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Abstract

The performance of state-of-the-art machine learn-
ing models is observed to degrade in scenarios
involving under-represented demographic popu-
lations during training. This issue has been ex-
tensively studied within a supervised learning
framework where data distribution remains un-
changed. Nonetheless, real-world use cases often
encounter distribution shifts induced by the mod-
els in deployment. For example, performance bias
against minority users can affect customer reten-
tion rates, thereby skewing available data from
active users due to the absence of minority user
input. This feedback effect further exacerbates the
discrepancy across various demographic groups
in subsequent time steps. To mitigate this prob-
lem, we introduce asymptotic fairness, a criterion
that aims at preserving sustained model perfor-
mance across all demographic populations. In ad-
dition, we construct a surrogate retention system,
based on existing literature on evolutionary pop-
ulation dynamics, to approximate the dynamics
of distribution shifts on active user counts. This
system allows the aim of achieving asymptotic
fairness to be formulated as an optimal control
problem. To evaluate the effectiveness of the pro-
posed method, we design a generic simulation
environment that simulates the population dynam-
ics of the feedback effect between user retention
and model performance. When we deploy the
models to this simulation environment, by con-
sidering long-term planning, the optimal control
solution outperforms existing baseline methods,
demonstrating superior performance.
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1. Introduction
In dynamically changing environments, data distributions
can evolve over time, giving rise to the phenomenon known
as concept drift. Concept drift entails changes in the con-
ditional distribution of the target variable given the input
features, while the distribution of the input features them-
selves might remain fixed (Gama et al., 2014; Schlimmer &
Granger, 1986; Widmer & Kubat, 1996). This work consid-
ers a distinct case of concept drift, where the performance of
a machine learning system can impact the number of active
users, while the feature distribution of these users remains
fixed. A relevant scenario involves users interacting with
personal devices such as Google Home or Amazon Alexa,
providing input features like voice commands. Device per-
formance feedback, be it positive (accurate voice identi-
fication) or negative (misidentification), can respectively
increase user engagement or decrease user retention. This
issue becomes more pronounced when populations from
different demographic groups are considered (Harwell). A
system demonstrating performance bias against minority
demographics can result in diminished retention rates for
these users. Subsequently, the available training data col-
lected from active users might be insufficient to represent
the distribution of minority users, Consequently, this can
further amplify the representation disparity issue when the
model is fine-tuned based on this training set (Hashimoto
et al., 2018).

In this study, we aim to develop machine learning mod-
els that engage users from all demographic groups, under
the aforementioned population dynamics. This task can be
viewed as a trajectory planning problem, wherein the evolu-
tion of user engagement is optimized through control design.
With the given population dynamics, trajectory planning can
be considered as an optimal control problem, solvable by
existing methods, such as dynamic programming (Bellman,
1952). However, the generation and evaluation of an optimal
control solution pose three challenges. Firstly, the notion
of fairness in a non-stationary environment has not been
formally defined. Existing fairness definitions aim to mea-
sure performance disparities between different demographic
groups at a singular time point, such as equal opportunity
(Hardt et al., 2016), and demographic parity (Feldman et al.,
2015). These definitions fail to adequately encapsulate the
goals in a non-stationary environment. Second, solving the
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optimal control problem requires knowledge of the under-
lying population dynamics, which are typically complex
and inaccessible. Lastly, evaluation of the performance of
an optimal control solution (e.g., one generated from some
estimated dynamic system) necessitates its deployment on
population dynamics with real-world users, an often costly
and unattainable requirement. In response to these chal-
lenges, our contributions are threefold:

1. We introduce the concept of asymptotic fairness to de-
fine the consistent performance across all demographic
groups over an extended time period.

2. We propose a surrogate retention system built upon the
existing literature on evolutionary population dynam-
ics, from which we formulate the objective of achieving
asymptotic fairness as an optimal control problem. To
address this control problem, we consider Pontryagin’s
maximum principle which allows us to solve for the
optimal control solution efficiently.

3. Through empirical evaluation, we highlight the advan-
tages of taking into account the underlying dynamics
in model design. Our results consistently outperform
existing baseline methods, thereby validating the supe-
riority of our approach in terms of performance.

Furthermore, we design a simulator that simulates the non-
stationary environment of the user’s willingness to retain
or churn from a deployed model. This simulator allows
for testing the evolutionary fairness property of machine
learning models in synthetic population dynamics.

2. Related Works
We review existing literature about fairness in non-stationary
settings, and further discuss the intersection of machine
learning and optimal control, emphasizing its relevance and
applicability to our work.

Fairness problems in the non-stationary setting. Re-
cent studies have brought attention to the potential pitfalls
of imposing static fairness constraints (Hardt et al., 2016;
Feldman et al., 2015). These constraints can yield unfa-
vorable long-term effects, as demonstrated in the work by
(Liu et al., 2018; Zhang et al., 2020). The interplay between
algorithmic decisions and individuals’ reactions plays a piv-
otal role in shaping these long-term effects (Zhang et al.,
2020). For instance, model decisions can cause changes
in the underlying data distribution, subsequently affecting
the model’s performance in future time steps. (Zhang et al.,
2019) recently presented a comprehensive study of the in-
teraction between user retention rates and model decisions
in dynamic environments. The most common approach to
address this problem is via successive one-step methods,

which prioritize fairness for minority demographic groups
(Hashimoto et al., 2018). In view of these insights, our
research emphasizes the importance of considering the in-
herent dynamics within a non-stationary environment.

The connection between deep learning and optimal con-
trol. Recent works have highlighted the connection be-
tween dynamical systems and deep neural networks (E,
2017; Haber & Ruthotto, 2017). This perspective offers
valuable theoretical insights for understanding deep learning
through an optimal control lens (Liu & Theodorou, 2019).
The pioneering work that bridged and extended the classi-
cal back-propagation algorithm with optimal control theory
was introduced by (Li et al., 2018; Li & Hao, 2018), es-
tablishing a direct relationship between the Pontryagon’s
maximum principle (Kirk, 1970) and gradient-based train-
ing. Building upon this foundation, (E et al.) established
the mathematical basis for the optimal control viewpoint
in deep learning. Moreover, optimal control methods have
been applied to tackle challenging issues in deep learning.
For instance, (Liu et al., 2020a;b) proposed efficient high-
order optimizers using differential dynamic programming,
and (Chen et al., 2021; 2022) explored closed-loop con-
trollers to improve robustness against adversarial attacks.
These advances highlight the efficacy of optimal control
approaches in resolving key challenges of deep learning.

3. Fairness in Non-Stationary Environment
In this section, we discuss the problem setup for fairness
in a non-stationary environment, where user retention or
churn is conditioned on the model’s performance on the
data they provide. This configuration leads to a condition
for the machine learning models, which we term as asymp-
totic fairness. This condition requires the models to sustain
their performance across all demographic groups over an
extended period.

3.1. Problem Description for Fairness in a
Non-Stationary Environment

In a non-stationary environment, we consider a predictive
model with time-varying model parameters, denoted as
{θt}T−1

t=0 . We consider K distinct demographic groups,
each comprising N i users that include both participative
and non-participative users of the predictive model. Let
us denote Λi

t as the number of active users within the ith

demographic group at time t. To facilitate our analysis, we
normalize Λi

t by defining a population density λi
t =

Λi
t

Ni ,
which falls within the range of 0 to 1. The growth (resp.
decay) of λi

t indicates that more users from the ith demo-
graphic group participate in (resp. leave) the system. We
denote Ai

t as a N -tuple to indicate the active users from the
ith demographic group at time step t (e.g. Ai

t = (1, 0, 1)
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means that the 1st and 3rd users from the ith group are ac-
tive at time step t). We formulate the population dynamics
of the user’s willingness to participate as a Markov decision
process and denote it as population retention system,

Ai
t+1 ∼ P(·|Ai

t,θt, {zi,n}Nn=1,Φ(·)), (1)

where the state space is a N -tuple that indicates the indices
of active users, P(·) denotes the transition probability, θt

is the model parameter at time step t, zi,n represents the
features of the nth user from the ith demographic group, this
feature vector contains both input data (e.g. voice command)
and characteristics (e.g. the probability of a user churn when
encountered with a correct prediction, and the probability of
a user retaining when receiving a wrong prediction) of the
user, Φ(·) is a loss (or reward) function acting on each indi-
vidual user. In addition, a certain number of inactive users
become active in the system at each time step, this number
is conditioned on the model performance of currently active
users. In a nutshell, if a user is active at time step t, the
activeness of this user at the next time step is conditioned on
the model performance of that specific user. Moreover, data
features of only active users at each time step are considered
an observable state that can be leveraged for generating a
model. Once a sequence of models {θt}Tt=1 is generated,
we evaluate its performance using the population retention
system defined in Eq. (1).

3.2. The Definition for Asymptotic Fairness

The population retention system, defined in Eq. (1), simu-
lates variation in the active user population density, resulting
from the individual model performance of each user. In this
context, the deployment of a model with an adequately
minimized population risk encourages increased user par-
ticipation within the system. This encourages more active
users to subsequently contribute training data for model
refinement, culminating in an enhanced model, which in
turn can further decrease population risk in the subsequent
time step. This positive feedback loop, given enough time,
results in the population risks for all demographic groups
converging towards 0 for a large number of total users N i,
while the number densities approach 1. This motivates us to
define the concept of asymptotic fairness as follows:
Definition 3.1. Asymptotic fairness A sequence of models
satisfies asymptotic fairness if the dynamics it drives satisfy
the following condition:

λi
t → 1, as t → ∞ ∀i ∈ [1, 2, ...,K],

s.t. Ai
t+1 ∼ P(·|Ai

t,θt, {zi,n}Nn=1,Φ(·)),

where λi
t =

∑Ni

n=1[Ai
t]n

N i
.

Furthermore, the satisfaction of asymptotic fairness by a
sequence of models is implicitly linked to the initial popula-

tion densities. In scenarios where all demographic groups
initially have high population densities, the likelihood of
achieving asymptotic fairness increases. Conversely, scenar-
ios with highly imbalanced representations of demographic
groups pose significant challenges in meeting this condition.
Therefore, the representation of demographic groups plays
a critical role in the successful implementation of models
adhering to the condition of asymptotic fairness.

Remark 3.2. The mode of convergence as per Definition 3.1
is application-dependent, thus, it varies across different con-
texts. In this work, we introduce a deterministic surrogate
system as defined in Section 4.1. Given the deterministic
nature of this surrogate system, we abstain from specifying
the mode of convergence pertaining to random variables.
The absence of inherent stochasticity in the surrogate system
obviates the need for a specific convergence criterion that
would otherwise be necessary for the presence of random
variables.

Remark 3.3. The concept of asymptotic fairness provides a
more precise interpretation of fairness in a non-stationary
environment. Prior research has considered disparity ampli-
fication (Hashimoto et al., 2018) to assess the representation
disparity across all demographic groups at each individual
time step. However, the definition of asymptotic fairness
diverges from this approach as it emphasizes long-term be-
havior. To illustrate, consider an extreme scenario where the
population densities of all demographic groups concurrently
decay to zero. Although this is an undesirable situation, it
would nonetheless satisfy the condition of disparity ampli-
fication, yet not meet the criterion of asymptotic fairness.
Thus, the distinction underscores the importance of consider-
ing long-term behavior in fairness definitions, a perspective
that asymptotic fairness uniquely encapsulates.

4. An Optimal Control Solution for
Asymptotic Fairness

According to Def. 3.1, our goal is to maximize the popu-
lation densities across all demographic groups within the
context of the population retention system, as defined by
Eq. (1). Due to the inaccessibility of the underlying dy-
namics of the population retention system, our initial step
involves the construction of a surrogate system to estimate
these dynamics. Subsequently, we formulate the condition
of asymptotic fairness as an optimal control problem and
provide an efficient solver based on Pontryagin’s maximum
principle (PMP) (Pontryagin, 1987).

4.1. Surrogate Retention System for the Evolutionary
Population Dynamics

Our design of the surrogate retention system is rooted in
the existing body of literature on evolutionary population
dynamics (Cushing, 2019). This system features a low-
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dimensional state representation, adding to its computa-
tional efficiency. Moreover, the system is deterministic and
differentiable, which allows for solving the optimal control
solution efficiently. Thus, the surrogate retention system
not only provides a meaningful connection to evolutionary
dynamics but also offers practical advantages in terms of
computational efficiency.

Evolutionary population dynamics describes the dynam-
ics of user participation. Difference equations are com-
monly employed to describe discrete-time dynamics where
temporal variations in vital rates are influenced by popu-
lation density dependencies. Activities of an individual,
such as reproduction and survival, may experience fluctu-
ations, thereby contributing to the evolutionary dynamics
of population density. Such explicit temporal dependencies
can be encapsulated through the optimization of the coeffi-
cients of a difference equation over time (Vincent & Brown,
2005). To account for such evolutionary mechanisms, a dif-
ference equation population model can be developed (Cush-
ing, 2019). In a simplified context, the population’s growth
and decay are attributed to births and deaths, respectively.
Individuals present at time step t+ 1 are either newcomers
within the time frame or survivors from time step t. We
model those dynamics as the following discrete dynamic
system:

λi
t+1 = (1− λi

t)β(κ
i(λi

t,θt)) + λi
tσ(κ

i(λi
t,θt)), (2)

where κi(·) computes a value that reflects the response of
the ith population on some external controls θt (e.g. medical
treatment, resource allocation), β(·) and σ(·) compute the
ratios of newborns and survived population during a time
interval respectively. We consider the range of both birth
and survival rate functions to be [0, 1], in which case, the
population densities take the range of [0, 1]. Moreover, we
denote λt = [λ1

t , λ
2
t , ..., λ

K
t ]T as a K-dimensional vector.

Subsequently, a K-dimensional discrete dynamic system
describing the simplified evolutionary population dynamics
can be constructed as follows:

λt+1 = T (λt,θt), (3)

where the ith element of T (·) is defined in Eq. (2), and
the evolutionary dynamics between different demographic
groups are only coupled via the model θt.

In cases where user retention or churn rates are influenced by
population dynamics, the function κi(·) is used to measure
the model’s performance on the currently active population.
Here, the birth rate β(·) and the survival rate σ(·) denote
the proportions of incoming and retained users at each re-
spective time step. More precisely, the number of incoming
users is dependent on the current model performance (e.g.
a high-performing model on a demographic group attracts
new users from this group), and the amount of retaining

users depends on how the model performance on currently
active users. For performance evaluation of the model, we
maintain a small holdout set of accessible users, all of whose
user features are observable. From this set, data from active
users can be sampled at every time step, based on the pop-
ulation density λi

t. Moreover, when model performance is
evaluated via a reward (or alternately, a loss) function, we
hypothesize that the birth and survival rates correspond pro-
portionally (or inversely) to the model performance κi(·).
This assumption ensures that an improved model perfor-
mance leads to an increase in population density. We denote
this difference equation as the surrogate retention system.

Evaluation of model parameters through distribution-
ally robust optimization. The surrogate retention system,
as defined by Eq. (3), leads to a low-dimensional state repre-
sentation, consisting only of the population densities across
all demographic groups. However, its simulation requires
random sampling of training data from the holdout set, based
on the present population density. This is inconsistent with
the population retention system, where the training data are
provided from active users. To resolve this discrepancy,
we consider the formulation of distributionally robust opti-
mization, which considers the λi

t proportion of users who
received optimal model performance.

To begin with, let dX 2(M||Q) =
∫
(dMdQ − 1)2dQ) denote

the X 2-divergence between two probability distributions
M and Q, B(M, r) = {Q : dX 2(M||Q) ≤ r} denote
the chi-squared ball around a probability distribution M of
radius r. Let Mi be the feature distribution of users from
the ith demographic group, we consider the performance
measure κi(·) as the worst-case distributional loss over all
r-radius balls around Mi defined as follows,

κi(λi
t,θt) = sup

Q∈B(Mi,rit)

Ez∼QΦ(θt, z),

rit = (1/λi
t − 1)2. (4)

Clearly, as the number density λi
t approaches 1, rit decays to

0, and κi(λi
t,θt) is equivalent to population risk. For small

λi
t, the radius rit → ∞ and this leads to a large loss value.

In general, computing the worst-case distributional loss over
a set of distributions is a challenging task. Fortunately, the
maximization problem in Eq. (4) can be reformulated into
its dual form (Duchi et al., 2019). More specifically, if Φ(·)
is upper semi-continuous for any θ, then for rit ≥ 0 and any
θ, the following holds true:

sup
Q∈B(Mi,rit)

Ez∼QΦ(θt, z)

= inf
η∈R

(
C(λi

t) ·
(
EMi

[
[Φ(θt, z)− η]2+

]) 1
2 + η

)
,

where C(λi
t) = (2(1/λi

t − 1)2 + 1)
1
2 , (5)
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where [x]+ = x if x ≥ 0 and 0 otherwise. At time step t,
given θt and λi

t, the worst-case distributional loss is com-
puted by averaging the sample losses that are higher than the
optimal η∗(λi

t,θt), where η∗(λi
t,θt) attains the infimum.

Rather than calculating the worst-case distributional loss, we
consider Φ(·) as a reward function. In this setting, the worst-
case distributional loss corresponds to the computation of
the maximal distributional reward, as defined within the chi-
square ball of radius λi

t., and the active users are the ones
who received a reward equal to or greater than η∗(λi

t,θt).
This computation can be performed efficiently using Eq. (5).

Overall, the surrogate retention system for the ith demo-
graphic population is defined as follows,

λi
t+1 = (1− λi

t)β(κ
i(λi

t,θt)) + λi
tσ(κ

i(λi
t,θt)),

where κi(λi
t,θt) = sup

Q∈B(Mi,rit)

Ez∼QΦ(θt, z),

rit = (1/λi
t − 1)2,

where the worst-case distributional loss κi(λi
t,θt) can be

efficiently computed via Eq. (5).

Here we describe two remarks about the proposed surrogate
retention system.
Remark 4.1. The surrogate retention system, when imple-
mented with the worst-case distributional loss formulation,
yields a low-dimensional state representation, with the state
consisting of the population densities of all demographics.
Furthermore, given a model θt and population density λt,
the system represents a deterministic difference equation
where active users are generated as per Eq.(5). The system
is differentiable with respect to the state λt, allowing for
efficient computation of the optimal model parameters, as
detailed in Sec.4.2.
Remark 4.2. Model-based reinforcement learning (RL) tech-
niques (Sutton, 1991; 1990) offer notable advantages in
terms of data efficiency and interpretability. More specifi-
cally, model-based RL methods can learn from fewer inter-
actions because they can simulate experiences using their
model of the environment, addressing a key challenge faced
by model-free RL methods such as policy gradient-based
approaches (Sutton et al., 1999). Moreover, model-based ap-
proaches often provide more interpretability than model-free
methods, since the model can offer insights into the agent’s
understanding of the environment dynamics. Despite these
benefits, scaling model-based RL to high-dimensional prob-
lems introduces several challenges, due to the complexity
and variability of these types of environments (Schrittwieser
et al., 2020). In this study, we propose a novel approach
that considers population density as a statistical average, ef-
fectively capturing underlying evolutions. By adopting this
perspective, we simplify the problem to a low-dimensional
surrogate retention system. The simulations conducted in

this work can serve as a valuable foundation for the devel-
opment of model-free RL methods.

4.2. Optimal Control Formulation for Asymptotic
Fairness

We denote Ψ(·,1) as the binary cross-entropy loss between
population densities and a fixed vector of 1 at a specific time
step and 1. In this case, minimizing Ψ(·,1) is equivalent
to maximizing the population densities at the terminal time
step. Consequently, the objective of realizing asymptotic
fairness can be formulated as follows:

min
{θt}T−1

t=0

Ψ(λT ,1) s.t.λt+1 = T (λt,θt), given λ0, (6)

where T (·) is the surrogate retention system defined in
Eq. (3). This is a special case of a class of general opti-
mal control problems for discrete dynamical systems, in
which we consider the control variables as the model param-
eters at all time steps. From this optimal control perspective,
asymptotic fairness can be achieved by solving for a set of
controls such that Eq. (6) is satisfied.

This is known as closed-loop control in which the opti-
mal control θ∗

t (λt) has explicit dependence on the state.
The optimal control solution can be solved via dynamical
programming principle (Bellman, 1952), which involves
solving a Hamilton Jacobi Bellman partial differential equa-
tion. For an efficient model generation, PMP (Pontryagin,
1987) converts dynamical programming into two difference
equations and a maximization condition. Instead of com-
puting the closed-loop control θ∗

t (λt), the PMP provides
a necessary condition for the optimality with fixed control.
To begin with, we define the Hamiltonian as

H(t,λt,pt+1,θt) := pT
t+1 · T (λt,θt)− L(θt,λt),

where L(θt, λ
i
t) is a running loss at time t. We consider all

running losses as 0 since asymptotic fairness is defined at the
terminal state. The PMP consists of a two-point boundary
value problem,

λ∗
t+1 = ∇pH(t,λi,∗

t ,p∗
t ,θ

∗
t ), λ0 given, (7)

p∗
t = ∇λH(t,λi,∗

t ,p∗
t+1,θ

∗
t ), pT =

∂Ψ(λT ,1)

∂λT
, (8)

plus a maximum condition of the Hamiltonian.

H(t,λi,∗
t ,p∗

t ,θ
∗
t ) ≥ H(t,λi,∗

t ,p∗
t ,θt), ∀ θt and t. (9)

We consider the method of successive approximation (Chen
et al., 2022) to solve for the control solution. Given a initial
condition λ0, Eq.(7) corresponds to the surrogate retention
system. We then set a terminal condition, pT = ∂Ψ(λT ,1)

∂λT
.

During backpropagation of the adjoint state, the current
state λt and adjoint state pt+1 remain fixed, allowing for
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Algorithm 1 Method of Successive Approximation.
input λ0, learning rate lr, maxItr, InnerItr
output models {θt}Tt=0

for m = 1 to maxItr do
for t = 0 to T-1 do

// Forward propagation (Eq. (7)).
λ∗
t+1 = ∇pH(t,λi,∗

t ,p∗
t ,θ

∗
t ),

end for
// Set terminal condition.
p∗
T = ∂Ψ(λT ,1)

∂λT
,

for t = T − 1 to 0 do
for τ = 0 to InnerItr do

// Compute Hamiltonian with pt+1 and λt.
H(t,λt,pt+1,θt) = pT

t+1 · T (λt,θt),
// Max Hamiltonian (Eq. (9)).
θt = θt + lr · ∇λH(t,λt,pt+1,θt),

end for
// Backward propagation (Eq. (8)).
p∗
t = ∇λH(t,λi,∗

t ,p∗
t+1,θ

∗
t ),

end for
end for

the maximization of the tth Hamiltonian for InnerItr iter-
ations. This strategy permits multiple updates to the model
θt within a single forward-backward propagation. Once a
locally optimal model is achieved, we continue the back-
propagation of the adjoint state pt+1 to pt and optimize the
model θt−1. In this configuration, executing the Hamilto-
nian dynamics n times can be decomposed into maxItr
complete iterations and InnerItr local updates. The al-
gorithm is depicted in Alg.1, with further implementation
details provided in Appendix B.

5. Numerical Experiments
In this section, we describe two simulation environments
that function as the population retention system, as defined
in Eq. (5.1). Subsequently, we empirically validate the pro-
posed optimal control solution utilizing a synthetic dataset in
Section 5.2, and two realistic datasets frequently employed
in fairness studies, as discussed in Section 5.3.

5.1. A Generic Platform for Fairness in Non-Stationary
Environment

In this work, we construct two distinct population reten-
tion systems. The first configuration is based on a Markov
decision process, where the model’s prediction accuracy
at each time step determines user participation in the next
time step. Additionally, the feature vector zi,n describes
the probabilities of user churn following a correct predic-
tion and user retention subsequent to an incorrect prediction.
This creates a more realistic simulation, as the decision to

retain or churn is typically not solely dependent on the ac-
curacy of the model’s prediction. The second configuration
describes user retention as conditioned on a consequence of
the historical accuracy of model predictions for a specific
user. For instance, a user might churn if the model has
produced a set number of incorrect predictions (e.g., 3 accu-
mulated wrong predictions) for that specific user in the past.
In both configurations, we assume that the number of new
users joining at each time step is positively correlated with
the performance of the model. For instance, if the model
demonstrates high accuracy across all active users at time t,
it attracts a larger number of new users at t+1. This enables
an increase in population density as the performance of the
model improves. For each simulation run, a set of active
users is randomly sampled according to a given λ0 as ini-
tialization. In this case, simulation results in the evaluation
phase are not expected to align with the training simulations,
necessitating the models to exhibit robust generalization ca-
pabilities when different users are considered active during
the initialization of the simulation. We denote P1 and P2

as the population retention systems in the Markovian and
non-Markovian settings respectively.

For evaluation, we discuss a variety of existing baseline
methods to compare against the proposed optimal control
solution. We define S(θt, z

i,n) = Φ(θt, z
i,n) if [Ai

t]n = 1,
and 0 otherwise.

• Empirical risk minimization (ERM) optimizes an aver-
age loss of all observable data,

θt = argmin
θ

1∑K
i=1

∑N
n=1[Ai

t]n

K∑
i=1

N∑
n=1

S(θt, z
i,n).

• Minimax optimization (Minimax) optimizes the worst-
case loss among all groups (Diana et al., 2021),

θt = argmin
θ

max
i=[1,...,K]

1∑N
n=1[Ai

t]n

N∑
n=1

S(θt, z
i,n).

• Distributionally robust optimization (DRO) sets a
lower bound on the population density of active users
and considers a proportion of data that produces the
worst-case loss (Hashimoto et al., 2018).

• A greedy control (Greedy) is equivalent to one-step
planning of the optimal control method,

θt = argmin
θ

Ψ(λt+1,1)

s.t.λt+1 = T (λt,θt), given λt.

The aforementioned baseline methods do not take into con-
sideration the underlying dynamics, each of those achieves
the specific optimum defined at each time step.
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(a) Synthetic dataset (b) Simulation P1 (c) Simulation P2 (d) Slopes

Figure 1. (a) illustrates the synthetic dataset with a fair model decision boundary. (b) and (c) plot the binary cross-entropy losses of
population densities resulting from ERM, Minimax, DRO, Greedy, and the proposed Optim methods in simulation environments P1 and
P2 respectively. (d) plots model slopes resulting from the Optim method in the base and modified environments.

5.2. Modeling with Synthetic Dataset

In this study, we employ both population retention systems,
P1 and P2, with a synthetic binary classification dataset. As
depicted in Fig. 1 (a), the synthetic dataset is composed of
two Gaussian blobs, each centered at disparate locations,
to formulate the feature distributions of two demographic
groups. The blobs located on the left and right are denoted as
the majority and minority demographic groups, respectively,
with respective initial population densities of 0.7 and 0.3.
All experiments are reiterated with five random seeds, and
the binary cross-entropy loss Ψ(λt,1) is used to quantify
the quality of each state λt. For instance, as λt increases
towards 1, this loss diminishes to zero.

In the proposed optimal control methodology, we express
both the survival rate and birth rate functions of the surro-
gate retention system as a weighted sum of polynomials.
Subsequently, we impose constraints on the weighting pa-
rameters to ensure a monotonically increasing behavior in
both functions, thereby aligning with the assumption under-
pinning the proposed surrogate retention system. During
each simulation run, the optimal control method learns a sur-
rogate retention system by optimizing the weight parameters
of both the birth and survival functions. It then generates
a sequence of models utilizing the method of successive
approximation, as detailed in Algorithm 1.

Figure 1 (b) and (c) demonstrate the results simulated from
P1 and P2, respectively. As observed, in both simulation
environments, ERM results in comparably high losses at
all time steps due to the low population densities in the
minority group. For instance, at t = 100, ERM results in
λ1
T = 1 and λ2

T = 0.53 with a loss of 0.32. For DRO, we
utilize the initial minority population density to compute
the DRO loss. This approach yields conservative models
at all time steps, leading to low densities accompanied by
high losses. Minimax is capable of mitigating represen-
tation disparity by minimizing the worst-case loss among
both groups, thereby resulting in a more balanced terminal

state with λ1
T = 0.9 and λ2

T = 0.76. It is noteworthy that
the aforementioned methods do not consider the underly-
ing dynamics. Conversely, the optimal and greedy control
methods implement T -step and 1-step planning respectively,
leveraging the estimated underlying dynamics. When these
dynamics significantly impact user retention, the T -step
planning demonstrates superior performance compared to
the single-step planning, as depicted in Fig.1 (b) under sim-
ulation environment P1. However, simulation environment
P2 stipulates user churn when 3 wrong predictions have
accrued, this leads to a system with smoother population
dynamics, where T -step planning performs comparably to
the single-step planning method, as shown in Fig.1 (c).

The advantage of trajectory planning that acknowledges the
underlying dynamics is explored herein. The idea is to in-
terpret the evolution of the population retention system at
certain time steps and observe corresponding adjustments
made in the optimal control solution. The optimal con-
trol method makes performance tradeoffs from the majority
group to balance the population densities of both groups
at the terminal step. We manually introduce a substantial
quantity of users into the minority demographic group at
t = 50. Consequently, it is expected that the optimal control
method would make fewer tradeoffs and adjust its decision
boundaries accordingly at earlier time steps (e.g., t < 50).
Referring to Fig.1 (a), we consider a linear classifier where
a positive (resp. negative) slope indicates a model favoring
the majority demographic (resp. minority) group. Figure1
(d) illustrates the slopes of the model decision boundary
at t ∈ [0, 50]. As observed, the introduction of additional
users to the minority group at t = 50 enables the optimal
control solution to make less performance tradeoff against
the majority group due to the increased population density
at a later time step. This adjustment cannot be accomplished
with greedy control-based methods.
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(a) Adult in P1 (b) Adult in P2
(c) COMPAS in P1 (d) COMPAS in P2

Figure 2. (a) and (b) depict the trajectories of losses Ψ(λt,1) resulting from simulation environments P1 and P2 respectively, utilizing
the Adult dataset. Similarly, the outcomes from P1 and P2 using the COMPAS dataset are illustrated in figures (c) and (d) respectively.

5.3. Modeling with Adult Income and COMPAS
Recidivism Racial Bias.

We explore two real-world datasets: Adult Income (Adult)
(Kohavi et al., 1996) and COMPAS (Barenstein, 2019). The
Adult dataset describes an individual’s annual income, in-
fluenced by factors such as gender, race, age, and education
level, while COMPAS is a widely-used commercial tool that
assists judges and parole officers in assessing the likelihood
of a criminal defendant reoffending. In both datasets, gender
attributes are used to differentiate demographic groups. The
population retention system, as defined in Eq. (1), is applied
to these static datasets to simulate population dynamics. A
total of N = 3000 samples are randomly selected from
each demographic group, setting initial population densities
at λ1

0 = 0.7 and λ2
0 = 0.5 for the majority and minority

groups respectively. Fig. 2 (a) and (b) illustrate the trajec-
tories of the binary cross-entropy loss in the environments
P1 and P2, respectively. The optimal control solution (Op-
tim) surpasses other baselines, achieving terminal states
with λ1

T = 0.93 and λ2
T = 0.78 in P1, and λ1

T = 1 and
λ2
T = 0.81 in P2. Fig. 2 (c) and (d) present the results

obtained from the COMPAS dataset. In both instances, due
to the relatively smooth dynamics inherent in the COM-
PAS dataset, single-step planning performs on par with the
optimal control solution.

6. Limitations and Future Works
In this section, we provide a discussion of the limitations
of the proposed framework, thereby highlighting potential
areas for improvement and development.

Constraints on intermediate population densities: In
the context of fairness, asymptotic behavior plays a crucial
role in defining long-term population densities. However,
exclusive dependence on asymptotic fairness might fall short
in managing representation disparities during intermediate
time steps, potentially resulting in unsatisfying user experi-
ences. To mitigate this limitation, our future work aims to

incorporate an additional running loss into the framework.

Surrogate retention system: In real-world scenarios, user
churn behavior is influenced by a multitude of factors, in-
cluding financial background and health conditions. These
factors are not static but vary over time, which requires the
adoption of a dynamic modeling approach. Existing litera-
ture in the field of evolutionary population dynamics often
employs a canonical equation, known as Darwinian dynam-
ics, to describe the evolution of individuals’ traits (Cushing,
2019). However, to achieve a more accurate representa-
tion of population dynamics, it is essential to incorporate
individual characteristics into the modeling framework.

Computational efficiency: The current framework ad-
dresses the control problem using the PMP, which involves
solving an optimization problem. However, this approach
becomes inefficient when the algorithm is deployed in real-
world services that require frequent updates. To overcome
this limitation, we have developed a closed-form solution
in Appendix A for achieving asymptotic fairness through
linear approximation. However, our preliminary findings
indicate that this approach leads to underperforming models.
Consequently, our next objective is to derive an accurate
closed-form solution that maintains the desired fairness ob-
jectives. By refining the closed-form solution, we aim to
develop a more efficient and effective algorithm that can
be seamlessly integrated into services requiring frequent
updates, while still preserving the desired level of perfor-
mance.

7. Conclusion
As the implementation of machine learning systems in real-
world applications continues to proliferate, the examination
of long-term fairness issues becomes increasingly critical.
This stems from the fact that the outcomes produced by
these systems have profound implications, making the topic
of fairness a major concern. In the present study, we have
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devised an analytical framework aimed at exploring fairness
in dynamic settings. Such settings are characterized by the
fact that the level of user engagement is directly influenced
by the performance of the model in use. This perspective
aligns with real-world scenarios where users might decide
to continue or discontinue the use of a system based on its
perceived fairness or bias.

To gauge fairness in this fluctuating landscape, we intro-
duced the concept of asymptotic fairness. Asymptotic fair-
ness, in this context, allows for the appraisal of fairness over
time, taking into account the evolving relationship between
user participation and model performance. The concept was
then incorporated into an optimal control problem formu-
lation, an approach that enables us to deal with dynamic
systems efficiently and predict the best control actions over
time. As part of our methodology, we developed a surrogate
retention system, serving as a proxy for the real-world envi-
ronment. This system plays a vital role in estimating how
users’ engagement might change over time based on the per-
formance of the model, facilitating a clearer understanding
of the dynamics at play. Our proposed optimal control solu-
tion, built upon this framework, has been validated through
a series of simulations, demonstrating its effectiveness in
managing fairness in dynamic settings.

Looking ahead, our future research will delve into the design
and implementation of advanced surrogate retention sys-
tems. These systems will be engineered to handle complex
environments, possibly interacting with real-world human
users. Such complexity will serve to enhance the reliability
and validity of our investigations. Furthermore, we aspire to
gain deeper theoretical insights into the functioning princi-
ple of our proposed optimal control solution. A focal point
of this exploration will be the delineation of our approach
from methods reliant on greedy control strategies. Specifi-
cally, we aim to elucidate the nuances of how the underlying
dynamics of the system influence the derivation of optimal
control solutions, particularly in relation to fairness within
non-stationary environments.
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A. Closed-Form Solution of the Optimal Control in Linear Case
In this section, we derive a closed-form solution for the proposed optimal control framework within a simplified linear
scenario. Let us revisit the surrogate retention system:

λt+1 = T (λt,θt) =


β(κ1(λ1

t ,θt))
β(κ2(λ2

t ,θt))
...

β(κK(λK
t ,θt))

⊙ (1− λt) +


σ(κ1(λ1

t ,θt))
σ(κ2(λ2

t ,θt))
...

σ(κK(λK
t ,θt))

⊙ λt.

To begin with, we linearize the above nonlinear surrogate retention system.

Lemma A.1. The surrogate retention system, defined in Eq. (3), can be linearized at (λt, θt) in the following expression,

λt+1 = Aλt +Bθt, (10)

where A ∈ RK,K , B ∈ RK,d, the control θt is shaped into a d-dimensional vector. The elements of A and B can be
represented as the follows,

Ai,j = (1− λj
t )

∂β(κi(λi
t,θt))

∂λj
t

+ λi
t
∂σ(κi(λi

t,θt))

∂λj
t

+ β(κi(λi
t,θt))− σ(κi(λi

t,θt)) if i = j

Ai,j = 0, otherwise

Bi,j = (1− λi
t)
∂β(κi(λi

t,θt))

∂[θt]j
+ λt

∂σ(κi(λi
t,θt))

∂[θt]j
,

where [θt]k indicates the kth element of θt.

Given the linearized approximation of the surrogate retention model, we proceed to formulate a closed-form solution for the
optimal control policy. Our goal, as prescribed by Definition 3.1, is to ensure asymptotic fairness, which we interpret as
maximizing the terminal-time population densities across all demographic groups. This objective is best expressed as an
optimal control problem in the Mayer form, wherein the objective function is defined at the terminal time step only. For
analytical tractability, our first step involves transforming this Mayer form objective function into its equivalent Lagrangian
form, thereby allowing the objective function to be defined at each temporal instance.

max∥λT ∥22 ≡ max∥λ0∥22 +
T−1∑
t=0

∥λt+1∥22 − ∥λt∥22. (11)

The following lemma presents the closed-form solution of the optimal control in the linear case.

Lemma A.2. For the sum of the one-step costs over a finite horizon

J(λ0, {θt}T−1
t=0 ) = ∥λ0∥22 +

T−1∑
t=0

∥λt+1∥22 − ∥λt∥22, s.t. Eq. (10),

the optimal cost-to-go function, parametrized as V (λt) = λT
t Ptλt, is the solution of the following Riccati equation

Pt =
1

2
(ATA− I) +ATPt+1A

− 1

2
(BTA+ 2BTPt+1A)T (BTB+ 2BTPt+1B)−1(BTA+ 2BTPt+1A), (12)

with the optimal control solution

θ∗
t = −(BTB+ 2BTPt+1B)−1(BTA+ 2BTPt+1A)λt, (13)

where A and B are defined in Lemma A.1.
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Proof. Given the optimal control problem defined in Laguarange form in Eq. (11), its associated Bellman’s equation can be
formulated as follows,

V (λt) =
1

2
∥λt+1∥22 −

1

2
∥λt∥22 + V (λt+1),

where V (·) is the optimal cost-to-go function. We parametrize V (·) as λT
t Ptλt,

V (λt) =
1

2
∥λt+1∥22 −

1

2
∥λt∥22 + λT

t+1Pt+1λt+1,

=
1

2
∥Aλt +Bθt∥22 −

1

2
∥λt∥22 + (Aλt +Bθt)

TPt+1(Aλt +Bθt).

By taking the derivative of V (λt) w.r.t. θt,

∂V (λt)

∂θt
= (BTB+ 2BTPt+1B)θt + (BTA+ 2BTPt+1A)λt.

Setting the above to 0 results in the optimal control θ∗
t ,

θ∗
t = −(BTB+ 2BTPt+1B)−1(BTA+ 2BTPt+1A)λt.

Recall the Bellman’s equation, and V (λt) = λT
t Ptλt,

λT
t Ptλt = min

θ

1

2
∥λt+1∥22 −

1

2
∥λt∥22 + λT

t+1Pt+1λt+1,

= min
θ

1

2
∥Aλt +Bθt∥22 −

1

2
∥λt∥22 + (Aλt +Bθt)

TPt+1(Aλt +Bθt)
T ,

= λT
t (

1

2
ATA+ATPt+1A− 1

2
I)λt + λT

t (A
TB+ 2ATPt+1B)θ∗

t ,

+ (θ∗
t )

T (
1

2
BTB+BTPt+1B)θ∗

t .

For the last term in the above, recall the optimal control solution θ∗
t in Eq. 13),

(θ∗
t )

T (
1

2
BTB+BTPt+1B)θ∗

t

= −λT
t (B

TA+ 2BTPt+1A)T (BTB+ 2BTPt+1B)−1(
1

2
BTB+BTPt+1B)θt,

= −1

2
λT
t (B

TA+ 2BTPt+1A)Tθ∗
t .

Therefore,

λT
t Pλt = λT

t (
1

2
ATA+ATPt+1A− 1

2
I)λt −

1

2
λT
t (A

TB+ 2ATPt+1B)Tθ∗
t .

Recall the optimal control solution θ∗
t in Eq. 13),

Pt =
1

2
(ATA− I) +ATPt+1A

− 1

2
(BTA+ 2BTPt+1A)T (BTB+ 2BTPt+1B)−1(BTA+ 2BTPt+1A),
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B. Extensive Details On the Pontryagon’s Maximum Principle
In this section, we provide details on solving Pontryagon’s maximum principle (PMP) via the method of successive
approximation. To begin with, we recall the definition of the Hamiltonian,

H(t,λt,pt+1,θt) := pT
t+1 · T (λt,θt)− L(θt,λt),

where T (·) represents the surrogate retention system, defined in Eq. (3), L(θt, λ
i
t) is a running loss at time t. We consider

all running losses as 0 since asymptotic fairness is defined at the terminal state. The PMP consists of a two-point boundary
value problem

λ∗
t+1 = ∇pH(t,λi,∗

t ,p∗
t ,θ

∗
t ), λ0 given, (14)

p∗
t = ∇λH(t,λi,∗

t ,p∗
t+1,θ

∗
t ), pT =

∂Ψ(λT ,1)

∂λT
, (15)

and a maximization condition on the Hamiltonian,

H(t,λi,∗
t ,p∗

t ,θ
∗
t ) ≥ H(t,λi,∗

t ,p∗
t ,θt), ∀ θt and t. (16)

Alg. 1 presents the method of successive approximation that solves the PMP iteratively. Given a initial condition λ0, the
method of successive approximation simulates the surrogate retention system via Eq. (14). Notice that

λ∗
t+1 = ∇pH(t,λi,∗

t ,p∗
t ,θ

∗
t ) = T (λ∗

t ,θt),

which is equivalent to the forward propagation of the surrogate retention system.

Once we reach the terminal state λT , the adjoint system defined in Eq. (15) is a difference equation that propagates the
derivative of the terminal loss w.r.t. state λt at every time step t. In this work, we consider a terminal loss as the binary
cross-entropy loss between the terminal state λT and a vector 1, in which case, minimizing this loss is equivalent to
maximizing the population densities of all demographic groups at the terminal time step. Let Ψ(λT ,1) denote the loss
measured at the terminal time step, the adjoint state at each time step can be represented as

∂Ψ(λT ,1)

∂λt
=

∂Ψ(λT ,1)

∂λT
· ∂λT

∂λT−1
· · · ∂λt+2

∂λt+1
· ∂λt+1

∂λt
.

Recall the second boundary value problem defined in Eq. (15),

p∗
t = pT

t+1 ·
∂T (λt,θt)

∂λt
,

we replace the adjoint state pt with the derivative ∂Ψ(λT ,1)
∂λt

,

∂Ψ(λT ,1)

∂λt
=

∂Ψ(λT ,1)

∂λt+1

T

· ∂T (λt,θt)

∂λt
=

∂Ψ(λT ,1)

∂λt+1

T

· ∂λt+1

∂λt
.

Therefore, the adjoint system computes the derivative of the terminal loss w.r.t. the state at every time step, ∂Ψ(λT ,1)
∂λt

, for all

t. We derive the derivative ∂λt+1

∂λt
in Sec. B.1.

Once we obtain the state λt and adjoint state ∂Ψ(λT ,1)
∂λt

, we maximize the Hamiltonian w.r.t. the model parameters θt,

θ∗
t = argmax

θ
H(t,λt,pt+1,θ),

this can be solved via any optimization method,

θnext
t = θcurrent

t + lr · ∂Ψ(λT ,1)

∂λt+1
· ∂T (λt,θ

current
t )

∂θt
,

where θcurrent
t and θnext

t are the model parameters at time step t resulting from current and next gradient updates respectively.
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B.1. Derivation for the Derivative Between Two Consecutive States

Here we derive the derivative ∂λi
t+1

∂λi
t

. Recall the proposed surrogate retention system,

λt+1 = T (λt,θt) =


β(κ1(λ1

t ,θt))
β(κ2(λ2

t ,θt))
...

β(κK(λK
t ,θt))

⊙ (1− λt) +


σ(κ1(λ1

t ,θt))
σ(κ2(λ2

t ,θt))
...

σ(κK(λK
t ,θt))

⊙ λt,

where the performance measure κi(λi
t,θt) is defined as follows,

κi(λi
t,θt) = sup

Q∈B(Mi,rit)

Ez∼QΦ(θt, z) = inf
η∈R

(
C(λi

t) ·
(
EMi

[
[Φ(θt, z)− η]2+

]) 1
2 + η

)
,

where C(λi
t) = (2(1/λi

t − 1)2 + 1)
1
2 .

Since the evolutions of all population densities are decoupled, for simplicity, we consider a one-dimensional difference
equation that describes the evolution of the ith population density,

λi
t+1 = β(κi(λi

t,θt))(1− λi
t) + σ(κi(λi

t,θt))λ
i
t.

The derivative ∂λi
t+1

∂λi
t

can be computed as follows,

∂λi
t+1

∂λi
t

= (1− λi
t)
∂β(κi(λi

t,θt))

∂λi
t

+ λi
t

∂σ(κi(λi
t,θt))

∂λi
t

+ σ(κi(λi
t,θt))− β(κi(λi

t,θt)).

Recall the definition of κi(λi
t,θt), let us define the optimum η∗(λi

t,θt) as follows,

η∗(λi
t,θt) = arg inf

η∈R

(
C(λi

t) ·
(
EMi

[
[Φ(θt, z)− η]2+

]) 1
2 + η

)
.

In practice, we estimate the population risk with N samples randomly drawn from the data distribution Mi, we define the
following function,

T (λi
t,θt, z

i,n) :=

{
(Φ(θt, zi)− η∗(λi

t,θt))
2 if Φ(θt, zi) > η∗(λi

t,θt)

0 otherwise
(17)

The derivative of T (λi
t,θt, z

i,n) w.r.t. λi
t can be computed as follows,

∂T (λi
t,θt, z

i,n)

∂λi
t

=

−2
(
Φ(θt, zi)− η∗(λi

t,θt)
)
· ∂η∗(λi

t,θt)

λi
t

if Φ(θt, zi) > η∗(λi
t,θt)

0 otherwise
(18)

The derivative terms ∂β(κi(λi
t,θt))

∂λi
t

and ∂σ(κi(λi
t,θt))

∂λi
t

can be decomposed as ∂β(κi(λi
t,θt))

∂κi(λi
t,θt)

· ∂κi(λi
t,θt)

∂λi
t

and ∂σ(κi(λi
t,θt))

∂κi(λi
t,θt)

·
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∂κi(λi
t,θt)

∂λi
t

respectively. The common term ∂κi(λi
t,θt)

∂λi
t

can be derived as follows,

∂κi(λi
t,θt)

∂λi
t

=
∂
(
C(λi

t) ·
(
Ez∼Mi

[
[Φ(θt, z)− η∗(λi

t,θt)]
2
+

]) 1
2 + η∗(λi

t,θt)
)

∂λi
t

,

=
∂
(
C(λi

t) ·
(

1
N

∑N
n=1 T (λ

i
t,θt, z

i,n
]) 1

2 + η∗(λi
t,θt)

)
∂λi

t

,

=
∂η∗(λi

t,θt)

∂λi
t

+
∂
(
C(λi

t) ·
(

1
N

∑N
n=1 T (λ

i
t,θt, z

i,n
]) 1

2

)
∂λi

t

,

=
∂η∗(λi

t,θt)

∂λi
t

+
∂C(λi

t)

λi
t

·
( 1

N

N∑
n=1

T (λi
t,θt, z

i,n)
]) 1

2

+ C(λi
t) ·

(1
2

1

N

N∑
n=1

T (λi
t,θt, zi)

)− 1
2 · 1

N

N∑
n=1

∂T (λi
t,θt, z

i,n)

∂λi
t

, (19)

where T (λi
t,θt, zi) and ∂T (λi

t,θt,z
i,n)

∂λi
t

are defined in Eq. (17) and Eq. (18) respectively.

Therefore,

∂λi
t+1

∂λi
t

=
∂κi(λi

t,θt)

∂λi
t

·
(
(1− λi

t)
∂β(κi(λi

t,θt))

∂κi(λi
t,θt)

+ λi
t

∂σ(κi(λi
t,θt))

∂κi(λi
t,θt)

)
+ σ(κi(λi

t,θt))− β(κi(λi
t,θt)),

where ∂κi(λi
t,θt)

∂λi
t

is defined in Eq. (19).

B.2. Implementation of the Optimal Control Method

# PMP implementation
def pmp(self, num_density_init, lr, max_iterations):

# set up optimizer
optimizer = torch.optim.SGD(self.agent.params.parameters(), lr=lr)
# set up loss function
cirterion = torch.nn.BCELoss()
# reference label
ref = torch.ones_like(num_density_init)
for step in range(max_iterations):

optimizer.zero_grad()
# initialize population densities
x = num_density_init
for t_idx in range(self.horizon_len):

# skip if any population density is too small
if any(x < 0.1):

continue
# forward propagation
x = self.surrogate_model.forward(x, t_idx, self.agent)

# compute terminal loss
loss = cirterion(x, ref)
# backpropagate adjoint state
loss.backward()
# update model parameters
optimizer.step()
self.lr_update(optimizer, lr, step, max_iterations)
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# Surrogate retention system implementation
def forward(self, x, t, agent):

# performance measure as bce loss
criterion = torch.nn.BCELoss(reduction='none')
# get all users from the holdout set
user_state = self.user_data.return_all_users()
# model outputs with current models
actions = agent.step(user_state, t)
performance = []
for index_demo, data in user_state.items():

# get true label
label = data["label"]
# compute rewards
R = -criterion(actions[index_demo], label)
# compute worst-case distributional loss
eta = self.grid_search_etaStar(x[index_demo], Reward_all)
C = self.compute_c(x[index_demo])
Reward = C * (torch.nn.ReLU()(R - eta)**2).mean().sqrt() + eta
# collect reward
performance.append(Reward)

performance = torch.stack(performance)
# compute survival rate based on performance
survival_rate = self.survival_rate(performance)
# compute birth rate based on performance
birth_rate = self.birth_rate(performance)
# next density from survival users
x_survival = survival_rate * x
# next density from new coming users
x_newborn = birth_rate * x
x_next = x_survival + x_newborn
return x_next

C. Details On the Population Retention System
Algorithm 2 illustrates the detailed implementation of the population retention system. In the following, we explain each
important step in detail.

• Data construction: Given a dataset D, we categorize D based on the sensitive attribute (e.g., in this work, we consider
the sex attribute), which produces D1,D2, ...,DK for K demographic groups. Within each dataset, we randomly select
N i samples {zi,n}Ni

n=1 to construct the population. The feature zi,n contains user input (e.g. voice recommend), and
a probability pi,n1 for user churn when received with a correct model prediction, a probability pi,n2 for user retention
when received with a wrong model prediction.

• State initialization: Based on the given initial population densities λ0, we randomly select λi
0 · N i users as active,

which produces Ai
0. For instance, when N1 = 4 and λ1

0 = 0.5, a possible A1
0 = (1, 0, 1, 0), which indicates the 1st

and 3rd users are active initially.

• Return active users: Based on the N -tuple Ai
t, we collect features contributed by all active users zi,n if [Ai

t]n = 1.

• Model prediction: The tth model makes a prediction on a user feature zi,n. The outcome is a binary value in which 1
indicates a correct prediction and 0 corresponds to a wrong prediction.

• Environment update: A currently active user remains active at the next time step if both model prediction is correct and
the Flag is true,

[Ai
t+1]n =

{
1 if Flag = 1 and θt(z

i,n) = 1

0, otherwise
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Algorithm 2 Design of Population Retention System for Evaluation.
Input: Dataset D, (Data construction)
a sequence of models {θt}T−1

t=0 ,
initial population densities λ0.
number of episodes: max episodes,
number of iterations: horizon,
Output: Population densities at all time step {λt}Tt=0.
for episode = 1 to max episodes do

// Set up initial user state based on initial population densities.
Set up Ai

0,∀i = [1, 2, ...,K] (State initialization).
for t = 1 to horizon do

// Return the features of currently active users.
for i = 1 to K do

Collect {zi,n} if [Ai
t]n = 1, (Return active users)

end for
// Model prediction based on the provided features.
for i = 1 to K do

Model predict {θt(z
i,n)} if [Ai

t]n = 1, (Model prediction)
end for
// Environment update for active users based on model predictions.
for i = 1 to K do
[Ai

t+1]n = 1 if θt(z
i,n) = True, and Flag = True, (Environment update)

end for
end for

end for

where the Flag is computed based on pi,n1 and pi,n2 , given a uniform random number p ∈ [0, 1],

Flag =

{
True if θt(z

i,n) = 1 and p ≤ pi,n1 or θt(z
i,n) = 0 and p ≥ pi,n2

0, otherwise

The population retention system returns a trajectory of population densities. Fig. 3 shows the outputs simulated from both
environments P1 and P2 from 5 repeated simulations with different random seeds. This simulation results match with the
experimental results shown in Fig. 1 where population densities λt is converted to a loss Ψ(λt,1), and Ψ(λt,1) computes
the binary cross-entropy loss between λt and 1.

The following illustrates a Python implementation of the environment. If model training is required, the tth model is
optimized from the features of currently active users at time step t. The proposed optimal control method generates all
models based on a surrogate retention system, which does not need access to the population retention system during model
generation. It optimizes all models before the evaluation begins (denoted as agent.pmp()).

# Implementation of the population retention system
for episode in range(max_episodes):

user_data.initialize_state(num_density_init)
if agent.agent_name == "optim-control" and training == True:

agent.pmp()
for t in range(horizon_len):

state = user_data.return_active_users()
if training == True:

agent.update(state, episode, t)
actions = agent.step(state, t)
state_updated, step_info = environment.step(state, actions, t)
user_data.update(state_updated)
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(a) Majority in P1 (b) Minority in P1 (c) Majority in P2 (d) Minority in P2

Figure 3. Under simulation environment P1 with the synthetic dataset, (a) and (b) show the population densities of majority and minority
demographic groups, respectively. Under simulation environment P2 with the synthetic dataset, (c) and (d) show the population densities
of majority and minority demographic groups, respectively.

# Implementation of population retention system under MDP.
def step(self, state: dict, actions: dict, t: int):

state_updated = dict()
for index_demo, data in state.items():

# get model prediction
model_output = actions[index_demo]
# get true label
label = data["label"]
# get prediction
performance = model_output == label
# probability of a user churn when received a correct prediction
p_1 = data["p_1"]
# probability of a user retention when received a wrong prediction
p_2 = data["p_2"]
# number of users in population
num_total = data["total_number_of_population"]
# indices of currently active users
indices_active = data["indices_of_active_users"]
# number of users that are currently active
num_of_active_users = len(indices_active)
# a uniform number in range [0, 1]
rand_uniform = torch.rand_like(p_1)
# indicator of user churn when received correct predictions
indices_correct_prediction_but_leave = rand_uniform < p_2
# indicator of user retention when received wrong predictions
indices_wrong_prediction_but_stay = rand_uniform < p_2
# indices of new users
new_user_indices = []
for user_index in range(num_of_active_users):

if performance[user_index] == False
and indices_wrong_prediction_but_stay[user_index] == False:

continue
if performance[user_index] == True
and indices_correct_prediction_but_leave[user_index] == True:

continue
# a survived user
new_user_indices.append(indices_active[user_index])

# number of survived users
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num_user_survived = len(new_user_indices)
# indices of currently inactive users
indices_inactive
= [ii for ii in range(num_total) if ii not in new_user_indices]
# randomly shuffle the indices of inactive users
random.shuffle(indices_inactive)
# compute survival rate
survival_rate = len(new_user_indices) / num_of_active_users
# compute birth rate
birth_rate = self.new_users_ratio(survival_rate)
# number of incoming users
num_new_users = int(num_of_active_users * birth_rate)
# indices of active users at the next time step
new_users = new_user_indices + indices_inactive[:num_new_users]
# compute population density at the next time step
density = len(new_users) / num_total
# state update
state_updated[index_demo] = {"density": density,

"ids_active": new_users,
}


