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ABSTRACT

We present a method for unsupervised open-domain relation discovery. In con-
trast to previous (mostly generative and agglomerative clustering) approaches,
our model relies on rich contextual features and makes minimal independence
assumptions. The model is composed of two parts: a feature-rich relation extrac-
tor, which predicts a semantic relation between two entities, and a factorization
model, which reconstructs arguments (i.e., the entities) relying on the predicted
relation. We use a variational autoencoding objective and estimate the two com-
ponents jointly so as to minimize errors in recovering arguments. We study fac-
torization models inspired by previous work in relation factorization. Our models
substantially outperform the generative and agglomerative-clustering counterparts
and achieve state-of-the-art performance.

1 INTRODUCTION

The task of Relation Extraction (RE) consists of detecting and classifying semantic relations present
between two entities in text. For example, in the sentence

Ebert is the first journalist to win the Pulitzer prize. (1)

the extractor should predict the semantic relation r = AWARDED expressed between the entities e1
= Ebert and e2 = Pulitzer prize.

Existing methods for RE either do not scale well on open-domain scenarios (e.g., the entire Web)
like supervised approaches, or rely on simple features and make strong modeling assumptions, like
generative and agglomerative clustering models (Lin & Pantel, 2001; Yao et al., 2011).

In this work, we introduce a new model for unsupervised relation extraction that takles the afore-
mentioned challenges. Our model is composed of two components:

• an encoding component: a feature-rich relation extractor which predicts a semantic relation
between two entities in a specific sentence given contextual features;
• a reconstruction component: a factorization model which reconstructs arguments (i.e. the

entities) relying on the predicted relation.

The two components are estimated jointly so as to minimize errors in reconstructing arguments.
While learning to predict left-out arguments, the inference algorithm will search for latent relations
which simplify the argument prediction task as much as possible. Roughly, such objective will
favour inducing relations which maximally constrain the set of admissible argument pairs. Our
hypothesis is that relations induced in this way will be interpretable by humans and useful in practical
applications. Why is this hypothesis plausible? Primarily because humans typically define relations
as an abstraction capturing the essence of the underlying situation. And the underlying situation
(rather than surface linguistic details like syntactic functions) is precisely what imposes constraints
on admissible argument pairs.

Interestingly, the use of reconstruction-error objective, previously considered primarily in the con-
text of training neural autoencoders (Hinton, 1989), gives us an opportunity to borrow ideas from the
area of relation factorization (Bordes et al., 2011; Riedel et al., 2013). In our work, we also adopt
a fairly standard RESCAL factorization (Nickel et al., 2011) and use it within our reconstruction
component.
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In contrast to relational learning, rather than factorizing existing relations, our method simultane-
ously discovers the relational schema and a mapping from text to the relations, and it does it in such
way as to maximize performance on reconstruction tasks. Unlike generative models, the proposed
model is more expressive (by relying on rich contextual features), and makes minimal independence
assumptions.

1.1 OUR APPROACH

Figure 1: Inducing relations with discrete-state
autoencoders.

We approach the problem by introducing a la-
tent variable model which defines the interac-
tions between a latent relations r and the ob-
servables: the entity pair (e1, e2) and other fea-
tures of the sentence x. The main idea of latent
variable modeling is that a good latent repre-
sentation is the one which helps us to recon-
struct input (i.e., x, including (e1, e2)). Thus,
it is crucial to design the model in such a way
that good r (the one predictive of x) indeed en-
codes relations rather than some other form of
abstraction.

In our approach, we encode this reconstruction idea very explicitly. As a motivating example, con-
sider sentence 1. As shown in Figure 1, let us assume that we hide one argument: for example,
e2 = Pulitzer prize. Now the purpose of the reconstruction component is to reconstruct (i.e.,
infer) this argument relying on another argument (e1 = Ebert), the latent relations r and noth-
ing else. At the learning time, our inference algorithm will search through the space of potential
relation clusterings to find the one which makes these reconstruction tasks as simple as possible.
For example, if the algorithm clusters expressions is the first journalist to win together with was
awarded, the prediction is likely to be successful, assuming that the passage Ebert was awarded the
Pulitzer prize has been observed elsewhere in the training data. On the contrary, if the algorithm
clustered is the first journalist to win with presented, we are likely to make a wrong inference (i.e.,
predict Golden Thumb award). Given that we optimize the reconstruction objective, the former
clustering is much more likely than the latter.

Though in the previous paragraph, we described it as clustering of patterns, we are inducing clusters
in a context-sensitive way. In other words, we are learning an encoder: a feature-rich classifier,
which predicts a relation for a given sentence and an entity pair in this sentence. The encoding and
reconstruction components are learned jointly so as to minimize the prediction error. In this way,
the encoder is specialized to the defined reconstruction problem.

2 RECONSTRUCTION ERROR MINIMIZATION

In order to implement the desiderata sketched in the previous section, we take an inspiration from
neural autoencoders (Hinton, 1989). Though popular within the neural network community (i.e.,
y is a real-valued vector), they have recently been applied to the discrete-state setting (i.e., y is a
categorical random variable) (Daumé III, 2009; Ammar et al., 2014). The most related previous
work (Titov & Khoddam, 2015) considers induction of semantics roles of verbal arguments, though
no grouping of predicates into relations has been considered. We refer to such models as discrete-
state autoencoders.

Differently from neural autoencoders, in this work the encoding part is a log-linear feature-rich
model, while the reconstruction part is a tensor (or matrix) factorization model which seeks to re-
construct entities relying on the outcome of the encoding component.

Encoding component The encoding component, that is, the actual relation extractor that will be
used to process new sentences, is a feature-rich classifier that given a set of features extracted from
the sentence, predicts the corresponding semantic relation r ∈ R. We use a log-linear model

q(r|x,w) ∝ exp(wTg(r, x)), (2)

where g(r, x) is a high-dimensional feature representation and w is the corresponding vector of pa-
rameters. In principle, the encoding model can be any model as long as relation posteriors q(r|x,w)
and their gradients can be efficiently computed or approximated.
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Reconstruction component In the reconstruction component (i.e., decoder), we seek to predict an
entity ei ∈ E in a specific position i ∈ {1, 2} given the relation r and another entity e−i, where e−i
denotes the complement {e1, e2}\{ei}. Note that this model does not have access to any features
of the sentence; in this way we ensure that all the essential information is encoded by the relation
variable. This bottleneck is needed as it forces the learning algorithm to induce informative relations.

Let us assume that we predict e1. We write the conditional probability models in the following form

p(e1|e2, r, θ) =
exp(ψ(e1, e2, r, θ))∑
e′∈E exp(ψ(e

′, e2, r, θ))
, (3)

where E is the set of all entities, ψ is a general scoring function which, as we will show, can be
instantiated in several ways; θ represents its parameters. The actual set of parameters represented
by θ will depend on the choice of scoring function. However, the parameters will include entity
embeddings (ue ∈ Rd for every e ∈ E). These embeddings will be learned within our model.

In this work we explore three different factorizations for the decoding component: a tensor factor-
ization model, a simple selectional-preference model, and a combination of the two.

ψRS: RESCAL The first reconstruction model we consider is RESCAL, a model very successful
in the relational modeling context (Nickel et al., 2011). It is defined as

ψRS(e1, e2, r, θ) = uT
e1Crue2 , (4)

where ue1 ,ue2 ∈ Rd are the entity embeddings corresponding to the entities e1 and e2. Cr ∈ Rd×d

is a matrix associated with the latent semantic relation r, it evaluates (i.e., scores) the compatibility
between two arguments of the relation.

ψSP : Selectional preferences The following factorization scores how well each argument fits se-
lectional preferences of a given relation r

ψSP (e1, e2, r, θ) =

2∑
i=1

uT
eicir, (5)

where c1r and c2r ∈ Rd encode selectional preferences for each argument of the relation r. Differ-
ently from the previous model, it does not model interaction between arguments.

ψHY : Hybrid model The RESCAL model may be too expressive to be accurately estimated for
infrequent relations, whereas the selectional preference model cannot capture interdependencies
between arguments, so it seems natural to try their combination ψHY .

2.1 LEARNING

The parameters of the encoding and decoding components (i.e., w and θ) are estimated jointly. Our
general idea is to optimize the quality of argument prediction while marginalizing our relations

2∑
i=1

∑
r∈R

q(r|x,w)log p(ei|e−i,r,θ)+H(q(·|x,w)), (6)

where the last term H denotes the entropy. The entropy term can be seen as posterior regularization
(Ganchev et al., 2010) which pushes the posterior q(r|x,w) to be more uniform. This objective can
be formally justified by drawing connections to variational inference (Jaakkola & Jordan, 1996) and,
more specifically, to variational autoencoders (Kingma & Welling, 2014).

The objective (6) cannot be efficiently optimized as the partition function of expression (3) requires
the summation over the entire set of possible entities E . In order to deal with this challenge we rely
on the negative sampling approach of Mikolov et al. (2013). Specifically we avoid the softmax in
expression (3) and substitute log p(e1|e2, r, θ) in the objective (6) with the following expression

log σ(ψ(e1, e2, r, θ)) +
∑

eneg
1 ∈S

log σ(−ψ(eneg1 , e2, r, θ)),

where S is a random sample of n entities from the distribution of entities in the collection and σ
is the sigmoid function. In the end, instead of directly optimizing the expression (6), we use the
following objective
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RESCAL Selectional Pref. Hybrid Rel-LDA
(our feats)

Rel-LDA
(Yao et al., 2012) feats HAC (DIRT)

34.5± 1.3 33.4± 1.1 35.8± 2.0 29.6± 0.9 26.3± 0.8 28.3

Table 1: Average F1 results (%), and the standard deviation, across 3 runs.

2∑
i=1

Eq(·|x,w)

[
log σ(ψ(ei, e−i, r, θ)) +

∑
eneg
i ∈S

log σ(−ψ(enegi , e−i, r, θ))
]
+ αH(q(·|x,w)),

where Eq(·|x,w)

[
. . .
]

denotes an expectation computed with respect to the encoder distribution
q(r|x,w). Note the non-negative parameter α: after substituting the softmax with the negative sam-
pling term, the entropy parameter and the expectation are not on the same scale anymore. Though
we could try estimating the scaling parameter α, we chose to tune it on the validation set. The gradi-
ents of the above objective can be calculated using backpropagation. With the above approximation,
their computation is quite efficient since the reconstruction model has a fairly simple form (e.g.,
bilinear) and learning the encoder is no more expensive than learning a supervised classifier. We
used AdaGrad (Duchi et al., 2011) as an optimization algorithm.

3 EXPERIMENTS

In this work we evaluate how effective our model is in discovering relations between pairs of entities
in a sentence. We use the transductive set-up: we train our model on the entire training set (with
labels removed) and we evaluate the estimated model on a subset of the training set. We tested
our model on the New York Times corpus (Sandhaus, 2008) using articles from 2000 to 2007. We
obtained about 2 million entity pairs (i.e., potential relation realizations) after preprocessing. In
order to evaluate our models, we aligned each entity pair with Freebase, and evaluated induced
relations against gold standard relations in Freebase. As the scoring function, we use the F1 of the
B3 metric (Bagga & Baldwin, 1998), a standard measure for clustering tasks.

All model parameters (w, θ) are initialized randomly. The embedding dimensionality d was set to
30. The number of relations to induce is 100, the same as used for Rel-LDA in Yao et al. (2011).
We also set the mini batch size to 100, the initial learning rate of AdaGrad to 0.1 and the number of
negative samples n to 20. We compared our models with the Rel-LDA model of Yao et al. (2011)
and hierarchical agglomerative clustering (HAC) as in Yao et al. (2012). We used the same feature
representation for all the models, including the baselines. We also report results of Rel-LDA using
the features from Yao et al. (2012).1

3.1 RESULTS AND DISCUSSION

The results we report on Table 1 are averages across 3 runs with different random initialization of
the parameters (except for the deterministic HAC approach), we also report the standard deviation.
First, we can observe that all the proposed models substantially outperform all baselines: the best
result is 35.8% F1.

The selectional preference model on average performs better than the baseline (33.4% vs. 29.6%
F1). As we predicted in Section 2, compared with the RESCAL model, the sectional preference
model has slightly lower performance (34.5% vs. 33.4% F1). This is not surprising as the argument
independence assumption is very strong. Combining RESCAL and selection preference models, as
we expected, gave some advantage in terms of performance. The hybrid model is the best performing
model with 35.8% F1, and it is in average 6.2% more accurate than Rel-LDA.

REFERENCES

Waleed Ammar, Chris Dyer, and Noah A. Smith. Conditional random field autoencoders for unsu-
pervised structured prediction. In NIPS, 2014.

Amit Bagga and Breck Baldwin. Algorithms for scoring coreference chains. In LREC, 1998.
1Yao et al. (2012) is a follow-up work for Yao et al. (2011).

4



Workshop track - ICLR 2016

Antoine Bordes, Jason Weston, Ronan Collobert, and Yoshua Bengio. Learning structured embed-
dings of knowledge bases. In AAAI, 2011.
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