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ABSTRACT

Deployed time-series forecasters suffer performance degradation under non-
stationarity and distribution shifts. Test-time adaptation (TTA) for time-series
forecasting differs from vision TTA because ground truth becomes observ-
able shortly after prediction. Existing time-series TTA methods typically em-
ploy dual input/output adapters that indirectly modify data distributions, making
their effect on the frozen model difficult to analyze. We introduce the Context-
aware Output-Space Adapter (COSA), a minimal, plug-and-play adapter that
directly corrects predictions of a frozen base model. COSA performs resid-
ual correction modulated by gating, utilizing the original prediction and a
lightweight context vector that summarizes statistics from recently observed
ground truth. At test time, only the adapter parameters (linear layer and gat-
ing) are updated under a leakage-free protocol, using observed ground truth with
an adaptive learning rate schedule for faster adaptation. Across diverse scenar-
ios, COSA demonstrates substantial performance gains versus baselines with-
out TTA (13.91∼17.03%) and SOTA TTA methods (10.48∼13.05%), with par-
ticularly large improvements at long horizons, while adding a reasonable level
of parameters and negligible computational overhead. The simplicity of COSA
makes it architecture-agnostic and deployment-friendly. Source code: https:
//anonymous.4open.science/r/linear-adapter-A720

1 INTRODUCTION

Time-series forecasting serves as the foundation for critical decision-making across diverse do-
mains, including finance (Chen et al., 2023), supply chain management (Aamer et al., 2020), energy
grids (Di Piazza et al., 2021), and predictive maintenance (Makridis et al., 2020). Modern forecast-
ing models, including Transformer-based architectures (Zhou et al., 2021; Liu et al., 2023; 2022),
typically achieve high accuracy. However, they suffer performance degradation in real deployment
settings due to non-stationarity and distribution shifts (Du et al., 2021; Chen et al., 2024a). Time
series exhibit inherent non-stationarity, with changing temporal patterns and statistical characteris-
tics over time, resulting in distributions at training that typically differ from those encountered after
deployment.

To address this challenge, various approaches have been proposed, including online learning, con-
tinual learning, and domain adaptation. Online and continual learning methods adapt by updating
model parameters directly to streaming data (Du et al., 2021; Zhang et al., 2024; Kirkpatrick et al.,
2017; Rolnick et al., 2019; Giannini et al., 2023; Pham et al., 2022), but these approaches incur
additional computational costs, memory requirements, catastrophic forgetting issues, and plasticity.
Furthermore, these methods typically require labeled data or explicit knowledge of task boundaries,
making them unsuitable for scenarios where only unlabeled streaming data is available during de-
ployment. Domain adaptation methods learn robust representations by reducing source–target dis-
tribution differences (Wilson et al., 2020; Jin et al., 2022), but they rely on explicit target domain
data and boundary definitions.

Test-time adaptation (TTA) offers an alternative approach that adapts to distribution changes by up-
dating only lightweight modules using unlabeled test streams after deployment. TTA methods have
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Figure 1: Overview of COSA operation showing the context-aware gated linear adapter architecture
with input processing, linear transformation, gating mechanism, and output correction for test-time
adaptation.

evolved mainly in the vision domain through batch normalization coefficient optimization and en-
tropy minimization (Wang et al., 2020), self-supervised/contrastive learning combined with pseudo-
labeling (Liang et al., 2021; Chen et al., 2022; Gong et al., 2025), single-sample multi-augmentation-
based adaptation (Zhang et al., 2022), and long-term adaptation stabilization (Wang et al., 2022).

Unlike vision tasks, time-series forecasting has unique characteristics that distinguish it from vision
tasks: 1) it employs normalization methods different from vision tasks to preserve periodicity and
level information, and 2) ground truth becomes sequentially observable after prediction with short
delays, enabling the use of direct losses such as Mean Squared Error (MSE).

Time-series forecasting TTA is a recently evolving topic; to the best of our knowledge, only few
methods (Kim et al., 2025; Medeiros et al., 2025; Grover & Etemad, 2025) have been proposed.
All of them adopted dual-adapter architectures that place calibration modules at both input and
output ends of the base model. They map inputs to domains that the base model can handle more
easily and restore outputs to the original domain, controlling adaptation intensity through gating.
However, these indirect distribution calibration methods involve design complexity and create un-
certainty about the impact of input transformations on internal model representations.

To this end, we propose Context-aware Output-Space Adapter (COSA), which offers a direct output-
space correction approach that operates with minimal computational overhead. Figure 1 presents the
overview of COSA. COSA takes the predictions from a frozen base model and a lightweight context
vector, summarizes recent observation statistics as input, computes residuals through linear correc-
tion, and controls correction strength using gating. At deployment, we freeze the base forecaster
and update only a lightweight output adapter (i.e., linear correction with a learnable gate) under
a leakage-free streaming protocol: after each prediction, adaptation uses only previously revealed
ground truth, never current or future labels. COSA is architecture-agnostic and demonstrates consis-
tent performance improvements over existing state-of-the-art time-series forecasting TTA methods
across various predictors and horizons.

The main contributions of this study are summarized as follows:

1. Architecture-agnostic output adapter. Unlike existing time-series TTA methods that
adopt dual input-output adapters, COSA consists of a single output adapter. COSA oper-
ates independently in the output space, correcting predictions from any base model without
changes to training pipelines or internal parameters. COSA also shows compatibility with
SOTA normalizers, consistently reducing prediction error.

2. Context-aware linear residual with gating. A linear correction uses the base prediction
and a lightweight context vector that summarizes statistics of recent observed ground truth,
and a learnable gate modulates correction strength.

2
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3. Consistent accuracy gains. Across six benchmarks, four horizons, and six baseline ar-
chitectures, COSA improves test MSE over baselines (13.91∼17.03%) and SOTA TTA
methods (10.48∼13.05%), in particular, with the largest gains at longer horizons.

4. Fast, efficient TTA. Adaptive learning rate enables faster convergence of COSA, leading to
higher accuracy within a few adaptation steps. Specifically, COSA enables 88.59∼90.10%
faster inference time against prior SOTA TTA methods.

2 RELATED WORK

2.1 TIME-SERIES FORECASTING

To handle non-stationarity in time-series forecasting, existing methods typically employ 1) on-
line learning, 2) continual learning, and 3) domain adaptation. Representative online learning,
D3A (Zhang et al., 2024) narrows source–target gaps through z-score monitoring of loss distribu-
tions and Gaussian noise injection, whereas Adarnn (Du et al., 2021) reduces temporal distribution
shifts using temporal distribution characterization and distribution matching. In continual learning,
cPNN (Giannini et al., 2023) grows temporal columns and transfers knowledge via lateral connec-
tions, and FSNet (Pham et al., 2022) separates per-layer adapters for rapid adaptation from asso-
ciative memory for long-term retention to balance plasticity and stability. For domain adaptation,
CoDATS (Wilson et al., 2020) learns domain-invariant features adversarially, and DAF (Jin et al.,
2022) shares attention with domain-invariant queries/keys and domain-specific values. These fami-
lies generally update the base model during training or online operation, differing from TTA, which
adapts lightweight modules on unlabeled test streams while keeping the base model frozen.

2.2 TEST-TIME ADAPTATION

Tent (Wang et al., 2020) optimizes only batch-normalization affine parameters under entropy mini-
mization, and SHOT (Liang et al., 2021) combines information maximization with self-supervised
objectives to transfer source hypotheses to the target. AdaContrast (Chen et al., 2022) constructs
pseudo-labels via contrastive learning with a dynamic memory bank for gradual adaptation, while
MEMO (Zhang et al., 2022) applies multi-augmentation to a single test example to minimize
marginal output entropy, updating all weights. CoTTA (Wang et al., 2022) limits error accumulation
via weight and stochastic restoration, and ACCUP (Gong et al., 2025) integrates adaptive clustering
with pseudo-labeling. However, they are proposed for vision tasks. TTA for time-series forecasting
requires different approaches from those for vision tasks due to its own characteristics.

2.3 TEST-TIME ADAPTATION FOR TIME-SERIES FORECASTING

Time-series forecasting TTA methods typically employ dual adapters that calibrate distributions at
both input and output. TAFAS (Kim et al., 2025) couples a calibration module to map inputs to a
model-friendly domain and restores outputs to the original domain. It uses gating to modulate the
calibration strength and utilizes Periodicity-Aware Adaptive Scheduling (PAAS) to adjust adaptation
frequency using frequency patterns based on inputs. PETSA (Medeiros et al., 2025) factorizes the
calibration module with a low-rank structure and adopts a combined loss for stable adaptation with
fewer parameters. DynaTTA (Grover & Etemad, 2025) adjusts the dynamic learning rate, based on
local distribution shift, global distribution shift, loss z-score. Existing time-series forecasting TTA
methods employ an indirect approach that bidirectionally calibrates distributions at the input and
output sides of the base model. They entailed design complexity due to indirect calibration and
difficulty in predicting the impact of input transformations on internal representations. In contrast,
we aim to utilize a single output-space adapter that directly corrects predictions without requiring
input calibration or bidirectional transformation, resulting in a simpler design and more predictable
adaptation behavior.

3
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Table 1: Adapter-specific notation. Basic sizes/indices are defined as (W,L,K,B; t, i, k).

Symbol Meaning (shape)

Y(0)
t Base (frozen) L-step prediction at time t (RL).

Ytrue
t True L-step target revealed after t (RL).

Ct Context vector from revealed batch statistics [µt −K, . . . , µt − 1]⊤ (RK).
Xt Input look-back window (RW ).
X(a)
t Adapter input [Y(0)

t ∥Ct] (RL+K).
Ht Linear residual W X(a)

t + b (RL).
Ŷt Corrected output Y(0)

t + αHt with α = tanh(g) ∈ [−1, 1] (RL).
W , b, g Adapter weights (RL × (L+K)), bias (RL), and gate parameter (R).

Operators: concatenation [a ∥ b]; ∥ · ∥2 vector norm; ∥ · ∥F Frobenius.

Figure 2: Detailed architecture of COSA illustrating the linear correction layer (weight matrix W
and bias b), learnable gating parameter (g), and context vector (C) integration for output-space
correction.

3 COSA:CONTEXT-AWARE OUTPUT-SPACE ADAPTER

3.1 NOTATION AND PROBLEM FORMULATION

Table 1 shows the symbols necessary for COSA and their meanings.

This study targets univariate time-series forecasting, following the existing SOTA time-series fore-
casting TTA methods (Kim et al., 2025; Medeiros et al., 2025; Grover & Etemad, 2025). For mul-
tivariate time-series inputs, we decompose them into per-variable univariate forecasting tasks and
perform the task iteratively for each variable. At time t, base model generates L-step original pre-
dictions Y(0)

t ∈ RL from input Xt ∈ RW , where W denotes the input look-back window length.
COSA generates corrected predictions Ŷt ∈ RL from input X(a)

t ∈ RL+K , where K denotes the
length of the context vector. After making predictions, the ground truth for that interval becomes se-
quentially observable following a short delay. Like other TTA approaches, we keep the base model
completely frozen and perform only adapter adaptation at test time. Adaptation is performed by col-
lecting the most recent B prediction, ground truth pairs (batch index i ∈ {1, . . . , B} and context
index k ∈ {1, . . . ,K}).

3.2 OVERALL ARCHITECTURE

Figure 2 illustrates the overall operation of COSA. COSA consists of a single output adapter that
directly corrects the predictions. The key components are: 1) a linear layer composed of weight
matrix W and bias variable b that computes correction values H, 2) learnable gating g that controls
correction strength, and 3) a context vector C that summarizes and stores recent trend information.

We choose a single linear layer for two key reasons: 1) Efficiency: Linear operations provide lower
latency and higher throughput compared to nonlinear modules, making them suitable for fast adapta-
tion. We confirmed that a single-layer adapter shows 34.95% faster wall-clock time on average than
a 2-layer MLP adapter. 2) Simplicity-Performance balance: As reported in LTSF-Linear (Zeng

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

et al., 2023), a linear layer sufficiently performs well in time-series forecasting, despite its simplic-
ity. We also verified that a single linear layer adapter showed 5.71% even better performance on
average against a 2-layer MLP adapter. These characteristics make the linear layer beneficial for
TTA. Detailed results are provided in Appendix G.3.

The streaming protocol for leakage prevention is as follows (let the last adaptation was performed
in t−1):

1. Prediction: At time t, base model generates prediction Y(0)
t from input Xt.

2. Correction: Feed Y(0)
t and context Ct into COSA to generate the corrected prediction Ŷt.

3. Observation: After delay ∆≥0, values of ground truth of the prediction horizon Ytrue
t are

sequentially observed.

4. Adaptation: Collect the most recent B prediction, ground truth pairs {Ŷt+i−1,Ytrue
t+i−1},

and perform adaptation that updates COSA parameters {W , b, g}.

3.3 OUTPUT-SPACE RESIDUAL CORRECTION

For time t, we concatenate the original prediction of base model and context vector to create the
adapter input:

X(a)
t = [Y(0)

t ∥ Ct].

The residual is computed using a linear transformation:

Ht = W X(a)
t + b.

The correction magnitude is controlled through gating to compose the final output:

Ŷt = Y(0)
t + tanh(g)Ht.

The tanh activation stabilizes the correction magnitude.

3.4 CONTEXT CONSTRUCTION

To prevent information leakage, the context summarizes previously observed ground truth informa-
tion. For time t, we compute batch-wise aggregation as:

µt = agg
{
ytrue
t−(kB)+i) : 1 ≤ i ≤ B}, 1 ≤ k ≤ K.

where the aggregation function agg can use statistics such as mean, median, etc. We construct the
context vector by stacking the most recent K aggregated values:

Ct = [µ1, µ2, . . . , µK ]⊤.

This context vector summarizes level/scale changes and gradual drift patterns to help interpret the
relative magnitude of the base prediction Y(0)

t (reducing to single time-series values when B=1).

3.5 ADAPTATION OBJECTIVE AND SCHEDULING

Because targets arrive with a delay, we employ a direct objective with weight decay:

L =

B∑
i=1

∥∥(Ŷt−i−1 − Ytrue
t−i−1

)∥∥2
2
+ λ

(
∥W ∥2F + ∥b∥22 + ∥g∥22

)
. (1)

When B forecast–target pairs have been enqueued, we run S gradient steps on the adapter parameters
using a cosine–adaptive learning-rate schedule, simply CALR. We apply cosine annealing within the
S steps,

η(s+1) = ηmin + 1
2

(
η(s) − ηmin

)(
1 + cos

sπ

S

)
. (2)

and then adjust η online, based on short-horizon loss trends to encourage fast but stable convergence
(decrease η on loss upticks; mildly increase on plateaus). When a new batch arrives, it is always

5
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initialized with the same learning rate, and thereafter the learning rate for the next step within the
batch is determined through Equation 2 according to the loss. Early stopping and gradient clip-
ping are also implemented. The threshold values for learning rate adjustment are stability-induced
by balancing adaptation speed against stability. Conservative thresholds ensure convergence while
aggressive values enable faster response to distribution shifts. Full pseudocode and thresholds are
given in Algorithm 1 in Appendix A.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

We evaluate COSA on six benchmark datasets (ETTh1/2, ETTm1/2, Exchange Rate, and Weather)
with a fixed look-back window (W = 96) and four prediction horizons (L ∈ {96, 192, 336, 720}).
We used six representative base models spanning different architectures: Transformer-based (iTrans-
former (Liu et al., 2023), PatchTST (Nie et al., 2023)), linear-based (DLinear (Zeng et al., 2023),
OLS (Toner & Darlow, 2024)), and MLP-based (FreTS (Yi et al., 2023), MICN (Wang et al., 2023)).
By default, all input time series are treated as variable-wise univariate forecasting tasks, standard
normalization is applied, and MSE serves as the performance comparison metric.

We compare COSA (our method) with Baseline (without TTA), TAFAS (Kim et al., 2025), and
PETSA (Medeiros et al., 2025). All experiments were conducted according to the official bench-
mark library (Wang et al., 2024) 1. The train:valdiation:test ratio is 7:1:2 for all datasets.

Unless otherwise noted, we fix the adapter hyperparameters to K=10 and S=3, enabled CALR. We
utilize the average as agg. Ablation studies for the variations of agg are provided in Appendix G.1.

We report two variants for COSA: COSA-F, which uses a fixed B=48 (half of the look-back), and
COSA-P, which sets B online following the PAAS in TAFAS (Kim et al., 2025). Hyperparameters
for comparative methods follow the settings reported in the original papers or official code defaults.
In tables, the best score is shown in bold and the second best is underlined.

We utilize Xavier uniform initializer (Glorot & Bengio, 2010) with gain = 0.1 for parameters of the
weight matrix W . The bias b and gating g are initialized to 0, and Adam optimizer is utilized.

All experiments were conducted on a machine with an Intel i7-7800X CPU and NVIDIA GeForce
RTX 3080 10GB.

4.2 MAIN RESULTS

4.2.1 COMPARISON WITH SOTA TIME-SERIES TTA METHODS

The proposed COSA achieves best performance in all scenarios, as shown in Table 2 2. The results
reveal two key performance patterns:

1. Architecture-agnostic benefits: Consistent improvements across all base models demon-
strate that effectiveness of COSA is not dependent on specific model architectures. The
average improvement ranges from 10.48% to 13.05%.

2. Effectiveness in long-term forecasting: The largest performance improvements were ob-
served at the 720 horizon, where COSA-F and COSA-P showed performance improve-
ments of 32.24% and 26.33% compared to baseline, respectively, and 28.21% and 21.96%
compared to other methods. This trend suggests that COSA becomes increasingly valuable
for longer prediction horizons.

These findings demonstrate that the COSA, which performs residual correction directly in the output
space, proves more effective than existing indirect dual-adapter approaches.

1In the case of DynaTTA (Grover & Etemad, 2025), there were reproducibility issues when we used the
officially released source code. Therefore, we report the comparison results with them in the Appendix F.4 with
the used detailed hyperparameters.

2All reported results are averaged over 10 runs with different random seeds to ensure statistical reliability.
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Table 2: Prediction accuracy comparison. Standard deviations less than 0.001 are omitted.

Transformer-based Linear-based MLP-based
iTransformer DLinear FreTS

Baseline TAFAS PETSA COSA-F COSA-P Baseline TAFAS PETSA COSA-F COSA-P Baseline TAFAS PETSA COSA-F COSA-P

E
T

T
h1

96 .4507 .4411 .4393 .4368 .4363 .4695 .4618 .4594 .4574 .4482 .4462 .4403 .4387 .4384 .4371
192 .5078 .4928 .4949 .4961 .4919 .5213 .5117 .5118 .5066 .5050 .5022 .4954 .4942 .4951 .4940
336 .5658 .5629 .5640 .5651 .5300 .5659 .5604 .5617 .5528 .5456 .5544 .5521 .5527 .5467 .5351
720 .7038 .6612 .6596 .5958 .5638 .7117 .6820 .6743 .6107 .5896 .7182 .6852 .6846 .6259 .5959

E
T

T
h2

96 .2577 .2549 .2551 .2504 .2493 .2323 .2303 .2306 .2300 .2281 .2384 .2367 .2364 .2367 .2350
192 .3161 .3010 .3006 .2983 .2947 .2862 .2842 .2876 .2827 .2819 .2866 .2824 .2832 .2816 .2824
336 .3545 .3352 .3348 .3241 .3339 .3252 .3185 .3184 .3050 .3083 .3317 .3229 .3233 .3031 .3153
720 .4276 .4023 .4043 .3487 .3591 .4087 .3873 .3853 .3062 .3477 .4119 .3857 .3860 .3169 .3399

E
T

T
m

1 96 .3823 .3558 .3570 .3447 .3455 .3715 .3497 .3524 .3456 .3475 .3675 .3582 .3583 .3520 .3525
192 .4423 .4146 .4142 .4124 .4140 .4438 .4166 .4178 .4113 .4122 .4325 .4212 .4198 .4150 .4212
336 .5093 .4754 .4751 .4569 .4643 .5183 .4799 .4803 .4753 .4858 .5005 .4827 .4789 .4661 .4775
720 .6065 .5562 .5553 .4773 .5102 .5929 .5488 .5532 .4774 .4991 .5704 .5486 .5476 .4718 .4982

E
T

T
m

2 96 .1647 .1634 .1637 .1627 .1632 .1598 .1584 .1584 .1583 .1586 .1581 .1572 .1572 .1568 .1569
192 .2209 .2183 .2173 .2171 .2173 .1930 .1913 .1913 .1904 .1905 .1923 .1909 .1908 .1905 .1908
336 .2727 .2630 .2592 .2435 .2535 .2324 .2289 .2292 .2083 .2242 .2320 .2288 .2289 .2098 .2211
720 .3451 .3305 .3332 .2477 .2606 .3062 .2968 .2963 .2215 .2316 .3012 .2916 .2926 .2158 .2314

E
xc

ha
ng

e
R

at
e

96 .0882 .0876 .0885 .0818 .0837 .0913 .0885 .0878 .0812 .0834 .0828 .0799 .0803 .0744 .0766
192 .1811 .1686 .1740 .1403 .1479 .1827 .1760 .1730 .1459 .1519 .1734 .1665 .1648 .1366 .1499
336 .3428 .3079 .3097 .2089 .2624 .3277 .2941 .2920 .2039 .2480 .3240 .2930 .2923 .2053 .2461
720 .8540 .8322 .8004 .3421 .4460 .8873 .8762 .8781 .3494 .4481 .8368 .8273 .8067 .3352 .4458

W
ea

th
er 96 .1755 .1664 .1674 .1597 .1617 .1954 .1796 .1823 .1773 .1793 .1856 .1759 .1765 .1724 .1737

192 .2232 .2101 .2128 .2067 .2088 .2403 .2244 .2254 .2216 .2217 .2310 .2165 .2192 .2135 .2189
336 .2800 .2614 .2665 .2503 .2515 .2918 .2709 .2740 .2567 .2626 .2843 .2653 .2681 .2561 .2587
720 .3571 .3458 .3459 .2480 .2730 .3643 .3500 .3497 .2581 .2708 .3599 .3490 .3488 .2573 .2692

PatchTST OLS MICN
Baseline TAFAS PETSA COSA-F COSA-P Baseline TAFAS PETSA COSA-F COSA-P Baseline TAFAS PETSA COSA-F COSA-P

E
T

T
h1

96 .4312 .4262 .4269 .4242 .4238 .4511 .4409 .4391 .4390 .4372 .5103 .4901 .4898 .4693 .4684
192 .4955 .4865 .4854 .4830 .4805 .5046 .4934 .4937 .4915 .4906 .5954 .5617 .5620 .5372 .5328
336 .5559 .5478 .5475 .5438 .5320 .5510 .5440 .5465 .5385 .5320 .6615 .6387 .6420 .5950 .5878
720 .7117 .6860 .6822 .6113 .5822 .6997 .6630 .6431 .5969 .5733 .9233 .8142 .8375 .7001 .6504

E
T

T
h2

96 .2362 .2351 .2362 .2349 .2343 .2306 .2285 .2288 .2232 .2265 .2582 .2551 .2552 .2492 .2485
192 .2826 .2758 .2773 .2665 .2608 .2839 .2824 .2848 .2796 .2791 .3282 .3179 .3258 .3049 .3017
336 .3199 .3125 .3132 .2971 .2978 .3258 .3182 .3189 .3003 .3043 .3732 .3482 .3497 .3241 .3310
720 .4264 .4005 .4012 .3233 .3428 .4162 .3908 .3884 .3177 .3453 .4617 .4474 .4473 .3650 .3885

E
T

T
m

1 96 .4024 .3894 .3937 .3625 .3626 .3710 .3506 .3536 .3454 .3475 .4354 .3951 .3951 .3837 .3831
192 .4512 .4372 .4413 .4250 .4258 .4439 .4160 .4184 .4115 .4119 .4855 .4566 .4574 .4476 .4514
336 .5081 .4905 .4946 .4568 .4697 .5182 .4787 .4792 .4748 .4749 .5556 .5108 .5082 .4832 .5054
720 .5629 .5427 .5462 .4681 .4882 .5922 .5478 .5522 .4763 .5007 .6212 .5756 .5778 .5029 .5225

E
T

T
m

2 96 .1584 .1581 .1583 .1558 .1562 .1602 .1590 .1589 .1582 .1586 .1710 .1711 .1730 .1702 .1704
192 .2059 .2036 .2037 .2007 .2022 .1936 .1921 .1919 .1906 .1907 .2121 .2102 .2126 .2102 .2120
336 .2458 .2451 .2452 .2258 .2352 .2331 .2299 .2302 .2131 .2226 .2530 .2501 .2520 .2337 .2351
720 .3268 .3268 .3256 .2446 .2645 .3066 .2986 .2971 .2171 .2349 .3327 .3220 .3131 .2477 .2643

E
xc

ha
ng

e
R

at
e

96 .0867 .0843 .0837 .0765 .0788 .0814 .0792 .0798 .0756 .0773 .1151 .1087 .1146 .0955 .1008
192 .1877 .1805 .1832 .1464 .1570 .1727 .1658 .1653 .1393 .1457 .2150 .2198 .1999 .1663 .1722
336 .3389 .3275 .3300 .1983 .2445 .3226 .2877 .2898 .2020 .2323 .3950 .3047 .3100 .2119 .2660
720 .8648 .8659 .8643 .3543 .4662 .8366 .8138 .8149 .3444 .4541 1.0259 .7191 .7805 .3871 .4815

W
ea

th
er 96 .1742 .1724 .1743 .1624 .1634 .1957 .1807 .1795 .1772 .1803 .1757 .1853 .1970 .1636 .1651

192 .2195 .2147 .2167 .2006 .2108 .2404 .2244 .2274 .2223 .2237 .2237 .2161 .2265 .2082 .2120
336 .2766 .2666 .2701 .2451 .2488 .2921 .2714 .2748 .2551 .2642 .2812 .2746 .2788 .2729 .2737
720 .3544 .3383 .3442 .2590 .2713 .3644 .3466 .3493 .2579 .2708 .3508 .3573 .3681 .2582 .2855

4.2.2 COMPARISON WITH NORMALIZATION METHODS

In this section, we analyze whether COSA serves as an alternative or complementary role to existing
normalizations, and demonstrate that COSA can work independently of normalizations and is com-
patible with normalization mechanisms. Figure 3 shows performance comparison of COSA against
two representative time-series normalizers, RevIN (Kim et al., 2021) and DDN (Dai et al., 2024).
The results support two claims:

1. COSA on its own generally outperforms explicit normalization, as demonstrated by the
comparative analysis showing that using COSA with basic normalization achieves the low-
est mean MSE across all experimental settings.

2. COSA is compatible with normalization and consistently improves accuracy within the
same normalizer settings, with the addition of COSA reducing MSE by approximately
16.8∼16.9%.
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Figure 3: Prediction accuracy comparison with normalization methods.

COSA directly optimizes MSE on revealed targets and uses the context vector to encode recent
level/scale, so the linear layer learns scale and level corrections from the error signal itself. Further
analysis is provided in Appendix G.7.

4.3 SENSITIVITY AND ABLATIONS

We probe the following four key design choices: 1) adaptation steps S, 2) context length K, 3) batch
size B, and 4) adaptive learning rate CALR.

We evaluated performance by varying each hyperparameter individually while keeping others fixed
at the default settings. Figure 4 shows MSE and wall-clock time according to each hyperparameter.
Figure 4a shows changes according to the number of iterative learning steps S. COSA shows a
pattern where test MSE decreases as S increases. However, while wall-clock time also increases
with increasing S, even at the highest S = 4 setting, it showed time levels similar to PETSA.

Figure 4b examines the effect of context length K, which controls how much past information
the adapter uses. Accuracy improves consistently with larger K, while wall-clock time remains
unchanged. Since the adapter input concatenates base model’s prediction with the context vector
(dimensionality L + K), and L typically dominates, increasing K has negligible runtime impact.
The context provides incremental but reliable gains by supplementing the level/scale information.

Figure 4c shows performance changes with batch size B. As described in Section 3.5, B determines
the frequency of adaptation, collecting B {prediction, ground truth} pairs before each update. Even
with B = 96, COSA outperforms the baseline, with accuracy improving as B decreases due to more
frequent adaptation. This explains the superior performance of COSA-P over COSA-F on ETTh1:
the average B determined by PAAS for ETTh1 is 24.55, while for other datasets the values are over
80. Detailed analysis is provided in Appendix C. However, smaller B increases wall-clock time due
to both more adaptation calls and the computational cost of adaptation steps S.

Figure 4d shows performance with and without CALR (Section 3.5). CALR achieves up to 12.13%
accuracy improvement as the window length increases and a 21.34% reduction in wall-clock time.
This confirms that aggressive dynamic learning rate scheduling enhances performance within limited
adaptation steps S while enabling early-stopping for computational efficiency.

Results for additional ablations (context aggregation methods and correction layer architecture) are
provided in Appendix G.

4.4 COMPUTATIONAL OVERHEAD

Table 3: Computational overhead comparison of adapter methods.

Method # Params ↓ Peak mem (MB) ↓ Samples/sec ↑ Adaptation time/batch (ms) ↓ Inference time/batch (ms) ↓
TAFAS 1,252,958 17.59 1,413.23 ± 92.28 73.23 ± 8.74 10.96 ± 0.64
PETSA 58,334 36.09 987.91 ± 78.67 88.46 ± 7.08 12.63 ± 0.37

COSA (Ours) 1,211,287 27.07 1080.70 ± 80.66 80.12 ± 5.93 1.25 ± 0.06

8
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(a) Average MSE and wall-clock time of different S. (b) Average MSE and wall-clock time of different K.

(c) Average MSE and wall-clock time of different B. (d) Average MSE and wall-clock time of CALR.

Figure 4: Hyperparameter analysis showing the trade-off between performance and efficiency.
Charts display average test MSE (bars, left axis) and wall-clock time (lines, right axis, in seconds)
across different parameter settings.

We report 1) observed additional parameters, 2) peak memory utilization, 3) throughput (samples
per second), 4) wall-clock time per batch, and 5) inference time per batch.

All hyperparameters remain at default values. Table 3 summarizes the average overhead across all
datasets, base model, and horizons. COSA shows moderate overhead, falling between TAFAS and
PETSA, while achieving the significantly fastest inference time. COSA performs adaptation repeat-
edly for S steps, meaning that the throughput and adaptation time are dependent on S. However, the
single adapter structure and simplicity of COSA alleviate the overhead and improve the inference
time, which is not affected by S. The computational complexity is O(L · (L + K)) for the linear
transformation plus O(L) for the gating operation, resulting in quadratic scaling with respect to
prediction horizon L. Further theoretical calculations are included in Appendix B.

5 CONCLUSION AND LIMITATIONS

We introduced COSA, an architecture-agnostic TTA module that directly corrects the prediction of
base model with a single linear layer guided by short-term context and a stabilizing gate. Across
six benchmarks and diverse base models, COSA improves accuracy by 13.91% to 17.03% over
baselines and by 10.48% to 13.05% over prior state-of-the-art TTA methods. These gains arise from
the synergy of trend-aware context, residual correction, and gated modulation.

While COSA shows strong empirical results, several areas offer room for refinement. The current
adaptation relies on full ground truth, though extending to partial observations would enable real-
time deployment. Performance varies with batch size B, and the fixed context length K may not be
optimal for all temporal patterns. Additionally, linear corrections, while effective for many cases,
could be enhanced for complex nonlinear shifts.

Future work will explore masked updates for real-time adaptation with partial targets, adaptive se-
lection of K and B based on detected periodicity, and hybrid linear/nonlinear adapters for more
complex distribution shifts. These extensions will broaden the applicability of the proposed method
while maintaining its computational efficiency.

9
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A ADAPTATION ALGORITHM OF COSA

This section details the core adaptation algorithm of COSA. This algorithm extends the optimizer
mentioned in Equation 2, combining short-term loss trends, cosine annealing, and adaptive gradient
clipping, batch-wise learning rate reset. We apply widely used values for the coefficients of CALR
and the threshold value of early stopping. The base model remains frozen, operating only on adapter
parameters φ = {W , b, g}.
Purpose: Performs rapid adaptation of linear adapters using direct loss, adaptive learning rate
scheduling, and gradient clipping to improve prediction accuracy within a few adaptation step S.

Algorithm 1 COSA adaptation.

Require: Stream of batches (Ŷ,Ytrue) with length B, context vector C, steps S, ηmin, ηmax, weight decay λ,
clip base c

Ensure: adapted predictions with improved accuracy over the base model
1: for each batch (Ŷ,Ytrue) in Data Stream do ▷ Loop over new batches
2: Initialize: η ← ηmax, loss historyH ← [ ] ▷ Reset LR for new batch
3: for s = 1 to S do ▷ Main adaptation loop
4: Forward pass: form X(a) = [Y(0) ∥ C ], then H = (W X(a)⊤ + b)⊤

5: Gating: Ŷ← Y(0) + tanh(g)⊙ H
6: MSE loss: L ←

∥∥(Ŷ− Ytrue)
∥∥2

F
+ λ∥φ∥22

7: Learning rate adaptation:
8: if |H| ≥ 2 then
9: ∆← L−H[−1] ▷ Recent loss change

10: if ∆ > 0 then ▷ Loss increased - reduce LR
11: η ← max(0.5 η, ηmin)
12: else if |∆| < 10−6 then ▷ Converged - increase LR for next batch
13: η ← min(1.1 η, ηmax)
14: end if
15: end if
16: Cosine annealing: η ← ηmin + 1

2
(η − ηmin)

(
1 + cos( sπ

S
)
)

17: Gradient computation: gφ ← ∇φL
18: Adaptive clipping: ∥gφ∥ ← min

(
∥gφ∥, max(c, L)

)
19: Parameter update: φ← φ− η gφ
20: Early stopping:
21: if s > 2 and |H[−1]−H[−2]| < 10−6 then
22: break
23: end if
24: end for
25: end for

COSA targets TSF-TTA under non-stationary environments in which the distribution of time-series
data changes over time. In such environments, the classical notion of convergence toward a fixed
optimal point is not well-defined. Instead, stable learning within each adaptation window is critical.
CALR guarantees uniformly bounded step-wise updates through the following four mechanisms,
which structurally prevent error amplification and thus ensure stability during adaptation.

1. Upper-bounded learning rate: The learning rate is constrained by η ≤ ηmax, limiting the
maximum magnitude of a single-step update.

2. Gradient clipping: At Line 18 of Algorithm 1, the gradient norm is adaptively bounded as
∥gϕ∥ ← min(∥gϕ∥,max(c,L)).

3. L2 regularization: The weight-decay term in Equation 1, λ(∥W∥2F + ∥b∥22 + ∥g∥22), con-
strains parameter magnitude.

4. Bounded gating: Because α = tanh(g) ∈ [−1, 1], the correction magnitude is structurally
limited.

For every new batch, the learning rate is reinitialized to ηmax (Line 2 of Algorithm 1), giving
each batch an equal opportunity for adaptation. The learning rate is then adapted according to the
batch’s loss behavior. When the loss spikes, we reduce the learning rate as η ← max(0.5η, ηmin),
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Table 4: Average B of each dataset determined by PAAS.

Dataset ETTh1 ETTh2 ETTm1 ETTm2 Exchange Rate Weather
Average B 24.55 38.41 92.73 83.41 92.80 80.38

temporarily lowering update intensity. When the loss decreases stably, we increase it as η ←
min(1.1η, ηmax), strengthening adaptation. This enables stable learning even when short-term per-
turbations or anomalies appear in the input data, allowing rapid recovery.

B COMPUTATIONAL COST

In this section, we report theoretical calculations of parameters, FLOPs, and memory footprint.

For univariate time series, the number of parameters is as follows:

Parameter count.
L(L+K)︸ ︷︷ ︸

W

+ L︸︷︷︸
b

+ 1︸︷︷︸
g

⇒ #params =
(
L(L+K) + L+ 1

)
.

FLOPs per adaptation step (batch of size B). The dominant cost is the linear transform and
residual composition:

O
(
B L(L+K)

)
for WX(a), plus O(BL) for gating & residual add.

Memory footprint. Additional activations are modest: the linear residual H ∈ RB×L and the
context vector C ∈ RK . The total adaptation cost scales linearly with the number of adaptation
steps S and variables V .

C BATCH SIZE ANALYSIS OF PAAS

Adaptive vs. Fixed Batch Strategy: While COSA-F shows the best performance in most cases,
COSA-P generally performs better on the ETTh1 and ETTh2 datasets, revealing important insights
about temporal adaptation strategies. The reason for this trend is that the size of B determined
by PAAS is often smaller than 48 for these datasets, as shown in Table 4, enabling more frequent
adaptation that better captures the higher-frequency patterns characteristic of these hourly datasets.

This differential performance validates the importance of dataset-specific adaptation scheduling:
datasets with more complex temporal dynamics benefit from more frequent adaptation (smaller B),
while datasets with smoother patterns can effectively use larger batch sizes for computational effi-
ciency.

D BEHAVIOR ANALYSIS OF COSA

D.1 ANALYSIS BETWEEN GATING AND LINEAR RESIDUAL LAYER

In COSA, the gating is defined as gating = tanh(g) ∈ [−1, 1], where g is a learnable parameter,
and this bounded scalar modulates the correction strength by multiplying the output of the linear
residual layer. If we were to use g directly instead of tanh(g), small variations in g could induce dis-
proportionately large and unstable changes in the correction, making the adapter overly sensitive to
noisy points. The tanh transform keeps the gating bounded, ensuring that changes in g are reflected
smoothly and gradually. When the residual magnitude spikes, the gate moves toward 0, as shown in
Figure 5, thereby attenuating the residual correction and stabilizing the adaptation process.

D.2 ANALYSIS BETWEEN LEARNING RATE AND MSE

Figure 6 visualizes the trajectory of pre-adaptation loss and learning rate for the iTransformer–
ETTm1, L = 96 case. As shown in Figure 6, when a short-term loss spike occurs, CALR immedi-
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Figure 5: Trajectory of average gating and average residual magnitude of batches over time.

ately decreases the learning rate to minimize the impact of the perturbation, and once the loss enters
a stable decreasing phase, CALR increases the learning rate again to promote rapid re-adaptation.
This control mechanism suppresses excessive parameter drift without requiring roll-back, enabling
COSA to recover its correction performance instantly after a perturbation. The interaction between
the learning rate and loss shows that, in non-stationary environments with short-term perturbations,
COSA can respond and recover performance stably.

Figure 6: Trajectory of initial MSE and average learning rate of batches over time.

E QUALITY OF TTA

To evaluate TTA quality, we measured Explained Residual Variance (ERV) and Negative Adaptation
Rate (NAR) metrics across all datasets, base models, and forecasting horizons. ERV is defined as in
Equation 3, where R̂ represents residuals for TTA-applied predictions and R(0) represents residuals
for base model predictions. Specifically, ERV quantifies the extent to which TTA reduces the resid-
ual variance of the base model’s predictions. Higher ERV values indicate greater residual variance
reduction and correspondingly improved prediction performance through TTA.

ERV = 1 − Var(R̂)

Var(R(0))
. (3)

NAR is the ratio of prediction windows where the MSE worsened when TTA was applied, with
smaller values indicating better performance.

NAR =
1

N

N∑
t=1

I[MSE(Ŷt) > MSE(Y(0)
t )], where

{
I[con] = 1 if con = True
I[con] = 0 otherwise

(4)
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Table 5: Average ERV and NAR across all benchmark datasets and base models.

TAFAS PETSA COSA

ERV ↑ .0100 .0160 .0768

NAR ↓ 34.94% 36.34% 20.25%

As shown in Table 5, COSA shows the highest ERV and the lowest NAR. This indicates that COSA
provides effective TTA while decreasing the residual and improving accuracy on average.

F FURTHER EXPERIMENTS

F.1 COMPARISON ON A LARGER DATASET

To demonstrate that COSA can achieve stable and substantial performance gains even in larger-scale
environments, we additionally conducted experiments on the Electricity dataset Lai et al. (2018);
Godahewa et al. (2021). We followed the same experimental setup as in Section 4.1, and used three
representative base models, iTransformer, DLinear, and FreTS. Table 6 is consistent with the findings
in Section 4.2, COSA achieves either the best or second-best performance across all forecasting
horizons L, and unlike other methods, which exhibit performance degradation compared to baselines
in some cases, COSA improves their performances in every case. These results indicate that COSA
remains robust and effective even in large-scale environments.

Table 6: Prediction accuracy comparison on Electricity dataset.

iTransformer DLinear FreTS

No TTA TAFAS PETSA COSA-F COSA-P No TTA TAFAS PETSA COSA-F COSA-P No TTA TAFAS PETSA COSA-F COSA-P

96 .1663 .1568 .1596 .1571 .1570 .2235 .2224 .2242 .2232 .2228 .1824 .1781 .1802 .1801 .1799

192 .1794 .1635 .1644 .1631 .1631 .2242 .2153 .2152 .2146 .2143 .1794 .1894 .1781 .1780 .1779
336 .1952 .1743 .1741 .1730 .1727 .2383 .2247 .2233 .2226 .2223 .1905 .1885 .1885 .1881 .1879
720 .2567 .2316 .2301 .2251 .2239 .2792 .2629 .2615 .2557 .2541 .2304 .2299 .2287 .2236 .2221

F.2 COMPARISON WITH VARYING INPUT/PREDICTION SEQUENCE LENGTH

To further verify the performance of COSA across diverse scenarios, we conducted experiments by
varying both the input window W and the prediction horizon L. To examine short-term forecasting
rather than long-term forecasting, we added the setting W = 96, L ∈ {24, 48}. To evaluate perfor-
mance under longer input windows, we additionally tested W = 192 with L ∈ {192, 336, 720} and
W = 336 with L ∈ {336, 720}. Table 7 summarizes the results across these different combinations
of W and L. Consistent with Section 4.2, COSA achieves the best or second-best performance in
most cases, demonstrating its ability to maintain high predictive accuracy across a wide range of
settings. Unlike other methods, which show performance degradation relative to baselines in several
cases, COSA improves prediction accuracy over baselines in every case. In contrast, TAFAS and
PETSA, which adopt dual-adapter architectures that modify both the input and output of base model
incur substantial additional complexity as W increases, which likely contributes to their degraded
performance. Since COSA operates solely in the output space of base model, it delivers consistent
performance gains regardless of W .

F.3 COMPARISON WITH SOLID

SOLID (Chen et al., 2024b) is a fine-tuning method of the prediction layer of the base model by
detecting context drift. Its reconditioner estimates context drift based on the mutual information be-
tween the model’s residual and the input context. When drift is detected, SOLID selectively chooses
samples and fine-tunes the model’s prediction layer at the sample level. Like COSA, SOLID oper-
ates in the output space of base model. However, unlike COSA, which keeps base model frozen and
performs corrections through a lightweight adapter, SOLID directly updates the prediction layer of
base model.
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Table 7: Prediction accuracy comparison with different input/prediction sequence length.

iTransformer DLinear FreTS

Input Pred No TTA TAFAS PETSA COSA-F COSA-P No TTA TAFAS PETSA COSA-F COSA-P No TTA TAFAS PETSA COSA-F COSA-P
E

T
T

h1
96 24 .3269 .3254 .3299 .3105 .3098 .3437 .3751 .3766 .3431 .3429 .2953 .3243 .3239 .2946 .2943
96 48 .3732 .3768 .3776 .3539 .3527 .3838 .4177 .4166 .3826 .3820 .3424 .3770 .3754 .3416 .3413
192 192 .4459 .5015 .4893 .4175 .4120 .4172 .4967 .4834 .4157 .4141 .4235 .4991 .4835 .4207 .4186
192 336 .4729 .5709 .5422 .4486 .4456 .4537 .5558 .5362 .4528 .4489 .4596 .5677 .5398 .4577 .4535
192 720 .5885 .6529 .6687 .5619 .5477 .5828 .6504 .6526 .5734 .5660 .6484 .6627 .6728 .6351 .6190
336 336 .5354 .6139 .5686 .5209 .5059 .4392 .5652 .5174 .4368 .4289 .4837 .6114 .5444 .4783 .4674
336 720 .6512 .6873 .6635 .6115 .5780 .5748 .6344 .6443 .5589 .5198 .7265 .6905 .6738 .6960 .6295

E
T

T
h2

96 24 .0837 .1277 .1266 .0812 .0812 .0862 .1217 .1218 .0861 .0862 .0812 .1180 .1178 .0806 .0807
96 48 .1047 .1518 .1520 .1007 .1008 .1031 .1444 .1452 .1028 .1030 .1004 .1452 .1447 .0996 .0996
192 192 .1633 .2272 .2280 .1546 .1563 .1344 .2155 .2096 .1334 .1338 .1437 .2218 .2184 .1412 .1420
192 336 .1658 .2541 .2487 .1551 .1573 .1474 .2445 .2394 .1460 .1468 .1556 .2494 .2460 .1519 .1536
192 720 .2197 .3453 .3192 .2110 .2158 .1782 .3152 .2962 .1762 .1778 .1943 .3261 .3086 .1892 .1925
336 336 .2070 .2986 .3005 .2021 .2108 .1469 .2366 .2375 .1447 .1468 .1722 .2579 .2604 .1645 .1695
336 720 .3334 .4253 .4355 .3255 .3334 .1807 .3101 .3004 .1776 .1798 .1969 .3130 .3124 .1920 .1949

E
T

T
m

1

96 24 .2543 .2359 .2429 .2405 .2450 .2578 .2616 .2599 .2523 .2569 .2494 .2503 .2471 .2449 .2492
96 48 .3305 .3099 .3135 .3115 .3133 .3105 .3167 .3151 .3035 .3064 .3191 .3269 .3222 .3171 .3177
192 192 .3800 .4006 .3961 .3591 .3603 .3694 .4029 .3942 .3643 .3648 .3551 .3863 .3815 .3524 .3528
192 336 .4336 .4499 .4401 .4149 .4150 .4239 .4620 .4436 .4162 .4169 .4036 .4371 .4290 .3985 .3987
192 720 .4992 .5385 .5090 .4716 .4718 .4797 .5376 .5101 .4671 .4681 .4631 .5152 .4941 .4550 .4560
336 336 .4820 .4913 .4441 .4490 .4592 .3981 .4444 .4244 .3968 .3977 .4011 .4380 .4275 .3975 .4006
336 720 .5202 .5432 .5169 .4678 .4904 .4437 .5053 .4852 .4256 .4423 .4407 .5046 .4877 .4261 .4397

E
T

T
m

2

96 24 .0542 .0800 .0744 .0530 .0531 .0601 .0782 .0777 .0598 .0599 .0562 .0748 .0741 .0561 .0561
96 48 .0735 .1044 .0988 .0731 .0732 .0767 .1027 .1015 .0761 .0762 .0736 .0992 .0987 .0734 .0733
192 192 .1035 .1647 .1601 .1023 .1022 .0990 .1451 .1429 .0984 .0985 .0998 .1480 .1456 .0982 .0984
192 336 .1343 .2191 .1970 .1339 .1335 .1201 .1791 .1741 .1190 .1195 .1210 .1863 .1781 .1200 .1192
192 720 .1628 .2511 .2377 .1564 .1589 .1518 .2291 .2247 .1473 .1498 .1476 .2337 .2232 .1436 .1446
336 336 .1354 .2280 .1987 .1328 .1347 .1176 .1782 .1704 .1167 .1174 .1198 .1815 .1760 .1172 .1188
336 720 .1645 .2785 .2517 .1455 .1604 .1456 .2338 .2185 .1317 .1446 .1490 .2309 .2255 .1289 .1453

E
xc

ha
ng

e
R

at
e

96 24 .0318 .0292 .0273 .0306 .0306 .0434 .0397 .0393 .0434 .0434 .0283 .0254 .0241 .0283 .0283
96 48 .0526 .0542 .0479 .0516 .0516 .0606 .0590 .0579 .0606 .0606 .0481 .0438 .0418 .0480 .0481
192 192 .2045 .1999 .2189 .2040 .2040 .1715 .1819 .2024 .1714 .1715 .1655 .1728 .1809 .1655 .1655
192 336 .2963 .3221 .3511 .2919 .2933 .2878 .3316 .3484 .2850 .2875 .2804 .3129 .3318 .2780 .2802
192 720 .8546 .7713 .7828 .8316 .8320 .9037 .9393 .9488 .9016 .9016 .4506 .8200 .8315 .4501 .4501
336 336 .4088 .3790 .4204 .4036 .4036 .2753 .3036 .3323 .2700 .2751 .3246 .3219 .3589 .3182 .3245
336 720 1.7882 1.0041 1.0775 1.5829 1.5828 .5274 .8620 .8816 .5269 .5269 .4266 .9353 .9175 .4263 .4263

W
ea

th
er

96 24 .1095 .1026 .1016 .1077 .1077 .1207 .1151 .1151 .1200 .1199 .1193 .1085 .1111 .1183 .1183
96 48 .1380 .1292 .1310 .1362 .1363 .1581 .1499 .1475 .1559 .1560 .1530 .1435 .1452 .1508 .1510
192 192 .2165 .2102 .2051 .2075 .2099 .2393 .2225 .2214 .2332 .2354 .2131 .2058 .2021 .2086 .2108
192 336 .2747 .2588 .2549 .2611 .2653 .2904 .2709 .2691 .2791 .2829 .2694 .2547 .2531 .2604 .2637
192 720 .3321 .3316 .3390 .3151 .3211 .3426 .3363 .3446 .3276 .3339 .3290 .3286 .3360 .3158 .3205
336 336 .2988 .2705 .2708 .2778 .2978 .2722 .2633 .2619 .2627 .2707 .2526 .2520 .2474 .2444 .2504
336 720 .3381 .3423 .3557 .2885 .3340 .3245 .3247 .3316 .2742 .3207 .3129 .3203 .3229 .2648 .3088

Using the publicly available source codes, we evaluated SOLID on three base forecasting models:
DLinear, FreTS, and iTransformer. The results are summarized in Table 8. Across all settings, COSA
achieves higher predictive accuracy compared to SOLID.

Moreover, COSA is significantly more efficient: it requires only 7.44± 0.0488 seconds of wall-clock
time on average, whereas SOLID incurs a much larger overhead with 306.55± 2.6183 seconds. The
substantial cost of SOLID arises from computing context drift and repeatedly updating the prediction
layer of the base model, processes that are far heavier than COSA’s lightweight updates. Because
COSA freezes base model and updates only a compact output-space adapter, it offers a dramatically
faster execution while maintaining higher accuracy.

F.4 COMPARISON WITH DYNATTA

This section presents complete baseline results of prediction accuracy comparison with various ex-
isting methods. DynaTTA requires setting a total of 15 hyperparameters, and due to this complexity,
we report its performance using the best settings from our trials. The used hyperparameters of Dy-
naTTA are as follows:

• HIDDEN DIM=64, GATING INIT=0.01, BASE LR= 0.005, MSE BUFFER SIZE=100,
RTAB SIZE=50, RDB SIZE=30, METRIC HISTORY SIZE=20, ALPHA MIN=0.0001,
ALPHA MAX=0.01, KAPPA=2.0, ETA=0.1, EPS=1e-8, WARMUP FACTOR=2, UP-
DATE BUFFERS INTERVAL=5, UPDATE METRICS INTERVAL=3
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Table 8: Comparison with SOLID

iTransformer DLinear FreTS

SOLID COSA-P SOLID COSA-P SOLID COSA-P

E
T

T
h1

96 .4404 .4363 .4595 .4574 .4093 .4371
192 .4935 .4919 .5063 .5066 .4701 .4940
336 .5420 .5300 .5602 .5528 .5254 .5467
720 .6523 .5638 .7107 .6107 .6980 .6259

E
T

T
h2

96 .2480 .2493 .2315 .2281 .2354 .2350
192 .3061 .2947 .2824 .2819 .2830 .2972
336 .3339 .3339 .3103 .3083 .3248 .3153
720 .3701 .3591 .3136 .3477 .3167 .3399

E
T

T
m

1 96 .3353 .3455 .3634 .3456 .3121 .3525
192 .4266 .4140 .4336 .4222 .4299 .4212
336 .5019 .4643 .5071 .4858 .4915 .4775
720 .5986 .5102 .5821 .4991 .5612 .4982

E
T

T
m

2 96 .1641 .1632 .1590 .1583 .1574 .1569
192 .2291 .2173 .1910 .1943 .1933 .1934
336 .2525 .2535 .2138 .2242 .2328 .2211
720 .2704 .2606 .2419 .2316 .2377 .2314

E
xc

ha
ng

e
R

at
e

96 .0873 .0837 .0913 .0834 .0822 .0766
192 .1783 .1479 .1826 .1519 .1723 .1499
336 .3294 .2624 .3276 .2480 .3218 .2461
720 .7531 .4460 .8872 .4481 .8325 .4458

W
ea

th
er 96 .1753 .1617 .1954 .1793 .1849 .1737

192 .2231 .2088 .2403 .2217 .2309 .2189
336 .2801 .2515 .2918 .2626 .2843 .2587
720 .3450 .2730 .3643 .2708 .3561 .2692

Table 9: Prediction accuracy comparison with DynaTTA Grover & Etemad (2025).

Transformer-based Linear-based MLP-based
iTransformer PatchTST DLinear OLS FreTS MICN

DynaTTA COSA-F COSA-P DynaTTA COSA-F COSA-P DynaTTA COSA-F COSA-P DynaTTA COSA-F COSA-P DynaTTA COSA-F COSA-P DynaTTA COSA-F COSA-P

E
T

T
h1

96 .4523 .4368 .4363 .8371 .4242 .4238 .4708 .4574 .4482 .4486 .4390 .4372 .4508 .4384 .4371 .5063 .4693 .4684
192 .5175 .4961 .4919 .8006 .4830 .4805 .5321 .5066 .5050 .5096 .4915 .4906 .5139 .4951 .4940 .5745 .5372 .5328
336 .5874 .5651 .5300 .8097 .5438 .5320 .5792 .5528 .5456 .5626 .5385 .5320 .5840 .5467 .5351 .6594 .5950 .5878
720 .7123 .5958 .5638 1.0887 .6113 .5822 .7112 .6107 .5896 .6933 .5969 .5733 .7095 .6259 .5959 .8262 .7001 .6504

E
T

T
h2

96 .2630 .2504 .2493 .4154 .2349 .2343 .2338 .2300 .2281 .2326 .2232 .2265 .2395 .2367 .2350 .2661 .2492 .2485
192 .3210 .2983 .2947 .4315 .2665 .2608 .2888 .2827 .2819 .2911 .2796 .2791 .2916 .2816 .2824 .3417 .3049 .3017
336 .3677 .3241 .3339 .4386 .2971 .2978 .3380 .3050 .3083 .3430 .3003 .3043 .3474 .3031 .3153 .3777 .3241 .3310
720 .4646 .3487 .3591 .4991 .3233 .3428 .4325 .3062 .3477 .4270 .3177 .3453 .4297 .3169 .3399 .5229 .3650 .3885

E
T

T
m

1 96 .3753 .3447 .3455 .7205 .3625 .3626 .3814 .3456 .3475 .3830 .3454 .3475 .3723 .3520 .3525 .4095 .3837 .3831
192 .4835 .4124 .4140 .6898 .4250 .4258 .4809 .4113 .4122 .4827 .4115 .4119 .4811 .4150 .4212 .5331 .4476 .4514
336 .5843 .4569 .4643 .8073 .4568 .4697 .5711 .4753 .4858 .5719 .4748 .4749 .5739 .4661 .4775 .6418 .4832 .5054
720 .7243 .4773 .5102 .9292 .4681 .4882 .6569 .4774 .4991 .6884 .4763 .5007 .7152 .4718 .4982 .6932 .5029 .5225

E
T

T
m

2 96 .1832 .1627 .1632 .2508 .1558 .1562 .1640 .1583 .1586 .1684 .1582 .1586 .1661 .1568 .1569 .2033 .1702 .1704
192 .2897 .2171 .2173 .2744 .2007 .2022 .2040 .1904 .1905 .2115 .1906 .1907 .2048 .1905 .1908 .2349 .2102 .2120
336 .3246 .2435 .2535 .3434 .2258 .2352 .2908 .2083 .2242 .2917 .2131 .2226 .2778 .2098 .2211 .2988 .2337 .2351
720 .5344 .2477 .2606 .4447 .2446 .2645 .3765 .2215 .2316 .4571 .2171 .2349 .4020 .2158 .2314 .5362 .2477 .2643

E
xc

ha
ng

e
R

at
e

96 .0983 .0818 .0837 .1217 .0765 .0788 .0948 .0812 .0834 .0918 .0756 .0773 .0906 .0744 .0766 .1210 .0955 .1008
192 .1970 .1403 .1479 .2517 .1464 .1570 .1975 .1459 .1519 .1749 .1393 .1457 .1871 .1366 .1499 .2227 .1663 .1722
336 .3251 .2089 .2624 .3728 .1983 .2445 .3001 .2039 .2480 .3024 .2020 .2323 .3111 .2053 .2461 .3536 .2119 .2660
720 .8790 .3421 .4460 .9999 .3543 .4662 .8812 .3494 .4481 .8300 .3444 .4541 .8348 .3352 .4458 .8570 .3871 .4815

W
ea

th
er 96 .1823 .1597 .1617 .2317 .1624 .1634 .1950 .1773 .1793 .1985 .1772 .1803 .1937 .1724 .1737 .2303 .1636 .1651

192 .2678 .2067 .2088 .2611 .2006 .2108 .3311 .2216 .2217 .3074 .2223 .2237 .2850 .2135 .2189 .3839 .2082 .2120
336 .3894 .2503 .2515 .3329 .2451 .2488 .4103 .2567 .2626 .9593 .2551 .2642 .3970 .2561 .2587 .5355 .2729 .2737
720 .4996 .2480 .2730 .4067 .2590 .2713 .4915 .2581 .2708 .4974 .2579 .2708 .5251 .2573 .2692 .5773 .2582 .2855

F.5 COMPARISON WITH VARIOUS BATCH SIZES

Table 10a and Table 10b summarize the prediction accuracy and efficiency overhead under different
batch sizes B. Thanks to CALR’s stability-induced design, COSA adapts reliably even with very
small batches, and the resulting increase in update frequency often leads to improved forecasting ac-
curacy. Notably, even in extremely small settings such as B = 8, COSA maintains higher accuracy
than existing TTA methods, demonstrating resilience against over-correction and short-term pertur-
bations. On the other hand, smaller B inevitably increases the number of adaptation steps, leading
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Table 10: Performance comparison with different batch sizes B.

(a) Prediction accuracy.

No TTA TAFAS PETSA PAAS 8 16 24 48 96

96 0.2545 0.2471 0.2480 0.2409 0.1908 0.2202 0.2330 0.2398 0.2411

192 0.3144 0.3038 0.3046 0.2887 0.1900 0.2295 0.2524 0.2848 0.2946

336 0.3839 0.3653 0.3664 0.3280 0.1837 0.2292 0.2526 0.3013 0.3483

720 0.5539 0.5226 0.5232 0.3804 0.1811 0.2384 0.2672 0.3286 0.4158

(b) Wall-clock time (Seconds).

TAFAS PETSA PAAS 8 16 24 48 96

96 5.9271 7.4129 7.0642 47.3922 25.6158 17.2297 9.6333 5.1258
192 6.0383 7.3675 7.1419 49.4422 25.1222 18.0969 9.4344 5.5133
336 6.1554 7.6588 7.4131 49.2211 25.1119 17.2906 9.5644 5.8081
720 6.5300 7.9867 8.1578 46.3711 24.4683 17.6253 10.3036 6.5397

to higher adaptation time and a clear computation–accuracy trade-off. Considering this trade-off, we
adopt B = 48 for COSA-F in our main experiments, which provides a balanced choice between
accuracy gains and computational efficiency.

G ADDITIONAL ABLATIONS

This section provides additional ablation studies on various design choices of COSA. Each ex-
periment was conducted to understand the impact of specific components and determine optimal
hyperparameters. The default setting uses mean-based context aggregation with K = 10 and S = 3.

G.1 CONTEXT BUILDING METHODS COMPARISON

G.1.1 STATISTICAL METHODS

This experiment was conducted to evaluate the impact of different context construction methods
on adapter performance. We compared three methods, i.e., Mean, Median, and Weighted Average
(WA), to find the optimal context construction strategy. The weight of WA was designed to assign
greater weight to recent values using exponential decay weighting. Table 11 presents a comprehen-
sive performance comparison of the three context construction methods.

Mean-based context construction demonstrated superior performance compared to median and
weighted average approaches across most experimental configurations. While median-based ag-
gregation provided robustness against outliers, it resulted in lower overall accuracy. The weighted
average approach showed marginal improvements relative to its implementation complexity. These
findings support the adoption of simple statistical aggregation for effective context summarization
in COSA.

G.1.2 CONTEXT SELECTION STRATEGY

COSA aims not to model long-term time-series structure, but to perform fast and stable local resid-
ual correction for output bias observed in the current window. In non-stationary environments, the
input distribution shifts continuously over time; thus, information from distant past windows may
become misaligned with the current drift direction and deteriorate correction quality. For this reason,
the default COSA employs a lightweight context vector constructed solely from the most recently
observed batches.

To examine the effects of longer-range temporal patterns, we additionally implemented a Selective
Context mechanism. This approach stores all past context values in a buffer and computes impor-
tance scores via attention between the current window and past contexts, selecting the top-K values
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Table 11: Prediction accuracy comparison of diverse aggregation functions.

Transformer-based Linear-based MLP-based

iTransformer PatchTST DLinear OLS FreTS MICN

Mean Median WA Mean Median WA Mean Median WA Mean Median WA Mean Median WA Mean Median WA

E
T

T
h1

96 .4327 .4472 .4472 .4092 .4274 .4275 .4615 .4660 .4657 .4359 .4463 .4462 .4362 .4439 .4440 .4704 .4934 .4926
192 .4491 .4850 .4870 .4422 .4778 .4770 .4869 .5090 .5111 .4932 .4897 .4894 .4671 .4893 .4954 .4769 .5567 .5568
336 .4476 .5301 .5317 .4550 .5199 .5285 .4632 .5379 .5378 .5188 .5208 .5209 .4411 .5273 .5245 .4814 .5889 .5904
720 .4592 .6237 .6251 .4788 .6329 .6335 .4777 .6358 .6376 .5616 .6243 .6242 .4755 .6439 .6428 .5230 .7196 .7181

E
T

T
h2

96 .2489 .2532 .2536 .2336 .2346 .2358 .2303 .2352 .2324 .2283 .2300 .2299 .2359 .2379 .2382 .2468 .2566 .2568
192 .3003 .3012 .3013 .2708 .2886 .2894 .2682 .2846 .2863 .2762 .2954 .2893 .2766 .2846 .2917 .2906 .3190 .3145
336 .3277 .3671 .3685 .2688 .3190 .3202 .2860 .3283 .3285 .2937 .3030 .3025 .2889 .3214 .3205 .3088 .3429 .3426
720 .3311 .4013 .4023 .3091 .3737 .3737 .3006 .3358 .3358 .2992 .3415 .3415 .2979 .3588 .3564 .3454 .4172 .4185

E
T

T
m

1 96 .3428 .3687 .3685 .3604 .3918 .3921 .3453 .3575 .3574 .3440 .3573 .3572 .3522 .3633 .3633 .3804 .4252 .4248
192 .4076 .4307 .4304 .4171 .4398 .4398 .4158 .4266 .4265 .4125 .4265 .4263 .4173 .4257 .4266 .4402 .4742 .4740
336 .4663 .4930 .4949 .4662 .4942 .4944 .4784 .5009 .5005 .4700 .4995 .5006 .4771 .4898 .4886 .4937 .5381 .5381
720 .4940 .5614 .5615 .4776 .5359 .5316 .4928 .5640 .5603 .4693 .5638 .5653 .4863 .5414 .5419 .5083 .5830 .5838

E
T

T
m

2 96 .1616 .1672 .1653 .1552 .1591 .1595 .1578 .1594 .1596 .1583 .1596 .1600 .1556 .1592 .1594 .1710 .1712 .1723
192 .2172 .2194 .2240 .1989 .2087 .2121 .1900 .1959 .1957 .1919 .1970 .1995 .1908 .1935 .1933 .2102 .2131 .2132
336 .2402 .2700 .2762 .2279 .2821 .2543 .2135 .2448 .2561 .2066 .2499 .2477 .2158 .2353 .2420 .2354 .2523 .2546
720 .2550 .3461 .3463 .2397 .3011 .3222 .2357 .2985 .2833 .2104 .3179 .2821 .2360 .2732 .2753 .2510 .3020 .3084

E
xc

ha
ng

e
R

at
e

96 .0843 .0852 .0852 .0803 .0814 .0815 .0843 .0884 .0885 .0728 .0787 .0787 .0790 .0785 .0785 .0980 .1065 .1068
192 .1540 .1606 .1607 .1480 .1544 .1546 .1599 .1653 .1654 .1335 .1507 .1509 .1390 .1500 .1502 .1827 .1870 .1872
336 .2588 .2754 .2756 .2611 .2787 .2789 .2565 .2918 .2920 .1833 .2736 .2738 .2511 .2683 .2684 .2660 .3040 .3043
720 .5039 .5113 .5115 .4937 .5076 .5078 .5001 .5267 .5270 .3349 .4983 .4986 .4789 .4977 .4980 .4815 .5806 .5809

W
ea

th
er 96 .1636 .1726 .1726 .1655 .1731 .1735 .1738 .1931 .1931 .1748 .1934 .1934 .1758 .1831 .1835 .1666 .1739 .1738

192 .2073 .2268 .2265 .2052 .2162 .2162 .2217 .2500 .2520 .2144 .2496 .2490 .2151 .2346 .2347 .2060 .2208 .2205
336 .2474 .2707 .2707 .2443 .2668 .2660 .2622 .2891 .2885 .2428 .2911 .2897 .2630 .2736 .2735 .2735 .2650 .2648
720 .2907 .3118 .3119 .2682 .3088 .3090 .2713 .3310 .3325 .2487 .3327 .3331 .2583 .3268 .3247 .2670 .3140 .3094

Average .3121 .3450 .3458 .3032 .3364 .3366 .3097 .3423 .3422 .2990 .3371 .3354 .3046 .3334 .3340 .3284 .3669 .3670

to form the context vector. Such a mechanism can leverage repeated phases or cycles in datasets
with strong periodicity.

Table 12a compares COSA (the standard recent-context construction) with the dynamic context
selection method. While the dynamic context selection method achieves clear improvements on
datasets such as ETT, where the periodic structure is strong and easily detectable, the overall perfor-
mance of the original COSA remains superior. Selective Context also introduces non-trivial over-
head, since computing importance scores increases both adaptation time and inference time. More-
over, in fully non-stationary settings where distributional characteristics change continuously, older
contexts may become outdated and destabilize the correction process. Nonetheless, the observed
gains on datasets with pronounced periodicity show the potential of Selective Context. We provide
a more detailed discussion of these observations in Section H.

G.1.3 COMPARISON WITH ENCODER-BASED CONTEXT

To compare with encoder-based context construction, we implemented an alternative approach that
replaces the original statistics-based method in COSA with a temporal encoder that directly con-
sumes the previously observed ground-truth sequence from the past 720 steps (the longest L). We
added RNN-, LSTM-, and Attention-based encoders, each taking the past sequence in the form of
[720, 1] as input and producing a [K, 1] context vector. The resulting context vector is concatenated
with the base model’s prediction output, just as in the original design, and then fed into the linear
correction layer. The encoder is seamlessly integrated at the front of COSA, modifying only the
context-generation stage while keeping the remaining components unchanged.

Table 13 shows that, except for a few isolated cases, the original statistics-based context (0.3240)
performs better than encoder-based alternatives (0.3254, 0.3260, 0.3278). Furthermore, the added
architectural complexity increases both adaptation and inference overhead. In non-stationary TTA
settings, where the input distribution shifts rapidly and adaptation steps are short, it is difficult for an
encoder to learn stable temporal representations. Consequently, the generated embeddings may be-
come misaligned with the current drift direction or overfit to outdated historical patterns, ultimately
degrading correction performance.
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Table 12: Prediction accuracy and overhead of selective context.

(a) Prediction accuracy.

Transformer-based Linear-based MLP-based

iTransformer PatchTST DLinear OLS FreTS MICN

Recent Selective Recent Selective Recent Selective Recent Selective Recent Selective Recent Selective

E
T

T
h1

96 .4363 .4362 .4238 .4234 .4482 .4562 .4372 .4359 .4371 .4361 .4684 .4673
192 .4919 .4927 .4805 .4848 .5050 .5088 .4906 .4933 .4940 .4965 .5328 .5368
336 .5300 .5367 .5320 .5310 .5456 .5541 .5320 .5368 .5351 .5505 .5878 .5966
720 .5638 .5671 .5822 .5881 .5896 .6180 .5733 .6093 .5959 .6430 .6504 .7137

E
T

T
h2

96 .2493 .2494 .2343 .2349 .2281 .2258 .2265 .2262 .2350 .2346 .2485 .2486
192 .2947 .2942 .2608 .2661 .2819 .2813 .2791 .2825 .2824 .2945 .3017 .3027
336 .3339 .3367 .2978 .2949 .3083 .3064 .3043 .3027 .3153 .3175 .3310 .3328
720 .3591 .3603 .3428 .3453 .3477 .3462 .3453 .3619 .3399 .3509 .3885 .3906

E
T

T
m

1 96 .3455 .3440 .3626 .3627 .3475 .3456 .3475 .3454 .3525 .3522 .3831 .3815
192 .4140 .4128 .4258 .4278 .4122 .4221 .4119 .4219 .4212 .4212 .4514 .4533
336 .4643 .4718 .4697 .4693 .4858 .4857 .4749 .4854 .4775 .4805 .5054 .5060
720 .5102 .5246 .4882 .4868 .4991 .5065 .5007 .5005 .4982 .4970 .5225 .5256

E
T

T
m

2 96 .1632 .1631 .1562 .1560 .1586 .1582 .1586 .1581 .1569 .1570 .1704 .1705
192 .2173 .2165 .2022 .2011 .1905 .1930 .1907 .1952 .1908 .1929 .2120 .2125
336 .2535 .2551 .2352 .2331 .2242 .2245 .2226 .2212 .2211 .2185 .2351 .2555
720 .2606 .2578 .2645 .2633 .2316 .2427 .2349 .2368 .2314 .2373 .2643 .2764

E
xc

ha
ng

e
R

at
e

96 .0837 .0835 .0788 .0789 .0834 .0834 .0773 .0773 .0766 .0763 .1008 .1007
192 .1479 .1516 .1570 .1554 .1519 .1543 .1457 .1462 .1499 .1514 .1722 .1770
336 .2624 .2633 .2445 .2478 .2480 .2481 .2323 .2361 .2461 .2541 .2660 .2732
720 .4460 .4749 .4662 .4983 .4481 .4984 .4541 .4835 .4458 .4914 .4815 .5255

W
ea

th
er 96 .1617 .1616 .1634 .1631 .1793 .1790 .1803 .1799 .1737 .1731 .1651 .1654

192 .2088 .2056 .2108 .2109 .2217 .2181 .2237 .2222 .2189 .2187 .2120 .2134
336 .2515 .2524 .2488 .2554 .2626 .2665 .2642 .2659 .2587 .2603 .2737 .2813
720 .2730 .2798 .2713 .2798 .2708 .2729 .2708 .2721 .2692 .2732 .2855 .2970

(b) Overhead analysis.

Method # Params ↓ Adaptation time/batch (ms) ↓ Inference time/batch (ms) ↓ Average MSE ↓
Recent 1,211,287 80.12 ± 13.58 1.25 ± .0984 .3240

Selective 1,212,217 83.64 ± 15.71 1.26 ± .1039 .3287

These findings confirm that the statistics-based context remains the most robust and stable choice
for non-stationary adaptation, while encoder-based context generation still demonstrates potential.
We discuss these observations in greater detail in Section H.

G.2 INPUT CALIBRATION EFFECTS

COSA performs residual correction directly in the output space, and we demonstrated that output-
only correction is often sufficient. However, in certain time series, we observe that input-level spikes
or local noise degrade the base model’s predictions first, and this degradation subsequently propa-
gates to the residual correction stage. To examine how such input perturbations influence the overall
correction process, we conducted experiments combining COSA with the input-side GCM module
from TAFAS. Table 14 reports the results.

In most cases, output-only correction achieves higher predictive accuracy. However, for datasets
such as ETTh1, ETTh2, and ETTm2, where significant input noise is present, the combination with
GCM produces improved results. In these cases, input GCM smooths the noisy input patterns, al-
lowing the base model to generate more stable predictions, which in turn enhances the effectiveness
of COSA.

Nevertheless, because GCM operates via distribution-shift normalization, it risks oversmoothing or
removing meaningful drift signals when the input exhibits rapid or irregular changes. This behavior
explains why, on average (in terms of MSE), output-only correction remains more stable across
diverse non-stationary scenarios. Overall, when input disturbances are not the primary source of
prediction error, output-only correction is the most robust and reliable option.
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Table 13: Prediction accuracy and overhead comparison with encoder-based context.

(a) Prediction accuracy.

Transformer-based Linear-based MLP-based
iTransformer DLinear FreTS

CALR Cosine Exp Fixed Plateau Step CALR Cosine Exp Fixed Plateau Step CALR Cosine Exp Fixed Plateau Step

E
T

T
h1

96 .4363 .4858 .4961 .4848 .4848 .4885 .4482 .4498 .4556 .4513 .4513 .4537 .4371 .4400 .4441 .4398 .4398 .4405
192 .4919 .5405 .5613 .5413 .5413 .5426 .5050 .5069 .5183 .5090 .5090 .5110 .4940 .4914 .5002 .4915 .4915 .4931
336 .5300 .5741 .5952 .5751 .5751 .5826 .5456 .5560 .5714 .5586 .5586 .5642 .5351 .5429 .5570 .5442 .5442 .5494
720 .5638 .6216 .6835 .6163 .6163 .6336 .5896 .6033 .6511 .5953 .5953 .6166 .5959 .6116 .6593 .6041 .6041 .6200

E
T

T
h2

96 .2493 .2984 .3021 .2984 .2984 .2987 .2281 .2308 .2287 .2321 .2321 .2333 .2350 .2378 .2359 .2376 .2376 .2372
192 .2947 .3386 .3520 .3399 .3400 .3394 .2819 .2823 .2811 .2836 .2836 .2845 .2824 .2837 .2827 .2834 .2834 .2831
336 .3339 .3823 .3992 .3856 .3856 .3802 .3083 .3078 .3093 .3104 .3105 .3081 .3153 .3115 .3151 .3131 .3131 .3087
720 .3591 .4094 .4278 .4113 .4113 .4070 .3477 .3490 .3562 .3462 .3463 .3488 .3399 .3421 .3524 .3391 .3389 .3387

E
T

T
m

1 96 .3455 .4006 .4087 .3978 .3978 .4048 .3475 .3501 .3610 .3497 .3497 .3569 .3525 .3548 .3567 .3539 .3539 .3555
192 .4140 .4650 .4772 .4630 .4630 .4683 .4122 .4140 .4283 .4146 .4146 .4191 .4212 .4236 .4279 .4231 .4230 .4246
336 .4643 .5110 .5286 .5100 .5100 .5160 .4858 .4828 .5028 .4838 .4838 .4875 .4775 .4740 .4821 .4740 .4740 .4750
720 .5102 .5321 .5732 .5350 .5349 .5392 .4991 .4861 .5153 .4889 .4889 .4915 .4982 .4923 .5073 .4950 .4950 .4951

E
T

T
m

2 96 .1632 .2138 .2140 .2139 .2139 .2136 .1586 .1621 .1591 .1629 .1629 .1646 .1569 .1611 .1572 .1604 .1604 .1606
192 .2173 .2697 .2705 .2692 .2693 .2704 .1905 .1948 .1916 .1955 .1956 .1973 .1908 .1958 .1921 .1951 .1951 .1955
336 .2535 .3028 .3125 .3047 .3045 .3065 .2242 .2305 .2268 .2310 .2310 .2324 .2211 .2285 .2247 .2276 .2276 .2278
720 .2606 .3000 .3159 .2987 .2986 .2966 .2316 .2369 .2383 .2405 .2405 .2348 .2314 .2388 .2397 .2405 .2403 .2334

E
xc

ha
ng

e
R

at
e

96 .0837 .1335 .1344 .1335 .1335 .1334 .0834 .0865 .0848 .0873 .0873 .0886 .0766 .0800 .0775 .0794 .0794 .0792
192 .1479 .1961 .2025 .1960 .1960 .1952 .1519 .1523 .1552 .1533 .1533 .1542 .1499 .1518 .1545 .1513 .1513 .1505
336 .2624 .3120 .3495 .3116 .3117 .3102 .2480 .2521 .2710 .2528 .2527 .2535 .2461 .2501 .2735 .2491 .2492 .2484
720 .4460 .4481 .6222 .4498 .4460 .4448 .4481 .4185 .5919 .4164 .4162 .4179 .4458 .4128 .5679 .4072 .4063 .4068

W
ea

th
er 96 .1617 .2118 .2151 .2115 .2115 .2123 .1793 .1824 .1827 .1827 .1827 .1858 .1737 .1770 .1767 .1761 .1761 .1776

192 .2088 .2514 .2592 .2517 .2517 .2517 .2217 .2226 .2270 .2232 .2232 .2259 .2189 .2201 .2235 .2191 .2192 .2204
336 .2515 .2916 .3063 .2949 .2948 .2920 .2626 .2510 .2622 .2532 .2532 .2541 .2587 .2497 .2606 .2505 .2505 .2496
720 .2730 .3230 .3460 .3225 .3225 .3267 .2708 .2774 .2965 .2802 .2802 .2810 .2692 .2726 .2921 .2755 .2755 .2725

(b) Overhead analysis.

Method # Params ↓ Adaptation time/batch (ms) ↓ Inference time/batch (ms) ↓ Average MSE ↓
Recent 1,211,287 80.12 ± 13.58 1.25 ± .0984 .3240

Selective 1,212,217 83.64 ± 15.71 1.26 ± .1039 .3287

Table 14: COSA with input GCM.

Transformer-based Linear-based MLP-based

iTransformer PatchTST DLinear OLS FreTS MICN

COSA w. Input COSA w. Input COSA w. Input COSA w. Input COSA w. Input COSA w. Input

E
T

T
h1

96 .4363 .4362 .4238 .4209 .4482 .4460 .4372 .4370 .4371 .4343 .4684 .4852
192 .4919 .4821 .4805 .4790 .5050 .4995 .4906 .4907 .4940 .4919 .5328 .5530
336 .5300 .5386 .5320 .5216 .5456 .5359 .5320 .5193 .5351 .5286 .5878 .5953
720 .5638 .6287 .5822 .6386 .5896 .6513 .5733 .6500 .5959 .6726 .6504 .7509

E
T

T
h2

96 .2493 .2001 .2343 .1845 .2281 .1819 .2265 .1803 .2350 .1849 .2485 .1995
192 .2947 .2384 .2608 .2287 .2819 .2217 .2791 .2292 .2824 .2241 .3017 .2457
336 .3339 .2528 .2978 .2405 .3083 .2506 .3043 .2474 .3153 .2539 .3310 .2755
720 .3591 .3048 .3428 .2913 .3477 .2932 .3453 .2940 .3399 .2954 .3885 .3411

E
T

T
m

1 96 .3455 .3676 .3626 .3903 .3475 .3518 .3475 .3516 .3525 .3596 .3831 .4216
192 .4140 .4273 .4258 .4396 .4122 .4194 .4119 .4192 .4212 .4200 .4514 .4742
336 .4643 .4963 .4697 .4881 .4858 .4924 .4749 .4926 .4775 .4885 .5054 .5365
720 .5102 .5869 .4882 .5317 .4991 .5678 .5007 .5598 .4982 .5452 .5225 .5920

E
T

T
m

2 96 .1632 .1242 .1562 .1200 .1586 .1217 .1586 .1218 .1569 .1203 .1704 .1288
192 .2173 .1673 .2022 .1551 .1905 .1502 .1907 .1501 .1908 .1491 .2120 .1618
336 .2535 .2017 .2352 .1900 .2242 .1813 .2226 .1831 .2211 .1823 .2351 .1975
720 .2606 .2554 .2645 .2468 .2316 .2465 .2349 .2531 .2314 .2364 .2643 .2635

E
xc

ha
ng

e
R

at
e

96 .0837 .0859 .0788 .0835 .0834 .0883 .0773 .0789 .0766 .0798 .1008 .1105
192 .1479 .1706 .1570 .1754 .1519 .1807 .1457 .1644 .1499 .1660 .1722 .2083
336 .2624 .2974 .2445 .3017 .2480 .2986 .2323 .2937 .2461 .2951 .2660 .3358
720 .4460 .5884 .4662 .5969 .4481 .6107 .4541 .5837 .4458 .5823 .4815 .6885

W
ea

th
er 96 .1617 .1723 .1634 .1728 .1793 .1924 .1803 .1927 .1737 .1822 .1651 .1741

192 .2088 .2214 .2108 .2181 .2217 .2363 .2237 .2367 .2189 .2269 .2120 .2289
336 .2515 .2752 .2488 .2809 .2626 .2951 .2642 .2946 .2587 .2845 .2737 .2728
720 .2730 .3274 .2713 .3316 .2708 .3356 .2708 .3361 .2692 .3298 .2855 .3364

G.3 ADAPTER ARCHITECTURE COMPARISON

This experiment was conducted to compare the performance and computational efficiency of single
linear adapters versus 2-layer MLP adapters with 64 hidden dimensions. We aimed to determine
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Table 15: Prediction accuracy comparison of single linear adapter and 2-layer MLP adapter.

Transformer-based Linear-based MLP-based Transformer-based Linear-based MLP-based

iTransformer PatchTST DLinear OLS FreTS MICN iTransformer PatchTST DLinear OLS FreTS MICN

Linear MLP Linear MLP Linear MLP Linear MLP Linear MLP Linear MLP Linear MLP Linear MLP Linear MLP Linear MLP Linear MLP Linear MLP

E
T

T
h1

96 .4363 .4376 .4238 .4267 .4482 .4644 .4372 .4460 .4371 .4412 .4684 .4841 2.35 3.79 2.35 3.83 2.24 3.45 2.15 3.10 2.14 3.49 2.38 3.84
192 .4919 .4968 .4805 .4857 .5050 .5135 .4906 .4980 .4940 .4967 .5328 .5496 2.39 3.73 2.44 3.83 2.23 3.49 2.21 3.42 2.16 3.47 2.59 3.83
336 .5300 .5471 .5320 .5294 .5456 .5501 .5320 .5282 .5351 .5346 .5878 .6067 2.40 3.68 2.43 3.77 2.22 3.53 2.18 3.45 2.32 3.40 2.51 3.91
720 .5638 .6167 .5822 .6350 .5896 .6498 .5733 .6351 .5959 .6558 .6504 .7325 2.39 3.46 2.25 3.49 2.17 3.10 2.23 3.22 2.24 3.11 3.69 4.57

E
T

T
h2

96 .2493 .2517 .2343 .2339 .2281 .2299 .2265 .2269 .2350 .2350 .2485 .2517 2.38 3.76 2.36 3.63 2.19 3.49 2.19 3.43 1.54 3.47 2.37 3.81
192 .2947 .2981 .2608 .2825 .2819 .2828 .2791 .2781 .2824 .2767 .3017 .3094 2.40 3.74 2.44 3.80 2.28 3.51 2.20 3.41 2.24 3.43 2.66 3.85
336 .3339 .3306 .2978 .3127 .3083 .3106 .3043 .3113 .3153 .3168 .3310 .3484 2.48 3.71 2.45 3.77 2.25 3.49 2.17 3.38 2.30 3.47 2.87 3.95
720 .3591 .3931 .3428 .3837 .3477 .3689 .3453 .3750 .3399 .3660 .3885 .4170 2.34 3.40 2.35 3.48 2.21 3.33 2.18 3.24 2.19 3.19 3.72 4.62

E
T

T
m

1 96 .3455 .3522 .3626 .3680 .3475 .3505 .3475 .3489 .3525 .3577 .3831 .3914 8.49 14.08 8.56 14.24 8.14 11.50 8.17 13.16 8.22 13.22 8.33 14.38
192 .4140 .4103 .4258 .4246 .4122 .4147 .4119 .4137 .4212 .4168 .4514 .4470 8.72 14.41 8.67 14.31 8.35 13.25 5.68 13.38 8.57 13.68 9.27 14.39
336 .4643 .4625 .4697 .4709 .4858 .4678 .4749 .4680 .4775 .4708 .5054 .4784 9.07 14.62 9.03 12.04 8.72 13.59 8.86 13.31 8.87 14.17 10.86 15.26
720 .5102 .4927 .4882 .4651 .4991 .4763 .5007 .4774 .4982 .4814 .5225 .4888 9.64 15.32 8.72 12.74 9.32 14.00 9.36 14.31 9.60 14.62 16.05 20.23

E
T

T
m

2 96 .1632 .1632 .1562 .1569 .1586 .1582 .1586 .1587 .1569 .1571 .1704 .1703 8.51 11.73 8.72 14.41 8.34 13.23 8.06 13.04 8.45 9.13 8.25 14.35
192 .2173 .2140 .2022 .1978 .1905 .1880 .1907 .1884 .1908 .1850 .2120 .2039 8.75 14.35 8.77 14.38 8.32 13.31 5.27 13.28 8.51 13.65 9.32 14.42
336 .2535 .2412 .2352 .2283 .2242 .2103 .2226 .2142 .2211 .2092 .2351 .2331 8.10 14.64 9.10 14.56 8.84 13.50 8.89 13.57 8.86 13.64 10.80 15.24
720 .2606 .2759 .2645 .2711 .2316 .2532 .2349 .2551 .2314 .2477 .2643 .2709 7.74 15.14 9.51 15.04 9.29 13.86 9.32 14.26 9.50 14.48 16.04 20.21

E
xc

ha
ng

e
R

at
e

96 .0837 .0869 .0788 .0838 .0834 .0890 .0773 .0789 .0766 .0803 .1008 .1106 1.38 2.01 1.38 1.99 1.22 1.79 1.20 1.77 1.26 1.81 1.39 2.00
192 .1479 .1730 .1570 .1696 .1519 .1761 .1457 .1570 .1499 .1603 .1722 .1956 1.31 1.89 1.36 1.88 1.17 1.68 1.15 1.69 1.17 1.70 1.42 1.96
336 .2624 .3103 .2445 .2941 .2480 .2872 .2323 .2856 .2461 .2910 .2660 .3399 1.26 1.70 1.32 1.81 1.09 1.57 1.10 1.58 1.10 1.62 1.48 1.60
720 .4460 .8099 .4662 .8268 .4481 .8373 .4541 .7980 .4458 .7983 .4815 .9665 1.09 1.47 1.09 1.43 .91 1.24 .90 1.26 .93 1.27 1.46 1.76

W
ea

th
er 96 .1617 .1691 .1634 .1691 .1793 .1904 .1803 .1904 .1737 .1767 .1651 .1703 13.05 20.86 15.19 23.35 12.81 20.34 12.76 18.41 12.84 20.90 12.88 20.56

192 .2088 .2045 .2108 .2026 .2217 .2285 .2237 .2224 .2189 .2120 .2120 .2070 13.33 20.79 15.33 23.72 13.10 20.43 12.89 20.55 13.12 20.72 13.92 20.44
336 .2515 .2390 .2488 .2360 .2626 .2469 .2642 .2499 .2587 .2440 .2737 .2386 13.69 21.12 15.93 24.21 13.49 20.83 13.43 20.98 13.53 20.96 14.31 22.14
720 .2730 .2752 .2713 .2660 .2708 .2764 .2708 .2785 .2692 .2737 .2855 .2582 14.68 17.06 16.71 25.44 14.05 21.26 14.36 21.61 14.41 21.81 18.09 26.57

Average .3218 .3438 .3166 .3383 .3196 .3425 .3158 .3368 .3176 .3369 .3421 .3696 6.16 9.60 6.60 10.21 6.04 9.28 5.79 9.28 6.09 9.35 7.36 10.75

whether more complex architectures necessarily guarantee better performance. Table 15 provides a
comprehensive performance and efficiency comparison between linear and MLP adapters.

The comparative analysis reveals that single linear adapters achieve performance comparable to or
superior to 2-layer MLP adapters while requiring significantly reduced computational resources.
Although MLP adapters occasionally demonstrated slight performance improvements, the 1.5∼2×
computational overhead renders them impractical for real-time adaptation scenarios. These results
validate the architectural design principle of COSA that emphasizes simplicity without compromis-
ing effectiveness.

G.4 COMPARISON WITH VARIOUS LEARNING-RATE SCHEDULERS

To validate the effectiveness of CALR, we compared it against several official PyTorch learning-rate
schedulers: CosineAnnealingLR, ExponentialLR, ReduceLROnPlateau, StepLR, and a fixed learn-
ing rate. All schedulers were configured with the same base learning rate of 0.005 for a fair compar-
ison. One-Cycle, although widely used, was excluded because it requires a predefined learning-rate
schedule; in a streaming TTA scenario where samples arrive continuously and the batch size changes
dynamically under PAAS, such predefinition is not feasible.

As summarized in Table 16, each scheduler achieves improvements in some individual cases. How-
ever, when results are averaged across all datasets and prediction lengths, the proposed CALR
achieves the best or second-best accuracy in the vast majority of settings. These findings support
CALR’s stability-induced design and its suitability for non-stationary TTA environments.

G.5 EXTENTION TO MULTIVARIATE TIME-SERIES FORECASTING

COSA is originally introduced as an output-space residual correction module, treating each variable
as an independent univariate forecasting task, for fair comparison with existing SOTA methods that
assume univariate forecasting. However, in real multivariate time-series settings, correlations among
variables may influence drift patterns, suggesting that modeling cross-variable interactions could
potentially benefit COSA. Basically, can be extended to multivariate forecasting; to examine this
possibility, we implemented it.

We first incorporate Cross-Variable Context Attention, allowing the context of each variable to ref-
erence information from other variables and thereby capture correlation-driven contextual interac-
tions. Additionally, we introduce a mixed structure composed of a low-rank shared component and
variable-specific components: the shared component captures drift patterns common across variables

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 16: Prediction accuracy comparison with various learning rate schedulers.

Transformer-based Linear-based MLP-based
iTransformer DLinear FreTS

CALR Cosine Exp Fixed Plateau Step CALR Cosine Exp Fixed Plateau Step CALR Cosine Exp Fixed Plateau Step

E
T

T
h1

96 .4363 .4858 .4961 .4848 .4848 .4885 .4482 .4498 .4556 .4513 .4513 .4537 .4371 .4400 .4441 .4398 .4398 .4405
192 .4919 .5405 .5613 .5413 .5413 .5426 .5050 .5069 .5183 .5090 .5090 .5110 .4940 .4914 .5002 .4915 .4915 .4931
336 .5300 .5741 .5952 .5751 .5751 .5826 .5456 .5560 .5714 .5586 .5586 .5642 .5351 .5429 .5570 .5442 .5442 .5494
720 .5638 .6216 .6835 .6163 .6163 .6336 .5896 .6033 .6511 .5953 .5953 .6166 .5959 .6116 .6593 .6041 .6041 .6200

E
T

T
h2

96 .2493 .2984 .3021 .2984 .2984 .2987 .2281 .2308 .2287 .2321 .2321 .2333 .2350 .2378 .2359 .2376 .2376 .2372
192 .2947 .3386 .3520 .3399 .3400 .3394 .2819 .2823 .2811 .2836 .2836 .2845 .2824 .2837 .2827 .2834 .2834 .2831
336 .3339 .3823 .3992 .3856 .3856 .3802 .3083 .3078 .3093 .3104 .3105 .3081 .3153 .3115 .3151 .3131 .3131 .3087
720 .3591 .4094 .4278 .4113 .4113 .4070 .3477 .3490 .3562 .3462 .3463 .3488 .3399 .3421 .3524 .3391 .3389 .3387

E
T

T
m

1 96 .3455 .4006 .4087 .3978 .3978 .4048 .3475 .3501 .3610 .3497 .3497 .3569 .3525 .3548 .3567 .3539 .3539 .3555
192 .4140 .4650 .4772 .4630 .4630 .4683 .4122 .4140 .4283 .4146 .4146 .4191 .4212 .4236 .4279 .4231 .4230 .4246
336 .4643 .5110 .5286 .5100 .5100 .5160 .4858 .4828 .5028 .4838 .4838 .4875 .4775 .4740 .4821 .4740 .4740 .4750
720 .5102 .5321 .5732 .5350 .5349 .5392 .4991 .4861 .5153 .4889 .4889 .4915 .4982 .4923 .5073 .4950 .4950 .4951

E
T

T
m

2 96 .1632 .2138 .2140 .2139 .2139 .2136 .1586 .1621 .1591 .1629 .1629 .1646 .1569 .1611 .1572 .1604 .1604 .1606
192 .2173 .2697 .2705 .2692 .2693 .2704 .1905 .1948 .1916 .1955 .1956 .1973 .1908 .1958 .1921 .1951 .1951 .1955
336 .2535 .3028 .3125 .3047 .3045 .3065 .2242 .2305 .2268 .2310 .2310 .2324 .2211 .2285 .2247 .2276 .2276 .2278
720 .2606 .3000 .3159 .2987 .2986 .2966 .2316 .2369 .2383 .2405 .2405 .2348 .2314 .2388 .2397 .2405 .2403 .2334

E
xc

ha
ng

e
R

at
e

96 .0837 .1335 .1344 .1335 .1335 .1334 .0834 .0865 .0848 .0873 .0873 .0886 .0766 .0800 .0775 .0794 .0794 .0792
192 .1479 .1961 .2025 .1960 .1960 .1952 .1519 .1523 .1552 .1533 .1533 .1542 .1499 .1518 .1545 .1513 .1513 .1505
336 .2624 .3120 .3495 .3116 .3117 .3102 .2480 .2521 .2710 .2528 .2527 .2535 .2461 .2501 .2735 .2491 .2492 .2484
720 .4460 .4481 .6222 .4498 .4460 .4448 .4481 .4185 .5919 .4164 .4162 .4179 .4458 .4128 .5679 .4072 .4063 .4068

W
ea

th
er 96 .1617 .2118 .2151 .2115 .2115 .2123 .1793 .1824 .1827 .1827 .1827 .1858 .1737 .1770 .1767 .1761 .1761 .1776

192 .2088 .2514 .2592 .2517 .2517 .2517 .2217 .2226 .2270 .2232 .2232 .2259 .2189 .2201 .2235 .2191 .2192 .2204
336 .2515 .2916 .3063 .2949 .2948 .2920 .2626 .2510 .2622 .2532 .2532 .2541 .2587 .2497 .2606 .2505 .2505 .2496
720 .2730 .3230 .3460 .3225 .3225 .3267 .2708 .2774 .2965 .2802 .2802 .2810 .2692 .2726 .2921 .2755 .2755 .2725

PatchTST OLS MICN

CALR Cosine Exp Fixed Plateau Step CALR Cosine Exp Fixed Plateau Step CALR Cosine Exp Fixed Plateau Step

E
T

T
h1

96 .4238 .4723 .4294 .5723 .4923 .4232 .4372 .4375 .4448 .4401 .4401 .4413 .4684 .4739 .4904 .4708 .4708 .4769
192 .4805 .5307 .4958 .6301 .5501 .4838 .4906 .4912 .5041 .4944 .4944 .4951 .5328 .5320 .5709 .5297 .5298 .5390
336 .5320 .5851 .5535 .6826 .6026 .5396 .5320 .5342 .5515 .5384 .5384 .5424 .5878 .5864 .6417 .5861 .5861 .5974
720 .5822 .6412 .6553 .7330 .6533 .6031 .5733 .5872 .6371 .5808 .5808 .5987 .6504 .6726 .8268 .6506 .6506 .6977

E
T

T
h2

96 .2343 .2840 .2352 .3839 .3039 .2345 .2265 .2275 .2268 .2301 .2300 .2296 .2485 .2499 .2499 .2521 .2521 .2466
192 .2608 .3114 .2641 .4092 .3292 .2617 .2791 .2804 .2804 .2828 .2828 .2823 .3017 .2990 .3077 .3025 .3026 .2960
336 .2978 .3514 .3086 .4543 .3743 .2993 .3043 .3030 .3064 .3063 .3063 .3029 .3310 .3303 .3399 .3388 .3388 .3243
720 .3428 .3913 .3663 .4951 .4151 .3485 .3453 .3487 .3589 .3473 .3472 .3476 .3885 .3965 .4019 .3929 .3929 .3884

E
T

T
m

1 96 .3626 .4104 .3741 .5183 .4383 .3655 .3475 .3487 .3608 .3495 .3495 .3552 .3831 .3912 .3982 .3900 .3900 .3913
192 .4258 .4747 .4427 .5764 .4964 .4315 .4119 .4125 .4283 .4142 .4142 .4174 .4514 .4533 .4641 .4524 .4524 .4541
336 .4697 .5149 .4825 .6203 .5403 .4700 .4749 .4706 .4920 .4728 .4728 .4751 .5054 .5053 .5249 .5048 .5048 .5079
720 .4882 .5349 .5077 .6391 .5550 .4877 .5007 .4831 .5136 .4873 .4873 .4882 .5225 .5152 .5443 .5188 .5188 .5185

E
T

T
m

2 96 .1562 .2065 .1566 .3064 .2265 .1566 .1586 .1608 .1590 .1627 .1627 .1630 .1704 .1742 .1709 .1762 .1763 .1709
192 .2022 .2527 .2056 .3532 .2732 .2034 .1907 .1933 .1914 .1954 .1953 .1956 .2120 .2154 .2138 .2180 .2180 .2122
336 .2352 .2863 .2367 .3863 .3063 .2363 .2226 .2278 .2256 .2298 .2298 .2298 .2351 .2383 .2365 .2408 .2408 .2354
720 .2645 .3145 .2692 .4114 .3314 .2619 .2349 .2390 .2417 .2445 .2445 .2367 .2643 .2628 .2672 .2647 .2647 .2565

E
xc

ha
ng

e
R

at
e

96 .0788 .1278 .0802 .2278 .1478 .0776 .0773 .0789 .0780 .0809 .0809 .0808 .1008 .1031 .1027 .1051 .1051 .0994
192 .1570 .2051 .1642 .3052 .2251 .1544 .1457 .1452 .1490 .1474 .1473 .1466 .1722 .1715 .1779 .1735 .1735 .1670
336 .2445 .2966 .2780 .3962 .3164 .2448 .2323 .2331 .2578 .2349 .2348 .2334 .2660 .2730 .3114 .2745 .2745 .2675
720 .4662 .4743 .5963 .5724 .4923 .4218 .4541 .4224 .5806 .4190 .4190 .4189 .4815 .4515 .6597 .4488 .4511 .4460

W
ea

th
er 96 .1634 .2124 .1651 .3124 .2324 .1629 .1803 .1822 .1840 .1838 .1838 .1855 .1651 .1678 .1669 .1695 .1695 .1644

192 .2108 .2564 .2122 .3569 .2769 .2065 .2237 .2232 .2290 .2250 .2250 .2263 .2120 .2096 .2105 .2109 .2109 .2050
336 .2488 .2924 .2540 .3950 .3150 .2419 .2642 .2618 .2743 .2651 .2651 .2647 .2737 .2545 .2599 .2556 .2556 .2499
720 .2713 .3230 .2913 .4275 .3475 .2737 .2708 .2783 .2987 .2824 .2824 .2817 .2855 .2864 .3035 .2959 .2959 .2906

in an efficient low-dimensional form, while the specific components model idiosyncratic behavior
unique to each variable. These two components are combined through a learnable mixing coefficient
that automatically balances global and variable-specific contributions.

Table 17a presents the comparison results. For datasets where meaningful cross-variable dependen-
cies exist, the multivariate structure achieves higher predictive accuracy than the univariate version
of COSA. However, for datasets with weak inter-variable correlations, such as the Exchange Rate,
the univariate structure remains more stable. In such cases, the shared component struggles to learn
useful common patterns, which can lead to performance degradation. Moreover, as shown in Ta-
ble 17b, the additional complexity leads to increased adaptation time and inference latency.
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These results indicate that multivariate-based correlation modeling can indeed provide accuracy
gains, but further design improvements are required for effective deployment under TTA constraints.
We discuss these limitations and potential future directions in Section H.

Table 17: Prediction accuracy and overhead of multivariate consideration.

(a) Prediction accuracy.

Transformer-based Linear-based MLP-based

iTransformer PatchTST DLinear OLS FreTS MICN

Indiv. Corr. Indiv. Corr. Indiv. Corr. Indiv. Corr. Indiv. Corr. Indiv. Corr.

E
T

T
h1

96 .4363 .4351 .4238 .4157 .4482 .4202 .4372 .4388 .4371 .4408 .4684 .4533
192 .4919 .4762 .4805 .4589 .5050 .4646 .4906 .4806 .4940 .4769 .5328 .5039
336 .5300 .4759 .5320 .4798 .5456 .4823 .5320 .4884 .5351 .4987 .5878 .5105
720 .5638 .4371 .5822 .5244 .5896 .4695 .5733 .4660 .5959 .4954 .6504 .5314

E
T

T
h2

96 .2493 .2453 .2343 .1836 .2281 .2342 .2265 .2249 .2350 .2311 .2485 .2411
192 .2947 .2871 .2608 .2172 .2819 .2578 .2791 .2770 .2824 .2922 .3017 .2923
336 .3339 .3341 .2978 .2361 .3083 .2866 .3043 .2911 .3153 .2971 .3310 .3122
720 .3591 .3306 .3428 .2638 .3477 .3094 .3453 .3083 .3399 .2979 .3885 .3441

E
T

T
m

1 96 .3455 .3186 .3626 .3595 .3475 .3335 .3475 .3330 .3525 .3381 .3831 .3385
192 .4140 .3988 .4258 .4159 .4122 .4058 .4119 .4125 .4212 .4153 .4514 .4188
336 .4643 .4491 .4697 .4739 .4858 .4561 .4749 .4648 .4775 .4618 .5054 .4628
720 .5102 .4372 .4882 .4892 .4991 .4406 .5007 .4323 .4982 .4533 .5225 .4496

E
T

T
m

2 96 .1632 .1633 .1562 .1195 .1586 .1557 .1586 .1574 .1569 .1560 .1704 .1697
192 .2173 .2141 .2022 .1526 .1905 .2005 .1907 .1935 .1908 .1921 .2120 .2097
336 .2535 .2347 .2352 .1783 .2242 .2235 .2226 .2145 .2211 .2149 .2351 .2429
720 .2606 .2110 .2645 .2162 .2316 .2295 .2349 .2006 .2314 .2022 .2643 .2265

E
xc

ha
ng

e
R

at
e

96 .0837 .0840 .0788 .0851 .0834 .0791 .0773 .0773 .0766 .0765 .1008 .0995
192 .1479 .1493 .1570 .1828 .1519 .1609 .1457 .1457 .1499 .1516 .1722 .1726
336 .2624 .2838 .2445 .3162 .2480 .2599 .2323 .2456 .2461 .2627 .2660 .2955
720 .4460 .5221 .4662 .7731 .4481 .5280 .4541 .5184 .4458 .5079 .4815 .5711

W
ea

th
er 96 .1617 .1547 .1634 .1656 .1793 .1566 .1803 .1731 .1737 .1673 .1651 .1591

192 .2088 .1938 .2108 .2073 .2217 .2003 .2237 .2158 .2189 .2095 .2120 .1979
336 .2515 .2300 .2488 .2539 .2626 .2321 .2642 .2461 .2587 .2331 .2737 .2565
720 .2730 .2236 .2713 .2868 .2708 .2254 .2708 .2172 .2692 .2165 .2855 .2420

(b) Overhead analysis.

Method # Params ↓ Adaptation time/batch (ms) ↓ Inference time/batch (ms) ↓ Average MSE ↓
Univariate 1,211,287 80.12 ± 13.58 1.25 ± .0984 .3240

Multivariate 1,214,851 186.28 ± 15.36 6.35 ± .2452 .3071

G.6 EXTENSION TO VECTOR GATING

To evaluate whether finer-grained control over correction strength could provide additional benefits,
we implemented an element-wise gating vector as an extension of the scalar gating mechanism in
COSA. This vector shares the same dimensionality as the prediction length, allowing each time step
within the prediction window to modulate its correction intensity independently. Such a design is
intended to handle scenarios where drift occurs in only a specific portion of the horizon.

However, as shown in Table 18a, vector gating yields degraded overall accuracy compared to the
original scalar gating, and also exhibits reduced stability. We attribute this performance degradation
to the propagation of local noise: a noise spike at a particular horizon position can influence the
entire gating vector over successive adaptation steps, causing cumulative negative impact throughout
the correction process. In contrast, scalar gating provides consistent batch-level modulation that
effectively bounds the influence of noise and maintains stable behavior across adaptation windows.

G.7 VISUALIZATION OF NORMALIZATION

Figure 7 visualizes the learned weights of the linear layer in COSA with and without representative
time-series normalization modules (RevIN (Kim et al., 2021) and DDN (Dai et al., 2024)).
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Table 18: Prediction accuracy and overhead of vector gating.

(a) Performance comparison.

iTransformer DLinear FreTS

Scalar Vector Scalar Vector Scalar Vector

E
T

T
h1

96 .4363 .4336 .4574 .4436 .4371 .4336
192 .4919 .4875 .5066 .4985 .4940 .4905
336 .5300 .5430 .5528 .5466 .5467 .5353
720 .5638 .6013 .6107 .6178 .6259 .6236

E
T

T
h2

96 .2493 .1990 .2281 .1798 .2350 .1842
192 .2947 .2318 .2819 .2198 .2972 .2202
336 .3339 .2604 .3083 .2472 .3153 .2501
720 .3591 .3035 .3477 .2893 .3399 .2898

E
T

T
m

1 96 .3455 .3611 .3456 .3425 .3525 .3551
192 .4140 .4119 .4222 .4068 .4212 .4137
336 .4643 .4720 .4858 .4706 .4775 .4767
720 .5102 .5484 .4991 .5370 .4982 .5405

E
T

T
m

2 96 .1632 .1245 .1583 .1215 .1569 .1202
192 .2173 .1683 .1943 .1487 .1934 .1484
336 .2535 .2010 .2242 .1798 .2211 .1795
720 .2606 .2488 .2316 .2319 .2314 .2280

E
xc

ha
ng

e
R

at
e

96 .0837 .0875 .0834 .0903 .0766 .0818
192 .1479 .1774 .1519 .1790 .1499 .1698
336 .2624 .3258 .2480 .3134 .2461 .3094
720 .4460 .7649 .4481 .7904 .4458 .7500

W
ea

th
er 96 .1617 .1718 .1793 .1908 .1737 .1825

192 .2088 .2176 .2217 .2326 .2189 .2250
336 .2515 .2706 .2626 .2808 .2587 .2745
720 .2730 .3359 .2708 .3418 .2692 .3378

(b) Overhead analysis.

Method # Params ↓ Adaptation time/batch (ms) ↓ Inference time/batch (ms) ↓ Average MSE ↓
Scalar 1,211,287 80.12 ± 13.58 1.25 ± .0984 .3240
Vector 1,212,446 96.34 ± 12.48 1.89 ± .0745 .3287

RevIN performs standard normalization on each input time series and then applies a correspond-
ing denormalization step on the output. This procedure mitigates train–test distribution mismatch
while restoring the information removed during normalization at the prediction stage, preventing
degradation in forecasting performance.

DDN, in contrast, operates jointly in the time and frequency domains. It decomposes the input into
low-frequency and high-frequency components and computes local statistics from each domain to
remove non-stationarity. DDN then reconstructs non-stationary patterns in the predicted outputs
using distribution statistics estimated from the model’s predictions, enabling dynamic tracking of
distribution drift.

Each heatmap entry (i, j) shows the weight connecting the j-th input to the i-th output; columns
1:L correspond to the original prediction of base model Y(0) and columns L+1:L+K to the context
vector C. The example is taken from a single variable of ETTh1 with look-back W=96 and hori-
zon L=96. Notably, the rightmost block (context columns) is strongly attenuated when RevIN or
DDN is applied, whereas without a normalizer, the same block exhibits structured, non-negligible
weights. This pattern indicates that explicit normalization reduces the marginal utility of the context
(level/scale cues are already standardized), while in the non-normalized COSA leverages C to per-
form level-shift correction directly in the output space—supporting our claim that the adapter can
subsume normalization effects when needed and remain compatible with them when present.
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Figure 7: Weight heatmaps of the COSA linear layer for one ETTH1 variable (W=96, L=96).
Columns 1:L are base-prediction inputs Y(0); columns L+1:L+K are context inputs C. Each cell
shows the weight from input j to output i. Color scales are kept identical across panels to allow
magnitude comparison.

H DISCUSSION

Although COSA is built around a simple output-space linear adapter, the extended experiments in
the Appendix examined multiple alternative design choices. While low-rank adaptation, input-side
calibration, vector gating, selective/encoder-based context, and multivariate extensions each provide
potential benefits in specific scenarios, our overall findings show that, considering average accuracy,
stability, and latency, the architecture adopted in this paper remains the most consistent and robust
choice for TSF-TTA.

The key observations are summarized below:

• Low-rank factorization. Despite its parameter-efficiency appeal, reducing representa-
tional capacity can lead to unstable adaptation. A joint adapter that integrates low-rank
structure without compromising stability is a meaningful direction for future work.

• Input-side calibration (GCM). Combining COSA with input GCM improves perfor-
mance on datasets with strong input noise (e.g., ETTh1/h2/m2) by smoothing perturbations
before prediction. However, for fast-drifting or irregular series, GCM may oversmooth im-
portant variations and degrade performance, reaffirming that output-only correction is a
reasonable and stable default.

• Gating and its variants. Although vector gating was expected to modulate drift at a finer
temporal resolution, local noise propagated across the gating vector and reduced stability
compared to scalar gating. Scalar gating’s batch-level modulation limits the influence of
noise and achieves more reliable behavior.

• Context construction. Selective context (phase-aligned retrieval) and encoder-based con-
text (RNN/LSTM/Attention) showed improvements in certain periodic datasets, but both
suffered from outdated information, overfitting, or latency overhead in non-stationary set-
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tings. These results highlight that additional complexity does not guarantee better TTA per-
formance unless paired with drift-aware representations and online update strategies. Fu-
ture directions include sub-sequence vector gating, structure-aware context that explicitly
encodes trend and seasonality, and lightweight encoders capable of tracking drift without
incurring high overhead.

• Multivariate residual correction. While multivariate modeling with cross-variable atten-
tion and shared components improved performance in most datasets, it degraded both accu-
racy and efficiency in datasets with weak inter-variable correlations (e.g., Exchange Rate).
This suggests the need for selective correlation modeling or structural sparsity to suppress
unnecessary cross-variable interactions.

Taken together, the extended Appendix experiments reinforce that the proposed simple architecture
is particularly well-suited for TSF-TTA. They also indicate substantial room for generalizing COSA
through carefully integrated low-rank structures, input calibration modules, selective or encoder-
based context modeling, and vector gating, while preserving the efficiency and stability crucial for
non-stationary test-time adaptation.

I CONFIDENCE INTERVAL OF MAIN RESULTS

Table 19 reports the 95% confidence intervals of the main accuracy comparison results over 10
independent runs for each method–dataset–horizon combination. Overall, the intervals are narrow,
indicating that the run-to-run variability of all methods is small, and COSA-F/P consistently retain
their advantage over baselines even when accounting for this uncertainty.

THE USE OF LARGE LANGUAGE MODELS

Tool & Version: Claude Sonnet 4 (Anthropic, 2025-09)
Research Stage: Not used.
Writing Stage: Language editing of author-drafted text for clarity and conciseness.
Human Oversight: All outputs reviewed/edited by the authors; authors accept full responsibility
for the content.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Ta
bl

e
19

:9
5%

co
nfi

de
nc

e
in

te
rv

al
of

m
ai

n
ac

cu
ra

cy
co

m
pa

ri
si

on
re

su
lts

Tr
an

sf
or

m
er

-b
as

ed
L

in
ea

r-
ba

se
d

M
L

P-
ba

se
d

iT
ra

ns
fo

rm
er

Pa
tc

hT
ST

D
L

in
ea

r
O

L
S

Fr
eT

S
M

IC
N

TA
FA

S
PE

T
SA

C
O

SA
-F

C
O

SA
-P

TA
FA

S
PE

T
SA

C
O

SA
-F

C
O

SA
-P

TA
FA

S
PE

T
SA

C
O

SA
-F

C
O

SA
-P

TA
FA

S
PE

T
SA

C
O

SA
-F

C
O

SA
-P

TA
FA

S
PE

T
SA

C
O

SA
-F

C
O

SA
-P

TA
FA

S
PE

T
SA

C
O

SA
-F

C
O

SA
-P

ETTh1

96
.4

40
9

-.
44

13
.4

39
0

-.
43

96
.4

36
6

-.
43

70
.4

36
1

-.
43

65
.4

24
3

-.
42

81
.4

24
7

-.
42

91
.4

22
6

-.
42

58
.4

22
2

-.
42

54
.4

61
6

-.
46

20
.4

59
2

-.
45

96
.4

57
1

-.
45

77
.4

57
1

-.
45

77
.4

40
5

-.
44

13
.4

38
5

-.
43

97
.4

38
5

-.
43

95
.4

36
7

-.
43

77
.4

39
7

-.
44

09
.4

38
1

-.
43

93
.4

37
7

-.
43

91
.4

36
5

-.
43

77
.4

89
0

-.
49

12
.4

88
6

-.
49

10
.4

68
3

-.
47

03
.4

68
2

-.
47

04

19
2

.4
91

6
-.

49
40

.4
93

7
-.

49
61

.4
94

8
-.

49
74

.4
90

8
-.

49
30

.4
83

0
-.

49
00

.4
82

5
-.

48
83

.4
80

5
-.

48
55

.4
77

5
-.

48
35

.5
08

8
-.

51
46

.5
07

9
-.

51
57

.5
02

9
-.

51
03

.5
03

2
-.

51
00

.4
92

0
-.

49
48

.4
92

1
-.

49
53

.4
90

1
-.

49
29

.4
89

2
-.

49
20

.4
91

8
-.

49
90

.4
90

5
-.

49
79

.4
92

2
-.

49
80

.4
90

6
-.

49
74

.5
61

5
-.

56
19

.5
61

9
-.

56
21

.5
37

0
-.

53
74

.5
37

0
-.

53
74

33
6

.5
58

0
-.

56
78

.5
58

6
-.

56
94

.5
60

4
-.

56
98

.5
24

8
-.

53
52

.5
44

4
-.

55
12

.5
44

1
-.

55
09

.5
39

9
-.

54
77

.5
28

8
-.

53
52

.5
58

7
-.

56
21

.5
60

1
-.

56
33

.5
50

8
-.

55
48

.5
51

1
-.

55
45

.5
42

0
-.

54
60

.5
44

4
-.

54
86

.5
36

8
-.

54
02

.5
36

7
-.

54
03

.5
50

5
-.

55
37

.5
51

1
-.

55
43

.5
44

8
-.

54
86

.5
45

1
-.

54
83

.6
33

2
-.

64
42

.6
37

1
-.

64
69

.5
89

0
-.

60
10

.5
89

7
-.

60
03

72
0

.6
58

1
-.

66
43

.6
57

0
-.

66
22

.5
93

6
-.

59
80

.5
61

2
-.

56
64

.6
80

5
-.

69
15

.6
76

2
-.

68
82

.6
06

2
-.

61
64

.5
76

0
-.

58
84

.6
71

2
-.

69
28

.6
65

4
-.

68
32

.6
00

3
-.

62
11

.6
00

0
-.

62
14

.6
51

3
-.

67
47

.6
32

2
-.

65
40

.5
86

5
-.

60
73

.5
85

9
-.

60
79

.6
67

8
-.

70
26

.6
66

5
-.

70
27

.6
12

8
-.

63
90

.6
09

9
-.

64
19

.8
00

6
-.

82
78

.8
22

3
-.

85
27

.6
82

2
-.

71
80

.6
83

6
-.

71
66

ETTh2

96
.2

54
6

-.
25

52
.2

54
8

-.
25

54
.2

50
2

-.
25

06
.2

49
0

-.
24

96
.2

34
7

-.
23

55
.2

35
8

-.
23

66
.2

34
5

-.
23

53
.2

33
9

-.
23

47
.2

29
8

-.
23

08
.2

30
0

-.
23

12
.2

29
5

-.
23

05
.2

27
5

-.
22

87
.2

27
0

-.
23

00
.2

27
3

-.
23

03
.2

21
7

-.
22

47
.2

24
8

-.
22

82
.2

36
3

-.
23

71
.2

36
0

-.
23

68
.2

36
1

-.
23

73
.2

34
4

-.
23

56
.2

54
9

-.
25

53
.2

55
0

-.
25

54
.2

49
0

-.
24

94
.2

48
4

-.
24

86

19
2

.2
99

7
-.

30
23

.2
99

0
-.

30
22

.2
97

0
-.

29
96

.2
93

4
-.

29
60

.2
73

4
-.

27
82

.2
74

7
-.

27
99

.2
63

4
-.

26
96

.2
57

9
-.

26
37

.2
82

8
-.

28
56

.2
86

4
-.

28
88

.2
81

3
-.

28
41

.2
80

7
-.

28
31

.2
80

1
-.

28
47

.2
82

7
-.

28
69

.2
77

5
-.

28
17

.2
76

9
-.

28
13

.2
80

9
-.

28
39

.2
81

2
-.

28
52

.2
79

8
-.

28
34

.2
95

6
-.

29
88

.3
16

7
-.

31
91

.3
24

9
-.

32
67

.3
03

9
-.

30
59

.3
00

6
-.

30
28

33
6

.3
32

0
-.

33
84

.3
31

1
-.

33
85

.3
21

5
-.

32
67

.3
30

8
-.

33
70

.3
09

1
-.

31
59

.3
09

8
-.

31
66

.2
94

0
-.

30
02

.2
94

9
-.

30
07

.3
11

6
-.

32
54

.3
12

4
-.

32
44

.2
98

5
-.

31
15

.3
02

1
-.

31
45

.3
17

0
-.

31
94

.3
17

9
-.

31
99

.2
99

0
-.

30
16

.3
03

2
-.

30
54

.3
20

1
-.

32
57

.3
20

7
-.

32
59

.3
00

8
-.

30
54

.3
12

9
-.

31
77

.3
44

8
-.

35
16

.3
45

7
-.

35
37

.3
20

2
-.

32
80

.3
27

4
-.

33
46

72
0

.3
99

5
-.

40
51

.4
02

4
-.

40
62

.3
46

0
-.

35
14

.3
56

7
-.

36
15

.3
95

6
-.

40
54

.3
96

2
-.

40
62

.3
17

7
-.

32
89

.3
38

0
-.

34
76

.3
84

2
-.

39
04

.3
82

4
-.

38
82

.3
03

0
-.

30
94

.3
44

8
-.

35
06

.3
84

1
-.

39
75

.3
83

0
-.

39
38

.3
11

4
-.

32
40

.3
39

0
-.

35
16

.3
81

1
-.

39
03

.3
81

7
-.

39
03

.3
12

4
-.

32
14

.3
35

6
-.

34
42

.4
43

5
-.

45
13

.4
43

7
-.

45
09

.3
61

6
-.

36
84

.3
84

4
-.

39
26

ETTm1

96
.3

55
6

-.
35

60
.3

56
8

-.
35

72
.3

44
5

-.
34

49
.3

45
3

-.
34

57
.3

88
3

-.
39

05
.3

92
7

-.
39

47
.3

61
6

-.
36

34
.3

61
6

-.
36

36
.3

49
6

-.
34

98
.3

52
3

-.
35

25
.3

45
5

-.
34

57
.3

45
5

-.
34

57
.3

50
5

-.
35

07
.3

53
5

-.
35

37
.3

45
3

-.
34

55
.3

45
3

-.
34

55
.3

58
1

-.
35

83
.3

58
2

-.
35

84
.3

51
9

-.
35

21
.3

52
4

-.
35

26
.3

94
5

-.
39

57
.3

94
6

-.
39

56
.3

83
2

-.
38

42
.3

82
6

-.
38

36

19
2

.4
13

9
-.

41
53

.4
13

6
-.

41
48

.4
11

8
-.

41
30

.4
13

4
-.

41
46

.4
35

1
-.

43
93

.4
39

3
-.

44
33

.4
23

4
-.

42
66

.4
24

1
-.

42
75

.4
15

3
-.

41
79

.4
16

4
-.

41
92

.4
10

3
-.

41
23

.4
21

1
-.

42
33

.4
15

9
-.

41
61

.4
18

3
-.

41
85

.4
11

4
-.

41
16

.4
21

8
-.

42
20

.4
21

0
-.

42
14

.4
19

6
-.

42
00

.4
14

7
-.

41
53

.4
21

0
-.

42
14

.4
55

9
-.

45
73

.4
56

7
-.

45
81

.4
47

0
-.

44
82

.4
50

8
-.

45
20

33
6

.4
71

5
-.

47
93

.4
71

7
-.

47
85

.4
52

2
-.

46
16

.4
60

3
-.

46
83

.4
90

1
-.

49
09

.4
94

2
-.

49
50

.4
56

4
-.

45
72

.4
69

3
-.

47
01

.4
79

2
-.

48
06

.4
79

4
-.

48
12

.4
74

5
-.

47
61

.4
85

0
-.

48
66

.4
77

3
-.

48
01

.4
78

0
-.

48
04

.4
73

5
-.

47
61

.4
83

8
-.

48
60

.4
79

1
-.

48
63

.4
75

4
-.

48
24

.4
63

1
-.

46
91

.4
74

4
-.

48
06

.5
09

9
-.

51
17

.5
07

3
-.

50
91

.4
82

3
-.

48
41

.5
04

5
-.

50
63

72
0

.5
46

0
-.

56
64

.5
42

6
-.

56
80

.4
63

3
-.

49
13

.4
97

7
-.

52
27

.5
41

6
-.

54
38

.5
45

2
-.

54
72

.4
67

2
-.

46
90

.4
87

1
-.

48
93

.5
41

5
-.

55
61

.5
45

9
-.

56
05

.4
69

2
-.

48
56

.4
92

3
-.

50
59

.5
42

4
-.

55
32

.5
46

4
-.

55
80

.4
69

9
-.

48
27

.4
94

4
-.

50
70

.5
44

2
-.

55
30

.5
44

2
-.

55
10

.4
66

9
-.

47
67

.4
94

1
-.

50
23

.5
68

6
-.

58
26

.5
70

9
-.

58
47

.4
94

5
-.

51
13

.5
15

2
-.

52
98

ETTm2

96
.1

63
0

-.
16

38
.1

63
3

-.
16

41
.1

62
3

-.
16

31
.1

62
8

-.
16

36
.1

57
7

-.
15

85
.1

57
9

-.
15

87
.1

55
5

-.
15

61
.1

55
9

-.
15

65
.1

57
8

-.
15

90
.1

57
8

-.
15

90
.1

57
7

-.
15

89
.1

57
7

-.
15

89
.1

58
8

-.
15

92
.1

58
7

-.
15

91
.1

58
0

-.
15

84
.1

58
0

-.
15

84
.1

57
1

-.
15

73
.1

57
1

-.
15

73
.1

56
7

-.
15

69
.1

56
8

-.
15

70
.1

71
0

-.
17

12
.1

72
9

-.
17

31
.1

70
1

-.
17

03
.1

70
3

-.
17

05

19
2

.2
17

7
-.

21
89

.2
16

7
-.

21
79

.2
16

5
-.

21
77

.2
16

7
-.

21
79

.2
02

6
-.

20
46

.2
02

7
-.

20
47

.1
99

8
-.

20
16

.2
01

3
-.

20
31

.1
90

9
-.

19
17

.1
90

9
-.

19
17

.1
90

1
-.

19
07

.1
93

9
-.

19
47

.1
90

8
-.

19
34

.1
90

5
-.

19
33

.1
89

5
-.

19
17

.1
94

8
-.

19
74

.1
90

5
-.

19
13

.1
90

4
-.

19
12

.1
90

1
-.

19
09

.1
93

0
-.

19
38

.2
10

1
-.

21
03

.2
12

5
-.

21
27

.2
10

0
-.

21
04

.2
12

3
-.

21
25

33
6

.2
61

6
-.

26
44

.2
57

6
-.

26
08

.2
42

0
-.

24
50

.2
52

1
-.

25
49

.2
44

7
-.

24
55

.2
44

8
-.

24
56

.2
25

5
-.

22
61

.2
34

8
-.

23
56

.2
27

7
-.

23
01

.2
28

1
-.

23
03

.2
07

0
-.

20
96

.2
23

0
-.

22
54

.2
28

6
-.

23
12

.2
28

7
-.

23
17

.2
11

8
-.

21
44

.2
21

3
-.

22
39

.2
27

6
-.

23
00

.2
27

9
-.

22
99

.2
08

7
-.

21
09

.2
20

0
-.

22
22

.2
49

2
-.

25
10

.2
51

1
-.

25
29

.2
32

8
-.

23
46

.2
54

3
-.

25
59

72
0

.3
28

5
-.

33
25

.3
31

2
-.

33
52

.2
45

3
-.

25
01

.2
58

5
-.

26
27

.3
26

1
-.

32
75

.3
25

0
-.

32
62

.2
43

9
-.

24
53

.2
63

9
-.

26
51

.2
91

4
-.

30
22

.2
91

9
-.

30
07

.2
16

1
-.

22
69

.2
26

0
-.

23
72

.2
89

7
-.

30
75

.2
84

4
-.

30
98

.2
06

9
-.

22
73

.2
23

9
-.

24
59

.2
88

2
-.

29
50

.2
90

0
-.

29
52

.2
12

9
-.

21
87

.2
28

3
-.

23
45

.3
16

6
-.

32
74

.3
07

1
-.

31
91

.2
41

7
-.

25
37

.2
59

0
-.

26
96

Exchange
Rate

96
.0

87
3

-.
08

79
.0

88
3

-.
08

87
.0

81
6

-.
08

20
.0

83
5

-.
08

39
.0

83
5

-.
08

51
.0

82
8

-.
08

46
.0

75
6

-.
07

74
.0

77
9

-.
07

97
.0

88
1

-.
08

89
.0

87
4

-.
08

82
.0

80
9

-.
08

15
.0

83
1

-.
08

37
.0

78
9

-.
07

95
.0

79
5

-.
08

01
.0

75
3

-.
07

59
.0

77
0

-.
07

76
.0

79
3

-.
08

05
.0

79
7

-.
08

09
.0

73
8

-.
07

50
.0

76
1

-.
07

71
.1

07
1

-.
11

03
.1

13
0

-.
11

62
.0

93
6

-.
09

74
.0

99
1

-.
10

25

19
2

.1
64

5
-.

17
27

.1
70

6
-.

17
74

.1
36

3
-.

14
43

.1
44

0
-.

15
18

.1
71

1
-.

18
99

.1
74

2
-.

19
22

.1
39

4
-.

15
34

.1
48

7
-.

16
53

.1
70

8
-.

18
12

.1
67

7
-.

17
83

.1
40

8
-.

15
10

.1
46

4
-.

15
74

.1
60

4
-.

17
12

.1
60

1
-.

17
05

.1
34

4
-.

14
42

.1
40

3
-.

15
11

.1
60

2
-.

17
28

.1
59

4
-.

17
02

.1
30

1
-.

14
31

.1
43

6
-.

15
62

.2
09

4
-.

23
02

.1
92

5
-.

20
73

.1
58

6
-.

17
40

.1
63

3
-.

18
11

33
6

.2
99

5
-.

31
63

.3
02

9
-.

31
65

.2
00

8
-.

21
70

.2
54

6
-.

27
02

.3
18

6
-.

33
64

.3
22

5
-.

33
75

.1
88

6
-.

20
80

.2
35

5
-.

25
35

.2
90

4
-.

29
78

.2
89

1
-.

29
49

.2
01

1
-.

20
67

.2
44

8
-.

25
12

.2
78

7
-.

29
67

.2
82

1
-.

29
75

.1
93

5
-.

21
05

.2
24

4
-.

24
02

.2
81

3
-.

30
47

.2
83

3
-.

30
13

.1
93

6
-.

21
70

.2
35

1
-.

25
71

.2
88

0
-.

32
14

.2
95

9
-.

32
41

.1
98

0
-.

22
58

.2
50

2
-.

28
18

72
0

.8
07

7
-.

85
67

.7
75

8
-.

82
50

.3
08

5
-.

37
57

.4
15

5
-.

47
65

.8
34

8
-.

89
70

.8
31

7
-.

89
69

.3
23

8
-.

38
48

.4
31

2
-.

50
12

.8
42

7
-.

90
97

.8
46

8
-.

90
94

.3
12

3
-.

38
65

.4
14

5
-.

48
17

.7
88

2
-.

83
94

.7
87

6
-.

84
22

.3
13

1
-.

37
57

.4
24

2
-.

48
40

.7
89

5
-.

86
51

.7
71

9
-.

84
15

.3
00

4
-.

37
00

.4
12

0
-.

47
96

.6
81

3
-.

75
69

.7
43

4
-.

81
76

.3
41

7
-.

43
25

.4
41

5
-.

52
15

Weather

96
.1

66
3

-.
16

65
.1

67
3

-.
16

75
.1

59
6

-.
15

98
.1

61
6

-.
16

18
.1

72
1

-.
17

27
.1

74
0

-.
17

46
.1

62
1

-.
16

27
.1

63
1

-.
16

37
.1

79
2

-.
18

00
.1

82
1

-.
18

25
.1

77
1

-.
17

75
.1

79
0

-.
17

96
.1

80
3

-.
18

11
.1

79
2

-.
17

98
.1

76
8

-.
17

76
.1

80
0

-.
18

06
.1

75
5

-.
17

63
.1

76
1

-.
17

69
.1

71
9

-.
17

29
.1

73
3

-.
17

41
.1

85
2

-.
18

54
.1

96
9

-.
19

71
.1

63
5

-.
16

37
.1

65
0

-.
16

52

19
2

.2
07

8
-.

21
24

.2
10

7
-.

21
49

.2
04

5
-.

20
89

.2
06

7
-.

21
09

.2
14

0
-.

21
54

.2
15

9
-.

21
75

.1
99

8
-.

20
14

.2
10

1
-.

21
15

.2
19

0
-.

22
98

.2
19

4
-.

23
14

.2
15

7
-.

22
75

.2
16

2
-.

22
72

.2
19

9
-.

22
89

.2
22

3
-.

23
25

.2
17

7
-.

22
69

.2
19

0
-.

22
84

.2
13

2
-.

21
98

.2
16

0
-.

22
24

.2
10

6
-.

21
64

.2
15

6
-.

22
22

.2
12

6
-.

21
96

.2
23

1
-.

22
99

.2
05

0
-.

21
14

.2
08

9
-.

21
51

33
6

.2
59

5
-.

26
33

.2
64

1
-.

26
89

.2
48

2
-.

25
24

.2
49

4
-.

25
36

.2
59

4
-.

27
38

.2
64

7
-.

27
55

.2
38

2
-.

25
20

.2
42

8
-.

25
48

.2
68

2
-.

27
36

.2
71

9
-.

27
61

.2
54

4
-.

25
90

.2
60

1
-.

26
51

.2
70

3
-.

27
25

.2
73

7
-.

27
59

.2
54

0
-.

25
62

.2
63

0
-.

26
54

.2
61

8
-.

26
88

.2
63

2
-.

27
30

.2
52

6
-.

25
96

.2
54

5
-.

26
29

.2
71

7
-.

27
75

.2
75

7
-.

28
19

.2
70

3
-.

27
55

.2
83

9
-.

28
97

72
0

.3
40

4
-.

35
12

.3
40

5
-.

35
13

.2
41

5
-.

25
45

.2
67

3
-.

27
87

.3
30

7
-.

34
59

.3
36

9
-.

35
15

.2
49

6
-.

26
84

.2
62

6
-.

28
00

.3
47

7
-.

35
23

.3
47

1
-.

35
23

.2
56

0
-.

26
02

.2
68

4
-.

27
32

.3
43

7
-.

34
95

.3
46

2
-.

35
24

.2
54

0
-.

26
18

.2
67

4
-.

27
42

.3
47

9
-.

35
01

.3
47

8
-.

34
98

.2
56

3
-.

25
83

.2
68

0
-.

27
04

.3
50

8
-.

36
38

.3
60

2
-.

37
60

.2
49

2
-.

26
72

.2
77

7
-.

29
33

29


	Introduction
	Related Work
	Time-Series Forecasting
	Test-Time Adaptation
	Test-Time Adaptation for Time-Series Forecasting

	COSA:Context-aware Output-Space Adapter
	Notation and Problem Formulation
	Overall Architecture
	Output-space Residual Correction
	Context Construction
	Adaptation Objective and Scheduling

	Experiments
	Experimental settings
	Main Results
	Comparison with SOTA Time-series TTA methods
	Comparison with normalization methods

	Sensitivity and Ablations
	Computational Overhead

	Conclusion and Limitations
	Adaptation Algorithm of COSA
	Computational Cost
	Batch size analysis of PAAS
	Behavior analysis of COSA
	Analysis between gating and linear residual layer
	Analysis between learning rate and MSE

	Quality of TTA
	Further Experiments
	Comparison on a Larger Dataset
	comparison with varying input/prediction sequence length
	Comparison with SOLID
	Comparison with DynaTTA
	Comparison with Various Batch Sizes

	Additional Ablations
	Context Building Methods Comparison
	Statistical Methods
	Context Selection Strategy
	Comparison with Encoder-based Context

	Input Calibration Effects
	Adapter Architecture Comparison
	comparison with various learning-rate schedulers
	Extention to Multivariate Time-Series Forecasting
	Extension to Vector Gating
	Visualization of Normalization

	Discussion
	Confidence interval of main results

