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ABSTRACT

Deployed time-series forecasters suffer performance degradation under non-
stationarity and distribution shifts. Test-time adaptation (TTA) for time-series
forecasting differs from vision TTA because ground truth becomes observ-
able shortly after prediction. Existing time-series TTA methods typically em-
ploy dual input/output adapters that indirectly modify data distributions, making
their effect on the frozen model difficult to analyze. We introduce the Context-
aware Output-Space Adapter (COSA), a minimal, plug-and-play adapter that
directly corrects predictions of a frozen base model. COSA performs resid-
ual correction modulated by gating, utilizing the original prediction and a
lightweight context vector that summarizes statistics from recently observed
ground truth. At test time, only the adapter parameters (linear layer and gat-
ing) are updated under a leakage-free protocol, using observed ground truth with
an adaptive learning rate schedule for faster adaptation. Across diverse scenar-
ios, COSA demonstrates substantial performance gains versus baselines with-
out TTA (13.91~17.03%) and SOTA TTA methods (10.48~13.05%), with par-
ticularly large improvements at long horizons, while adding a reasonable level
of parameters and negligible computational overhead. The simplicity of COSA
makes it architecture-agnostic and deployment-friendly. Source code: https:
//anonymous.4open.science/r/linear—adapter—-A720

1 INTRODUCTION

Time-series forecasting serves as the foundation for critical decision-making across diverse do-
mains, including finance (Chen et al.| 2023), supply chain management (Aamer et al.,2020), energy
grids (D1 Piazza et al.l|2021), and predictive maintenance (Makridis et al., [2020). Modern forecast-
ing models, including Transformer-based architectures (Zhou et al., 2021} Liu et al., 2023 |2022),
typically achieve high accuracy. However, they suffer performance degradation in real deployment
settings due to non-stationarity and distribution shifts (Du et al. 2021; (Chen et al.l 2024a). Time
series exhibit inherent non-stationarity, with changing temporal patterns and statistical characteris-
tics over time, resulting in distributions at training that typically differ from those encountered after
deployment.

To address this challenge, various approaches have been proposed, including online learning, con-
tinual learning, and domain adaptation. Online and continual learning methods adapt by updating
model parameters directly to streaming data (Du et al.,[2021}; Zhang et al., [2024} |Kirkpatrick et al.,
2017; |[Rolnick et al., 2019; |Giannini et al., 2023; |Pham et al., 2022), but these approaches incur
additional computational costs, memory requirements, catastrophic forgetting issues, and plasticity.
Furthermore, these methods typically require labeled data or explicit knowledge of task boundaries,
making them unsuitable for scenarios where only unlabeled streaming data is available during de-
ployment. Domain adaptation methods learn robust representations by reducing source—target dis-
tribution differences (Wilson et al., |2020; Jin et al., 2022), but they rely on explicit target domain
data and boundary definitions.

Test-time adaptation (TTA) offers an alternative approach that adapts to distribution changes by up-
dating only lightweight modules using unlabeled test streams after deployment. TTA methods have
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Figure 1: Overview of COSA operation showing the context-aware gated linear adapter architecture
with input processing, linear transformation, gating mechanism, and output correction for test-time
adaptation.

evolved mainly in the vision domain through batch normalization coefficient optimization and en-
tropy minimization (Wang et al., 2020), self-supervised/contrastive learning combined with pseudo-
labeling (Liang et al., 2021;|Chen et al.,[2022;|Gong et al.| [2025)), single-sample multi-augmentation-
based adaptation (Zhang et al.| 2022), and long-term adaptation stabilization (Wang et al., [2022)).

Unlike vision tasks, time-series forecasting has unique characteristics that distinguish it from vision
tasks: 1) it employs normalization methods different from vision tasks to preserve periodicity and
level information, and 2) ground truth becomes sequentially observable after prediction with short
delays, enabling the use of direct losses such as Mean Squared Error (MSE).

Time-series forecasting TTA is a recently evolving topic; to the best of our knowledge, only few
methods (Kim et al.l [2025; Medeiros et al., 2025} |Grover & Etemad, 2025) have been proposed.
All of them adopted dual-adapter architectures that place calibration modules at both input and
output ends of the base model. They map inputs to domains that the base model can handle more
easily and restore outputs to the original domain, controlling adaptation intensity through gating.
However, these indirect distribution calibration methods involve design complexity and create un-
certainty about the impact of input transformations on internal model representations.

To this end, we propose Context-aware Output-Space Adapter (COSA), which offers a direct output-
space correction approach that operates with minimal computational overhead. Figure[T|presents the
overview of COSA. COSA takes the predictions from a frozen base model and a lightweight context
vector, summarizes recent observation statistics as input, computes residuals through linear correc-
tion, and controls correction strength using gating. At deployment, we freeze the base forecaster
and update only a lightweight output adapter (i.e., linear correction with a learnable gate) under
a leakage-free streaming protocol: after each prediction, adaptation uses only previously revealed
ground truth, never current or future labels. COSA is architecture-agnostic and demonstrates consis-
tent performance improvements over existing state-of-the-art time-series forecasting TTA methods
across various predictors and horizons.

The main contributions of this study are summarized as follows:

1. Architecture-agnostic output adapter. Unlike existing time-series TTA methods that
adopt dual input-output adapters, COSA consists of a single output adapter. COSA oper-
ates independently in the output space, correcting predictions from any base model without
changes to training pipelines or internal parameters. COSA also shows compatibility with
SOTA normalizers, consistently reducing prediction error.

2. Context-aware linear residual with gating. A linear correction uses the base prediction
and a lightweight context vector that summarizes statistics of recent observed ground truth,
and a learnable gate modulates correction strength.



Under review as a conference paper at ICLR 2026

3. Consistent accuracy gains. Across six benchmarks, four horizons, and six baseline ar-
chitectures, COSA improves test MSE over baselines (13.91~17.03%) and SOTA TTA
methods (10.48~13.05%), in particular, with the largest gains at longer horizons.

4. Fast, efficient TTA. Adaptive learning rate enables faster convergence of COSA, leading to
higher accuracy within a few adaptation steps. Specifically, COSA enables 88.59~90.10%
faster inference time against prior SOTA TTA methods.

2 RELATED WORK

2.1 TIME-SERIES FORECASTING

To handle non-stationarity in time-series forecasting, existing methods typically employ 1) on-
line learning, 2) continual learning, and 3) domain adaptation. Representative online learning,
D3A (Zhang et al.,|2024) narrows source—target gaps through z-score monitoring of loss distribu-
tions and Gaussian noise injection, whereas Adarnn (Du et al., [2021]) reduces temporal distribution
shifts using temporal distribution characterization and distribution matching. In continual learning,
cPNN (Giannini et al., |2023) grows temporal columns and transfers knowledge via lateral connec-
tions, and FSNet (Pham et al., [2022)) separates per-layer adapters for rapid adaptation from asso-
ciative memory for long-term retention to balance plasticity and stability. For domain adaptation,
CoDATS (Wilson et al., |2020) learns domain-invariant features adversarially, and DAF (Jin et al.,
2022)) shares attention with domain-invariant queries/keys and domain-specific values. These fami-
lies generally update the base model during training or online operation, differing from TTA, which
adapts lightweight modules on unlabeled test streams while keeping the base model frozen.

2.2 TEST-TIME ADAPTATION

Tent (Wang et al., [2020)) optimizes only batch-normalization affine parameters under entropy mini-
mization, and SHOT (Liang et al.l [2021) combines information maximization with self-supervised
objectives to transfer source hypotheses to the target. AdaContrast (Chen et al.| 2022) constructs
pseudo-labels via contrastive learning with a dynamic memory bank for gradual adaptation, while
MEMO (Zhang et al.| 2022)) applies multi-augmentation to a single test example to minimize
marginal output entropy, updating all weights. CoTTA (Wang et al., 2022)) limits error accumulation
via weight and stochastic restoration, and ACCUP (Gong et al., 2025) integrates adaptive clustering
with pseudo-labeling. However, they are proposed for vision tasks. TTA for time-series forecasting
requires different approaches from those for vision tasks due to its own characteristics.

2.3 TEST-TIME ADAPTATION FOR TIME-SERIES FORECASTING

Time-series forecasting TTA methods typically employ dual adapters that calibrate distributions at
both input and output. TAFAS (Kim et al., |2025) couples a calibration module to map inputs to a
model-friendly domain and restores outputs to the original domain. It uses gating to modulate the
calibration strength and utilizes Periodicity-Aware Adaptive Scheduling (PAAS) to adjust adaptation
frequency using frequency patterns based on inputs. PETSA (Medeiros et al., 2025) factorizes the
calibration module with a low-rank structure and adopts a combined loss for stable adaptation with
fewer parameters. DynaTTA (Grover & Etemad, |2025) adjusts the dynamic learning rate, based on
local distribution shift, global distribution shift, loss z-score. Existing time-series forecasting TTA
methods employ an indirect approach that bidirectionally calibrates distributions at the input and
output sides of the base model. They entailed design complexity due to indirect calibration and
difficulty in predicting the impact of input transformations on internal representations. In contrast,
we aim to utilize a single output-space adapter that directly corrects predictions without requiring
input calibration or bidirectional transformation, resulting in a simpler design and more predictable
adaptation behavior.
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Table 1: Adapter-specific notation. Basic sizes/indices are defined as (W, L, K, B; t, 1, k).

Symbol Meaning (shape)

Y§°> Base (frozen) L-step prediction at time ¢ (RL).
Y True L-step target revealed after ¢ (R).

C; Context vector from revealed batch statistics [u; — K, ..., s — 1]—r (RF).
X Input look-back window (R").
X§“) Adapter input [Y{”) || C,] (RL+K).
H; Linear residual W X§a> + b ([RD).
Y, Corrected output Y§°> + aH; with o = tanh(g) € [-1,1] (RE).
W.,b,g Adapter weights (RY x (L + K)), bias (RL), and gate parameter (R).
Operators: concatenation [a || b]; || - ||2 vector norm; || - | 7 Frobenius.
xt —>»|  Base Model > Yt(o) > @—b ?\t
H——— At
(@) Linear Layer Gating
Context Buffer | C; —»@—» X; ->| WXEa) +b >H, > tanh(g)
| 1 i
@ Batch z
< L <_Yttrue
Y Learnable Frozen

Figure 2: Detailed architecture of COSA illustrating the linear correction layer (weight matrix W
and bias b), learnable gating parameter (g), and context vector (C) integration for output-space
correction.

3 COSA:CONTEXT-AWARE OUTPUT-SPACE ADAPTER

3.1 NOTATION AND PROBLEM FORMULATION

Table 1| shows the symbols necessary for COSA and their meanings.

This study targets univariate time-series forecasting, following the existing SOTA time-series fore-
casting TTA methods (Kim et al.l [2025; Medeiros et al [2025; |Grover & Etemad| 2025)). For mul-
tivariate time-series inputs, we decompose them into per-variable univariate forecasting tasks and
perform the task iteratively for each variable. At time ¢, base model generates L-step original pre-

dictions YEO) € RE from input X, € RW, where W denotes the input look-back window length.

COSA generates corrected predictions Vt € R from input X,Ea) € RI+K where K denotes the
length of the context vector. After making predictions, the ground truth for that interval becomes se-
quentially observable following a short delay. Like other TTA approaches, we keep the base model
completely frozen and perform only adapter adaptation at test time. Adaptation is performed by col-
lecting the most recent B prediction, ground truth pairs (batch index i € {1,..., B} and context
index k € {1,...,K}).

3.2 OVERALL ARCHITECTURE

Figure 2] illustrates the overall operation of COSA. COSA consists of a single output adapter that
directly corrects the predictions. The key components are: 1) a linear layer composed of weight
matrix W and bias variable b that computes correction values H, 2) learnable gating g that controls
correction strength, and 3) a context vector C that summarizes and stores recent trend information.

We choose a single linear layer for two key reasons: 1) Efficiency: Linear operations provide lower
latency and higher throughput compared to nonlinear modules, making them suitable for fast adapta-
tion. We confirmed that a single-layer adapter shows 34.95% faster wall-clock time on average than
a 2-layer MLP adapter. 2) Simplicity-Performance balance: As reported in LTSF-Linear (Zeng
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et al.l 2023), a linear layer sufficiently performs well in time-series forecasting, despite its simplic-
ity. We also verified that a single linear layer adapter showed 5.71% even better performance on
average against a 2-layer MLP adapter. These characteristics make the linear layer beneficial for
TTA. Detailed results are provided in Appendix [G.3]

The streaming protocol for leakage prevention is as follows (let the last adaptation was performed
int—1):
1. Prediction: At time ¢, base model generates prediction YEO) from input X;.

2. Correction: Feed Y,EO) and context C'; into COSA to generate the corrected prediction Y..

3. Observation: After delay A >0, values of ground truth of the prediction horizon Y?"e are
sequentially observed.

4. Adaptation: Collect the most recent B prediction, ground truth pairs {Y, ;_1, Y
and perform adaptation that updates COSA parameters {W, b, g}.

3.3 OUTPUT-SPACE RESIDUAL CORRECTION

For time ¢, we concatenate the original prediction of base model and context vector to create the
adapter input:

X" =Y, | €.
The residual is computed using a linear transformation:
H, = WX +b.
The correction magnitude is controlled through gating to compose the final output:
Y, = Y + tanh(g) H,.

The tanh activation stabilizes the correction magnitude.

3.4 CONTEXT CONSTRUCTION

To prevent information leakage, the context summarizes previously observed ground truth informa-
tion. For time ¢, we compute batch-wise aggregation as:

pe = age{ y™upy 4y  1<i< B}, 1<k<K.

where the aggregation function agg can use statistics such as mean, median, etc. We construct the
context vector by stacking the most recent K aggregated values:

Ci = [p s ]'
This context vector summarizes level/scale changes and gradual drift patterns to help interpret the
relative magnitude of the base prediction YEO) (reducing to single time-series values when B=1).

3.5 ADAPTATION OBJECTIVE AND SCHEDULING

Because targets arrive with a delay, we employ a direct objective with weight decay:
< 2
L= 3 M¥eima =Y, + ANWIE + [B]3 + llgll3) (1)
i=1

When B forecast—target pairs have been enqueued, we run S gradient steps on the adapter parameters
using a cosine—adaptive learning-rate schedule, simply CALR. We apply cosine annealing within the
S steps,

ST
n(s+1) = Dmin + %(7)(5) _ 77min) (1 + cosg) ) )

and then adjust 77 online, based on short-horizon loss trends to encourage fast but stable convergence
(decrease n on loss upticks; mildly increase on plateaus). When a new batch arrives, it is always
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initialized with the same learning rate, and thereafter the learning rate for the next step within the
batch is determined through Equation [2] according to the loss. Early stopping and gradient clip-
ping are also implemented. The threshold values for learning rate adjustment are stability-induced
by balancing adaptation speed against stability. Conservative thresholds ensure convergence while
aggressive values enable faster response to distribution shifts. Full pseudocode and thresholds are
given in Algorithm[T]in Appendix[A]

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

We evaluate COSA on six benchmark datasets (ETTh1/2, ETTm1/2, Exchange Rate, and Weather)
with a fixed look-back window (W = 96) and four prediction horizons (L € {96,192, 336, 720}).
We used six representative base models spanning different architectures: Transformer-based (iTrans-
former (Liu et al. 2023), PatchTST (Nie et al., 2023)), linear-based (DLinear (Zeng et al., |2023)),
OLS (Toner & Darlow, 2024))), and MLP-based (FreTS (Y1 et al.;, 2023)), MICN (Wang et al., 2023)).
By default, all input time series are treated as variable-wise univariate forecasting tasks, standard
normalization is applied, and MSE serves as the performance comparison metric.

We compare COSA (our method) with Baseline (without TTA), TAFAS (Kim et al.| 2025), and
PETSA (Medeiros et al., |2025)). All experiments were conducted according to the official bench-
mark library (Wang et al., 2024) [ﬂ The train:valdiation:test ratio is 7:1:2 for all datasets.

Unless otherwise noted, we fix the adapter hyperparameters to K =10 and S=3, enabled CALR. We
utilize the average as agg. Ablation studies for the variations of agg are provided in Appendix |[G.1]

We report two variants for COSA: COSA-F, which uses a fixed B=48 (half of the look-back), and
COSA-P, which sets B online following the PAAS in TAFAS (Kim et al.| 2025). Hyperparameters
for comparative methods follow the settings reported in the original papers or official code defaults.
In tables, the best score is shown in bold and the second best is underlined.

We utilize Xavier uniform initializer (Glorot & Bengio}2010) with gain = 0.1 for parameters of the
weight matrix W . The bias b and gating g are initialized to 0, and Adam optimizer is utilized.

All experiments were conducted on a machine with an Intel 17-7800X CPU and NVIDIA GeForce
RTX 3080 10GB.

4.2 MAIN RESULTS

4.2.1 COMPARISON WITH SOTA TIME-SERIES TTA METHODS

The proposed COSA achieves best performance in all scenarios, as shown in Table ﬂ The results
reveal two key performance patterns:

1. Architecture-agnostic benefits: Consistent improvements across all base models demon-
strate that effectiveness of COSA is not dependent on specific model architectures. The
average improvement ranges from 10.48% to 13.05%.

2. Effectiveness in long-term forecasting: The largest performance improvements were ob-
served at the 720 horizon, where COSA-F and COSA-P showed performance improve-
ments of 32.24% and 26.33% compared to baseline, respectively, and 28.21% and 21.96%
compared to other methods. This trend suggests that COSA becomes increasingly valuable
for longer prediction horizons.

These findings demonstrate that the COSA, which performs residual correction directly in the output
space, proves more effective than existing indirect dual-adapter approaches.

'In the case of DynaTTA (Grover & Etemad, |2025), there were reproducibility issues when we used the
officially released source code. Therefore, we report the comparison results with them in the Appendix[F-4]with
the used detailed hyperparameters.

2All reported results are averaged over 10 runs with different random seeds to ensure statistical reliability.
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Table 2: Prediction accuracy comparison. Standard deviations less than 0.001 are omitted.

Transformer-based Linear-based MLP-based
iTransformer DLinear FreTS
Baseline TAFAS PETSA COSA-F COSA-P Baseline TAFAS PETSA COSA-F COSA-P Baseline TAFAS PETSA COSA-F COSA-P
96 4507 4411 4393 4368 4363 4695 4618 4594 4574 4482 4462 4403 4387 4384 4371

—
ﬁ 192 5078 4928 4949 4961 4919 5213 5117 5118 .5066 .5050 .5022 4954 .4942 4951  .4940
E 336 .5658 .5629 .5640 .5651 .5300 .5659 .5604 .5617 .5528 .5456 .5544 5521 .5527 .5467  .5351
720 7038 .6612 .6596 .5958 .5638 7117 .6820 .6743 .6107 .5896 7182 .6852 .6846 .6259  .5959
~ 96 2577 2549 2551 2504 .2493 2323 2303 .2306 .2300 .2281 2384 2367 .2364 2367 .2350
ﬁ 192 3161 3010 .3006 .2983 .2947 2862 .2842 2876 .2827 .2819 2866 .2824 .2832 .2816 .2824
E 336 3545 3352 3348 .3241 .3339 3252 3185 3184 .3050 3083 3317 .3229 .3233 .3031 .3153
720 4276 4023 4043 3487 3591 4087 3873 3853 3062 .3477 4119 3857 3860 .3169  .3399
= 96 3823 3558 .3570 .3447 3455 3715 3497 3524 3456 3475 3675 3582 .3583 .3520 .3525
E 192 4423 4146 4142 4124 4140 4438 4166 4178 4113 4122 4325 4212 4198 4150 4212
= 336 .5093 4754 4751 4569 4643 5183 4799 4803 4753 4858 5005 4827 4789 4661 4775
=720 6065 5562 .5553 4773 5102 5929 5488 5532 4774 4991 5704 5486 .5476 4718 .4982
a 96 1647 1634 .1637 .1627  .1632 1598 .1584 .1584 .1583  .1586 .1581 .1572 .1572 .1568  .1569
E 192 2209 2183 2173 .2171 2173 .1930 .1913 .1913 .1904 .1905 .1923 .1909 .1908 .1905 .1908
; 336 2727 2630 2592 .2435 2535 2324 2289 .2292 .2083 2242 2320 .2288 .2289 .2098 .2211

720 3451 3305 .3332 .2477 .2606 .3062 .2968 .2963 .2215 2316 .3012 2916 .2926 .2158 .2314

96 .0882 .0876 .0885 .0818 .0837 .0913 .0885 .0878 .0812 .0834 .0828 .0799 .0803 .0744 .0766
192 1811 .1686 .1740 .1403 .1479 .1827 .1760 .1730 .1459 .1519 .1734 .1665 .1648 .1366 .1499
336 .3428 3079 3097 2089 2624 3277 2941 2920 .2039 2480 .3240 2930 .2923 .2053  .2461
720 .8540 .8322 .8004 .3421 .4460 .8873 .8762 .8781 .3494 4481 .8368 .8273 .8067 .3352  .4458

Exchange
Rate

5 96 .1755 1664 .1674 1597 .1617 .1954 .1796 .1823 .1773 1793 .1856 .1759 .1765 .1724  .1737
S 192 2232 2101 2128 .2067 .2088 2403 2244 2254 2216 .2217 2310 2165 .2192 2135 2189
S 336 2800 2614 2665 .2503 2515 2918 2709 2740 .2567 2626 2843 2653 .2681 .2561 2587
= 720 3571 3458 3459 .2480 .2730 .3643 .3500 .3497 .2581 2708 3599 .3490 .3488 .2573  .2692
PatchTST OLS MICN
Baseline TAFAS PETSA COSA-F COSA-P Baseline TAFAS PETSA COSA-F COSA-P Baseline TAFAS PETSA COSA-F COSA-P

— 96 4312 4262 4269 4242 4238 4511 4409 4391 4390 4372 5103 4901 4898 4693  .4684
£ 192 4955 4865 .4854 4830 4805 5046 4934 4937 4915 4906 5954 5617 .5620 .5372 .5328
; 336 .5559 5478 5475 .5438  .5320 5510 .5440 .5465 5385 .5320 .6615 .6387 .6420 .5950  .5878

720 7117 .6860 .6822 6113  .5822 .6997 .6630 .6431 .5969 .5733 9233 8142 8375 .7001 .6504
« 96 2362 2351 2362 2349 .2343 2306 2285 2288 .2232 2265 2582 2551 2552 .2492  .2485
£ 192 2826 2758 2773 2665 2608 2839 2824 2848 2796 2791 3282 3179 .3258 .3049 .3017
; 336 3199 3125 3132 2971 2978 3258 3182 3189 .3003 3043 3732 3482 .3497 .3241 .3310

720 4264 4005 4012 3233 3428 4162 .3908 .3884 3177 3453 4617 4474 4473 3650  .3885
= 96 .4024 3894 .3937 .3625 3626 3710 .3506 .3536 .3454 3475 4354 3951 .3951 3837 .3831
E 192 4512 4372 4413 4250 4258 4439 4160 4184 4115 4119 4855 4566 .4574 4476 4514
= 336 .5081 .4905 .4946 .4568 4697 5182 4787 4792 4748 4749 5556 5108 5082 4832 .5054
=720 5629 5427 5462 4681 4882 5922 5478 5522 4763 5007 6212 5756 5778 5029 5225
o 96 .1584 1581 .1583 .1558 .1562 .1602 .1590 .1589 .1582  .1586 .1710 .1711 .1730 .1702 .1704
E 192 2059 2036 .2037 .2007 .2022 .1936 .1921 .1919 .1906 .1907 2121 .2102 2126 .2102 .2120
E 336 .2458 2451 2452 2258 2352 2331 .2299 .2302 .2131 2226 .2530 .2501 .2520 .2337 .2351

720 3268 .3268 .3256 .2446 .2645 3066 .2986 .2971 2171 2349 3327 .3220 3131 .2477 .2643

96 .0867 .0843 .0837 .0765 .0788 .0814 .0792 .0798 .0756 .0773 .1151 .1087 .1146 .0955 .1008
192 1877 .1805 .1832 .1464 .1570 .1727 .1658 .1653 .1393  .1457 2150 2198 .1999 .1663  .1722
336 .3389 .3275 .3300 .1983 .2445 3226 .2877 .2898 .2020 .2323 .3950 .3047 .3100 .2119 .2660
720 .8648 .8659 .8643 .3543 4662 8366 .8138 .8149 .3444 4541 1.0259 .7191 .7805 .3871  .4815

96 1742 1724 1743 1624  .1634 .1957 .1807 .1795 1772 .1803  .1757 .1853 .1970 .1636  .1651
192 2195 2147 2167 .2006 .2108 .2404 .2244 2274 2223 2237 2237 2161 .2265 .2082 .2120
336 2766 2666 2701 .2451 .2488 2921 2714 2748 2551 2642 2812 2746 2788 .2729  .2737
720 3544 3383 3442 2590 2713 3644 3466 .3493 2579 2708 3508 3573 3681 .2582  .2855

Exchange
Rate

Weather

4.2.2 COMPARISON WITH NORMALIZATION METHODS

In this section, we analyze whether COSA serves as an alternative or complementary role to existing
normalizations, and demonstrate that COSA can work independently of normalizations and is com-
patible with normalization mechanisms. Figure [3|shows performance comparison of COSA against
two representative time-series normalizers, RevIN (Kim et al., 2021) and DDN (Dai et al.| [2024)).
The results support two claims:

1. COSA on its own generally outperforms explicit normalization, as demonstrated by the
comparative analysis showing that using COSA with basic normalization achieves the low-
est mean MSE across all experimental settings.

2. COSA is compatible with normalization and consistently improves accuracy within the
same normalizer settings, with the addition of COSA reducing MSE by approximately
16.8~16.9%.
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Figure 3: Prediction accuracy comparison with normalization methods.

COSA directly optimizes MSE on revealed targets and uses the context vector to encode recent
level/scale, so the linear layer learns scale and level corrections from the error signal itself. Further
analysis is provided in Appendix[G.7]

4.3  SENSITIVITY AND ABLATIONS

We probe the following four key design choices: 1) adaptation steps S, 2) context length K, 3) batch
size B, and 4) adaptive learning rate CALR.

We evaluated performance by varying each hyperparameter individually while keeping others fixed
at the default settings. Figure ] shows MSE and wall-clock time according to each hyperparameter.
Figure [4a] shows changes according to the number of iterative learning steps S. COSA shows a
pattern where test MSE decreases as S increases. However, while wall-clock time also increases
with increasing S, even at the highest S = 4 setting, it showed time levels similar to PETSA.

Figure [4b] examines the effect of context length K, which controls how much past information
the adapter uses. Accuracy improves consistently with larger K, while wall-clock time remains
unchanged. Since the adapter input concatenates base model’s prediction with the context vector
(dimensionality L 4 K), and L typically dominates, increasing K has negligible runtime impact.
The context provides incremental but reliable gains by supplementing the level/scale information.

Figure [c|shows performance changes with batch size B. As described in Section[3.3] B determines
the frequency of adaptation, collecting B {prediction, ground truth} pairs before each update. Even
with B = 96, COSA outperforms the baseline, with accuracy improving as B decreases due to more
frequent adaptation. This explains the superior performance of COSA-P over COSA-F on ETTh1:
the average B determined by PAAS for ETThI is 24.55, while for other datasets the values are over
80. Detailed analysis is provided in Appendix [C] However, smaller B increases wall-clock time due
to both more adaptation calls and the computational cost of adaptation steps S.

Figurefd|shows performance with and without CAL R (Section[3.3). CAL R achieves up to 12.13%
accuracy improvement as the window length increases and a 21.34% reduction in wall-clock time.
This confirms that aggressive dynamic learning rate scheduling enhances performance within limited
adaptation steps S while enabling early-stopping for computational efficiency.

Results for additional ablations (context aggregation methods and correction layer architecture) are
provided in Appendix [G]

4.4 COMPUTATIONAL OVERHEAD

Table 3: Computational overhead comparison of adapter methods.

Method #Params | Peak mem (MB) | Samples/sec T Adaptation time/batch (ms) | Inference time/batch (ms) |

TAFAS 1,252,958 17.59 1,413.23 + 92.28 73.23 +8.74 10.96 + 0.64
PETSA 58,334 36.09 987.91 + 78.67 88.46 +7.08 12.63 £0.37
COSA (Ours) 1,211,287 27.07 1080.70 + 80.66 80.12+5.93 1.25 £ 0.06
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Figure 4: Hyperparameter analysis showing the trade-off between performance and efficiency.
Charts display average test MSE (bars, left axis) and wall-clock time (lines, right axis, in seconds)
across different parameter settings.

We report 1) observed additional parameters, 2) peak memory utilization, 3) throughput (samples
per second), 4) wall-clock time per batch, and 5) inference time per batch.

All hyperparameters remain at default values. Table [3] summarizes the average overhead across all
datasets, base model, and horizons. COSA shows moderate overhead, falling between TAFAS and
PETSA, while achieving the significantly fastest inference time. COSA performs adaptation repeat-
edly for S steps, meaning that the throughput and adaptation time are dependent on S. However, the
single adapter structure and simplicity of COSA alleviate the overhead and improve the inference
time, which is not affected by S. The computational complexity is O(L - (L + K)) for the linear
transformation plus O(L) for the gating operation, resulting in quadratic scaling with respect to
prediction horizon L. Further theoretical calculations are included in Appendix [B]

5 CONCLUSION AND LIMITATIONS

We introduced COSA, an architecture-agnostic TTA module that directly corrects the prediction of
base model with a single linear layer guided by short-term context and a stabilizing gate. Across
six benchmarks and diverse base models, COSA improves accuracy by 13.91% to 17.03% over
baselines and by 10.48% to 13.05% over prior state-of-the-art TTA methods. These gains arise from
the synergy of trend-aware context, residual correction, and gated modulation.

While COSA shows strong empirical results, several areas offer room for refinement. The current
adaptation relies on full ground truth, though extending to partial observations would enable real-
time deployment. Performance varies with batch size B, and the fixed context length & may not be
optimal for all temporal patterns. Additionally, linear corrections, while effective for many cases,
could be enhanced for complex nonlinear shifts.

Future work will explore masked updates for real-time adaptation with partial targets, adaptive se-
lection of K and B based on detected periodicity, and hybrid linear/nonlinear adapters for more
complex distribution shifts. These extensions will broaden the applicability of the proposed method
while maintaining its computational efficiency.
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A  ADAPTATION ALGORITHM OF COSA

This section details the core adaptation algorithm of COSA. This algorithm extends the optimizer
mentioned in Equation 2] combining short-term loss trends, cosine annealing, and adaptive gradient
clipping, batch-wise learning rate reset. We apply widely used values for the coefficients of CALR
and the threshold value of early stopping. The base model remains frozen, operating only on adapter
parameters ¢ = {W, b, g}.

Purpose: Performs rapid adaptation of linear adapters using direct loss, adaptive learning rate
scheduling, and gradient clipping to improve prediction accuracy within a few adaptation step S.

Algorithm 1 COSA adaptation.

Require: Stream of batches (?7 Y"™*) with length B, context vector C, steps S, min, Jmax, Weight decay A,

clip base ¢
Ensure: adapted predictions with improved accuracy over the base model
1: for each batch (Y, Y™°) in Data Stream do > Loop over new batches
2 Initialize: 7) <— 7max, loss history H < [] > Reset LR for new batch
3 for s =1to S do > Main adaptation loop
4: Forward pass: form X (@ = [Y(® || C],then H= (W X@T 4 p)T
5: Gating: Y « Y 4 tanh(g) ©H
6: MSE loss: £ + ||(Y — Y™ |2 + Al |2
7 Learning rate adaptation:
8 if |#| > 2 then
9: A L—H[-1] > Recent loss change
10: if A > 0 then > Loss increased - reduce LR
11: 1 < max(0.57, Nmin)
12: else if |A| < 107° then > Converged - increase LR for next batch
13: 7 < min(1.17, Ymax)
14: end if
15: end if
16: Cosine annealing: 1) < 7min + 5 (17 — Nmin) (1 + cos(3F))
17: Gradient computation: g, + V L
18: Adaptive clipping: || g, || + min (||gq,|| max(c, £))
19: Parameter update: ¢ < ¢ — g,
20: Early stopping:
21: if s > 2 and |[H[—1] — H[—2]| < 107° then
22: break
23: end if
24: end for
25: end for

COSA targets TSF-TTA under non-stationary environments in which the distribution of time-series
data changes over time. In such environments, the classical notion of convergence toward a fixed
optimal point is not well-defined. Instead, stable learning within each adaptation window is critical.
CALR guarantees uniformly bounded step-wise updates through the following four mechanisms,
which structurally prevent error amplification and thus ensure stability during adaptation.

1. Upper-bounded learning rate: The learning rate is constrained by 1 < 7y ax, limiting the
maximum magnitude of a single-step update.

2. Gradient clipping: At Line 18 of Algorithm[I] the gradient norm is adaptively bounded as
189l ¢ min(||gyl|, max(c, £)).

3. L2 regularization: The weight-decay term in Equation MW % + [[blZ + |lg3), con-
strains parameter magnitude.

4. Bounded gating: Because o = tanh(g) € [—1, 1], the correction magnitude is structurally
limited.

For every new batch, the learning rate is reinitialized to 7max (Line 2 of Algorithm [I), giving
each batch an equal opportunity for adaptation. The learning rate is then adapted according to the
batch’s loss behavior. When the loss spikes, we reduce the learning rate as 7 < max(0.57, 7min ),
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Table 4: Average B of each dataset determined by PAAS.

Dataset ETThl ETTh2 ETTml ETTm2 Exchange Rate Weather
Average B 24.55 38.41 92.73 83.41 92.80 80.38

temporarily lowering update intensity. When the loss decreases stably, we increase it as 1 <—
min(1.17, 7max ), strengthening adaptation. This enables stable learning even when short-term per-
turbations or anomalies appear in the input data, allowing rapid recovery.

B COMPUTATIONAL COST

In this section, we report theoretical calculations of parameters, FLOPs, and memory footprint.

For univariate time series, the number of parameters is as follows:

Parameter count.

L(L+K) + f + i = #params = (L(L+K)+L+1).
w

FLOPs per adaptation step (batch of size B). The dominant cost is the linear transform and
residual composition:

O(B L(L+K)) for wX@, plus O(BL) for gating & residual add.

Memory footprint. Additional activations are modest: the linear residual H € RZ* and the
context vector C € RX. The total adaptation cost scales linearly with the number of adaptation
steps S and variables V.

C BATCH SIZE ANALYSIS OF PAAS

Adaptive vs. Fixed Batch Strategy: While COSA-F shows the best performance in most cases,
COSA-P generally performs better on the ETTh1 and ETTh2 datasets, revealing important insights
about temporal adaptation strategies. The reason for this trend is that the size of B determined
by PAAS is often smaller than 48 for these datasets, as shown in Table [ enabling more frequent
adaptation that better captures the higher-frequency patterns characteristic of these hourly datasets.

This differential performance validates the importance of dataset-specific adaptation scheduling:
datasets with more complex temporal dynamics benefit from more frequent adaptation (smaller B),
while datasets with smoother patterns can effectively use larger batch sizes for computational effi-
ciency.

D BEHAVIOR ANALYSIS OF COSA

D.1 ANALYSIS BETWEEN GATING AND LINEAR RESIDUAL LAYER

In COSA, the gating is defined as gating = tanh(g) € [—1, 1], where g is a learnable parameter,
and this bounded scalar modulates the correction strength by multiplying the output of the linear
residual layer. If we were to use g directly instead of tanh(g), small variations in g could induce dis-
proportionately large and unstable changes in the correction, making the adapter overly sensitive to
noisy points. The tanh transform keeps the gating bounded, ensuring that changes in g are reflected
smoothly and gradually. When the residual magnitude spikes, the gate moves toward 0, as shown in
Figure[J] thereby attenuating the residual correction and stabilizing the adaptation process.

D.2 ANALYSIS BETWEEN LEARNING RATE AND MSE

Figure [f] visualizes the trajectory of pre-adaptation loss and learning rate for the iTransformer—
ETTml1, L = 96 case. As shown in Figure@ when a short-term loss spike occurs, CALR immedi-
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Figure 5: Trajectory of average gating and average residual magnitude of batches over time.

ately decreases the learning rate to minimize the impact of the perturbation, and once the loss enters
a stable decreasing phase, CALR increases the learning rate again to promote rapid re-adaptation.
This control mechanism suppresses excessive parameter drift without requiring roll-back, enabling
COSA to recover its correction performance instantly after a perturbation. The interaction between
the learning rate and loss shows that, in non-stationary environments with short-term perturbations,
COSA can respond and recover performance stably.
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Figure 6: Trajectory of initial MSE and average learning rate of batches over time.

E QuaLITY OF TTA

To evaluate TTA quality, we measured Explained Residual Variance (ERV) and Negative Adaptation
Rate (NAR) metrics across all datasets, base models, and forecasting horizons. ERV is defined as in
Equation where R represents residuals for TTA-applied predictions and R() represents residuals
for base model predictions. Specifically, ERV quantifies the extent to which TTA reduces the resid-
ual variance of the base model’s predictions. Higher ERV values indicate greater residual variance
reduction and correspondingly improved prediction performance through TTA.

Var(R)

ERV =1 - ——~. 3
Var(R(©) &

NAR is the ratio of prediction windows where the MSE worsened when TTA was applied, with
smaller values indicating better performance.

N

Ifcon] =1 if con=True
NAR — [MSE(Y;) > MSE(Y" 4
R= z_: SE(Yy) > MSE(Y;")], where {I[con] =0 otherwise @

15



Under review as a conference paper at ICLR 2026

Table 5: Average ERV and NAR across all benchmark datasets and base models.

TAFAS PETSA COSA
ERV 1 .0100 .0160 .0768
NAR | 34.94% 36.34% 20.25%

As shown in Table[5] COSA shows the highest ERV and the lowest NAR. This indicates that COSA
provides effective TTA while decreasing the residual and improving accuracy on average.

F FURTHER EXPERIMENTS

F.1 COMPARISON ON A LARGER DATASET

To demonstrate that COSA can achieve stable and substantial performance gains even in larger-scale
environments, we additionally conducted experiments on the Electricity dataset (2018);
Godahewa et al| (2021)). We followed the same experimental setup as in Section[4.1} and used three
representative base models, iTransformer, DLinear, and FreTS. Table|§|is consistent with the findings
in Section 2] COSA achieves either the best or second-best performance across all forecasting
horizons L, and unlike other methods, which exhibit performance degradation compared to baselines
in some cases, COSA improves their performances in every case. These results indicate that COSA
remains robust and effective even in large-scale environments.

Table 6: Prediction accuracy comparison on Electricity dataset.

iTransformer DLinear FreTS
No TTA TAFAS PETSA COSA-F COSA-P No TTA TAFAS PETSA COSA-F COSA-P No TTA TAFAS PETSA COSA-F COSA-P
96 .1663 .1568 .1596 .1571  .1570 2235 .2224 2242 2232 2228 .1824 .1781 .1802 .1801  .1799
192 1794 .1635 .1644 .1631 .1631 2242 2153 2152 2146 .2143 .1794 .1894 .1781 .1780 .1779
336 .1952 .1743 1741 .1730 1727 2383 2247 2233 2226 .2223 .1905 .1885 .1885 .1881  .1879
720 2567 2316 .2301 2251 .2239 2792 2629 .2615 2557 .2541 2304 2299 2287 2236 .2221

F.2 COMPARISON WITH VARYING INPUT/PREDICTION SEQUENCE LENGTH

To further verify the performance of COSA across diverse scenarios, we conducted experiments by
varying both the input window W and the prediction horizon L. To examine short-term forecasting
rather than long-term forecasting, we added the setting W = 96, L € {24,48}. To evaluate perfor-
mance under longer input windows, we additionally tested W = 192 with L € {192,336, 720} and
W = 336 with L € {336, 720}. Table[/|summarizes the results across these different combinations
of W and L. Consistent with Section 4.2f COSA achieves the best or second-best performance in
most cases, demonstrating its ability to maintain high predictive accuracy across a wide range of
settings. Unlike other methods, which show performance degradation relative to baselines in several
cases, COSA improves prediction accuracy over baselines in every case. In contrast, TAFAS and
PETSA, which adopt dual-adapter architectures that modify both the input and output of base model
incur substantial additional complexity as W increases, which likely contributes to their degraded
performance. Since COSA operates solely in the output space of base model, it delivers consistent
performance gains regardless of .

F.3 COMPARISON WITH SOLID

SOLID (Chen et al} 2024Db) is a fine-tuning method of the prediction layer of the base model by
detecting context drift. Its reconditioner estimates context drift based on the mutual information be-
tween the model’s residual and the input context. When drift is detected, SOLID selectively chooses
samples and fine-tunes the model’s prediction layer at the sample level. Like COSA, SOLID oper-
ates in the output space of base model. However, unlike COSA, which keeps base model frozen and
performs corrections through a lightweight adapter, SOLID directly updates the prediction layer of
base model.
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Table 7: Prediction accuracy comparison with different input/prediction sequence length.

iTransformer DLinear FreTS
Input Pred No TTA TAFAS PETSA COSA-F COSA-P No TTA TAFAS PETSA COSA-F COSA-P No TTA TAFAS PETSA COSA-F COSA-P

96 24 3269 .3254 3299 3105 .3098 3437 3751 3766  .3431 3429 2953 3243 3239 2946 2943
96 48 3732 3768 3776 3539  .3527 3838 4177 4166 3826  .3820 3424 3770 3754 3416  .3413

= 192 192 4459 5015 4893 4175 4120 4172 4967 4834 4157 4141 4235 4991 4835 4207  .4186
E 192 336 4729 5709 5422 4486  .4456 4537 5558 5362 .4528 4489 4596 5677 5398 4577 4535
=192 720 5885 6529 6687 .5619 5477 5828 .6504 .6526 5734  .5660  .6484 .6627 .6728  .6351 6190
336 336 .5354 .6139 5686 .5209  .5059 4392 5652 5174 4368 4289 4837 6114 5444 4783 4674
336 720 .6512 .6873 .6635 .6115 .5780 5748 .6344 .6443 5589 5198 7265 .6905 .6738 .6960  .6295
96 24 .0837 .1277 .1266 .0812  .0812 .0862 .1217 .1218 .0861 .0862 .0812 .1180 .1178 .0806  .0807
96 48 1047 1518 1520 .1007  .1008  .1031 .1444 1452 .1028 .1030  .1004 .1452 .1447 .0996  .0996
Q192 192 1633 2272 2280 .1546  .1563  .1344 2155 2096 1334  .1338  .1437 2218 2184 .1412  .1420
E 192 336 .1658 2541 .2487 .1551 573 1474 2445 2394 1460  .1468  .1556 2494 2460 .1519  .1536
=192 720 2197 3453 3192 2110 2158 (1782 3152 2962 .1762  .1778  .1943 3261 3086 .1892  .1925
336 336 2070 .2986 .3005 .2021 2108  .1469 2366 2375 .1447  .1468 .1722 2579 2604 .1645  .1695
336 720 .3334 4253 4355 3255 3334 .1807 3101 .3004 .1776  .1798 .1969 3130 3124 1920  .1949
96 24 2543 2359 2429 2405 2450 2578 2616 2599 .2523 2569 2494 2503 2471 .2449 2492
96 48 3305 .3099 3135 3115 3133 3105 3167 3151 3035 3064 3191 3269 3222 3171 3177
'E 192 192 3800 .4006 .3961 .3591 3603  .3694 4029 .3942 3643 3648 3551 .3863 .3815 .3524  .3528
E 192 336 4336 .4499 4401 4149 4150 4239 4620 4436 4162 4169 4036 4371 4290 3985  .3987
w192 720 4992 5385 5090 4716 4718 4797 5376 5101 4671 4681 4631 5152 4941 4550 4560
336 336 .4820 4913 4441 4490 4592 3981 4444 4244 3968 3977 4011 4380 4275 3975  .4006
336 720 5202 5432 5169 4678 4904 4437 5053 4852 4256 4423 4407 5046 4877 4261 4397
96 24 .0542 .0800 .0744 .0530  .0531 .0601 .0782 .0777 .0598  .0599  .0562 .0748 .0741 .0561  .0561
96 48 .0735 .1044 0988 .0731 .0732 .0767 .1027 .1015 .0761 .0762 .0736 .0992 .0987 .0734  .0733
'E 192 192 .1035 .1647 .1601  .1023  .1022 .0990 .1451 .1429 .0984  .0985 .0998 .1480 .1456 .0982  .0984
E 192 336 .1343 2191 .1970 .1339 .1335 .1201 .1791 .1741 .1190  .1195 .1210 .1863 .1781 .1200  .1192
w192 720 1628 2511 2377 1564  .1589 1518 .2291 2247 .1473  .1498  .1476 2337 2232 .1436  .1446

336 336 .1354 2280 .1987 .1328  .1347 .1176 .1782 .1704 1167  .1174 .1198 1815 .1760 .1172  .1188
336 720 .1645 2785 2517 1455  .1604  .1456 2338 2185 1317  .1446  .1490 2309 2255 .1289  .1453

96 24 .0318 .0292 .0273 .0306 .0306 .0434 .0397 .0393 .0434 .0434 .0283 .0254 .0241 .0283  .0283
96 48 .0526 .0542 .0479 0516 .0516 .0606 .0590 .0579 .0606 .0606 .0481 .0438 .0418 .0480  .0481
192 192 2045 .1999 2189 .2040 2040 .1715 .1819 2024 .1714  .1715 1655 .1728 .1809 .1655  .1655
192 336 2963 .3221 .3511 .2919 2933 2878 3316 .3484 .2850 2875 .2804 .3129 3318 .2780  .2802
192 720 8546 .7713 7828 .8316  .8320 .9037 .9393 .94838 9016 .9016 .4506 .8200 .8315 .4501  .4501
336 336 .4088 .3790 4204 4036 4036 2753 3036 .3323 .2700 2751 3246 3219 3589 3182 3245
336 720 1.7882 1.0041 1.0775 1.5829 1.5828 .5274 .8620 .8816 .5269  .5269 4266 9353 9175 4263  .4263

9 24 1095 .1026 .1016 .1077  .1077  .1207 1151 .1151 .1200  .1199  .1193 .1085 .1111 .1183  .1183
96 48 1380 1292 1310 .1362  .1363  .1581 .1499 .1475 .1559  .1560 .1530 .1435 .1452 .1508  .1510
192 192 2165 2102 .2051 .2075 2099 2393 2225 .2214 2332 2354 2131 .2058 .2021 2086  .2108
192 336 2747 2588 .2549 2611 2653 2904 2709 2691 2791 2829 2694 2547 2531 2604 2637
192 720 3321 3316 3390 .3151 3211 3426 3363 3446 .3276 3339 3290 3286 .3360 .3158  .3205
336 336 .2988 .2705 2708 2778 2978 2722 2633 .2619 .2627 2707 2526 2520 .2474 2444 2504
336 720 3381 .3423 3557 2885 3340 3245 3247 3316 .2742 3207 3129 3203 3229 2648  .3088
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Using the publicly available source codes, we evaluated SOLID on three base forecasting models:
DLinear, FreTS, and iTransformer. The results are summarized in Table@ Across all settings, COSA
achieves higher predictive accuracy compared to SOLID.

Moreover, COSA is significantly more efficient: it requires only 7.44 £ 0.0488 seconds of wall-clock
time on average, whereas SOLID incurs a much larger overhead with 306.55 + 2.6183 seconds. The
substantial cost of SOLID arises from computing context drift and repeatedly updating the prediction
layer of the base model, processes that are far heavier than COSA’s lightweight updates. Because
COSA freezes base model and updates only a compact output-space adapter, it offers a dramatically
faster execution while maintaining higher accuracy.

F.4 COMPARISON WITH DYNATTA

This section presents complete baseline results of prediction accuracy comparison with various ex-
isting methods. DynaTTA requires setting a total of 15 hyperparameters, and due to this complexity,
we report its performance using the best settings from our trials. The used hyperparameters of Dy-
naTTA are as follows:

» HIDDEN_DIM=64, GATING_INIT=0.01, BASE_LR= 0.005, MSE_BUFFER_SIZE=100,
RTAB_SIZE=50, RDB_SIZE=30, METRIC_HISTORY _SIZE=20, ALPHA_MIN=0.0001,
ALPHA _MAX=0.01, KAPPA=2.0, ETA=0.1, EPS=1e-§, WARMUP_FACTOR=2, UP-
DATE_BUFFERS_INTERVAL=5, UPDATE_METRICS_INTERVAL=3
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Table 8: Comparison with SOLID

iTransformer DLinear FreTS
SOLID COSA-P SOLID COSA-P SOLID COSA-P
96 .4404 4363 4595 4574 4093 4371

v
ﬁ 192 4935 4919 5063 .5066 .4701 .4940
E 336 .5420 .5300 5602 .5528 .5254 5467
720 .6523 5638 7107 .6107 .6980 .6259
a 96 2480 2493 2315 .2281 .2354 .2350
ﬁ 192 3061 .2947 2824 .2819 .2830 .2972
E 336 .3339 .3339 3103 .3083 .3248 .3153
720 .3701 .3591 3136 .3477 3167 .3399
= 96 3353 3455 3634 .3456 .3121 .3525
E 192 4266 4140 4336 4222 4299 4212
= 336 .5019 .4643 5071 .4858 4915 4775
=720 5986 5102 5821 .4991 5612 .4982
o 96 .1641 .1632 .1590 .1583 .1574 .1569
E 192 2291 2173 1910 .1943 .1933 .1934
E 336 .2525 2535 .2138 2242 2328 .2211

720 2704 2606 2419 2316 2377 .2314

96 .0873 .0837 .0913 .0834 .0822 .0766
192 1783 .1479 .1826 .1519 .1723 .1499
336 .3294 .2624 3276 .2480 3218 .2461
720 7531 .4460 8872 .4481 8325 .4458

96 .1753 .1617 .1954 .1793 .1849 .1737
192 2231 .2088 .2403 .2217 .2309 .2189
336 .2801 .2515 2918 .2626 .2843 .2587
720 3450 2730 3643 .2708 3561 .2692
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Table 9: Prediction accuracy comparison with DynaTTA |Grover & Etemad| (2025).

Transformer-based Linear-based MLP-based
iTransformer PatchTST DLinear OLS FreTS MICN
DynaTTA COSA-F COSA-P DynaTTA COSA-F COSA-P DynaTTA COSA-F COSA-P DynaTTA COSA-F COSA-P DynaTTA COSA-F COSA-P DynaTTA COSA-F COSA-P

- 96 4523 4368 4363 8371 4242 4238 4708 4574 4482 4486 4390 4372 4508 4384 4371 5063 4693 .4684
ﬁ 192 5175 4961 4919 8006 4830 .4805 5321 5066 .5050 5096 4915 .4906 5139 4951 4940 5745 5372 5328
; 336 .5874 5651 .5300 8097  .5438 .5320  .5792  .5528 .5456  .5626  .5385 .5320  .5840  .5467 .5351 6594 5950 5878
720 7123 5958  .5638 1.0887 .6113 .5822 7112 6107 .5896  .6933 5969 .5733 .7095  .6259 .5959  .8262  .7001  .6504
o 96 2630 2504 2493 4154 2349 2343 2338 2281 2326 2232 2265 2395 2367 2350 2661 2492 .2485
ﬁ 192 3210 2983 .2947 4315 2665 .2608 2888 2819 2911 22796 2791 2916 2816 2824 3417 3049  .3017
E 336 3677 3241 3339 4386 2971 2978  .3380 3083 3430 3003 3043 3474 3031 3153 3777 3241 3310
720 4646 3487 3591 4991 3233 3428 4325 3477 4270 3177 3453 4297 3169 3399 5229 3650  .3885
96 3753 3447 3455 7205 3625 3626 3814 3475 3830 3454 3475 3723 3520 3525 4095  .3837 .3831
4250

4811 4150 4212 5331 4476 4514

2300
2827
3050
3062
3456 3475
A258 4809 4113 4122 4827 4115
4753
4774
1583
1904
2083

b=l 2470

E 192 4835 4124 4140  .6898 4119
= 336 5843 4569 4643 8073 4568 4697 5711 4858 5719 4748 4749 5739 4661 4775 6418 4832 5054
=720 7243 4773 5102 9292 4681 4882 6569 4991 6884 4763 5007 7152 4718 4982 6932  .5029  .5225
e« 96 1832 1627 .1632 2508  .1558 .1562  .1640 1586 .1684  .1582 1586  .1661 1568 1569 2033 .1702  .1704
E 192 2897 2171 2173 2744 2007 2022  .2040 1905 2115 .1906 1907 2048 1905 1908 2349 2102 2120
= 336 3246 2435 2535 3434 2258 2352 2908 . 22242 2917 2131 2226 2778  .2098 2211 2988 .2337 2351
=720 5344 2477 2606 4447 2446 2645 3765 2215 2316 4571 2171 2349 4020 2158 2314 5362 2477 2643
& 9 0983 0818 0837 .1217 .0765 0788  .0948  .0812 0834 .0918 .0756 0773  .0906 .0744 0766  .1210  .0955 .1008
g % 192 .1970  .1403  .1479 2517  .1464 .1570 .1975 .1459 .1519  .1749  .1393 .1457  .1871 JA366  .1499 2227 .1663  .1722
g & 336 3251 2089 2624 3728 1983 2445 3001 2039 2480 3024 .2020 2323 3111 2053 2461 3536 2119 2660
=720 8790 3421 4460 9999  .3543 4662  .8812  .3494 4481 8300 3444 4541 8348 3352 445 .8570  .3871 4815
96 1823 1597 1617 2317  .1624  .1634  .1950  .1773 .1793  .1985 .1772 .1803  .1937  .1724 1737 2303  .1636  .1651
192 2678  .2067 2088 2611 2006 2108 3311 2216 2217 3074 2223 2237 2850  .2135 2189 3839 .2082  .2120

Weather

336 3894 2503 2515 3329 2451 2488 4103  .2567 2626  .9593  .2551 :2642 3970 2561 2587 5355 2729 2737
720 4996 2480 2730 4067  .2590 2713 4915 2581 2708 4974 2579 2708 5251 2573 2692 5773 2582 2855

F.5 COMPARISON WITH VARIOUS BATCH SIZES

Table[I0a)and Table[TOb]summarize the prediction accuracy and efficiency overhead under different
batch sizes B. Thanks to CALR’s stability-induced design, COSA adapts reliably even with very
small batches, and the resulting increase in update frequency often leads to improved forecasting ac-
curacy. Notably, even in extremely small settings such as B = 8, COSA maintains higher accuracy
than existing TTA methods, demonstrating resilience against over-correction and short-term pertur-
bations. On the other hand, smaller B inevitably increases the number of adaptation steps, leading
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Table 10: Performance comparison with different batch sizes B.

(a) Prediction accuracy.

No TTA TAFAS PETSA PAAS 8 16 24 48 96
96 0.2545  0.2471  0.2480 0.2409 0.1908 0.2202 0.2330 0.2398 0.2411
192 03144 03038 03046 0.2887 0.1900 0.2295 0.2524 0.2848 0.2946
336 0.3839  0.3653 0.3664 0.3280 0.1837 0.2292 0.2526 0.3013 0.3483
720 0.5539  0.5226  0.5232 0.3804 0.1811 0.2384 0.2672 0.3286 0.4158
(b) Wall-clock time (Seconds).

TAFAS PETSA PAAS 8 16 24 48 96
96 59271 74129 7.0642 473922 25.6158 17.2297 9.6333  5.1258
192 6.0383 7.3675 7.1419 49.4422 25.1222 18.0969 9.4344  5.5133
336 6.1554 7.6588 7.4131 49.2211 25.1119 17.2906 9.5644  5.8081
720 6.5300 7.9867 8.1578 46.3711 24.4683 17.6253 10.3036 6.5397

to higher adaptation time and a clear computation—accuracy trade-off. Considering this trade-off, we
adopt B = 48 for COSA-F in our main experiments, which provides a balanced choice between
accuracy gains and computational efficiency.

G ADDITIONAL ABLATIONS

This section provides additional ablation studies on various design choices of COSA. Each ex-
periment was conducted to understand the impact of specific components and determine optimal
hyperparameters. The default setting uses mean-based context aggregation with X = 10 and S = 3.

G.1 CONTEXT BUILDING METHODS COMPARISON
G.1.1 STATISTICAL METHODS

This experiment was conducted to evaluate the impact of different context construction methods
on adapter performance. We compared three methods, i.e., Mean, Median, and Weighted Average
(WA), to find the optimal context construction strategy. The weight of WA was designed to assign
greater weight to recent values using exponential decay weighting. Table [IT|presents a comprehen-
sive performance comparison of the three context construction methods.

Mean-based context construction demonstrated superior performance compared to median and
weighted average approaches across most experimental configurations. While median-based ag-
gregation provided robustness against outliers, it resulted in lower overall accuracy. The weighted
average approach showed marginal improvements relative to its implementation complexity. These
findings support the adoption of simple statistical aggregation for effective context summarization
in COSA.

G.1.2 CONTEXT SELECTION STRATEGY

COSA aims not to model long-term time-series structure, but to perform fast and stable local resid-
ual correction for output bias observed in the current window. In non-stationary environments, the
input distribution shifts continuously over time; thus, information from distant past windows may
become misaligned with the current drift direction and deteriorate correction quality. For this reason,
the default COSA employs a lightweight context vector constructed solely from the most recently
observed batches.

To examine the effects of longer-range temporal patterns, we additionally implemented a Selective
Context mechanism. This approach stores all past context values in a buffer and computes impor-
tance scores via attention between the current window and past contexts, selecting the top-K values
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Table 11: Prediction accuracy comparison of diverse aggregation functions.

Transformer-based Linear-based MLP-based
iTransformer PatchTST DLinear OLS FreTS MICN
Mean Median WA Mean Median WA Mean Median WA Mean Median WA Mean Median WA Mean Median WA

96 4327 4472 4472 .4092 4274 4275 .4615 4660 .4657 .4359 4463 .4462.4362 .4439 .4440.4704 4934 4926
192.4491 .4850 .4870.4422 4778 .4770.4869 .5090 .5111.4932 4897 .4894 .4671 .4893 .4954 .4769 .5567 .5568
336 .4476 .5301 .5317.4550 .5199 .5285.4632 .5379 .5378.5188 .5208 .5209 .4411 .5273 .5245 .4814 .5889 .5904
720 .4592 .6237 .6251.4788 .6329 .6335.4777 .6358 .6376.5616 .6243 .6242 4755 .6439 .6428.5230 .7196 .7181

96 .2489 2532 .2536.2336 .2346 .2358.2303 .2352 .2324.2283 .2300 .2299.2359 .2379 .2382.2468 .2566 .2568
192.3003 .3012 .3013.2708 .2886 .2894.2682 .2846 .2863.2762 .2954 .2893.2766 .2846 .2917.2906 .3190 .3145
336.3277 .3671 .3685.2688 .3190 .3202.2860 .3283 .3285.2937 .3030 .3025.2889 .3214 .3205.3088 .3429 .3426
720.3311 .4013 .4023.3091 .3737 .3737.3006 .3358 .3358.2992 3415 .3415.2979 .3588 .3564.3454 4172 4185

96 .3428 3687 .3685.3604 .3918 .3921.3453 .3575 .3574.3440 .3573 .3572.3522 .3633 .3633.3804 .4252 .4248
192.4076 .4307 .4304 .4171 .4398 .4398 .4158 4266 .4265.4125 4265 .4263 .4173 .4257 4266 .4402 4742 4740
336 .4663 .4930 .4949 .4662 .4942 .4944 4784 .5009 .5005.4700 .4995 .5006.4771 .4898 .4886.4937 .5381 .5381
720 .4940 .5614 .5615.4776 .5359 .5316.4928 .5640 .5603 .4693 .5638 .5653 .4863 .5414 .5419.5083 .5830 .5838

96 .1616 .1672 .1653.1552 .1591 .1595.1578 .1594 .1596.1583 .1596 .1600.1556 .1592 .1594.1710 .1712 .1723
192.2172 .2194 .2240.1989 .2087 .2121.1900 .1959 .1957.1919 .1970 .1995.1908 .1935 .1933.2102 .2131 .2132
336.2402 .2700 .2762.2279 .2821 .2543.2135 .2448 .2561.2066 .2499 .2477.2158 .2353 .2420.2354 .2523 .2546
720.2550 .3461 .3463.2397 .3011 .3222.2357 2985 .2833.2104 .3179 .2821.2360 .2732 .2753.2510 .3020 .3084

96 .0843 .0852 .0852.0803 .0814 .0815.0843 .0884 .0885.0728 .0787 .0787.0790 .0785 .0785.0980 .1065 .1068
192.1540 .1606 .1607 .1480 .1544 .1546.1599 .1653 .1654.1335 .1507 .1509.1390 .1500 .1502.1827 .1870 .1872
336.2588 .2754 .2756.2611 .2787 .2789.2565 .2918 .2920.1833 .2736 .2738.2511 .2683 .2684.2660 .3040 .3043
720.5039 .5113 .5115.4937 .5076 .5078.5001 .5267 .5270.3349 .4983 .4986.4789 .4977 .4980 .4815 .5806 .5809

96 .1636 .1726 .1726.1655 .1731 .1735.1738 .1931 .1931.1748 .1934 .1934.1758 .1831 .1835.1666 .1739 .1738
192.2073 2268 .2265.2052 .2162 .2162.2217 .2500 .2520.2144 .2496 .2490.2151 .2346 .2347.2060 .2208 .2205
336.2474 2707 .2707 .2443 2668 .2660.2622 .2891 .2885.2428 .2911 .2897.2630 .2736 .2735.2735 .2650 .2648
720.2907 3118 .3119.2682 .3088 .3090.2713 .3310 .3325.2487 .3327 .3331.2583 .3268 .3247.2670 .3140 .3094

Average .3121 .3450 .3458.3032 .3364 .3366.3097 .3423 .3422.2990 .3371 .3354.3046 .3334 .3340.3284 .3669 .3670

ETThl

ETTh2

ETTm1l

ETTm2
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to form the context vector. Such a mechanism can leverage repeated phases or cycles in datasets
with strong periodicity.

Table @ compares COSA (the standard recent-context construction) with the dynamic context
selection method. While the dynamic context selection method achieves clear improvements on
datasets such as ETT, where the periodic structure is strong and easily detectable, the overall perfor-
mance of the original COSA remains superior. Selective Context also introduces non-trivial over-
head, since computing importance scores increases both adaptation time and inference time. More-
over, in fully non-stationary settings where distributional characteristics change continuously, older
contexts may become outdated and destabilize the correction process. Nonetheless, the observed
gains on datasets with pronounced periodicity show the potential of Selective Context. We provide
a more detailed discussion of these observations in Section [H]

G.1.3 COMPARISON WITH ENCODER-BASED CONTEXT

To compare with encoder-based context construction, we implemented an alternative approach that
replaces the original statistics-based method in COSA with a temporal encoder that directly con-
sumes the previously observed ground-truth sequence from the past 720 steps (the longest L). We
added RNN-, LSTM-, and Attention-based encoders, each taking the past sequence in the form of
[720, 1] as input and producing a [ K, 1] context vector. The resulting context vector is concatenated
with the base model’s prediction output, just as in the original design, and then fed into the linear
correction layer. The encoder is seamlessly integrated at the front of COSA, modifying only the
context-generation stage while keeping the remaining components unchanged.

Table IEI shows that, except for a few isolated cases, the original statistics-based context (0.3240)
performs better than encoder-based alternatives (0.3254, 0.3260, 0.3278). Furthermore, the added
architectural complexity increases both adaptation and inference overhead. In non-stationary TTA
settings, where the input distribution shifts rapidly and adaptation steps are short, it is difficult for an
encoder to learn stable temporal representations. Consequently, the generated embeddings may be-
come misaligned with the current drift direction or overfit to outdated historical patterns, ultimately
degrading correction performance.

20



Under review as a conference paper at ICLR 2026

Table 12: Prediction accuracy and overhead of selective context.

(a) Prediction accuracy.

Transformer-based Linear-based MLP-based
iTransformer PatchTST DLinear OLS FreTS MICN
Recent Selective Recent Selective Recent Selective Recent Selective Recent Selective Recent Selective

96 4363 4362 4238 4234 4482 4562 4372 4359 4371 .4361 4684 .4673

-
£ 192 4919 4927 4805 4848 .5050 5088 .4906 4933 4940 4965 .5328 .5368
E 336 .5300 5367 .5320 .5310 .5456 5541 5320 .5368 .5351 .5505 .5878 .5966
720 .5638 5671 .5822 5881 .5896 .6180 .5733 .6093 .5959 .6430 .6504 7137
~ 96 2493 2494 2343 2349 2281 .2258 2265 .2262 2350 .2346 .2485 .2486
£ 192 2947 2942 2608 2661 2819 .2813 .2791 2825 2824 .2945 .3017 .3027
E 336 .3339 3367 2978 .2949 3083 .3064 .3043 .3027 .3153 3175 .3310 .3328
720 .3591 3603 .3428 3453 3477 3462 .3453 3619 .3399 3509 .3885 .3906
= 96 .3455 .3440 .3626 3627 .3475 .3456 .3475 .3454 3525 3522 3831 .3815
E 192 4140 4128 4258 4278 4122 4221 4119 4219 4212 4212 4514 4533
= 336 4643 4718 4697 4693 4858 4857 .4749 4854 4775 4805 .5054 5060
=720 5102 5246 4882 4868 4991 5065 5007 .5005 4982 .4970 5225 5256
a 96 .1632 .1631 .1562 .1560 .1586 .1582 .1586 .1581 .1569 .1570 .1704 .1705
E 192 2173 2165 .2022 .2011 .1905 .1930 .1907 .1952 .1908 .1929 .2120 2125
E 336 .2535 2551 2352 2331 .2242 2245 2226 .2212 2211 .2185 .2351 .2555

720 2606 2578 2645 2633 .2316 .2427 .2349 2368 .2314 2373 .2643 2764

96 .0837 .0835 .0788 .0789 .0834 .0834 .0773 .0773 .0766 .0763 .1008 .1007
192 .1479 .1516 .1570 .1554 .1519 .1543 .1457 .1462 .1499 .1514 .1722 .1770
336 .2624 2633 .2445 2478 2480 2481 .2323 2361 .2461 .2541 .2660 .2732
720 .4460 4749 4662 4983 4481 4984 4541 4835 .4458 4914 4815 5255

96 .1617 .1616 .1634 .1631 .1793 .1790 .1803 .1799 .1737 .1731 .1651 .1654
192 2088 .2056 .2108 .2109 .2217 .2181 .2237 .2222 2189 .2187 .2120 2134
336 .2515 2524 2488 2554 2626 .2665 .2642 2659 .2587 .2603 .2737 .2813
720 2730 2798 2713 2798 .2708 2729 .2708 2721 .2692 2732 .2855 .2970

(b) Overhead analysis.

Exchange
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Method # Params | Adaptation time/batch (ms) | Inference time/batch (ms) | Average MSE |

Recent 1,211,287 80.12 + 13.58 1.25 +.0984 3240
Selective 1,212,217 83.64 £ 15.71 1.26 +.1039 .3287

These findings confirm that the statistics-based context remains the most robust and stable choice
for non-stationary adaptation, while encoder-based context generation still demonstrates potential.
We discuss these observations in greater detail in Section [H]

G.2 INPUT CALIBRATION EFFECTS

COSA performs residual correction directly in the output space, and we demonstrated that output-
only correction is often sufficient. However, in certain time series, we observe that input-level spikes
or local noise degrade the base model’s predictions first, and this degradation subsequently propa-
gates to the residual correction stage. To examine how such input perturbations influence the overall
correction process, we conducted experiments combining COSA with the input-side GCM module
from TAFAS. Table [T4]reports the results.

In most cases, output-only correction achieves higher predictive accuracy. However, for datasets
such as ETTh1, ETTh2, and ETTm?2, where significant input noise is present, the combination with
GCM produces improved results. In these cases, input GCM smooths the noisy input patterns, al-
lowing the base model to generate more stable predictions, which in turn enhances the effectiveness
of COSA.

Nevertheless, because GCM operates via distribution-shift normalization, it risks oversmoothing or
removing meaningful drift signals when the input exhibits rapid or irregular changes. This behavior
explains why, on average (in terms of MSE), output-only correction remains more stable across
diverse non-stationary scenarios. Overall, when input disturbances are not the primary source of
prediction error, output-only correction is the most robust and reliable option.
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Table 13: Prediction accuracy and overhead comparison with encoder-based context.

(a) Prediction accuracy.

Transformer-based Linear-based MLP-based

iTransformer DLinear FreTS
CALR Cosine Exp Fixed Plateau Step CALR Cosine Exp Fixed Plateau Step CALR Cosine Exp Fixed Plateau  Step
96 4363 4858 4961 4848 4848 4885 4482 4498 4556 4513 4513 4537 4371 4400 4441 4398 4398 4405

= 192 4919 5405 .5613 5413 5413 5426 5050  .5069 5183 .5090 .5090 5110 4940 4914 5002 4915 4915 4931
E 336 .5300 5741 5952 5751 5751 5826 5456 .5560 5714 5586 5586  .5642 .5351 5429 5570 5442 5442 5494

720 5638 6216 .6835 .6163 .6163 .6336 .5896  .6033 .6511 .5953 5953 .6166 .5959 6116 .6593 .6041  .6041  .6200
~ 96 2493 2984 3021 .2984 2984 2987 .2281 2308 2287 .2321 2321 2333 .2350 2378 2359 2376 2376 2372
= 192 .2947 3386 3520 .3399 3400 3394 2819  .2823 .2811 .2836 .2836  .2845 .2824 2837 2827 2834  .2834  .2831
E 336 .3339 3823 3992 3856  .3856 .3802 .3083  .3078 3093 .3104 3105 3081 3153 3115 3151 3131 3131 .3087

720 3591 4094 4278 4113 4113 4070 3477 3490 3562 3462 3463 3488 3399 3421 3524 3391 3389  .3387
— 96  .3455 4006 4087 .3978 3978 4048 .3475 3501 3610 .3497 3497 3569 .3525 3548 3567 3539 3539 3555
E 192 4140 4650 4772 4630 4630 4683 4122 4140 4283 4146 4146 4191 4212 4236 4279 4231 4230 4246
= 336 .4643 5110 5286 .5100 .5100 .5160 4858 4828 5028 4838 4838 4875 4775 4740 4821 4740 4740 4750
= 720 5102 5321 5732 5350 5349 5392 4991 4861 5153 48890 4889 4915 4982 4923 5073 4950 4950 4951
N 96 .1632 2138 2140 2139 2139 2136 .1586  .1621 .1591 .1629 .1629 .1646 .1569  .1611 .1572 .1604 .1604  .1606
E 192 2173 2697 2705 2692 2693 2704 .1905 1948 1916 .1955 .1956 .1973 .1908  .1958 .1921 .1951 .1951  .1955
E 336 .2535 3028 3125 3047 3045 3065 2242 2305 2268 2310 2310 2324 .2211 2285 2247 2276 2276 2278

720 2606 3000 3159 2987 2986 2966 .2316  .2369 2383 2405 2405 .2348 .2314 2388 2397 2405 2403 .2334

96 .0837 .1335 .1344 1335 1335 .1334 .0834 .0865 .0848 .0873 .0873 .0886 .0766  .0800 .0775 .0794 .0794  .0792
192 1479 1961 2025 .1960  .1960  .1952 .1519  .1523 1552 .1533 1533 .1542 .1499 1518 .1545 1513 .1513  .1505
336 .2624 3120 3495 3116 3117 3102 .2480  .2521 2710 2528  .2527 2535 .2461 2501 2735 2491 2492 2484
720 4460 4481 6222 4498 4460 4448 4481 4185 5919 4164 4162 4179 4458 4128 5679 4072 .4063 4068

Exchange
Rate

5 96 1617 2118 2151 2115 2115 2123 .1793 1824 1827 .1827 .1827 .I1858 .1737 .1770 .1767 .1761 .1761 .1776
S 192 2088 2514 2592 2517 2517 2517 2217 2226 2270 2232 2232 2259 2189 2201 2235 2191 2192 2204
S 33 2515 2916 3063 2949 2948 2920 2626 2510 2622 2532 2532 2541 2587 2497 2606 2505 2505 .2496
720 2730 3230 3460 3225 3225 3267 2708 2774 2965 2802 2802 2810 2692 2726 2921 2755 2755 2725
(b) Overhead analysis.
Method # Params | Adaptation time/batch (ms) | Inference time/batch (ms) | Average MSE |
Recent 1,211,287 80.12 + 13.58 1.25 £+ .0984 3240
Selective 1,212,217 83.64 & 15.71 1.26 4 .1039 3287
Table 14: COSA with input GCM.
Transformer-based Linear-based MLP-based
iTransformer PatchTST DLinear OLS FreTS MICN
COSA  w.Input COSA w.Input COSA w.Input COSA w.Input COSA w.Input COSA w.Input
- 96 4363 4362 4238 4209 4482 4460 4372 4370 4371 4343 4684 4852
ﬁ 192 4919 4821 4805 4790 .5050 4995 4906 4907 4940 4919 5328 .5530
E 336 .5300 .5386 .5320 5216 .5456 5359 .5320 5193 5351 5286 5878 .5953
720 5638 6287  .5822  .6386  .5896  .6513 5733 6500 5959 6726 .6504 7509
~ 96  .2493 2001 2343 1845 2281 1819 2265 1803 .2350 1849 2485 1995
ﬁ 192 2947 2384 2608 2287 2819 2217 2791 2292 2824 2241 3017 2457
E 336 .3339 2528 2978 .2405 .3083 2506 3043 2474 3153 2539 3310 2755
720 3591 3048 3428 2913 3477 2932 .3453 2940 3399 2954 3885 3411
- 96  .3455 .3676 3626 .3903 3475 3518 3475 3516 3525 3596 3831 4216
E 192 .4140 4273 4258 4396 4122 4194 4119 4192 4212 4200 4514 4742
= 336 .4643 4963 4697 4881 4858 4924 4749 4926 4775 4885 5054 .5365
=720 5102 5869 4882 5317 .4991 5678 5007 5598 4982 5452 5225 5920
) 96  .1632 1242 1562 1200 1586 1217 1586 1218 1569 1203 1704 1288
E 192 2173 1673 2022  .1551 1905 1502 11907 .1501 1908 .1491 2120 .1618
E 336 2535 2017 2352 1900 2242 1813 2226 1831 2211 1823 2351 1975

720 2606 2554 .2645 .2468 2316 .2465 2349 2531 2314 2364 2643 2635

96  .0837 .0859 0788 .0835 0834 .0883 0773 0789 0766 0798 .1008 1105
192 .1479 .1706 1570 1754 1519 1807 1457 1644 1499 .1660 1722 .2083
336 .2624 2974 2445 3017 .2480 2986 2323 2937 2461 2951 .2660 3358
720 .4460 .5884 4662 .5969 4481 .6107 4541 .5837 4458 .5823 4815 .6885

96  .1617 1723 1634 1728 1793 1924 1803 1927 1737 1822 1651 1741
192 .2088 2214 .2108 2181 2217 2363 2237 2367 2189 .2269 2120 .2289
336 2515 2752 .2488 .2809 2626 2951 2642 2946 2587 2845 2737 2728
720  .2730 3274 2713 3316 2708 .3356 2708 3361 2692 3298 2855 3364

Exchange
Rate

Weather

G.3 ADAPTER ARCHITECTURE COMPARISON

This experiment was conducted to compare the performance and computational efficiency of single
linear adapters versus 2-layer MLP adapters with 64 hidden dimensions. We aimed to determine
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Table 15: Prediction accuracy comparison of single linear adapter and 2-layer MLP adapter.

Transformer-based Linear-based MLP-based | Transformer-based Linear-based MLP-based
iTransformer PatchTST  DLinear OLS FreTS MICN ‘iTransformer PatchTST  DLinear OLS FreTS MICN
Linear MLP Linear MLP Linear MLP Linear MLP Linear MLP Linear MLP ‘Linea.r MLP Linear MLP Linear MLP Linear MLP Linear MLP Linear MLP

96 .4363 4376 .4238 4267 4482 4644 4372 4460 4371 4412 4684 4841| 2.35 3.79 235 383 224 345 215 3.10 2.14 349 238 3.84
192 .4919 .4968 .4805 .4857 .5050 .5135 .4906 .4980 .4940 .4967 .5328 .5496| 2.39 3.73 2.44 383 223 349 221 342 216 347 259 3.83
336 .5300 .5471 .5320 .5294 .5456 .5501 .5320 .5282 .5351 .5346 .5878 .6067| 2.40 3.68 2.43 377 222 3.53 218 345 232 340 251 391
720 .5638 .6167 .5822 .6350 .5896 .6498 .5733 .6351 .5959 .6558 .6504 .7325| 2.39 3.46 2.25 349 217 3.10 223 322 224 3.11 3.69 457

96 .2493 2517 .2343 .2339 .2281 .2299 .2265 .2269 .2350 .2350 .2485 2517| 2.38 3.76 2.36 3.63 2.19 3.49 219 343 1.54 347 237 381
192 .2947 2981 .2608 .2825 .2819 .2828 .2791 .2781 .2824 .2767 .3017 .3094| 2.40 3.74 2.44 380 2.28 3.51 2.20 3.41 2.24 343 2.66 3.85
336 .3339 .3306 .2978 .3127 .3083 .3106 .3043 .3113 .3153 .3168 .3310 .3484| 2.48 3.71 2.45 377 2.25 349 217 3.38 230 347 287 395
720 .3591 .3931 .3428 .3837 .3477 .3689 .3453 .3750 .3399 .3660 .3885 .4170| 2.34 3.40 2.35 348 221 333 218 324 219 3.19 3.72 4.62

96 .3455 .3522 .3626 .3680 .3475 3505 .3475 .3489 .3525 .3577 .3831 .3914| 8.49 14.08 8.56 1424 8.14 11.50 8.17 13.16 8.22 13.22 8.33 14.38
192 4140 .4103 4258 .4246 4122 4147 4119 4137 4212 4168 4514 .4470| 8.72 14.41 8.67 14.31 8.35 13.25 5.68 13.38 8.57 13.68 9.27 14.39
336 .4643 .4625 4697 4709 4858 4678 .4749 4680 4775 4708 .5054 .4784| 9.07 14.62 9.03 12.04 8.72 13.59 8.86 13.31 8.87 14.17 10.86 15.26
720 5102 .4927 4882 .4651 4991 4763 .5007 .4774 4982 .4814 .5225 .4888| 9.64 1532 8.72 12.74 9.32 14.00 9.36 14.31 9.60 14.62 16.05 20.23

96 .1632 .1632 .1562 .1569 .1586 .1582 .1586 .1587 .1569 .1571 .1704 .1703| 8.51 11.73 8.72 14.41 8.34 13.23 8.06 13.04 845 9.13 825 1435
192 2173 .2140 2022 .1978 .1905 .1880 .1907 .1884 .1908 .1850 .2120 .2039| 8.75 14.35 8.77 14.38 8.32 13.31 5.27 13.28 8.51 13.65 9.32 14.42
336 .2535 .2412 2352 .2283 .2242 .2103 .2226 .2142 2211 .2092 2351 .2331| 8.10 14.64 9.10 14.56 8.84 13.50 8.89 13.57 8.86 13.64 10.80 15.24
720 .2606 .2759 .2645 2711 .2316 .2532 .2349 2551 .2314 .2477 .2643 .2709| 7.74 15.14 9.51 15.04 9.29 13.86 9.32 14.26 9.50 14.48 16.04 20.21

96 .0837 .0869 .0788 .0838 .0834 .0890 .0773 .0789 .0766 .0803 .1008 .1106| 1.38 2.01 1.38 199 1.22 1.79 1.20 1.77 1.26 1.81 1.39 2.00
192 .1479 .1730 .1570 .1696 .1519 .1761 .1457 .1570 .1499 .1603 .1722 .1956| 1.31 1.89 136 1.88 1.17 1.68 1.15 1.69 1.17 1.70 142 196
336 .2624 3103 .2445 2941 .2480 .2872 .2323 .2856 .2461 .2910 .2660 .3399| 1.26 1.70 1.32 1.81 1.09 1.57 110 1.58 110 1.62 148 1.60
720 .4460 .8099 .4662 .8268 .4481 .8373 .4541 .7980 .4458 7983 .4815 .9665| 1.09 1.47 1.09 143 .91 124 .90 126 .93 127 146 1.76

96 .1617 .1691 .1634 .1691 .1793 .1904 .1803 .1904 .1737 .1767 .1651 .1703|13.05 20.86 15.19 23.35 12.81 20.34 12.76 18.41 12.84 20.90 12.88 20.56
192 2088 .2045 2108 .2026 .2217 .2285 .2237 .2224 .2189 .2120 .2120 .2070|13.33 20.79 15.33 23.72 13.10 20.43 12.89 20.55 13.12 20.72 13.92 20.44
336 .2515 .2390 .2488 .2360 .2626 .2469 .2642 .2499 2587 .2440 2737 .2386|13.69 21.12 15.93 24.21 13.49 20.83 13.43 20.98 13.53 20.96 14.31 22.14
720 .2730 2752 2713 .2660 .2708 2764 .2708 2785 .2692 .2737 .2855 .2582|14.68 17.06 16.71 25.44 14.05 21.26 14.36 21.61 14.41 21.81 18.09 26.57

Average .3218 .3438 .3166 .3383 .3196 .3425 .3158 .3368 .3176 .3369 .3421 .3696| 6.16 9.60 6.60 10.21 6.04 9.28 5.79 9.28 6.09 9.35 7.36 10.75

ETThl

ETTh2

ETTml1

ETTm2
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Rate
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whether more complex architectures necessarily guarantee better performance. Table T3] provides a
comprehensive performance and efficiency comparison between linear and MLP adapters.

The comparative analysis reveals that single linear adapters achieve performance comparable to or
superior to 2-layer MLP adapters while requiring significantly reduced computational resources.
Although MLP adapters occasionally demonstrated slight performance improvements, the 1.5~2x
computational overhead renders them impractical for real-time adaptation scenarios. These results
validate the architectural design principle of COSA that emphasizes simplicity without compromis-
ing effectiveness.

G.4 COMPARISON WITH VARIOUS LEARNING-RATE SCHEDULERS

To validate the effectiveness of CALR, we compared it against several official PyTorch learning-rate
schedulers: CosineAnnealingl.R, Exponential LR, ReduceLROnPlateau, StepLR, and a fixed learn-
ing rate. All schedulers were configured with the same base learning rate of 0.005 for a fair compar-
ison. One-Cycle, although widely used, was excluded because it requires a predefined learning-rate
schedule; in a streaming TTA scenario where samples arrive continuously and the batch size changes
dynamically under PAAS, such predefinition is not feasible.

As summarized in Table[T6] each scheduler achieves improvements in some individual cases. How-
ever, when results are averaged across all datasets and prediction lengths, the proposed CALR
achieves the best or second-best accuracy in the vast majority of settings. These findings support
CALR’s stability-induced design and its suitability for non-stationary TTA environments.

G.5 EXTENTION TO MULTIVARIATE TIME-SERIES FORECASTING

COSA is originally introduced as an output-space residual correction module, treating each variable
as an independent univariate forecasting task, for fair comparison with existing SOTA methods that
assume univariate forecasting. However, in real multivariate time-series settings, correlations among
variables may influence drift patterns, suggesting that modeling cross-variable interactions could
potentially benefit COSA. Basically, can be extended to multivariate forecasting; to examine this
possibility, we implemented it.

We first incorporate Cross-Variable Context Attention, allowing the context of each variable to ref-
erence information from other variables and thereby capture correlation-driven contextual interac-
tions. Additionally, we introduce a mixed structure composed of a low-rank shared component and
variable-specific components: the shared component captures drift patterns common across variables
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Table 16: Prediction accuracy comparison with various learning rate schedulers.

Transformer-based Linear-based MLP-based

iTransformer DLinear FreTS
CALR Cosine Exp Fixed Plateau Step CALR Cosine Exp Fixed Plateau Step CALR Cosine Exp Fixed Plateau Step

96 .4363 4858 4961 .4848 4848 .4885 .4482 .4498 4556 .4513 4513 .4537 4371 .4400 .4441 4398 .4398 .4405
192 4919 .5405 .5613 .5413 .5413 .5426 .5050 .5069 .5183.5090 .5090 .5110 .4940 .4914 .5002 .4915 .4915 .4931
336 .5300 .5741 .5952.5751 .5751 .5826 .5456 .5560 .5714.5586 .5586 .5642 .5351 .5429 .5570.5442 .5442 .5494
720 .5638 .6216 .6835.6163 .6163 .6336 .5896 .6033 .6511.5953 .5953 .6166 .5959 .6116 .6593 .6041 .6041 .6200

96 .2493 .2984 .3021.2984 .2984 .2987 .2281 .2308 .2287.2321 .2321 .2333 .2350 .2378 .2359.2376 .2376 .2372
192 .2947 3386 .3520.3399 .3400 .3394 2819 .2823 .2811.2836 .2836 .2845 .2824 .2837 .2827.2834 .2834 .2831
336 .3339 .3823 .3992.3856 .3856 .3802 .3083 .3078 .3093.3104 .3105 .3081 .3153 .3115 .3151.3131 .3131 .3087
720 .3591 .4094 4278 4113 4113 .4070 .3477 .3490 .3562.3462 .3463 .3488 .3399 .3421 .3524.3391 .3389 .3387

96 .3455 .4006 .4087.3978 .3978 .4048 .3475 .3501 .3610.3497 .3497 .3569 .3525 .3548 .3567.3539 .3539 .3555
192 .4140 .4650 4772 .4630 .4630 4683 .4122 .4140 4283 .4146 4146 4191 4212 4236 .4279 .4231 .4230 .4246
336 .4643 5110 .5286.5100 .5100 .5160 .4858 .4828 .5028 .4838 .4838 .4875 .4775 .4740 .4821.4740 .4740 .4750
720 .5102 .5321 .5732.5350 .5349 .5392 .4991 .4861 .5153 .4889 .4889 .4915 .4982 .4923 .5073.4950 .4950 .4951

96 .1632 .2138 .2140.2139 .2139 .2136 .1586 .1621 .1591.1629 .1629 .1646 .1569 .1611 .1572.1604 .1604 .1606
192 .2173 2697 .2705.2692 .2693 .2704 .1905 .1948 .1916.1955 .1956 .1973 .1908 .1958 .1921.1951 .1951 .1955
336 .2535 .3028 .3125.3047 .3045 .3065 .2242 .2305 .2268 .2310 .2310 .2324 .2211 .2285 .2247 .2276 .2276 .2278
720 .2606 .3000 .3159.2987 .2986 .2966 .2316 .2369 .2383.2405 .2405 .2348 .2314 .2388 .2397 .2405 .2403 .2334

96 .0837 .1335 .1344.1335 .1335 .1334 .0834 .0865 .0848 .0873 .0873 .0886 .0766 .0800 .0775.0794 .0794 .0792
192 .1479 .1961 .2025.1960 .1960 .1952 .1519 .1523 .1552.1533 .1533 .1542 .1499 .1518 .1545.1513 .1513 .1505
336 .2624 .3120 .3495.3116 .3117 .3102 .2480 .2521 .2710.2528 .2527 .2535 .2461 .2501 .2735.2491 .2492 .2484
720 4460 4481 .6222 .4498 .4460 .4448 4481 .4185 .5919 4164 .4162 4179 4458 4128 .5679 .4072 .4063 .4068

96 .1617 2118 .2151.2115 2115 .2123 .1793 .1824 .1827.1827 .1827 .1858 .1737 .1770 .1767.1761 .1761 .1776
192 .2088 2514 .2592.2517 .2517 .2517 .2217 .2226 .2270.2232 .2232 .2259 .2189 .2201 .2235.2191 .2192 .2204
336 .2515 2916 .3063.2949 .2948 .2920 .2626 .2510 .2622.2532 .2532 .2541 .2587 .2497 .2606 .2505 .2505 .2496
720 .2730 .3230 .3460 .3225 .3225 .3267 .2708 .2774 .2965.2802 .2802 .2810 .2692 .2726 .2921.2755 .2755 2725

PatchTST OLS MICN
CALR Cosine Exp Fixed Plateau Step CALR Cosine Exp Fixed Plateau Step CALR Cosine Exp Fixed Plateau Step

96 4238 4723 4294 5723 4923 4232 4372 4375 4448 4401 4401 .4413 .4684 .4739 .4904 4708 .4708 .4769
192 .4805 .5307 .4958.6301 .5501 .4838 .4906 .4912 .5041.4944 4944 4951 .5328 .5320 .5709.5297 .5298 .5390
336 .5320 .5851 .5535.6826 .6026 .5396 .5320 .5342 .5515.5384 .5384 .5424 5878 .5864 .6417.5861 .5861 .5974
720 .5822 .6412 .6553.7330 .6533 .6031 .5733 .5872 .6371.5808 .5808 .5987 .6504 .6726 .8268 .6506 .6506 .6977

96 .2343 .2840 .2352.3839 .3039 .2345 .2265 .2275 .2268.2301 .2300 .2296 .2485 .2499 .2499 2521 .2521 .2466
192 2608 .3114 .2641.4092 .3292 .2617 .2791 .2804 .2804 .2828 .2828 .2823 .3017 .2990 .3077.3025 .3026 .2960
336 .2978 3514 .3086.4543 .3743 .2993 .3043 .3030 .3064.3063 .3063 .3029 .3310 .3303 .3399.3388 .3388 .3243
720 .3428 .3913 .3663 .4951 4151 .3485 .3453 .3487 .3589 .3473 .3472 .3476 .3885 .3965 .4019.3929 .3929 .3884

96 .3626 .4104 .3741.5183 .4383 .3655 .3475 .3487 .3608.3495 .3495 .3552 .3831 .3912 .3982.3900 .3900 .3913
192 4258 4747 4427 .5764 4964 4315 4119 4125 4283 4142 4142 4174 4514 4533 4641 .4524 4524 4541
336 .4697 .5149 .4825.6203 .5403 .4700 .4749 .4706 .4920.4728 .4728 4751 .5054 .5053 .5249.5048 .5048 .5079
720 .4882 .5349 .5077.6391 .5550 .4877 .5007 .4831 .5136.4873 .4873 .4882 .5225 .5152 .5443 .5188 .5188 .5185

96 .1562 .2065 .1566.3064 .2265 .1566 .1586 .1608 .1590.1627 .1627 .1630 .1704 .1742 .1709.1762 .1763 .1709
192 .2022 2527 .2056 .3532 .2732 .2034 .1907 .1933 .1914.1954 .1953 .1956 .2120 .2154 .2138.2180 .2180 .2122
336 .2352 .2863 .2367 .3863 .3063 .2363 .2226 .2278 .2256.2298 .2298 .2298 .2351 .2383 .2365.2408 .2408 .2354
720 .2645 3145 2692 4114 3314 .2619 .2349 .2390 .2417 2445 2445 .2367 .2643 .2628 2672 2647 .2647 .2565

96 .0788 .1278 .0802.2278 .1478 .0776 .0773 .0789 .0780.0809 .0809 .0808 .1008 .1031 .1027.1051 .1051 .0994
192 .1570 .2051 .1642.3052 .2251 .1544 .1457 .1452 .1490.1474 .1473 .1466 .1722 .1715 .1779 .1735 .1735 .1670
336 .2445 2966 .2780.3962 .3164 .2448 .2323 .2331 .2578.2349 .2348 .2334 .2660 .2730 .3114.2745 .2745 .2675
720 4662 4743 5963 5724 4923 4218 4541 4224 .5806.4190 .4190 .4189 4815 .4515 .6597 4488 4511 .4460

96 .1634 2124 .1651.3124 .2324 .1629 .1803 .1822 .1840.1838 .1838 .1855 .1651 .1678 .1669.1695 .1695 .1644
192 2108 .2564 .2122.3569 .2769 .2065 .2237 .2232 .2290.2250 .2250 .2263 .2120 .2096 .2105.2109 .2109 .2050
336 .2488 .2924 .2540.3950 .3150 .2419 .2642 .2618 .2743 .2651 .2651 .2647 .2737 .2545 .2599 .2556 .2556 .2499
720 .2713 .3230 .2913 4275 .3475 .2737 .2708 .2783 .2987 .2824 .2824 .2817 .2855 .2864 .3035.2959 .2959 .2906
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in an efficient low-dimensional form, while the specific components model idiosyncratic behavior
unique to each variable. These two components are combined through a learnable mixing coefficient
that automatically balances global and variable-specific contributions.

Table[I7a] presents the comparison results. For datasets where meaningful cross-variable dependen-
cies exist, the multivariate structure achieves higher predictive accuracy than the univariate version
of COSA. However, for datasets with weak inter-variable correlations, such as the Exchange Rate,
the univariate structure remains more stable. In such cases, the shared component struggles to learn
useful common patterns, which can lead to performance degradation. Moreover, as shown in Ta-
ble the additional complexity leads to increased adaptation time and inference latency.
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These results indicate that multivariate-based correlation modeling can indeed provide accuracy
gains, but further design improvements are required for effective deployment under TTA constraints.
We discuss these limitations and potential future directions in Section[H]

Table 17: Prediction accuracy and overhead of multivariate consideration.

(a) Prediction accuracy.

Transformer-based Linear-based MLP-based
iTransformer PatchTST DLinear OLS FreTS MICN
Indiv. Corr. Indiv. Corr. Indiv. Corr. Indiv. Corr. Indiv. Corr. Indiv. Corr.

96 4363 4351 4238 4157 4482 4202 4372 4388 4371 4408 4684 4533

—
= 192 4919 4762 4805 .4589 5050 .4646 4906 .4806 .4940 .4769 .5328 .5039
E 336 5300 4759 .5320 4798 5456 4823 5320 .4884 5351 .4987 5878 .5105
720 5638 4371 5822 .5244 5896 4695 5733 4660 5959 4954 .6504 .5314
~ 96 2493 2453 2343 1836 .2281 2342 2265 .2249 2350 .2311 2485 .2411
= 192 2947 2871 2608 .2172 2819 .2578 2791 2770 2824 .2922 3017 .2923
E 336 3339 3341 2978 .2361 3083 .2866 .3043 .2911 3153 .2971 3310 .3122
720 3591 3306 3428 .2638 3477 .3094 3453 .3083 3399 .2979 3885 .3441
- 96 3455 3186 3626 .3595 3475 3335 3475 3330 3525 .3381 3831 .3385
E 192 4140 .3988 4258 4159 4122 .4058 4119 4125 4212 4153 4514 4188
= 336 4643 4491 4697 4739 4858 4561 4749 4648 4775 4618 5054 .4628
= 720 5102 4372 4882 4892 4991 .4406 5007 4323 4982 4533 5225 .4496
] 96 1632 .1633 .1562 .1195 .1586 .1557 .1586 .1574 .1569 .1560 .1704 .1697
E 192 2173 2141 2022 .1526 .1905 .2005 .1907 .1935 .1908 .1921 .2120 .2097
E 336 2535 2347 2352 1783 2242 2235 2226 .2145 2211 .2149 2351 .2429

720 2606 2110 2645 2162 2316 .2295 2349 .2006 2314 .2022 2643 .2265

96 .0837 .0840 .0788 .0851 .0834 .0791 .0773 .0773 .0766 .0765 .1008 .0995
192 .1479 1493 .1570 .1828 .1519 .1609 .1457 .1457 .1499 .1516 .1722 .1726
336 .2624 2838 .2445 3162 .2480 2599 .2323 2456 .2461 2627 .2660 .2955
720 4460 5221 4662 7731 4481 5280 4541 5184 4458 5079 4815 5711

Exchange
Rate

5 96 .1617 .1547 .1634 .1656 .1793 .1566 .1803 .1731 .1737 .1673 .1651 .1591
= 192 2088 .1938 .2108 .2073 .2217 .2003 .2237 .2158 .2189 .2095 .2120 .1979
g 336 2515 .2300 .2488 2539 2626 .2321 2642 .2461 2587 .2331 2737 .2565
= 720 2730 .2236 .2713 2868 2708 .2254 2708 .2172 2692 .2165 2855 .2420
(b) Overhead analysis.
Method #Params | Adaptation time/batch (ms) |  Inference time/batch (ms) |  Average MSE |
Univariate 1,211,287 80.12 + 13.58 1.25 +.0984 3240
Multivariate 1,214,851 186.28 + 15.36 6.35 £ .2452 3071

G.6 EXTENSION TO VECTOR GATING

To evaluate whether finer-grained control over correction strength could provide additional benefits,
we implemented an element-wise gating vector as an extension of the scalar gating mechanism in
COSA. This vector shares the same dimensionality as the prediction length, allowing each time step
within the prediction window to modulate its correction intensity independently. Such a design is
intended to handle scenarios where drift occurs in only a specific portion of the horizon.

However, as shown in Table [I8a] vector gating yields degraded overall accuracy compared to the
original scalar gating, and also exhibits reduced stability. We attribute this performance degradation
to the propagation of local noise: a noise spike at a particular horizon position can influence the
entire gating vector over successive adaptation steps, causing cumulative negative impact throughout
the correction process. In contrast, scalar gating provides consistent batch-level modulation that
effectively bounds the influence of noise and maintains stable behavior across adaptation windows.

G.7 VISUALIZATION OF NORMALIZATION

Figure[7] visualizes the learned weights of the linear layer in COSA with and without representative

time-series normalization modules (RevIN (Kim et al.,|2021) and DDN (Dai et al., 2024)).
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Table 18: Prediction accuracy and overhead of vector gating.

(a) Performance comparison.

iTransformer DLinear FreTS

Scalar Vector Scalar Vector Scalar Vector

96 .4363 .4336 .4574 .4436 .4371 .4336
192 .4919 4875 .5066 .4985 .4940 .4905
336 .5300 .5430 .5528 .5466 .5467 .5353
720 .5638 .6013 .6107 .6178 .6259 .6236

96 .2493 .1990 .2281 .1798 .2350 .1842
192 .2947 2318 .2819 .2198 .2972 .2202
336 .3339 .2604 .3083 .2472 .3153 .2501
720 .3591 .3035 .3477 .2893 .3399 .2898

96 .3455 3611 .3456 .3425 .3525 .3551
192 .4140 .4119 4222 .4068 .4212 .4137
336 .4643 4720 .4858 .4706 .4775 .4767
720 .5102 .5484 .4991 .5370 .4982 .5405

96 .1632 .1245 .1583 .1215 .1569 .1202
192 2173 .1683 .1943 .1487 .1934 .1484
336 .2535 .2010 2242 .1798 .2211 .1795
720 .2606 .2488 .2316 2319 .2314 .2280

96 .0837 .0875 .0834 .0903 .0766 .0818
192 .1479 .1774 1519 .1790 .1499 .1698
336 .2624 .3258 .2480 .3134 .2461 .3094
720 .4460 .7649 .4481 .7904 .4458 .7500

96 .1617 .1718 .1793 .1908 .1737 .1825
192 .2088 2176 .2217 .2326 .2189 .2250
336 .2515 .2706 .2626 .2808 .2587 .2745
720 .2730 .3359 .2708 .3418 .2692 .3378

(b) Overhead analysis.

ETThl

ETTh2

ETTml

ETTm2

Exchange
Rate

Weather

Method #Params |  Adaptation time/batch (ms) |  Inference time/batch (ms) |  Average MSE |

Scalar 1,211,287 80.12 £+ 13.58 1.25 £ .0984 3240
Vector 1,212,446 96.34 £+ 12.48 1.89 £ .0745 3287

RevIN performs standard normalization on each input time series and then applies a correspond-
ing denormalization step on the output. This procedure mitigates train—test distribution mismatch
while restoring the information removed during normalization at the prediction stage, preventing
degradation in forecasting performance.

DDN, in contrast, operates jointly in the time and frequency domains. It decomposes the input into
low-frequency and high-frequency components and computes local statistics from each domain to
remove non-stationarity. DDN then reconstructs non-stationary patterns in the predicted outputs
using distribution statistics estimated from the model’s predictions, enabling dynamic tracking of
distribution drift.

Each heatmap entry (4, ) shows the weight connecting the j-th input to the i-th output; columns

1:L correspond to the original prediction of base model Y© and columns L+1:L+K to the context
vector C. The example is taken from a single variable of ETTh1 with look-back W =96 and hori-
zon L=96. Notably, the rightmost block (context columns) is strongly attenuated when RevIN or
DDN is applied, whereas without a normalizer, the same block exhibits structured, non-negligible
weights. This pattern indicates that explicit normalization reduces the marginal utility of the context
(level/scale cues are already standardized), while in the non-normalized COSA leverages C to per-
form level-shift correction directly in the output space—supporting our claim that the adapter can
subsume normalization effects when needed and remain compatible with them when present.
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Figure 7: Weight heatmaps of the COSA linear layer for one ETTH1 variable (W=96, L=96).

Columns 1:L are base-prediction inputs Y@ columns L+1:L+K are context inputs C'. Each cell
shows the weight from input j to output ¢. Color scales are kept identical across panels to allow
magnitude comparison.

H DISCUSSION

Although COSA is built around a simple output-space linear adapter, the extended experiments in
the Appendix examined multiple alternative design choices. While low-rank adaptation, input-side
calibration, vector gating, selective/encoder-based context, and multivariate extensions each provide
potential benefits in specific scenarios, our overall findings show that, considering average accuracy,
stability, and latency, the architecture adopted in this paper remains the most consistent and robust
choice for TSF-TTA.

The key observations are summarized below:

* Low-rank factorization. Despite its parameter-efficiency appeal, reducing representa-
tional capacity can lead to unstable adaptation. A joint adapter that integrates low-rank
structure without compromising stability is a meaningful direction for future work.

* Input-side calibration (GCM). Combining COSA with input GCM improves perfor-
mance on datasets with strong input noise (e.g., ETTh1/h2/m2) by smoothing perturbations
before prediction. However, for fast-drifting or irregular series, GCM may oversmooth im-
portant variations and degrade performance, reaffirming that output-only correction is a
reasonable and stable default.

» Gating and its variants. Although vector gating was expected to modulate drift at a finer
temporal resolution, local noise propagated across the gating vector and reduced stability
compared to scalar gating. Scalar gating’s batch-level modulation limits the influence of
noise and achieves more reliable behavior.

* Context construction. Selective context (phase-aligned retrieval) and encoder-based con-
text (RNN/LSTM/Attention) showed improvements in certain periodic datasets, but both
suffered from outdated information, overfitting, or latency overhead in non-stationary set-
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tings. These results highlight that additional complexity does not guarantee better TTA per-
formance unless paired with drift-aware representations and online update strategies. Fu-
ture directions include sub-sequence vector gating, structure-aware context that explicitly
encodes trend and seasonality, and lightweight encoders capable of tracking drift without
incurring high overhead.

* Multivariate residual correction. While multivariate modeling with cross-variable atten-
tion and shared components improved performance in most datasets, it degraded both accu-
racy and efficiency in datasets with weak inter-variable correlations (e.g., Exchange Rate).
This suggests the need for selective correlation modeling or structural sparsity to suppress
unnecessary cross-variable interactions.

Taken together, the extended Appendix experiments reinforce that the proposed simple architecture
is particularly well-suited for TSF-TTA. They also indicate substantial room for generalizing COSA
through carefully integrated low-rank structures, input calibration modules, selective or encoder-
based context modeling, and vector gating, while preserving the efficiency and stability crucial for
non-stationary test-time adaptation.

I CONFIDENCE INTERVAL OF MAIN RESULTS

Table [T9] reports the 95% confidence intervals of the main accuracy comparison results over 10
independent runs for each method—dataset—horizon combination. Overall, the intervals are narrow,
indicating that the run-to-run variability of all methods is small, and COSA-F/P consistently retain
their advantage over baselines even when accounting for this uncertainty.

THE USE OF LARGE LANGUAGE MODELS

Tool & Version: Claude Sonnet 4 (Anthropic, 2025-09)

Research Stage: Not used.

Writing Stage: Language editing of author-drafted text for clarity and conciseness.

Human Oversight: All outputs reviewed/edited by the authors; authors accept full responsibility
for the content.
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