Published in Transactions on Machine Learning Research (12/2025)

Rel-HNN: Split Parallel Hypergraph Neural Network for
Learning on Relational Databases

Md. Tanvir Alam tanvirl5@du.ac.bd
Department of Computer Science and Engineering
University of Dhaka

Md. Ahasanul Alam ahasan@cse.du.ac.bd
Department of Computer Science and Engineering
University of Dhaka

Md Mahmudur Rahman mahmudur@cse.du.ac.bd
Department of Computer Science and Engineering
University of Dhaka

Md Mosaddek Khan mosaddek@du.ac.bd
Department of Computer Science and Engineering
University of Dhaka

Reviewed on OpenReview: |https: //openreview. net/ forum? 1d=L7VP7qzpVG

Abstract

Relational databases (RDBs) are ubiquitous in enterprise and real-world applications. Flat-
tening the database poses challenges for deep learning models that rely on fixed-size input
representations to capture relational semantics from the structured nature of relational data.
Graph neural networks (GNNs) have been proposed to address this, but they often over-
simplify relational structures by modeling all the tuples as monolithic nodes and ignoring
intra-tuple associations. In this work, we propose a novel hypergraph-based framework,
that we call rel-HNN, which models each unique attribute-value pair as a node and each
tuple as a hyperedge, enabling the capture of fine-grained intra-tuple relationships. Our
approach learns explicit multi-level representations across attribute-value, tuple, and table
levels. To address the scalability challenges posed by large RDBs, we further introduce a
split-parallel training algorithm that leverages multi-GPU execution for efficient hypergraph
learning. Extensive experiments on real-world and benchmark datasets demonstrate that
rel-HNN significantly outperforms existing methods in both classification and regression
tasks. Moreover, although the benefits of split-parallel training diminish on smaller hyper-
graphs with fewer nodes due to communication overhead, it achieves substantial speedups of
up to 3.18x on large-scale relational datasets and up to 2.94x on large hypergraph datasets.

1 Introduction

Relational databases (RDBs) are among the most widely used forms of data representation in enterprise
environments, owing to their ability to efficiently handle structured data, support complex queries, and
maintain data integrity. A relational database consists of multiple tables governed by a schema that defines
the relationships among them. RDBs serve as the primary data format across a wide range of industries, in-
cluding online advertising, recommender systems, healthcare, and fraud detection. Despite their widespread
use, the direct application of machine learning—particularly deep learning—to relational databases (RDBs)
has received limited attention from the research community. Traditionally, applying machine learning to re-
lational databases requires transforming the data into a flat, tabular format, since most supervised learning

https://openreview.net/forum?id=L7VP7gxpVG

Published in Transactions on Machine Learning Research (12/2025)

models rely on fixed-size input vectors. This transformation process, commonly referred to as flattening,
typically involves joining multiple related tables into a single denormalized table with predefined columns.
Flattening usually demands extensive, rule-based feature engineering (Anderson et al., 2013} |Bahnsen et al.
2016; |Covington et al., |2016), and frequently results in the loss of valuable relational information embedded
within the schema and data. Moreover, for large-scale RDBs, flattening introduces substantial computational
overhead, becoming a major bottleneck in the overall machine learning pipeline. Consequently, there is an
increasing demand for machine learning approaches capable of directly operating on relational data in its
native form, without the need for manual feature engineering or flattening.

Effective application of neural network-based techniques to relational databases hinges on overcoming two
fundamental challenges. First, the inherently structured yet complex nature of relational databases, charac-
terized by multiple interconnected tables, demands models capable of capturing and leveraging these intricate
relationships. Second, the considerable scale of relational databases—often containing millions or even bil-
lions of records across dozens to hundreds of tables—mnecessitates efficient training and inference procedures
to ensure both practicality and scalability (Hilprecht et all 2023). A recent approach that has gained trac-
tion to address these challenges involves applying Graph Neural Networks (GNNs) directly to relational
databases (Li et al., 2016; [Hamilton et al.| 2017; Kipf & Welling, 2017} [Velickovic et al., 2018} Xu et al.|
2019; |Cvitkovic, 2020b)). In this context, the primary task typically involves predicting values for a target
column in a specific table, using available relational information from the entire database. To achieve this,
databases are modeled as graphs, where tuples serve as vertices and relationships between tuples from differ-
ent tables—defined by foreign keys—serve as edges. To better capture relational semantics, existing methods
have proposed utilizing relation-type-dependent weights (Schlichtkrull et al., |2018]), specialized convolution
operators (Huang et al. 2020]), or generative architectures (Sun et all 2019) within relational graphs.

Despite their expressive power, existing GNN-based approaches have notable limitations when modeling
relational databases. Primarily, they treat entire tuples as monolithic nodes, thus ignoring the granular,
attribute-level structures and failing to capture fine-grained inter-attribute interactions. Moreover, rely-
ing solely on primary key—foreign key (PK-FK) relationships significantly limits their ability to represent
meaningful relationships among tuples within the same table. Additionally, these methods often overlook
symmetries among sub-graphs and require multiple rounds of message passing, resulting in inefficient training
and inference processes, particularly at scale. Furthermore, existing methods are heavily schema-dependent,
making them challenging to generalize or adapt to new datasets without substantial human effort to define
or extract PK—FK constraints explicitly.

An emerging alternative is hypergraph-based modeling, which has recently shown promise for automated
learning on relational databases (Bai et al., 2021). A hypergraph generalizes traditional graphs by allow-
ing edges (termed hyperedges) to connect an arbitrary number of vertices rather than being restricted to
pairs. A hypergraph can reveal complex structural patterns involving multiple vertices and provide insights
into network dynamics—patterns that traditional graphs, limited to pairwise connections, fail to capture
(Kim et al., |2024)). This ability to represent higher-order interactions among vertices has gained significant
attention across various real-world complex systems, including physical systems (Battiston & Petri, [2022)),
microbial communities (Morin et al., 2022)), brain functions (Expert & Petri, 2022, and social networks (la-
copini et al., |2022)). The flexibility of hypergraphs in modeling multi-way interactions has motivated the
development of powerful hypergraph neural network (HGNN) algorithms (Feng et al., 2019} |Chien et al.
2022; [Yadati et all 2019)), facilitating the learning of intricate relational patterns.

For relational databases specifically, ATJ-Net (Bai et all 2021 leverages a hypergraph to train a heteroge-
neous GNN. It initially represents joinable attributes as vertices and tuples as hyperedges. The hypergraph
is then transformed into to a heterogenous bipartite graph where the tuples and joinable attributes constitute
vertices. Then, it applies a message-passing GNN to the bipartite graph to predict labels associated with
tuples in the target table. Although ATJ-Net includes joinable attributes alongside tuples, it has several
critical limitations. First, it considers only categorical, joinable attributes—typically those defined explicitly
through primary key—foreign key (PK-FK) relationships—thereby confining the model to predefined rela-
tional paths and potentially missing complex attribute associations within tuples. Second, transforming the
hypergraph into a bipartite graph inevitably flattens high-order relationships into pairwise edges, causing the

Published in Transactions on Machine Learning Research (12/2025)

loss of valuable higher-order interactions that could otherwise be effectively captured by hypergraph neural
networks. Based on the above discussion, our work makes the following key contributions:

e We propose a novel hypergraph representation for relational data that preserves both intra-tuple
and inter-tuple relationships. Unlike traditional methods relying exclusively on primary key—foreign
key (PK-FK) constraints, our representation decomposes tuples into attribute—value pairs, creating
nodes naturally connected via hyperedges. This approach effectively captures fine-grained attribute-
level interactions and is inherently schema-agnostic, eliminating the need for manual feature engi-
neering or explicit schema knowledge. To the best of our knowledge, this is the first hypergraph-based
representation specifically developed for relational database learning.

e We introduce rel-HNN, a hypergraph neural network specifically tailored for relational databases.
Leveraging our hypergraph structure, rel-HNN learns explicit embeddings at three granularity lev-
els—attribute—value pairs, tuples, and entire tables—thus effectively capturing both localized and
global relational patterns and enabling richer relational learning.

o Additionally, to overcome the challenges posed by large-scale relational databases, we propose a split-
parallel hypergraph learning algorithm that leverages multi-GPU parallelism. Our method enables
full-hypergraph training by partitioning both data and computation across GPUs while preserving
global structural context. Unlike mini-batch GNN training, which introduces redundant data move-
ment and overlooks neighborhood completeness, our approach ensures efficient and context-aware
learning. To the best of our knowledge, this is the first work to introduce split-parallelism for scalable
training of hypergraph neural networks.

e Finally, our extensive experimental results demonstrate that the proposed multi-level representa-
tion framework enables rel-HNN to significantly outperform the state-of-the-art methods on both
classification and regression tasks across a diverse set of real-world relational datasets. Moreover,
our split-parallel training framework delivers substantial performance improvements on large-scale
relational datasets and large benchmark hypergraph datasets, achieving speedups of up to 3.18x
and 2.94 %, respectively, although the benefits of parallelization diminish for smaller datasets due to
communication overhead. These results highlight the effectiveness and scalability of our approach.

The remainder of the paper is organized as follows. Section 2 introduces the preliminaries and formally
defines the problem. Section 3 reviews relevant related work. Section 4 details the proposed methodology.
Section 5 presents the experimental setup, results, and analysis. Finally, Section 6 concludes the paper and
outlines potential directions for future work.

2 Background

A relational database (RDB) is defined as a collection of tables, denoted by RDB = {T*,T? ..., T"},
where each T% € RDB represents a table. Each table captures information about a specific entity type,
with rows (tuples) corresponding to entity instances and columns representing attributes or features. Table
columns may contain diverse data types, including numerical values, categorical text, timestamps, geographic
coordinates, and multimedia content. We denote the i-th row of table T as T}, and the j-th column as Tg(.

Let Attr™" denote the set of attributes (i.e., columns) of table T%. An RDB is referred to as “relational”
because values in a column T’; of one table may refer to rows in another table 7 € RDB. Such columns
are known as foreign keys and serve as the basis for modeling inter-table relationships. Learning tasks on
a relational database (RDB) are typically formulated as predicting the values of a specific column in a
designated target table. Let T% € RDB be the target table. In the training data, the rows of table T%9
in the training set are associated with a label. The goal is to predict the labels for the remaining rows
of table T where the label values are unknown. A hypergraph is a generalization of a traditional graph
that can be represented as H = (V,FE,X), where V = {7)17’1)2,...7’1}‘V|} is the set of nodes or vertices,
E = {e1,ea,...,¢eg} denotes the set of hyperedges, and X ¢ RIVI*4 s the feature matrix. Each hyperedge
e; € V includes the set of nodes it connects.

Published in Transactions on Machine Learning Research (12/2025)

3 Related Works

In this section, we review research closely related to our work. Section discusses graph-based learning
approaches for relational data, and Section [3.2] covers distributed multi-GPU training strategies for scalable
graph and hypergraph learning.

3.1 Learning on RDB using Graphs

Graphs are well-suited for representing structured data, as they naturally capture relationships and de-
pendencies among entities. Leveraging this property, graph neural networks (GNNs) have been applied
to tabular data learning (Li et all 2025). Here, the data instances (rows) are represented as nodes, and
edges are formed based on similarities between instances using their feature vectors, capturing correlations
between samples (Errical 2023). In another line of work, each feature (column) is modeled as a node, and
edges encode correlations or dependencies between features, which can be derived from statistical measures
or learned feature embeddings (Zheng et al., |2023). The ability of GNNs to capture complex relational
dependencies makes them a strong candidate for modeling relational data beyond tabular settings. Accord-
ingly, GNNs have been increasingly adopted in relational database systems-related tasks (Li et al., 2025),
including performance prediction (Zhou et al., |2020)), query optimization (Song et al.,|2022), and cardinality
estimation (Chronis et al., [2024). Beyond these system-level tasks, GNNs have also been employed for su-
pervised learning on relational databases (Cvitkovicl |2020a)), where the database is represented as a graph to
predict target attributes or classify tuples while preserving the underlying relational structure. A common
approach for relational data in machine learning is to "flatten" relational data into a single table format,
as most widely used supervised learning models require inputs in the form of fixed-size vectors. However,
this flattening process often eliminates valuable relational information inherent in the data. The relational
database is transformed into a graph, representing the relational structure, to predict the target attribute.
In the graph representation, each node corresponds to a tuple, and edges represent foreign key relationships
between these tuples. To manage the complexity of the graph, connections are typically restricted to a
specific depth or number of hops. Finally, a GNN on this graph is applied to predict the target attribute
using the GNN. A complete mapping between relational database concepts and graph terminology is pro-
vided in Appendix Representing a relational database (RDB) as a graph enables supervised learning
tasks on RDBs to be framed as node classification problems (Atwood & Towsley, |2016)). This representa-
tion supports both classification and regression tasks. The graph-based perspective also suggests that Graph
Neural Network (GNN) techniques can be effectively applied to learning tasks involving relational databases.
GNNs, particularly those designed for supervised learning on RDBs, commonly utilize the message passing
framework (Gilmer et al., 2017)). In this framework, each node v in a graph is initially assigned a hidden
representation hY, which is iteratively updated over R rounds of message passing. In each round r, node v
transmits a message m;,, to each of its neighboring nodes w. These messages are generated by a learnable
function that may incorporate edge features and depend on the current hidden states h] and hj, of the
source and target nodes, respectively. Each node then aggregates the messages received from its neighbors
using another learnable function, resulting in an updated hidden state h’*!. After R rounds of message
passing, a readout function aggregates the final hidden states hlf across all nodes to produce a prediction
for the entire graph. Learning with GNNs typically requires multiple message passing among nodes, which
leads to significantly high training and inference times. To address this limitation, a recent approach named
SPARE (Hilprecht et al., |2023) introduces an alternative encoding technique that represents the RDB as
a directed acyclic graph (DAG). This DAG is constructed by performing a breadth-first search (BFS) on
the undirected graph G rooted at a target tuple ¢t € T%9. Edges are directed from nodes at greater depth
to nodes at lesser depth. This DAG structure enables single-pass learning, allowing for faster training and
inference compared to standard GNNs. More recently, RelGT (Dwivedi et al., 2025 proposes a graph
transformer architecture tailored for relational databases, capturing relational heterogeneity and long-range
dependencies through multi-element tokenization and local-global attention. Both GNN- and DAG-based
methods model relational data as standard graphs, often overlooking structural regularities defined by the
database schema. This can lead to redundant computations and reduced learning efficiency. In contrast, a
more recent approach, ATJ-Net, introduces a hypergraph-based representation that enables more adaptable
and automated learning across relational databases (Bai et al., |2021)).

Published in Transactions on Machine Learning Research (12/2025)

Following the success of graph neural networks, hypergraph neural network models have received growing
attention. HGNN (Feng et al., |2019) and HyperGCN (Yadati et al., |2019)) extend graph convolutional
networks to the hypergraph setting, while AllSet (Chien et al.,|2022)) introduces a two-stage message-passing
framework. In this approach, hyperedge representations are first computed by aggregating the embeddings
of their constituent nodes from the previous layer; then, the embeddings of the hyperedges connected to
a node are aggregated to update that node’s representation. Similar to graph-based approaches, research
has been conducted on hypergraph-based tabular data learning also. HYTREL (Chen et al., |2023) is a
hypergraph-enhanced tabular representation learning model in which each cell of a table is represented
as a node, while rows, columns, and the entire table are modeled as distinct hyperedges. This design
enables HYTREL to capture higher-order interactions among table components and preserve structural
invariances. However, HY TREL primarily focuses on intra-table dependencies and does not model relational
dependencies, making it unsuitable for complex relational databases. Furthermore, the substantial memory
and computational overhead introduced by its attention-based hypergraph transformer, combined with the
sparsity of the constructed hypergraph, limits its scalability to large tables. ATJ-Net(Bai et al., 2021)
models the relational database RDB as a hypergraph, each tuple T} of table T% € RDB is considered as a
hyperedge, that is E = {T}},; where T denotes the i — th tuple of table T% € RDB. Joinable attributes
serve as the vertices, and other attributes are treated as features of the hyperedges. Every table—except the
main table—must include at least one joinable attribute; otherwise, it cannot be linked to the target label.
If a hyperedge contains a vertex, a connection is established between them. Formally, let AttrT" (j) be the
value set of j — th joinable attribute of table 7% and V = {Atter (4) }k.;- Moreover, the hypergraph can be
viewed as a bipartite graph, with tuples and joinable attributes represented as two distinct sets of vertices,
and edges indicating their inclusion relationships. ATJ-Net employs the message passing neural network
(MPNN) framework (Gilmer et al. 2017) to construct a GNN over the heterogeneous hypergraph. In each
GNN layer, hyperedge features are first aggregated to the vertices, which are then updated and propagated
back to the hyperedges. Although ATJ-Net uses a hypergraph-based formulation, it ultimately trains a GNN
by stacking standard GNN layers, which limits its capacity to fully exploit the rich relational structures across
tables in RDB. Additionally, it considers only joinable attributes and neglects the representation learning
of other attributes, potentially reducing its effectiveness in modeling complex intra-tuple associations.

3.2 Distributed multi-GPU GNN training

The challenge of scaling to large graphs has led to extensive research on multi-GPU GNN training systems.
Training strategies for utilizing multiple GPUs have been devised for both mini-batch and full-graph training
(Wang et al.,|2022; Wan et al., 2023). In mini-batch multi-GPU training, nodes are first sampled into micro-
batches, one for each GPU. Then, the local k-hop neighborhoods of the target nodes in each micro-batch are
sampled and loaded. Each GPU subsequently trains the model on its assigned micro-batch in a data-parallel
fashion (Wang et al.,|2019; Gandhi & Iyer, [2021). However, data-parallel training often results in redundant
data loading and computation due to overlapping k-hop neighborhoods across micro-batches. To mitigate
this issue, GSplit (Polisetty et al., |2025) partitions the mini-batch into non-overlapping splits, assigning each
split to a specific GPU. Each GPU processes only the vertices in its assigned split and exchanges intermediate
results at each GNN layer. Nonetheless, mini-batch GNN training relies on neighborhood sampling, which
may exclude important neighbors, leading to information loss and suboptimal message propagation. Full-
graph multi-GPU training (Wang et al., [2022; \Wan et al.| 2023), in contrast, maintains the complete graph
structure during training. G3 (Wan et al., 2023) splits the full graph into non-overlapping partitions, with
each GPU responsible for one partition. After each layer, GPUs exchange outputs with other GPUs that
require them for the next round of computation. While these methods are effective for large-scale graphs,
they are not directly compatible with hypergraphs.

4 Proposed Methods

In this section, we present our proposed algorithms for learning from relational databases. We begin by
constructing a hypergraph representation of the given relational database, which preserves fine-grained rela-
tionships and facilitates hypergraph neural network learning (Section. After transforming the relational
database into a hypergraph, we apply our proposed model, rel-HNN, which captures complex relationships at

Published in Transactions on Machine Learning Research (12/2025)

Item
Order Item | Price
Is_Fraud|User_ID |Item |Addr, 1 15 | €
1 1 1| B |e 2 15 | ez
0 1 2 A (€
1 2 |2 |A e User
User_ID |age
1 25 | €4
2 37 | &5
(a) Example Schema (b) Hypergraph representation of the schema in (a)

Figure 1: An example hypergraph generation for a relational database

multiple levels of granularity (Section4.2). Finally, in Section we introduce our split-parallel hypergraph
learning algorithm designed to scale effectively to large relational databases.

4.1 Relational Database to Hypergraph

We now detail our hypergraph construction approach for relational databases, which enables hypergraph
neural network learning by capturing complex, fine-grained intra-tuple relationships beyond conventional
primary key—foreign key constraints. Our approach decomposes each tuple in the RDB into attribute-value
pairs. Instead of representing a tuple or row as a node as existing GNN-based approaches, we create a
node for each unique attribute-value pair, (Attr?,ﬂfj), found in all the tables contained by the database.
Then, for each table T* € RDB, for each row Ti’f:, we create a hyperedge that connects the nodes associated

with the attribute-value pairs, (Attr? , Ti’fj), contained by the row. This hypergraph formulation provides a
natural way to model fine-grained interactions within tuples, moving beyond rigid primary key—foreign key
constraints, enabling the learning of richer representations. Figure [I]illustrates a hypergraph representation
for a relational database, where attribute—value pairs are represented as nodes. Edges are shown as colored
circles, each connecting more than two nodes to form a hyperedge. For the feature vector X, of a node
v € V, we consider two techniques. In the first approach, we assign one-hot encoded vectors as feature
representations for the nodes. In the second approach, we construct the feature vector such that each index
corresponds to either an attribute from the tables or a value present in the tables. For each node, we
initialize a zero vector and set the indices corresponding to its associated attribute and value to 1. The
detailed construction procedure is provided in Algorithm [I] in Appendix [C]

4.2 rel-HNN: Hypergraph Neural Network for Relational data

Building on the hypergraph construction described in the previous subsection, we now present rel-HNN,
our proposed hypergraph learning algorithm designed to operate on the resulting hypergraph derived from
a relational database. Rel-HNN adopts a two-phase message-passing mechanism (Chien et al., 2022)) that
alternates between aggregating information from nodes to hyperedges and then from hyperedges back to
nodes. In each layer, for hyperedge embedding, messages (i.e., embeddings) are aggregated from the nodes
it connects. Similarly, each node updates its representation by receiving messages from the hyperedges
to which it belongs. These two phases naturally capture the semantics of relational joins: the first phase
aggregates attribute-level information within each relation, while the second phase propagates the relational
context back to the corresponding attribute-value pairs. In addition to the prior two-phase hypergraph
learning techniques, rel-HNN introduces a relation-aware, table-conditioned aggregation mechanism. We
integrate learnable table embeddings and relation-specific transformations, which enable rel-HNN to jointly
capture structural dependencies and relational semantics across heterogeneous hyperedges within relational
databases. Figure[2|illustrates the architecture of rel- HNN as applied to the hypergraph depicted in Figure[I]

At the initial layer (layer 0), we compute the embedding Z? of a node v € V by applying a multilayer
perceptron M LPY to its input feature vector X,, that is Z0 = MLPQ(X,). Learning node embeddings that

Published in Transactions on Machine Learning Research (12/2025)

represent attribute—value pairs allows the model to capture fine-grained semantic relationships within tuples,
resulting in more expressive representations of relational data. Subsequently, for each hyperedge e € F, we
determine its intermediate embedding at the initial layer, denoted as F?, by applying another multilayer
perceptron to the sum of the initial node embeddings it connects, as defined in Equation

F% = MLPY, (Z ZS) (1)

veEe

In Figure |2 the initial embedding FCe4 of edge ey is determined by applying the multilayer perceptron on
the sum of the initial embeddings of node Vage.25 and node Vyser,p:1, ie., FYey = MLPOE(ZVAW25 +
A b1), as edge ey is connected to these two nodes. By aggregating node embeddings to learn hyperedge
embeddings that represent tuples, the model encodes higher-order interactions and co-occurrence patterns
among attribute—value pairs, providing a comprehensive understanding of tuple-level semantics.

For each hyperedge e € E, we learn its final embedding at layer : 0 by concatenating its intermediate
embedding F? with Zr., the embedding of the table that contains the row corresponding to the hyperedge,
which is Z0 = CONCAT(F?, Z7,). In Figure |2} the final embedding of edge ey at layer 0, Z%4, is obtained
by concatenating the initial embedding of e4, F°e4, with the table embedding of table V%" as e, originates
from the User table; i.e., Z%4 = FCe4||ZTY*¢". In our model, learning table-level embeddings enables the
incorporation of global patterns shared across all tuples within a table.

For the intermediate layers (layer 1 to layer L), we determine the embedding of a node v, Z!, by aggregating
the hyperedge embeddings from the previous layer (Equation . Here, M LP! is the multi-layer perceptron
for nodes at layer [and &, is the set of hyperedges in E that contains v.

Z, = MLP, (Z Z§1> (2)

ec&,

For node Vyyser ig:1 in Figure@ the embedding at layer 1 is determined by applying the multilayer perceptron
M LP8 to the summation of the final embeddings at layer 0 of hyperedges ey, e1, and eq, as these hyperedges
include node Viyyser ig:1- Similarly, we determine the embedding of a hyperedge e at layer [, denoted as Zé,
by aggregating the node embeddings from the previous layer, as defined in Equation [3| Here, M LPIZE refers
to the multilayer perceptron applied to hyperedges at layer . Note that, through shared attribute—value
pairs, the model is able to capture complex relationships between tuples both within and across tables.

Z! = MLP, (Z Zi) (3)

vee

For each hyperedge e corresponding to a row in the target table T, the final embedding ZL, where L is the
last layer, represents the predicted class probability. In Figure [2| the hyperedges eq, e2, and es correspond
to rows of the target table 797", The pseudocode of the rel-HNN algorithm is provided in Algorithm [2|in

Appendix [C]
4.3 Split-Parallel Hypergraph Learning for large databases

To enable scalable learning on large hypergraphs derived from real-world relational databases, we propose a
split-parallel hypergraph neural network algorithm. In practice, relational databases tend to be large, and
converting them into hypergraphs results in a substantial number of nodes and hyperedges. In particular,
assigning a node to each attribute—value pair significantly increases the number of nodes, especially in sparse
datasets. Learning on such large hypergraphs introduces critical challenges in terms of computational runtime
and memory usage, often making it infeasible to load the entire hypergraph into the limited memory of a
single GPU. To address these limitations, we partition the hypergraph by dividing the node set into disjoint
splits and distribute the computation of each split and its incident hyperedges across multiple GPUs. This

Published in Transactions on Machine Learning Research (12/2025)

2
Vage:2s

0 0 1
xAge: % FE@ ‘ |ZTUW @ z
Xpge: 37 z, Z 72
ge: Age:37 F ‘ | Zpvser VAge :37 Vage:sr

0 @
@)
‘(“\ o Bl
[|Zora h
((@

2
(‘ """
; ‘A \ l
Xaddr: A Vm A VAdd A
F Zrpri
Kisarrs yA ol | Zp i Vn il
Item: 1 Vitem: @ VIt em:1
0
Xprice: 15 7 Z
rice: VPrice:15 VP ice:15 Vp rice:15

Input layer : 0 layer : 1 layer : 2 layer: L

Figure 2: HNN architecture for the hypergraph shown in Figure

strategy effectively mitigates both memory and runtime bottlenecks, making the training process practical
for large-scale relational databases. However, learning from node-partitioned hypergraphs is non-trivial, as
hyperedge embeddings rely on aggregating node embeddings that may be distributed across multiple GPUs,
leading to communication overheads and synchronization challenges during training.

To utilize parallel processing, assuming there are N GPUs available, we divide the nodes V in the hypergraph

= (V,E,X) into N partitions, V1, Vs, ... , and Vy. Following the partition, we split the hypergraph
H = (‘/,E7X) into N partitions, H1 = (Vl,El,Xl), H2 = (‘/Q,EQ,XQ), ey and HN = (VN7EN,XN).
Here, E; = {{v|[v € eandv € V;}|le € FandenV; # 0}. Given N GPUs (GPU;,GPUs,, ..., and

GPUy), we load the hypergraph H; into GPU;. Now, in each GPU, GPU;, in parallel, we determine
the embedding of a node v € V; at layer 0, Z, by applying the same multilayer perceptron layer M LP{ to
the feature vector X, similar to rel-HNN. The pseudocode of our proposed split parallel Hypergraph Neural
Network algorithm is provided in Algorithm [3] in Appendix [C} In Figure [3] we demonstrate an example
of parallel learning using two GPUs (GPU-1 and GPU-2). We divide the nodes in two partition, node
Vi = {Vage2s, Vage:sr, Vuser_1D:1, Vuser|iD:2: Vadar:} and Vo = {Vadadr.a, Vitem:1, Vitem:2, VPrice:1s}- The
local computations are visualized in the blue-shaded area for GPU; and the red-shaded area for GPUs. For
each node, the embedding at layer 0 is learned locally on the assigned GPU. For example, the embedding
for Vage:os is learned in GPU-1.

In rel-HNN, we apply the multilayer perceptron layer, M LPY, to the sum of node embeddings to determine
the intermediate embedding at the initial layer, F (Equation ' For split learning, we divide M LP2
into two components, consisting of a linear transformatlon M LPO followed by a non-linear transformatlon
function M LP0 Let the original M LPY, consist of L stacked layers defined recursively as Hy (x) = o (Wyiz+
bl) HQ()—UQ(WQHl()+b2) HL()—O’L(WLHLfl()+bL) Then MLPO() HL() For Split-
parallel learning, the first linear mapping can be applied independently to the local embeddings on each
GPU, which is M LPgL (x) = Wiz. The subsequent transformations and activation functions are grouped
into MLP]%G (x) = O'L(WL O'L_l(WL_l .. .UQ(WQ (o1(x+b1)) + b2) cee bL_l) + bL), which is applied after
the local linear projections are aggregated across GPUs. A justification of this decomposition is provided

Published in Transactions on Machine Learning Research (12/2025)

& @ & @ o
T &) &) @)

DR
A\t

N L\ X

zam,u, “ z @ zavm,,.”
NN ER N AT
@AA‘A‘@ @AA’A‘@

= X\‘«\”A\‘(

B B R0 7N &

e N @™

- e o/ /KN /)=

=2 ¥m\® Y=
& @) &) @)

®

Inter-GPU Message Inter-GPU Message
Local Split Learning on GPU-2 Passing for Aggregating Local Split Learning on GPU-2 Passing for Aggregating Local Split Learning on GPU-2
Hyperedge Embeddings Hyperedge Embeddings
input layer : 0 layer : 1 layer : L

Figure 3: Split-Parallel learning of Hypergraph Neural Network (HNN) on two different GPUs. Blue and
red shaded area represent the local processes of GPU-1 and GPU-2 respectively.

in Appendix We compute the local hyperedge embeddings at the initial layer associated with the i-th
partition, denoted as Fy., by applying M LPp, . to the sum of the node embeddings at layer 0 (Equation .

F? = MLP}, (> Z,?) (4)

veeNnV;

In Figure |3 the local hyperedge embedding at layer O for hyperedge e; at GPU-1, FSU, is learned from
Viser_1p:1 and Vagar:p, the constituent nodes in the partition. On the other hand, for GPU-2, Feo12 is
learned from Vigem:1.

To learn the global hyperedge embeddings at the initial layer, F°, we determine the sum of the local
embeddings and apply the non-linear activation function M LP}%U (Equation . This aggregation of local
embeddings from different GPUs requires inter-GPU message passing. We allocate a global tensor with
|E| rows with the same global ordering of edges on every GPU. Each GPU fills its entries for edges in its
partition with partial vectors (zeros elsewhere) and then performs an AllReduce (sum) operation across
GPUs to obtain the global embeddings.

N
FO = MLPY, <Z F2) ()
=0

Finally, for each hyperedge e € E, we learn its final embedding at layer 0, Z2, by concatenating F? with Zr,,
the embedding of the corresponding table. In Figure |3| the final embedding of e; at layer O, Zgl, is learned
by aggregating their local embeddings at GPU-1 and GPU-2 and then concatenating their corresponding
table embedding, Zrorder.

For the intermediate layers, we determine the embedding of a node v € V;, Z!, using Equation [2| in par-
allel. The process of determining node embeddings requires no inter-GPU messaging as the corresponding
hyperedge embeddings are already accumulated in the assigned GPU. For example, in Figure [3 the embed-

Published in Transactions on Machine Learning Research (12/2025)

ding of node Viyser rp.1 at layer 1, Z\lfu.m b0 18 calculated by aggregating Zgl and Z22 which are already
accumulated in GPU-1. For the hyperedg; embeddings, similar to the initial layer, we divide M LID]{J as a
single hidden layer MLP consisting of one linear transformation, M LP}SU followed by remaining non-linear
transformations M LP!. We determine the local hyperedge embeddings at the initial layer associated with
the i-th partition, F éw by applying M LP};L on the sum of the embeddings of the nodes from the same layer

(Equation [6]).
Fi, = MLPy, (Z Zi) (6)

vee

Finally, we learn the global hyperedge embeddings at layer [, Z!, we determine the sum of the local embed-
dings and apply the non-linear activation function M LPIZEU (Equation .

N
7L = MLP, (Z Fl> (7)
=0

5 Empirical Evaluation

In this section, we present a comprehensive set of experiments focused on finding the effectiveness and
performance gain of our proposed rel-HNN approach. The structure of this section is as follows: we begin by
detailing the datasets used and addressing model architecture, along with the experimental settings. Next,
we separately demonstrate the performance improvements achieved by our approach on both classification
and regression tasks. Lastly, we analyze the effectiveness of our split parallel hypergraph learning approach
on both relational and hypergraph datasets.

5.1 Experiment Design

To verify the effectiveness of our proposed rel-HNN model, we conducted experiments on both classification
and regression tasks. We compared its performance against state-of-the-art graph-based algorithms for
learning on relational data. Specifically, we applied GCN (Kipf & Welling, 2017) and GAT (Velickovic et al.,
2018) on graphs constructed from tuples connected through primary key—foreign key (PK-FK) relationships.
For SPARE (Hilprecht et al., 2023), we considered both GCN- and GAT-based variants, referred to as
SPARE-GCN and SPARE-GAT, respectively. For hypergraph neural networks, we have included HyperGCN
(Feng et al., 2019), HGNN (Yadati et al., |2019)), and DPHGNN (Saxena et al., 2024). We also evaluated
ATJ-Net (Bai et al.||2021)), which leverages a heterogeneous GNN architecture. We experimented with RelGT
(Dwivedi et al., [2025]), a graph transformer architecture developed specifically for relational databases . In
our experiments, we included four versions of rel-HNN. Rel-HNN-one uses one-hot encoding, while rel-
HNN-av uses attribute — value encoding for node features. In both rel-HNN-one and rel-HNN-av, table
embeddings are omitted. In contrast, rel-HNN-one-t and rel-HNN-av-t include learnable table embeddings
in their respective architectures. For all the rel-HNN variants, we have set the number of layers L = 2. The
embedding length of all the nodes and hyperedges is fixed at two. For rel-HNN-one-t and rel-HNN-av-t,
the table embedding dimension is set to 8 across all the datasets. We have adopted stratified 5-fold cross-
validation to preserve class distribution. All experiments were conducted on a workstation equipped with
an Intel Core i7-7700 CPU @ 3.60GHz, 48GB RAM, and four NVIDIA GeForce RTX 3060 Ti GPUs with
8GB of memory each. To validate the applicability in real relational database environments, we developed
an end-to-end pipeline connecting a PostgreSQL database to the rel-HNN training framework also. The
pipeline extracts tuples and relationships using lightweight SQL queries, transforms them into hypergraph
representations without requiring costly database operations as joins.

5.2 Performance on Classification Tasks

Table [1| presents the AUROC scores for different methods evaluated across the nine real-life datasets (see
Appendix [E| for detailed dataset descriptions). The results clearly show that the rel-HNN variants consis-
tently outperform the baseline methods with the highest AUROC score on nine out of nine datasets while

10

Published in Transactions on Machine Learning Research (12/2025)

maintaining comparable or lower standard deviations, indicating stable performance. Among the state-of-
the-art methods, RelGT performs the best on six out of the nine datasets. On the remaining three datasets,
ATJ-net performs the best. However, on datasets such as SameGen, and rel-f1(dnf), ATJ-net exhibits
comparatively lower performance than the GCN, GAT, and SPARE variants. Among the GNN-based ap-
proaches, SPARE variants generally achieved a slightly higher AUROC score compared to GCN and GAT.
These graph-based methods model tuples as monolithic nodes and primarily rely on primary key—foreign
key relationships, which limits their ability to capture fine-grained relational dependencies. Within the class
of hypergraph neural network-based methods, DPHGNN outperforms both HyperGCN and HGNN. How-
ever, these models are designed for generic hypergraphs and treat hyperedges as homogeneous sets, lacking
explicit relational or table-level semantics. In addition, HyperGCN relies on graph-based approximations
of hyperedges, which limits the modeling of higher-order interactions, while HGNN and DPHGNN employ
fixed aggregation schemes that ignore varying hyperedge roles.

Table 1: Performance comparison of methods across datasets for classification tasks. Mean AUROC is shown
with standard deviation in parentheses; bold values indicate the best performance.

. rel-f1 rel-f1 rel-avito
Method Hepa Pima Cora SameGen IMDB Mutag (top3) (dnf) (uv)
GCN 0.5484 0.5438 0.5365 0.5245 0.6621 0.6357 0.5582 0.5122 0.4751

(0.0820) (0.0746) (0.0502) (0.0918) (0.0854) (0.0650) (0.0192) (0.0837) (0.0531)
05451 05442 0.5393 0.5119 0.6632 0.6320 0.5589 0.5064 0.4801

GAT (0.0465) (0.0746) (0.0529) (0.0509) (0.0364) (0.0683) (0.0283) (0.0928) (0.0850)
SPARE.GCN 0-9636 05511 0.5712 0.5233 0.6718 0.6044 05657 0.5241 0.5085
(0.0374) (0.0374) (0.0650) (0.0465) (0.0827) (0.0912) (0.0928) (0.0918) (0.0537)

SPARE.GAT 09994 05527 0.5679 0.5276 0.6865 0.6271 0.5323 0.5222 0.5101
(0.0465) (0.0509) (0.0370) (0.0746) (0.0991) (0.0928) (0.0501) (0.0703) (0.0608)

HonerGON 05075 0.4983 0.4833 0.5134 07348 05832 05213 0.4923 0.5056
P (0.0426) (0.0394) (0.0364) (0.0401) (0.0273) (0.0323) (0.0273) (0.0099) (0.0679)
HONN 04997 05032 0.4819 0.5087 0.7483 05783 05012 04753 0.5148
(0.0375) (0.0021) (0.0178) (0.0628) (0.0195) (0.0279) (0.0933) (0.1028) (0.0828)

DPHGNN 05482 05238 0.5247 0.5439 07526 05915 05236 0.5023 0.5313
(0.0568) (0.0546) (0.0808) (0.0528) (0.0183) (0.0839) (0.0274) (0.0368) (0.0916)

ATJonet 05950 0.6072 0.6242 0.5030 08575 0.8812 0.6412 0.5030 0.5625
‘ (0.0444) (0.0314) (0.0111) (0.0078) (0.0273) (0.0505) (0.0081) (0.0078) (0.0942)
ROlGT 0.6643 05839 0.6513 0.6464 08450 0.7215 0.8234 0.7542 0.6874
(0.0340) (0.0384) (0.0641) (0.0339) (0.0189) (0.0126) (0.0682) (0.0239) (0.0836)

LHNNome 08264 07158 0.7364 0.8096 08791 0.8777 08602 0.7614 0.7413
(0.0776) (0.0180) (0.0582) (0.0642) (0.0103) (0.0496) (0.0193) (0.0182) (0.0131)

CLHNN-a 0.6515 0.7097 0.7041 0.8166 08728 0.8976 0.8553 0.7563 0.7363

(0.1485) (0.0205) (0.0336) (0.0641) (0.0160) (0.0560) (0.0118) (0.0143) (0.0283)
0.8916 07023 06521 0.8250 0.8814 0.8697 0.8685 0.7616 0.7712
(0.0596) (0.0111) (0.0825) (0.0646) (0.0105) (0.0537) (0.0263) (0.0232) (0.0117)
0.8667 0.6982 05119 0.8218 08732 0.7300 0.7541 0.7206 0.7418
(0.0287) (0.0260) (0.0239) (0.0647) (0.0238) (0.2495) (0.1261) (0.0488) (0.0718)

rel-HNN-one-t

rel-HNN-av-t

Among the rel-HNN variants, rel-HNN-one-t (rel-HNN with one-hot encoding and table embedding) achieves
the highest AUROC scores on most datasets, including Hepa (0.8916), SameGen (0.8250), IMDB (0.8814),
rel-f1 (top3) (0.8685), rel-f1 (dnf) (0.7616), and rel-avito (uv) (0.7712). Rel-HNN-one-t demonstrates com-
petitive AUROC performance on the remaining datasets as well. The standard deviations for this variant
are also relatively low or comparable across datasets, indicating stable and consistent performance. Among
the other three versions of rel-HNN, rel-HNN-av-t is a strong contender that outperforms the other two
variants on datasets such as Hepa, SameGen, IMDB, and rel-avito(uv). The benefit of learning table embed-
dings explicitly is evident from the performance gains of the -t variants. Both rel-HNN-one and rel-HNN-av
exhibit notable improvements after the concatenation of the table embedding that represents the global in-
formation of all tuples in a table. An important observation is that in the datasets where the non-t variants
perform relatively better such as, the number of tables is relatively small, suggesting that explicit table-level
embeddings may be less beneficial when the relational structure is simple or shallow. For example, there

11

Published in Transactions on Machine Learning Research (12/2025)

are only three tables in both Cora and Mutag, where the non-t variants perform better. For the dataset
Pima, the number of tables is relatively higher (nine), but the performance gap in favor of non-t variants
is also insignificant compared to Cora and Mutag. However, compared to existing state-of-the-art methods,
rel-HNN-one and rel-HNN-av demonstrate substantial performance gains, despite not utilizing table-level
embeddings.

The performance results presented in Table[I] when analyzed alongside the dataset statistics in Table[5] reveal
several key trends.Across a diverse range of datasets, spanning small-scale ones such as Pima and SameGen,
medium-scale datasets like Hepa, Cora, and Mutag, and large-scale datasets including rel-f1 (top3), rel-f1
(dnf), and rel-avito (uv), our proposed methods consistently achieve superior performance. The relative
performance gain of our models is substantially higher on smaller datasets such as Hepa (34.2%), Pima
(17.9%), Cora (13.1%), and SameGen (27.6%), with Mutag (1.9%) being a notable exception. In contrast, the
improvement is more moderate for larger datasets, including IMDB (2.78%), rel-f1 (top3) (5.5%), and rel-f1
(dnf) (1.0%), while rel-avito (uv) (12.2%), the largest dataset, deviates from this trend. This highlights a key
limitation of existing state-of-the-art methods in coping with both extremes of data availability, struggling
to generalize in data-scarce (small-scale) settings and to scale efficiently in large-scale environments. In
summary, our methods adapt effectively to varying levels of schema complexity and data volume, making
them suitable for both compact and large-scale relational databases. Rel-HNN-one-t emerges as the most
robust model, delivering both high AUROC scores and low variance. These results collectively demonstrate
the effectiveness of our proposed framework on classification problem across diverse relational datasets.

5.3 Performance on Regression Tasks

For regression tasks, we have collected five relational datasets (see Appendix [Ef for detailed dataset descrip-
tions). Table reports the Root Mean Square Error (RMSE) performance across four regression datasets for
various methods. Across all datasets, the proposed rel-HNN variants significantly outperform the state-of-
the-art methods in terms of RMSE values. On the Pyrimidine dataset, which is relatively small, rel-HNN-one
achieves the lowest RMSE of 0.0792, outperforming SPARE-GCN, the best-performing baseline method, by
a substantial margin. Other variants of rel-HNN have also performed better than the existing approaches.
In the ClassicModels dataset, which contains more tables and a larger schema, the RelGT performs the best
among existing methods with an RMSE value of 537.7372. In contrast, the rel-HNN variants reduce the
error significantly, with rel-HNN-av-t achieving an RMSE value of 115.8039. This demonstrates the better
generalization capability of our models in complex relational structures. The improvements are even more
pronounced in the Pubs dataset. Here, RelGT yields an RMSE of 72.4847, while all rel-HNN versions reduce
the error drastically to around 6, with rel-HNN-one-t achieving the lowest RMSE of 5.4055. This suggests
that the rel-HNN architecture is particularly effective in datasets with rich attribute columns and intri-
cate relational dependencies. For the Biodegradability dataset, RelGT again achieves the best performance
among prior approaches, with an RMSE of 18.4748. In contrast, rel-HNN-one-t significantly outperforms all
baselines, achieving the lowest RMSE of 1.4779. Other rel-HNN variants also attain RMSE values around
1.5, demonstrating the scalability and effectiveness of our method in handling large and complex relational
datasets. For the rel-fl (position) dataset, RelGT substantially reduces the RMSE to 6.7498 compared to
prior baselines, while rel-HNN-one-t attains the lowest RMSE of 3.4585.

Overall, the rel-HNN models consistently achieve lower RMSE values and greater stability across datasets,
as indicated by smaller standard deviations in most cases. The different variants of rel-HNN demonstrate
unique strengths. Rel-HNN-one achieves the lowest RMSE score on Pyrimidine, which consists of two
tables only, suggesting its effectiveness for limited schema complexity. On the other hand, for larger and
complex datasets with a higher number of tables, the table embedding variants (one-t and av-t) tend to
perform better. Rel-HNN-one-t provides the best performance on Pubs (5.4055), rel-f1 (position (3.4585), and
Biodegradability (1.4779), and near-best performance on ClassicModels (117.5294). Rel-HNN-av-t achieves
the best performance on ClassicModels (115.8039) and is narrowly outperformed on Pubs (5.6332) by rel-
HNN-one-t. For the ClassicModels dataset, although rel-HNN-av-t is outperformed by both rel-HNN-one
and rel-HNN-one-t, it performs better than its non-table counterpart, rel-HNN-av. Overall, the flexibility
among variants allows the rel-HNN framework to adapt effectively across a broad spectrum of relational
learning tasks.

12

Published in Transactions on Machine Learning Research (12/2025)

Table 2: RMSE Comparison Across Datasets in Regression Tasks

Method Pyrimidine ClassicModels Pubs Biodegradability rel-fl (position)
GCN 0.1195 £ 0.0591 955.4509 £ 90.8273 225.6450 + 20.0912 18.8374 £ 5.3645 15.1948 £ 2.7599
GAT 0.1183 £ 0.0530 989.2736 £ 80.5091 231.1827 £ 16.7465 19.5109 + 5.1827 15.6837 & 2.4883
SPARE-GCN 0.1061 £ 0.0517 809.0918 + 67.7364 125.6509 + 12.9283 14.3746 £ 7.6509 15.3938 + 2.3948
SPARE-GAT 0.1149 £ 0.0469 808.6547 £ 59.9182 142.8374 + 15.6501 18.0928 £ 4.9821 15.3443 £+ 3.1913
HyperGCN 0.1283 £ 0.1329 921.5709 + 102.4283 130.8904 + 18.3423 18.4759 + 7.1238 15.4839 + 3.0293
HGNN 0.1212 £ 0.1385 914.5710 £ 98.8957 108.4856 + 17.6765 18.1492 £ 6.7865 15.3847 £ 2.9749
DPHGNN 0.1035 £ 0.0469 821.7203 £ 73.3498 107.2947 4+ 12.9347 19.8453 £ 6.8463 14.3847 £ 2.4759
ATJ-net 0.1235 £ 0.0331 728.8391 + 52.2696 95.3952 + 7.1283 24.7605 £ 1.1405 11.2039 + 2.3948
RelGT 0.1098 £ 0.2348 537.7372 £ 21.4374 72.4847 + 8.2344 18.4748 £+ 9.6134 6.7498 + 1.9283
rel-HNN-one 0.0792 + 0.0394 120.7200 + 18.9351 6.0572 £+ 1.0807 1.5909 + 0.2871 3.7384 £ 0.3095
rel-HNN-av 0.0843 £ 0.0308 117.6724 + 17.4639 6.0106 + 1.1637 1.6729 £+ 0.0198 3.8938 £ 0.3293
rel-HNN-one-t ~ 0.0975 £ 0.0365 117.5294 + 9.2348 5.4055 + 1.4554 1.4779 £ 0.4093 3.4585 £ 0.2003
rel-HNN-av-t 0.0979 £ 0.0574 115.8039 + 14.1657 5.6332 £ 1.5954 1.6390 + 0.3934 3.6738 £ 0.2039

5.4 Split-Parallel Hypergraph Learning Performance

To observe the effectiveness of parallel processing, we conducted experiments using the split learning process
on a classification task. All experiments were performed using the rel-HNN-one-t version of the rel-HNN
model. We evaluated performance on two different sets of datasets. The first set consists of the same datasets
used in Section The second set includes widely used benchmark hypergraph datasets (see Appendix for
detailed dataset descriptions). Figure presents the training time per epoch (in milliseconds) across multiple
datasets under varying numbers of GPUs (IV), reflecting the impact of split-learning and parallelism.

Hepa Pima Cora SameGen IMDB Mutag

22 | | | | 15 | | 60 | | | | 15 | | | | 17000 | | | 25 | | | |
N1234 N1234 N1234 N1234 N 1234 N12 34
rel-fl (top3 rel-f1 (dnf) rel-avito (uv) DBLP Pubmed Citeseer

| | | | | | | |
1,500 mlgg m%g ; 15
5400 5400 1,000 £ 60 216 210
£ 500 14
20 12 5

N 1234 N12 34 N1234 N1234 N123 4 N1234

Figure 4: Training time per epoch (in milliseconds) across databases for different numbers of GPUs (N)

A clear trend is observed for larger datasets in terms of number of nodes as Hepa, Cora, IMDB, Mutag,
rel-f1 (top3), rel-f1 (dnf), and rel-avito (uv). As we increase the number of GPUs, the training time per
epoch decreases substantially. For example, on the rel-fI(dnf) dataset, the training time per epoch drops
significantly from 672.33 ms with a single GPU to 211.42 ms with four GPUs—a speedup of nearly 3.18x.
This indicates the substantial benefit of parallel training for large datasets. The speedup tends to diminish
as the dataset size decreases, primarily due to insufficient workload to fully utilize multiple GPUs, leading
to communication overheads diminishing the benefits of parallelization. For example, on dataset Mutag,
which is relatively smaller than rel-f1(dnf), the speedup drops to 1.41x, with the training time per epoch
decreasing from 23.60 ms to 16.73 ms. On much smaller datasets, such as Pima and SameGen, we observe
that increasing the number of GPUs increases the training time per epoch, as we employ two GPUs. As the
number of GPUs increases, the training time per epoch decreases, but fails to improve beyond the single-
GPU performance. Here, the inter-GPU communication and processing overheads for aggregating hyperedge
embeddings are outweighing the benefits of parallelization. Among hypergraph datasets, the most significant
runtime reduction is observed on the largest dataset, DBLP, where training time drops from 98.51 ms with

13

Published in Transactions on Machine Learning Research (12/2025)

a single GPU to 33.53 ms with four GPUs, achieving a speedup of nearly 2.94x. A similar decreasing trend
is seen in Pubmed, which shows a consistent improvement as IV increases, reducing training time from 20.06
ms to 15.48 ms with a speedup of 1.30x. However, in the case of Citeseer with relatively fewer nodes,
an increase in N results in a rise in training time, likely due to parallelization overhead surpassing the
computational benefits for smaller datasets. These findings highlight that while multi-GPU split-learning
effectively reduces training time for large-scale datasets, it may introduce diminishing or even negative returns
for smaller hypergraphs with limited computational load. A detailed theoretical analysis of the scalability
characteristics of the split-parallel rel-HNN is provided in Appendix [G} Additional experimental results on
synthetic datasets are provided in Appendix [F}

6 Conclusions and Future Work

In this paper, we presented rel-HNN, a novel hypergraph neural network framework for learning on relational
databases. By representing attribute-value pairs as nodes and tuples as hyperedges, our model captures
intricate, fine-grained relationships within and across tuples without relying on schema-specific constraints
like primary key—foreign key (PK-FK) relationships. Rel-HNN introduces a multi-level embedding strategy
to learn representations at the attribute, tuple, and table levels, offering a comprehensive and expressive
approach to relational data modeling. To address the scalability challenge posed by large hypergraphs, we
further proposed a split-parallel learning algorithm that effectively distributes the workload across multiple
GPUs. Our empirical evaluation shows that rel-HNN consistently outperforms state-of-the-art methods in
predictive performance and offers significant computational speedups through parallel training. Building on
this foundation, federated hypergraph learning and learning on relational data in cloud environments can be
promising directions for future research.

Acknowledgment

This research was funded by a grant from the Bangladesh Bureau of Educational Information and Statistics
(BANBEIS) under Project ID 1C20232933. The authors gratefully acknowledge this support.

References

Michael R Anderson, Dolan Antenucci, Victor Bittorf, Matthew Burgess, Michael J Cafarella, Arun Kumar,
Feng Niu, Yongjoo Park, Christopher Ré, and Ce Zhang. Brainwash: A data system for feature engineering.
In Cidr, 2013.

James Atwood and Don Towsley. Diffusion-convolutional neural networks. Advances in neural information
processing systems, 29, 2016.

Alejandro Correa Bahnsen, Djamila Aouada, Aleksandar Stojanovic, and Bjorn Ottersten. Feature engineer-
ing strategies for credit card fraud detection. Ezxpert Systems with Applications, 51:134-142 2016.

Jinze Bai, Jialin Wang, Zhao Li, Donghui Ding, Ji Zhang, and Jun Gao. Atj-net: Auto-table-join network
for automatic learning on relational databases. In Proceedings of the web conference 2021, pp. 1540-1551,
2021.

Federico Battiston and Giovanni Petri. Higher-order systems. Springer, 2022.

Pei Chen, Soumajyoti Sarkar, Leonard Lausen, Balasubramaniam Srinivasan, Sheng Zha, Ruihong Huang,
and George Karypis. Hytrel: Hypergraph-enhanced tabular data representation learning. Advances in
Neural Information Processing Systems, 36:32173-32193, 2023.

Eli Chien, Chao Pan, Jianhao Peng, and Olgica Milenkovic. You are allset: A multiset function framework
for hypergraph neural networks. In International Conference on Learning Representations, 2022.

Yannis Chronis, Yawen Wang, Yu Gan, Sami Abu-El-Haija, Chelsea Lin, Carsten Binnig, and Fatma Oz-
can. Cardbench: A benchmark for learned cardinality estimation in relational databases. arXiv preprint
arXiv:2408.16170, 2024.

14

Published in Transactions on Machine Learning Research (12/2025)

Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for youtube recommendations. In
Proceedings of the 10th ACM conference on recommender systems, pp. 191-198, 2016.

Milan Cvitkovic. Supervised learning on relational databases with graph neural networks. arXiv preprint
arXiv:2002.02046, 2020a.

Milan Cvitkovic. Supervised learning on relational databases with graph neural networks. arXiv preprint
arXiv:2002.02046, 2020b.

Vijay Prakash Dwivedi, Sri Jaladi, Yangyi Shen, Federico Lépez, Charilaos I Kanatsoulis, Rishi Puri,
Matthias Fey, and Jure Leskovec. Relational graph transformer. arXiv preprint arXiv:2505.10960, 2025.

Federico Errica. On class distributions induced by nearest neighbor graphs for node classification of tabular
data. Advances in Neural Information Processing Systems, 36:28910-28940, 2023.

Paul Expert and Giovanni Petri. Higher-order description of brain function. In Higher-Order Systems, pp.
401-415. Springer, 2022.

Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. Hypergraph neural networks. In
Proceedings of the AAAI conference on artificial intelligence, volume 33, pp. 3558-3565, 2019.

Swapnil Gandhi and Anand Padmanabha Iyer. P3: Distributed deep graph learning at scale. In 15th
{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 21), pp. 551-568,
2021.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural message
passing for quantum chemistry. In International conference on machine learning, pp. 1263-1272. PMLR,
2017.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. Advances
in neural information processing systems, 30, 2017.

Benjamin Hilprecht, Kristian Kersting, and Carsten Binnig. Spare: A single-pass neural model for relational
databases. arXiv preprint arXiv:2310.13581, 2023.

Zhichao Huang, Xutao Li, Yunming Ye, and Michael K Ng. Mr-gcen: Multi-relational graph convolutional
networks based on generalized tensor product. In nternational Joint Conference on Artificial Intelligence
(IJCAI), volume 20, pp. 1258-1264, 2020.

Tacopo Iacopini, Giovanni Petri, Andrea Baronchelli, and Alain Barrat. Group interactions modulate critical
mass dynamics in social convention. Communications Physics, 5(1):64, 2022.

Sunwoo Kim, Soo Yong Lee, Yue Gao, Alessia Antelmi, Mirko Polato, and Kijung Shin. A survey on hyper-
graph neural networks: An in-depth and step-by-step guide. In Proceedings of the 30th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 6534-6544, 2024.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. Inter-
national Conference on Learning Representations (ICLR), 2017.

Cheng-Te Li, Yu-Che Tsai, Chih-Yao Chen, and Jay Chiehen Liao. Graph neural networks for tabular data
learning: A survey with taxonomy and directions. ACM Computing Surveys, 58(1):1-51, 2025.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural networks.
International Conference on Learning Representations (ICLR), 2016.

Manon A Morin, Anneliese J Morrison, Michael J Harms, and Rachel J Dutton. Higher-order interactions
shape microbial interactions as microbial community complexity increases. Scientific Reports, 12(1):22640,
2022.

Jan Motl and Oliver Schulte. The ctu prague relational learning repository, 2024. URL https://arxiv.
org/abs/1511.03086.

15

https://arxiv.org/abs/1511.03086
https://arxiv.org/abs/1511.03086

Published in Transactions on Machine Learning Research (12/2025)

Sandeep Polisetty, Juelin Liu, Jacob Falus, Yi Ren Fung, Seung Hwan Lim, Hui Guan, and Marco Serafini.
Gsplit: Scaling graph neural network training on large graphs via probabilistic splitting. In Proceedings
of the Conference on Machine Learning and Systems (MLSys), 2025.

Joshua Robinson, Rishabh Ranjan, Weihua Hu, Kexin Huang, Jiaqi Han, Alejandro Dobles, Matthias Fey,
Jan E. Lenssen, Yiwen Yuan, Zecheng Zhang, Xinwei He, and Jure Leskovec. Relbench: A benchmark for
deep learning on relational databases, 2024. URL https://arxiv.org/abs/2407.20060.

Siddhant Saxena, Shounak Ghatak, Raghu Kolla, Debashis Mukherjee, and Tanmoy Chakraborty. Dphgnn:
A dual perspective hypergraph neural networks. In Proceedings of the 30th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 2548-2559, 2024.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max Welling.
Modeling relational data with graph convolutional networks. In The semantic web: 15th international
conference, ESWC 2018, Heraklion, Crete, Greece, June 3—7, 2018, proceedings 15, pp. 593—-607. Springer,
2018.

Yuanfeng Song, Yuqgiang Li, Shuhuan Fan, Dongsheng He, and Jianming Liao. A new graph neural network-
based join optimization algorithm. In 2022 International Conference on Algorithms, Data Mining, and
Information Technology (ADMIT), pp. 20-24. IEEE, 2022.

Yiwei Sun, Suhang Wang, Tsung Yu Hsieh, Xianfeng Tang, and Vasant Honavar. Megan: A generative
adversarial network for multi-view network embedding. In 28th International Joint Conference on Artificial
Intelligence, IJCAI 2019 (IJCAI), pp. 3527-3533. International Joint Conferences on Artificial Intelligence,
2019.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, Yoshua Bengio, et al.
Graph attention networks. International Conference on Learning Representations (ICLR), 2018.

Xinchen Wan, Kaiqiang Xu, Xudong Liao, Yilun Jin, Kai Chen, and Xin Jin. Scalable and efficient full-graph
gnn training for large graphs. Proc. ACM Manag. Data, 1(2), June 2023.

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma, Lingfan Yu,
Yu Gai, et al. Deep graph library: A graph-centric, highly-performant package for graph neural networks.
arXiv preprint arXiv:1909.01315, 2019.

Qiange Wang, Yanfeng Zhang, Hao Wang, Chaoyi Chen, Xiaodong Zhang, and Ge Yu. Neutronstar: Dis-
tributed gnn training with hybrid dependency management. In Proceedings of the 2022 International
Conference on Management of Data, SIGMOD ’22, pp. 1301-1315. Association for Computing Machinery,
2022.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks?
International Conference on Learning Representations (ICLR), 2019.

Naganand Yadati, Madhav Nimishakavi, Prateek Yadav, Vikram Nitin, Anand Louis, and Partha Talukdar.
Hypergen: A new method for training graph convolutional networks on hypergraphs. Advances in neural
information processing systems, 32, 2019.

Qinghua Zheng, Zhen Peng, Zhuohang Dang, Linchao Zhu, Ziqi Liu, Zhigiang Zhang, and Jun Zhou. Deep
tabular data modeling with dual-route structure-adaptive graph networks. IEEE Transactions on Knowl-

edge and Data Engineering, 35(9):9715-9727, 2023.

Xuanhe Zhou, Ji Sun, Guoliang Li, and Jianhua Feng. Query performance prediction for concurrent queries
using graph embedding. Proceedings of the VLDB Endowment, 13(9):1416-1428, 2020.

16

https://arxiv.org/abs/2407.20060

Published in Transactions on Machine Learning Research (12/2025)

A Relational Database and Graph Terminology Mapping

To facilitate the transformation of relational databases into graph or hypergraph structures, we summarize
the correspondence used in the literature between relational concepts and their graph counterparts in Table
This mapping highlights how relational tuples, attributes, and keys are interpreted as nodes, features, and
edges, respectively. Such a representation serves as the foundation for applying graph learning methods to
relational data.

Table 3: Relational Database and Graph Terminology Mapping

Relational Database Graph Representation
Row /Tuple Node

Table Node type

Foreign key column Edge type
Non-foreign-key column Node features

Foreign key from T4 to TP Edge from node u to node v
Label of target tuple t € T% Label of node for t of type tg

B Notations

In Table[d] we summarize the notations for node, hyperedge, and table embeddings, as well as the linear and
non-linear components of the MLPs employed in both node and hyperedge update steps.

Table 4: Notations for embeddings and transformation functions in rel-HNN.

Symbol Description

X, Input feature vector of node v € V

qul) Embedding of node v at layer !

Fe(l) Intermediate embedding of hyperedge e at layer [

F (,(ZZ) Local partial hyperedge embedding of e computed on GPU 1

Zél) Final hyperedge embedding of e at layer [after non-linear activation
Zr Learnable embedding of table T’

MLPg) Multilayer perceptron applied to nodes at layer [

MLP(EZ) Multilayer perceptron applied to hyperedges at layer [

MLP%) Linear component of the hyperedge MLP

MLP(Eli Non-linear component of the hyperedge MLP applied after aggregation

C Detailed Algorithms

Algorithm I]illustrates the procedure for transforming a relational database into a hypergraph representation.
Each unique attribute—value pair is mapped to a node, and hyperedges are formed to capture the relationships
across tuples within tables. The resulting hypergraph H = (V, E, X)) serves as the foundation for the proposed
rel-HNN model.

17

1

© o N O kA &N

e R e e O =
© ® N o o oA W N KO

1

© W N O ;A WN

L e o =
B W N = O

[uy
o

Published in Transactions on Machine Learning Research (12/2025)

Algorithm 1: Hypergraph Generation

Input : RDB: A relational database
Output: H = (V, E, X): A hypergraph
begin
V, E,node_map <+ 0,0, {} ;
foreach table T* € RDB do
foreach row i in T* do
foreach column j in T* do
if (Attrf,Ti’fjﬁ node_map then
v < new_node() ;
node_map[(Attr?,Ti’fj)] —v;
V+—Vu{v};
foreach table T € R do
foreach row i in T* do
e« 0;
foreach column j in T* do
v node_map[(Attrf,Ti’fj)] ;
e eU{v};
E+ FEU{e};
foreach v € V' do
| X[v] < Feature vector of node v € V ;
return H = (V, E, X)

Algorithm 2: rel- HNN

Input : H=(V,E, X): A hypergraph, RDB: A relational database, epochs: Number of epochs
Output: UZLZO{]VILP‘Z, UMLPL}: The MLP parameters for nodes and hyperedges, Urerps Z7: The

table embeddings
begin

for epoch < 1 to epochs do
for v € V do
Z% «+ MLPY(X,);

for e € F do
FY e ML) (S, . 20):
Z9 < CONCAT(F?, Z7.);
for |+ 1— L do
for v € V do

| ZL < MLP{, (3
for e € F do

| 2 MLPY (.0, 2);
L + loss__function(Ueep ZX, RDB);

ecé&, Zé_l)]

Initialize parameters UZLZO{MLP‘Z, UMLPL} and Upeppp 21

Update the parameters of Ulel MLP}, | Ulel MLP, and Urecrpp £ to minimize £;

18

1

© w N O ;oA WN

o
o

11

12
13
14
15
16
17
18
19
20
21
22

23

Published in Transactions on Machine Learning Research (12/2025)

Algorithm 3: Split-Parallel rel- HNN
Input : H; = (V;, E;, X;): A hypergraph, RDB: A relational database, epochs: Number of epochs

Output: UZL:O{MLP‘Z/ UMLP}, UMLP}_}: The MLP parameters for nodes and hyperedges,
Urcrpp Zr: The table embeddings

begin
Initialize parameters UZLZO{MLP‘Z, UMLPL, UMLPY } and Upeppp 21
for epoch < 1 to epochs do
for v € V; do
Z% «+ MLPY(X,);
for e € F; do
Feoi = MLP]%L (ZUEe Zg)’
Send FPO to U;V:Lj#GPUj;
Wait for Ueep, Uj-vzl,j;éi ng to arrive ;
for e € E; do
F « MLPg, (ZioFeOi)?
79 « CONCAT(F?, Z1.);
for!{ < 1— L do
for v € V; do
‘ Z,, < MLP} (Zees,, Z);
for e € F; do
Féi = MLP]ZEL (Zvee Zil)))
Send F! to U;V:l,j#iFPUj ;
Wait for Ueep, U;-V:Lj# Felj to arrive ;
for e € F; do
|z mLpp (SN, FL);
L + loss__function(Ueep ZX, RDB);
Update the parameters of UZL:1 MLP}, | UZL:O{MLP]{;L UMLPE }, and Upeppp 21 to
minimize £;

Algorithm [2] presents the pseudocode for the rel-HNN algorithm described in Section The algorithm
takes the hypergraph H = (V, E, X), the relational database RDB, and the epoch number as input and
provides model parameters after training as output. The algorithm first initializes the learnable parameters
UlL:O{M LPL, U MLPL} both for the nodes and the hyperedges, respectively. In addition, for each table
T € RDB, we initialize an embedding, Zr, which are learnable parameters of the model (Algorithm |2} Line
2). After determining the class probabilities for the hyperedges corresponding to the tuples in the target
table as discussed (Algorithm [2| Lines 4-13), the parameters are updated using backpropagation based on
the loss determined previously (Algorithm [2} Line 15).

Algorithm [3] outlines the split-parallel training strategy for rel-HNN as described in Section Each
GPU processes a shard of the hypergraph and computes local node and edge embeddings. Intermediate edge
messages are exchanged across GPUs at every layer, ensuring that dependencies spanning multiple partitions
are captured. Node and edge embeddings are then updated iteratively for L layers, and model parameters are
optimized by minimizing the loss over the final edge embeddings. This strategy enables efficient multi-GPU
training while preserving the integrity of relational dependencies.

D Justification of the MLP Decomposition
Proposition. Let the hyperedge MLP at layer 0 be defined as
MLP%(Z‘) =0y (WLUL_1(~ M Ul(Wll‘ + bl) ce) + bL),

19

Published in Transactions on Machine Learning Research (12/2025)

where each Wy and by denote the weight and bias of layer ¢, and o,(-) introduces nonlinearity. We decompose
MLPOE into two sequential parts:

MLPY,, (z) = Wiz, MLPY, (2) = o (Wrop_1(- - oa(Wa(o1(z +b1)) +b2) - ++) +by).

Claim. If the first layer is linear and subsequent transformations depend only on the aggregated pre-
activation, then computing

N
w=Y MLP} (x;) and f=MLPY (u)
=1

is algebraically equivalent to evaluating the full MLP% on the aggregated input x = Zfil ;.

Proof. Because W is linear,

N N N
> MLPY, (z:) = Y Wiz =W, (Z :ci) = Wiz
i=1 i=1 i=1

Adding the bias b; once after aggregation yields the same pre-activation Wiz 4 by as in the original network.
Since all subsequent layers of MLP%H are applied only to this aggregated activation, their outputs are
identical to those of MLPY,. Hence,

MLP?EU(Z MLPY,_ (xi)) - MLP%(Z x) :

K2

which proves equivalence. O

E Datasets

For the classification task, nine different datasets are selected from various domains: Hepatitis B disease
(Hepa), Diabetes disease (Pima), citation networks (Cora), Kinship information (SameGen), Movies infor-
mation (IMDB), Mutagenicity information (Mutag), Formula 1 dataset (rel-fl(top3) & rel-f1(dnf)), and
Online Advertisement (rel-avito(uv)). The first six datasets are from the CTU Relational Learning Reposi-
tory [Motl & Schulte] (2024)), and the last three datasets are from The Relational Deep Learning Benchmark
Repository |Robinson et al.| (2024]). These databases are widely used for evaluating supervised learning mod-
els on classification tasks involving relational data, where a categorical attribute is to be predicted. The
datasets are selected to reflect a wide range of scales, schema complexities, and classification challenges. The
datasets vary from 3 to 10 relational tables and contain up to 70 columns. All datasets are designed for
binary classification tasks, except for the Cora dataset, which contains 7 distinct classes. Smaller datasets
such as SameGen and Pima provide settings with limited nodes and hyperedges, enabling evaluation of
model behavior in low-data. Hepa and MUTAG correspond to moderate-sized datasets with richer relational
structures. In contrast, IMDB and rel-avito (uv) represent large-scale real-world datasets with millions of
nodes and hyperedges, posing significant challenges in terms of scalability, memory efficiency, and long-range
dependency modeling. The rel-f1 (top3) and rel-fl1 (dnf) datasets incorporate complex relational schemas
with ten tables and high-dimensional feature spaces, enabling rigorous evaluation of model performance on
fine-grained, real-world classification tasks under realistic relational settings. The statistics for the datasets
used in classification experiments are presented in Table [5

Table 5: Statistics of Classification Dataset

rel-f1 rel-f1 rel-avito

Statistic Hepa Pima Cora SameGen IMDB Mutag (top3) (dnf) (uv)
of Nodes 6488 1773 7927 141 4025855 13492 85263 85607 3210239
of Hyperedges 12927 6912 57353 1536 5793251 10324 76730 86742 20679117
Total # of Tables 7 9 3 4 7 3 10 10 8
Total # of Rows 12927 6912 57353 1536 5793251 10324 76730 86742 20679117
Total # of Columns 26 18 6 8 21 14 70 70 43

of Classes 2 2 7 2 2 2 2 2 2

20

Published in Transactions on Machine Learning Research (12/2025)

Table 6: Statistics of Regression Datasets

Statistic Pyrimidine ClassicModels Pubs Biodegradability rel-f1 (position)
of Nodes 130 5215 681 15435 85449

of Hyperedges 296 3864 245 21895 82775
Total # of Tables 2 8 10 5 10

Total # of Rows 296 3864 245 21895 82775
Total # of Columns 13 59 61 14 70

Table [6] presents the statistical summary of four relational datasets used for regression tasks in Section [5.3
The first four datasets are from the CTU Relational Learning Repository Motl & Schulte| (2024)), and the
dataset is from The Relational Deep Learning Benchmark Repository |Robinson et al.| (2024). The datasets
exhibit significant variation in relational complexity and scale, enabling a comprehensive evaluation of model
robustness and generalization. For instance, Biodegradability is the largest in terms of both nodes (15,435)
and hyperedges (21,895), suggesting a rich relational structure and potentially complex learning dynamics.
In contrast, Pyrimidine is the smallest, with only 130 nodes and 296 hyperedges, allowing us to assess
performance in low-data regimes. The ClassicModels dataset shows a high number of tables (8), columns
(59), and classes (273), indicating a detailed schema and a fine-grained prediction task. Similarly, the Pubs
dataset, despite having a relatively small number of rows (245), has a large number of columns (61), which
pose challenges related to feature sparsity or redundancy. Finally, the rel-f1 (position) dataset represents a
large-scale real-world regression setting with 85,449 nodes, 82,775 hyperedges, and 10 interconnected tables,
enabling evaluation of model scalability and its ability to capture complex, long-range relations.

Table [7] presents the structural statistics of the datasets: Citeseer, DBLP, and Pubmed. Among them,
DBLP is the largest in terms of both the number of nodes (41,302) and hyperedges (22,363), indicating a
highly complex and densely connected hypergraph structure. Pubmed represents a medium-sized dataset
with 19,717 nodes and 7,963 hyperedges, whereas Cliteseer is the smallest, comprising 3,312 nodes and 1,079
hyperedges. Despite its relatively small scale, Citeseer has the highest feature dimensionality, with each node
represented by a 3,703-dimensional feature vector. In contrast, Pubmed and DBLP exhibit more moderate
feature lengths of 500 and 1,425, respectively. The diversity across these datasets in terms of size and feature
complexity makes them well-suited for evaluating the effectiveness of the proposed split-parallel hypergraph
learning approach.

Table 7: Statistics of Benchmark Hypergraph Datasets

Property DBLP Pubmed Citeseer
Number of Nodes 41,302 19,717 3,312
Number of Hyperedges 22,363 7,963 1,079
Length of Feature Vector 1,425 500 3,703

F Split-Parallel Hypergraph Learning Performance on Synthetic Datasets

In addition to real-life benchmark hypergraphs (Section , we have also experimented with synthetic
hypergraphs generated by varying the number of nodes and hyperedges. For each hyperedge, nodes are
drawn from a uniform distribution, where the number of nodes varies from three to ten. The feature vectors
and labels are also randomly assigned to each node, where the feature vector length is set to 1024. We varied
the number of nodes, |V|, between 5,000 and 10,000, and the number of hyperedges, |E|, between 10,000
and 100,000 to assess performance across different hypergraph scales.

In Figure [5| we present the per-epoch training time across the synthetic hypergraphs for different numbers
of GPUs. As the size of the hypergraphs increases—either in terms of the number of nodes or hyperedges—
the advantages of parallel learning become more pronounced. For the smallest hypergraph with |V|=5,000
and | F|=10,000, increasing the number of GPUs leads to an increase in training time, due to synchronization
overheads. However, as the number of hyperedges is increased to 50,000 and 100,000, the algorithm achieves

21

Published in Transactions on Machine Learning Research (12/2025)

|V|=5k |V‘=5k |V|=5k |V|=10k |V|=10k |V‘:10k
|E|=10k |E|=50k ‘E|=100k |E‘:10k ‘E|:50k |E|=100k
16 I B B 30 [B 60 L | 18— 1 60 —L L | %38 I B B
n 14 w25 00 w 16 240 220
E 12 520 540 E E E
10 15 30 14 20 28
8 20 12

N1234 N1234 N1234 N1234 N1234 N123A4

Figure 5: Training time per epoch (in milliseconds) across synthetic hypergraphs for different numbers of
GPUs (N)

an increasing speedup of 1.98x and 2.33x, respectively. For the hypergraph with |V| = 10,000 and |E| =
10,000, the training time decreases from 16.19 ms (with a single GPU) to 13.84 ms when using two GPUs.
Interestingly, as more GPUs are employed, the training time begins to increase, reaching 14.22 ms with 1.13x
speedup for four GPUs, indicating underutilization of parallel resources. Again, increasing the number of
hyperedges to 50,000 and 100,000 results in higher speedups of 2.69x and 3.02x, respectively. A similar trend
is observed with an increasing number of nodes. For instance, with |E| = 100,000, increasing the number of
nodes from 5,000 to 10,000 enhances the speedup from 2.33x to 3.02x. These results demonstrate that while
synchronization overheads can limit speedup gains on smaller hypergraphs, the proposed parallel learning
approach achieves substantial performance improvements as the size and complexity of the hypergraphs
scale.

G Scalability Analysis of Split-Parallel Hypergraph Learning

For rel-HNN algorithm, the time complexity of computing the initial node embedding Z§°) for a node
v € V, obtained by applying M LP‘(/O) to its input feature vector X, (Algorithm [2| line 5), is O(nfd), where
n = |V| is the number of nodes, f is the input feature dimension, and d is the embedding dimension. For
each hyperedge e € E, the computation of the intermediate hyperedge embedding Fe(o) at the initial layer
(Algorithm 2] line 7) has a time complexity of O(end+edd), where e = |E| denotes the number of hyperedges.
At each subsequent L layers, the complexity of updating the node embedding Z,gl) (Algorithm [2| line 11) is
O(ned+ ndd), while determining the hyperedge embedding Zél) requires O(end+ edd). The total complexity
of a single propagation can be expressed as

O(L(ndd + end + edd)).
For the split-parallel rel-HNN executed on two GPUs, the overall time complexity can be expressed as
O(L (4ndd + end + edd + T(ed))),

where n and e denote the numbers of nodes and hyperedges, respectively, and L is the number of layers.
Since the node set is evenly partitioned across two GPUs, the local computation cost for node and hyperedge
updates is effectively halved. The term T'(ed) represents the communication overhead incurred during
inter-GPU synchronization, specifically for exchanging and aggregating local hyperedge embeddings via
the AllReduce operation. This communication cost can be modeled as T'(ed) = A 4+ Ced, where A denotes
the latency or startup cost associated with initiating the communication, and C' is the per-hyperedge-
dimension transfer and aggregation cost that depends on the interconnect bandwidth and the efficiency of
the collective communication backend. The split-parallel execution yields a performance advantage when
the computational cost of the single-GPU setting exceeds that of the distributed formulation, i.e.,

L(ndd + end + edd) > L (indd+ Lend + edd + T(ed)), (8)

where the first term represents the total computation cost on a single GPU and the second term includes the
reduced per-GPU computation together with the inter-GPU communication overhead T'(ed). This condition

22

Published in Transactions on Machine Learning Research (12/2025)

can be simplified as
ndd + end > indd+ Lend + T(ed).

Substituting the communication model T'(ed) = A + Ced into the inequality yields
%ndd + %end > A+ Ced.

Rearranging terms, we obtain
%ndd—i— ed (% — C) > A,

which can be further simplified to

e(n—C) >4 _md (9)

When the number of nodes n is sufficiently large compared to the communication constants A and C, we
have 5 — C > 0. Using Equation @ the inequality can be rearranged as

nd

d 2 (10)

e > —C

0|3 e

As n becomes sufficiently larger than the communication constants A and C, the right-hand side of Equa-
tion [I0] becomes negative. Since the number of hyperedges e is always positive, the inequality is naturally
satisfied. Therefore, the split-parallel rel-HNN yields better performance when the number of nodes is
significantly large, as the computational gain from parallelization outweighs the communication overhead.
Note that, in environments with lower communication overheads (smaller values of A and C'), the minimum
number of nodes for speedup correspondingly decreases.

When the number of nodes n is relatively small compared to the communication constants A and C, the
term 5 — C becomes negative. In this case, Equation |§| can be rearranged as

A _nd

d 2
< . 11
¢ 5—C (11)

As the right-hand side of Equation [11]is negative, satisfying the inequality requires the number of hyperedges
e to be negative, which is infeasible. This condition indicates that, for smaller graphs or limited node counts,
the communication overhead dominates the computation cost, and the split-parallel execution provides no
performance gain. In other words, when n is relatively small, the latency and bandwidth terms (A and C)
outweigh the computational savings from parallelization, making the single-GPU configuration more efficient.
The analytical findings are supported by the experimental results. As shown in Figure [4] for the datasets
Pima, SameGen, and Citeseer, the single-GPU execution outperforms the split-parallel configuration. From
Tables [5| and |7} it can be observed that all these datasets contain relatively few nodes (less than 5,000),
which aligns with the analytical conclusion that split-parallel execution is less effective when the number of
nodes is small.

H Hyperparameter Sensitivity Analysis

To analyze the sensitivity of our model to key hyperparameters, we conducted experiments to evaluate its
performance under different parameter settings. Figure[6]presents the AUROC scores of rel-HNN for varying
numbers of layers (L). In most cases, the best performance is achieved with a shallow architecture (L = 2),
while deeper configurations (L > 4) lead to gradual degradation in accuracy. This trend indicates that rel-
HNN effectively captures essential higher-order relationships within only a few message-passing steps, and
increasing the depth beyond that introduces redundancy and over-smoothing. For smaller and moderately
sized datasets (e.g., Hepa, Pima, SameGen, Mutag, and Cora), additional layers tend to diffuse information
excessively, causing embeddings of connected nodes and hyperedges to become indistinguishable, a well-
known phenomenon in graph learning models. Larger datasets, such as IMDB, rel-f1(top3), rel-f1(dnf),
and rel-avito(uv), exhibit a similar but less pronounced decline, suggesting that even in complex relational
structures, shallow architectures are sufficient to achieve optimal relational aggregation. Overall, these results

23

Published in Transactions on Machine Learning Research (12/2025)

demonstrate that rel-HNN attains peak performance with two layers, striking a balance between expressive
power and generalization while avoiding over-smoothing and unnecessary computation.

Hepa Pima Cora SameGen IMDB
0.9
0.8 0-6 0.85
0.65
. 0.5 0.75
L 2 4 6 8 L 2 4 6 8 L 2 4 6 8 L 2 4 6 8 L 2 4 6 8
Mutag rel-f1 (top3) rel-f1 (dnf) rel-avito (
OSSm 085m 075m 075m
0.75 0.75 0.65 0.65
L 2 4 6 8 L 2 4 6 8 L 2 4 6 8 L 2 4 6 8

Figure 6: Performance (AUROC) variation with respect to the number of layers (L) across datasets.

Hepa Pima Cora SameGen IMDB
0.9
0.7 0.9
0.8 0.6 0.8 0.85
0.7 0.65 0.75 0.8
: 0.5 0.7 0.75
0.6 0.6 0.65 0.7
d 2 4 8 16 d 2 4 8 16 d 2 4 8 16 d 2 4 8 16 d 2 4 8 16
Mutag rel-f1 (top3) rel-f1 (dnf) rel-avito (uv)
0.85 0.85 0.75 0.75
0.8 oke
0.7 0.75 0.65 0.55
d 2 4 8 16 d 2 4 8 16 d 2 4 8 16 d 2 4 8 16

Figure 7: Performance (AUROC) variation with respect to the embedding dimension (d) across datasets.

To further analyze the sensitivity of rel-HNN to key hyperparameters, we evaluated its performance across
different embedding dimensions (d), as shown in Figure In most datasets, the highest AUROC scores
are achieved with low-dimensional embeddings (d = 2), while performance gradually decreases as the em-
bedding dimension increases. This trend suggests that small embedding spaces are sufficient to capture the
underlying relational structure in the data, whereas higher dimensions may introduce redundant or noisy
features that hinder generalization. For smaller and moderately sized datasets (e.g., Hepa, Pima, Mutag, and
SameGen), increasing the embedding dimension leads to overparameterization relative to the available data,
resulting in reduced discriminative power. Even for larger relational datasets such as rel-f1 and rel-avito,
the improvement from higher-dimensional embeddings remains marginal, with performance saturating or
slightly decreasing beyond d = 4. Overall, these results indicate that compact embedding representations
are sufficient for rel-HNN, providing an efficient trade-off between model complexity, generalization, and
training cost.

I Memory Consumption Analysis

To analyze the memory characteristics of our model, we conducted experiments using the split-parallel
rel-HNN configuration. Figure [§] illustrates the peak GPU memory consumption of the split-parallel rel-

24

Published in Transactions on Machine Learning Research (12/2025)

HNN with varying numbers of GPUs (V). Across all datasets, a consistent downward trend is observed as N
increases, confirming the scalability of our parallelization strategy. As the number of GPUs increases from one
to four, memory consumption per GPU decreases substantially — for instance, in the rel-fI (top3) dataset,
peak memory usage drops from 5172 MB to 1555 MB, representing a reduction of nearly 70%. However,
the decline is not strictly linear, as minor deviations are introduced by the additional communication buffers
used during the AllReduce operations required for inter-GPU synchronization. The reduction rate is lower
for smaller datasets, such as SameGen and Pima. Overall, the results validate that the split-parallel rel-
HNN achieves effective memory scaling across multiple GPUs, enabling training on larger datasets and
higher-dimensional embeddings.

Hepa Pima Cora SameGen IMDB
400 1(8)8 3,000 — 20 ——— 8,000
&0 2,000 15 6,000
200 40 1.000 10 4,000
20 ’ 5 2,000
0 0 0 0 0
N 1 2 3 4 N 1 2 3 4 N 1 2 3 4 N 1 2 3 4 N 1 2 3 4
Mutag rel-f1 (top3) rel-f1 (dnf) rel-avito (uv)
8,000
1,000 4,000 4,000 6,000
4,000
500 2,000 2,000 2,000
0 0 0 0
N 1 2 3 4 N 1 2 3 4 N 1 2 3 4 N1 2 3 4

Figure 8: Peak per-GPU memory consumption (MB) with varying numbers of GPUs (V) across datasets.

25

	Introduction
	Background
	Related Works
	Learning on RDB using Graphs
	Distributed multi-GPU GNN training

	Proposed Methods
	Relational Database to Hypergraph
	rel-HNN: Hypergraph Neural Network for Relational data
	Split-Parallel Hypergraph Learning for large databases

	Empirical Evaluation
	Experiment Design
	Performance on Classification Tasks
	Performance on Regression Tasks
	Split-Parallel Hypergraph Learning Performance

	Conclusions and Future Work
	Relational Database and Graph Terminology Mapping
	Notations
	Detailed Algorithms
	Justification of the MLP Decomposition
	Datasets
	Split-Parallel Hypergraph Learning Performance on Synthetic Datasets
	Scalability Analysis of Split-Parallel Hypergraph Learning
	Hyperparameter Sensitivity Analysis
	Memory Consumption Analysis

