CNNs (*) 128c-mp-128c-mp-128c-mp-1k fc 8.6M 89.0%

Table 2: Student models with varying number of convolutional layers trained to mimic the ensemble
of 16 deep convolutional CIFAR-10 models in Table[I] The highest accuracy student models have 3 —
4 convolutional layers and 10M —31.6M parameters. The student model trained by Ba and Caruana
(2014) is shown in the last line for comparison; it is less accurate and much larger than the student
models we train that also have 1 convolutional layer.

IM |316M| 10M | 31.6M | 70M
Bottleneck, 1 hidden layer 65.3% | 67.4% | 69.5% | 70.2% B
1 conv. layer, 1 max-pool, Bottleneck 84.5% | 86.3% | 87.3% | 87.7% B
2 conv. layers, 2 max-pool 87.9% | 89.3% | 90.0% | 90.3% B
3 conv. layers, 3 max-pool 90.7% | 91.6% | 91.9% | 92.3% B
4 conv. layers, 3 max-pool 91.3% | 91.8% | 92.6% | 92.6% B
SNN-ECNN—MIMIC—30k 128c-p-1200L-30k B B B B 35.8%
trained on ensemble (Ba and Caruana (2014))

Workshop track - ICLR 2016

REFERENCES
Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? In NIPS, 2014.

Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, James Bergstra, Ian J. Goodfellow, Arnaud Bergeron, Nico-
las Bouchard, and Yoshua Bengio. Theano: new features and speed improvements. Deep Learning and
Unsupervised Feature Learning NIPS 2012 Workshop, 2012.

James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, Guillaume Desjardins,
Joseph Turian, David Warde-Farley, and Yoshua Bengio. Theano: a CPU and GPU math expression com-
piler. In SciPy, 2010.

Cristian Bucilu, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In KDD, 2006.

William Chan, Nan Rosemary Ke, and Ian Laner. Transferring knowledge from a RNN to a DNN.
arXiv:1504.01483, 2015.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals
and Systems, 2(4):303-314, 1989.

Yann N Dauphin and Yoshua Bengio. Big neural networks waste capacity. arXiv:1301.3583, 2013.

David Eigen, Jason Rolfe, Rob Fergus, and Yann LeCun. Understanding deep architectures using a recursive
convolutional network. In ICLR (workshop track), 2014.

Krzysztof J. Geras and Charles Sutton. Scheduled denoising autoencoders. In /CLR, 2015.

Krzysztof J. Geras, Abdel-rahman Mohamed, Rich Caruana, Gregor Urban, Shengjie Wang, Ozlem
Aslan, Matthai Philipose, Matthew Richardson, and Charles Sutton. Compressing LSTMs into CNNss.
arxiv:1511.06433, 2015.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural networks.
In AISTATS, 2010.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
arXiv:1512.03385, 2015.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
arXiv:1503.02531, 2015.

Alex Krizhevsky. Learning multiple layers of features from tiny images, 2009.

Quoc Le, Tamés Sarlés, and Alexander Smola. Fastfood-computing hilbert space expansions in loglinear time.
In ICML, 2013.

Jinyu Li, Rui Zhao, Jui-Ting Huang, and Yifan Gong. Learning small-size dnn with output-distribution-based
criteria. In INTERSPEECH, 2014.

Roland Memisevic, Kishore Konda, and David Krueger. Zero-bias autoencoders and the benefits of co-adapting
features. In ICLR, 2015.

Emilio Parisotto, Jimmy Lei Ba, and Ruslan Salakhutdinov. Actor-mimic: Deep multitask and transfer rein-
forcement learning. In /CLR, 2016.

Adriana Romero, Ballas Nicolas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and Yoshua Bengio.
FitNets: Hints for thin deep nets. ICLR, 2015.

Andrei A. Rusu, Sergio Gomez Colmenarejo, Caglar Giilgehre, Guillaume Desjardins, James Kirkpatrick, Raz-
van Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and Raia Hadsell. Policy distillation. In /CLR, 2016.

Frank Seide, Gang Li, and Dong Yu. Conversational speech transcription using context-dependent deep neural
networks. In INTERSPEECH, 2011.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition.
In ICLR, 2014.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine learning
algorithms. NIPS, 2012.

Workshop track - ICLR 2016

Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan Sundaram, Md Patwary,
Mostofa Ali, Ryan P Adams, et al. Scalable bayesian optimization using deep neural networks. In ICML,
2015.

Rupesh K Srivastava, Klaus Greff, and Juergen Schmidhuber. Training very deep networks. In NIPS, 2015.

Antonio Torralba, Robert Fergus, and William T. Freeman. 80 million tiny images: A large data set for non-
parametric object and scene recognition. TPAMI, 30(11), 2008.

Workshop track - ICLR 2016

4 APPENDIX (OPTIONAL MATERIAL)

4.1 MODEL COMPRESSION AND KNOWLEDGE DISTILLATION

The key idea behind model compression is to train a compact model to approximate the function learned by
another larger, more complex model. Bucilu et al| (2006), showed how a single neural net of modest size
could be trained to mimic a much larger ensemble. Although the small neural nets contained 1000x fewer
parameters, often they were as accurate as the large ensembles they were trained to mimic.

Model compression works by passing unlabeled data through the large, accurate teacher model to collect the
scores it predicts, and then training a student model to mimic these scores. |[Hinton et al.|(2015) generalized the
methods inBucilu et al.|(2006) and|Ba and Caruanal(2014) by incorporating a parameter to control the relative
importance of the soft targets provided by the teacher model to the hard targets in the original training data, as
well as a temperature parameter that regularizes learning by pushing targets towards the uniform distribution.
Hinton et al.[(2015) demonstrate that much of the knowledge passed from teacher to student is conveyed as
dark knowledge contained in the relative scores (probabilities) of outputs corresponding to other classes, as
opposed to the scores given to just the correct class.

Surprisingly, distillation often allows smaller and/or shallower models to be trained that are nearly as accurate
as the larger, deeper models they are trained to mimic, but the small models are not as accurate when trained
on the 1-hot hard targets in the original training set. The reason for this is not yet well understood. Similar
methods have also successfully been used in speech recognition (e.g. |[Li et al.[(2014));|Geras et al.|(2015); /Chan
et al.|(2015)) and reinforcement learning (Parisotto et al., 20165 Rusu et al.| [2016).

4.2 MIMIC LEARNING VIA L2 REGRESSION ON LOGITS

We train shallow mimic nets using data labeled by an ensemble of deep nets trained on the original CIFAR-
10 training data. The deep models are trained in the usual way using softmax output and cross-entropy cost
function. Following Ba and Caruanal (2014), the student mimic models, instead of being trained with cross-
entropy on the ten p values where p, = e*%/ > y €7 output by the softmax layer from the deep model, are
trained on the ten log probability values z (the logits) before the softmax activation. Training on the logarithms
of predicted probabilities (logits), provides the dark knowledge that helps students by placing emphasis on the
relationships learned by the teacher model across all of the outputs.

Following [Ba and Caruanal (2014), the student is trained as a regression problem given training data

1
LW.B) = 5= > gl W, 8) — 2|5, (1)
t

where W is the weight matrix between input features « and hidden layer, 3 is the weights from hidden to
output units, g(z9; W, 8) = Bf(Wz™) is the model prediction on the £ training data point and f(-) is the
non-linear activation of the hidden units.

4.3 USING A LINEAR BOTTLENECK TO SPEED UP TRAINING

A shallow net has to have more hidden units per layer to match the number of parameters in a deep net. |Ba and;
Caruana (2014) found that training wide, shallow mimic models was slow, and introduced a linear bottleneck
layer between the input and non-linear layers to speed learning. The bottleneck layer speeds learning by reduc-
ing the number of parameters that must be learned, but does not make the model deeper because the linear terms
can be absorbed back into the non-linear weight matrix after learning. See their paper for details. To match their
experiments we use linear bottlenecks when training student models with O or 1 convolutional layers, but did
not find the linear bottlenecks necessary when training student models with more than 1 convolutional layers.

4.4 BAYESIAN HYPERPARAMETER OPTIMIZATION

The goal of this work is to determine empirically if shallow nets can be trained to be as accurate as deep
convolutional models using a similar number of parameters in the deep and shallow models. If we succeed
in training a shallow model to be as accurate as a deep convolutional model, this provides an existence proof
that shallow models can represent and learn the complex functions learned by deep convolutional models. If,
however, we fail to train shallow models to be as accurate as deep convolutional nets, we might fail only because
we did not train the shallow nets well enough.

In all our experiments we employ Bayesian hyperparameter optimization using Gaussian process regression
to insure that we thoroughly (and objectively) explore the hyperparameters that govern learning. The specific

Workshop track - ICLR 2016

implementation we use is Spearmint (Snoek et al.l 2012). The hyperparameters we optimize with Bayesian
optimization typically include the initial learning rate, momentum, scaling of the initially randomly distributed
learnable parameters, scaling of the input and terms that determine the width of the network’s layers (i.e.
number of convolutional filters and neurons). See Sections 4.5} .7} .8] and Appendix [£.9]for details of which
and how the hyperparameters are optimized for each architecture.

4.5 TRAINING DATA AND DATA AUGMENTATION

The CIFAR-10 Krizhevsky| (2009) data set consists of a set of natural images from 10 different object classes:
airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck. The dataset is a labeled subset of the 80
million tiny images dataset Torralba et al.|(2008) and is divided into 50,000 train and 10,000 test images. Each
image is 32x32 pixels in 3 color channels, yielding input vectors with 3072 dimensions. We prepared the data
by subtracting the mean and dividing by the standard deviation of each image vector.

We employ the HSV-data augmentation technique as described by |Snoek et al.[(2015)). Thus we shift hue, satu-
ration and value by uniform random values: Ay, ~ U(—Dp, Dy), As ~ U(—Ds, Ds), Ay ~ U(—Dy, Dy).
Saturation and value values are scaled globally as follows: as ~ U(gr, 1 + As), a0 ~ U(ggg, 1+ Ay).
The five constants Dy, Dy, Dy, As, A, are treated as additional hyperparameters in the Bayesian hyperparam-

eter optimization procedure.

The input images are further scaled and jittered by cropping windows of size 24x24 up to 32x32 at random
locations and then scaling them back to 32x32. The procedure is as follows: we sample an integer value
S ~ U(24,32) and then a pair of integers x,y ~ U(0,32 — S). The transformed resulting image is R =
feptine,3(I[z : £+ S,y : y+ S]) with I denoting the original image and fspiine,3 denoting the 3rd order spline
interpolation function that maps the 2D array back to 32x32 (applied to the three color channels in parallel).

All images also are mirrored left-right randomly with a probability of 0.5.

Because augmentation allows us to generate large training sets from the original 50,000 images, we are able to
use the augmented data as the transfer set for model compression. No extra unlabeled data is required.

4.6 LEARNING-RATE SCHEDULE

We train all models using SGD with Nesterov momentum. The initial learning rate and momentum term are
chosen by the Bayesian optimization procedure. The learning rate is reduced according to the evolution of the
model’s validation error. More specifically, it is halved if the validation error did not drop for ten epochs in a
row. It is not reduced within the next eight epochs following a reduction step. Training ends if the error did not
drop for 30 epochs in a row or if the learning rate was reduced by a factor of more than 2000 in total.

4.7 SUPER TEACHER: AN ENSEMBLE OF 16 DEEP CONVOLUTIONAL CIFAR-10 MODELS

One of the limitations of the CIFAR-10 experiments performed in|Ba and Caruana) (2014) is that the teacher
models were not state-of-the-art. The best deep models they trained on CIFAR-10 had only 88% accuracy, and
the ensemble of deep models they used as a teacher had only 89% accuracy. Their accuracies were not state-of-
the-art because they did not use augmentation and because their deepest models had only three convolutional
layers. Because our goal is to determine if shallow models can be as accurate as deep convolutional models, it
is important that the deep models we compare to (and learn from) are as accurate as possible.

We train deep neural networks with eight convolutional layers, three intermittent max-pooling layers and two
fully connected hidden layers (see Section .9). We include the size of these layers in the hyperparameter
optimization, by allowing the first two convolutional layers to contain 32 to 96 filters each, the next two layers
to contain 64 to 192 filters, and the last four convolutional layers to contain 128 to 384 filters. The two fully-
connected hidden layers can contain from 512 to 1536 neurons. We parametrize these model-sizes by four
scalars (the layers are grouped as 2-2-4) and include the scalars in the hyperparameter optimization. All teacher
and student models are trained using Theano Bergstra et al.|(2010), Bastien et al.|(2012).

We optimize for eighteen hyperparameters overall: initial learning rate [0.01, 0.05], momentum [0.80, 0.91],
l2-weight-decay [5 - 1075,4 - 10™*], initialization [0.8, 1.35] which scales the initial weights of the CNN, four
separate dropout rates and five constants controlling the HSV data augmentation and the four scaling constants
controlling the networks’ layer widths (cf. Section[d.9]for all details).

We trained 129 deep CNN models with spearmint. The best model obtained an accuracy of 92.8%, the fifth
best achieved 92.65%. See Table[Tlfor the three best models.

We are able to construct a more accurate model on CIFAR-10 by forming an ensemble of multiple deep con-
volutional neural nets, each trained with different hyperparameters, and each seeing slightly different training
data (as the augmentation parameters vary). We experimented with a number of ensembles of the many deep

Workshop track - ICLR 2016

convnets we trained, using accuracy on the validation set to select the best combination. The final ensemble
contained 16 deep convnets and had an accuracy of 94.0% on the validation set, and 93.8% on the final test
set. We believe this is among the top published results for deep learning on CIFAR-10. We used this very
accurate ensemble model as the teacher model to label the data then used to train the shallower student nets.
As described in Section [£.2]the logits (log probability of the predicted values) from each CNN in the model are
averaged, and the average logits are used as final regression targets to train the shallower student neural nets.

4.8 TRAINING SHALLOW STUDENT MODELS TO MIMIC AN ENSEMBLE OF DEEP
CONVOLUTIONAL MODELS

We trained mimic nets with 1, 3. lfﬂ 10 and 31.6 million trainable parameters on the pre-computed augmented
training data that was re-labeled by the ensemble (see Section [d.5). For each of the four sizes we trained one
shallow fully-connected net containing only one layer of non-linear units (ReLU), and CNNs with 1, 2, 3 or 4
convolutional layers. The convolutional models also contain one hidden fully-connected ReLU layer. Models
with zero or only one convolutional layer do contain an additional linear bottleneck layer to speed up learning
(cf. Section[£.3). We did not need to use a bottleneck to speed up learning for the deeper models as the number
of learnable parameters in naturally reduced by the max-pooling layers.

All student models make use of max-pooling and contain variable amounts of convolutional filters and hidden
units. We implemented the constraints of fixed numbers of trainable parameters as follows: a scale factor
(between zero and one) is assigned to each hidden layer with trainable weights. This factor controls the width of
the layer it is assigned to, such that zero corresponds to the smallest allowed size and one to the largest allowed
size, given the architecture of the model and the number of allotted parameters. The Bayesian optimization will
then select the values of all but one of these factors, and the remaining factor is computed to match the target
number of trainable parameters for the model as closely as possible. We use the factor that controls the number
of neurons in the fully connected hidden layer as the dependent variable in all optimization runs, except in the
single-convolutional-layer models where we chose the factor controlling the size of the linear bottleneck layer.

The hyperparameters optimized in the student models are: initial learning rate, momentum, scaling of the ini-
tially randomly distributed learnable parameters (see |Glorot and Bengio| (2010)), scaling of all pixel values of
the input, and lastly the scale factors that control the width of all hidden and convolutional layers in the model.
We intentionally do not optimize and do not make use of weight decay and dropout when training student mod-
els, as preliminary experiments clearly showed a negative impact for students with up to 40 million parameters.
See Section[d.11|for all details on the individual architectures and the ranges for the hyperparameters.

4.9 DETAILS ON TRAINING TEACHER MODELS

Weights of trained nets are initialized as in |Glorot and Bengio| (2010). The models trained in Section
contain eight convolutional layers organized into three groups (2-2-4) and two fully connected hidden lay-
ers. The Bayesian hyperparameter optimization is given control over four constants C;,C2, C3, H; all in
the range [0, 1]. They are then linearly transformed to the actual number of filters / neurons in each layer.
The hyperparameters for which ranges were not shown in Section are: the four separate dropout rates
(DOc1,DOc2, DOcg, DOY) and the five constants Dy, Ds, D,,, As, A, controlling the HSV data augmenta-
tion. The ranges we selected are DOc; € [0.1,0.3],DOcy € [0.25,0.35], DOc3 € [0.3,0.44], DOf; €
[0.2,0.65],DOf> € [0.2,0.65], Dy, € [0.03,0.11], D, € [0.2,0.3], D, € [0.0,0.2], A; € [0.2,0.3], A, €
[0.03,0.2], partly guided by |Snoek et al.[(2015) and visual inspection of the resulting augmentations.

All convolutional filters in the model are sized 3 x 3, max-pooling is applied over windows of 2x2 and we use
ReLU units throughout all our models. We apply dropout after each max-pooling layer with the three rates
DOc1, DOc2, DOcs and after each of the two fully connected layers with the same rate DOf.

4.10 VARYING DEPTH MODELS TRAINED ON CIFAR-10 0/1 HARD-TARGET LABELS

Models in the first four rows in Table [T] are trained similarly to those in Section .9] and are architecturally
equivalent to the four convolutional student models shown in Table [2 with 10 million parameters. The fol-
lowing hyperparameters are optimized: initial learning rate [0.0015,0.025], momentum [0.68, 0.97], layer-
width constants Cy,C> € [0, 1] that control the number of filters or neurons and up to four dropout rates
DOc; € [0.05,0.4],DOc2 € [0.1,0.6],DOc3 € [0.1,0.7], DOf; € [0.1,0.7]. Weight decay was set to
2.10"* and we used the same data augmentation settings as for the student models. We use 5x 5 convolutional
filters, one nonlinear hidden layer in each model and each max-pooling operation is followed by dropout with
a separately optimized rate. We use 2x2 max-pooling except in the model with only one conv. layer where we
apply 3 x3 pooling as this seemed to boost performance and reduces the number of parameters.

'3.16 = Sqrt(10) falls halfway between 1 and 10 on log scale.

Workshop track - ICLR 2016

The number of filters and hidden units for the models have the following bounds:

1 conv. layer: 50 - 500 filters, 200 - 2000 hidden units, number of units in bottleneck is the dependent variable.
2 conv. layers: 50 - 500 filters, 100 - 400 filters, number of hidden units is the dependent variable.

3 conv. layers: 50 - 500 filters (first layer), 100 - 300 filters (second and third layer), number of hidden units is
the dependent variable.

4 conv. layers: 50 - 300 filters (first two layers), 100 - 300 filters (third and fourth layers), number of hidden
units is the dependent variable.

4.11 VARYING DEPTH MODELS TRAINED ON ENSEMBLE LABELS

Our student models have the same architecture as models in Section £.10 The model without convolutional
layers consists of one linear layer that acts as a bottleneck followed by a hidden layer of ReLU units. The
following hyperparameters are optimized: initial learning rate [0.0013,0.016], momentum [0.68,0.97],
input-scale € [0.8,1.25], global initialization scale (after initialization) € [0.4,2.0], layer-width constants
C4,C> € [0, 1] that control the number of filters or neurons. The exact ranges for the number of filters and
implicitly resulting number of hidden units was chosen for all twenty optimization experiments independently,
as architectures, number of units and number of parameters strongly interact.

The optimization bounds that we used are as follows:

No conv. layer (1M): 500 - 5000 hidden units, number of bottleneck-units is the dep. variable.

No conv. layer (3.1M): 1000 - 20000 hidden units, number of bottleneck-units is the dependent variable.

No conv. layer (10M): 1000 - 30000 hidden units, number of bottleneck-units is the dependent variable.

No conv. layer (31M): 5000 - 45000 hidden units, number of bottleneck-units is the dependent variable.

1 conv. layer (1M): 40 - 150 filters, 200 - 1600 hidden units, number of bottleneck-units is the dependent
variable.

1 conv. layer (3.1M): 50 - 300 filters, 100 - 4000 hidden units, number of bottleneck-units is the dependent
variable.

1 conv. layer (10M): 50 - 450 filters, 500 - 20000 hidden units, number of bottleneck-units is the dependent
variable.

1 conv. layer (31M): 200 - 600 filters, 1000 - 41000 hidden units, number of bottleneck-units is the dependent
variable.

2 conv. layers (1M): 20 - 120 filters (both conv. layers), number of hidden units is the dependent variable.

2 conv. layers (3.1M): 50 - 250 filters (both conv. layers), number of hidden units is the dependent variable.

2 conv. layers (10M): 50 - 350 filters (both conv. layers), number of hidden units is the dependent variable.

2 conv. layers (31M): 50 - 800 filters (both conv. layers), number of hidden units is the dependent variable.

3 conv. layers (1M): 20 - 110 filters (all conv. layers), number of hidden units is the dependent variable.

3 conv. layers (3.1M): 40 - 200 filters (all conv. layers), number of hidden units is the dependent variable.

3 conv. layers (10M): 50 - 350 filters (all conv. layers), number of hidden units is the dependent variable.

3 conv. layers (31M): 50 - 650 filters (all conv. layers), number of hidden units is the dependent variable.

4 conv. layers (1M): 25 - 100 filters (first two layers), 25 - 100 filters (third and fourth layer), number of
hidden units is the dependent variable.

4 conv. layers (3.1M): 50 - 150 filters (first two layers), 50 - 200 filters (third and fourth layer), number of
hidden units is the dependent variable.

4 conv. layers (10M): 50 - 300 filters (first two layers), 50 - 350 filters (third and fourth layer), number of
hidden units is the dependent variable.

4 conv. layers (31M): 50 - 500 filters (first two layers), 50 - 650 filters (third and fourth layer), number of
hidden units is the dependent variable.

	Introduction
	Empirical Results
	Discussion
	Appendix (Optional Material)
	Model Compression and Knowledge Distillation
	Mimic Learning via L2 Regression on Logits
	Using a Linear Bottleneck to Speed Up Training
	Bayesian Hyperparameter Optimization
	Training Data and Data Augmentation
	Learning-Rate Schedule
	Super Teacher: An Ensemble of 16 Deep Convolutional CIFAR-10 Models
	Training Shallow Student Models to Mimic an Ensemble of Deep Convolutional Models
	Details on training Teacher Models
	Varying Depth Models trained on CIFAR-10 0/1 hard-target labels
	Varying Depth Models trained on Ensemble Labels

