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Abstract

Benefiting from massive corpora and advanced
hardware, large language models (LLMs)
exhibit remarkable capabilities in language
understanding and generation. However, their
performance degrades in scenarios where mul-
tiple tasks are encountered sequentially, also
known as catastrophic forgetting. In this paper,
we propose orthogonal low-rank adaptation
(O-LoRA), a simple and efficient approach
for continual learning in language models,
effectively mitigating catastrophic forgetting
while learning new tasks. Specifically, O-LoRA
learns tasks in different (low-rank) vector
subspaces that are kept orthogonal to each other
in order to minimize interference. Our method
induces only marginal additional parameter
costs and requires no user data storage for
replay. Experimental results on continual
learning benchmarks show that our method
outperforms state-of-the-art methods. Further-
more, compared to previous approaches, our
method excels in preserving the generalization
ability of LLMs on unseen tasks.

1 Introduction

Learning tasks sequentially is crucial for de-
veloping real-world NLP models (Wang et al.,
2023b; Xi et al., 2023), as it enables continu-
ous evolution when encountering new tasks or
knowledge. Although pre-trained models (Devlin
et al., 2019; Brown et al., 2020; Raffel et al., 2020;
OpenAI, 2023) have achieved tremendous success
on static tasks (Wang et al., 2022a, 2023c), learning
multiple tasks sequentially, commonly referred to
as continual learning, remains challenging (Wu
et al., 2022; Luo et al., 2023). As a model
learns new tasks, it tends to forget or lose the
knowledge it had acquired for earlier tasks, leading
to a phenomenon known as catastrophic forgetting
(McCloskey and Cohen, 1989).
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Figure 1: Illustration highlighting the intuition of our
approach. O-LoRA mitigates catastrophic forgetting
of past task knowledge by constraining the gradient
updates of the current task to be orthogonal to the
gradient subspace of the past tasks.

Existing continual learning works (Ke and Liu,
2022; Wang et al., 2023a) can be mainly catego-
rized into rehearsal-based, regularization-based,
and architecture-based approaches. Rehearsal-
based approaches (Lopez-Paz and Ranzato, 2017;
de Masson D’Autume et al., 2019) allow access
to a memory buffer with examples from prior
tasks and train the model jointly with the current
task. Unfortunately, storing and replaying data
from previous tasks may raise privacy concerns,
especially when sensitive or personally identifiable
information is involved. Regularization-based
approaches (Kirkpatrick et al., 2017; Li and Hoiem,
2017; Smith et al., 2023) introduce additional
terms in the loss function to penalize changes
in important weights, aiming to protect earlier
learned tasks. They often struggle to handle long
task sequences. Architecture-based approaches
(Wang et al., 2023e; Razdaibiedina et al., 2023)
dynamically expand the model capacity or isolate
existing model weights to reduce interference.



However, such approaches essentially learn differ-
ent expert models for different tasks, limiting their
generalization to unseen tasks.

Existing methods typically update all tasks
within a shared vector space, directly affecting
the model’s hidden layer outputs. Recent studies
(Farajtabar et al., 2020; Saha et al., 2021) have
highlighted a promising approach to address this
issue. By taking gradient steps in the orthogonal
direction to the gradient subspaces associated with
past tasks, we can effectively mitigate catastrophic
forgetting as it prevents interference with the past
task loss functions. However, previous approaches
either require storing historical data (Chaudhry
et al., 2019), which raises data privacy concerns,
or historical data gradients (Farajtabar et al., 2020),
which becomes impractical for large-scale models.

In this work, we propose orthogonal low-rank
adaptation (O-LoRA) 1, a simple and efficient
approach for continual learning in language models.
Our key insight is rooted in the nature of LoRA:
large pre-trained models primarily fine-tune within
a specific low-rank subspace. With this premise,
we hypothesize that the gradient subspaces from
previous tasks can be effectively captured by the
LoRA parameters. In the context of continual
learning, we incrementally learn new tasks in
an orthogonal subspace while fixing the LoRA
parameters learned from past tasks. Figure 1
provides a visual representation of how O-LoRA
minimizes catastrophic forgetting.

Our method offers three advantages: (1) Data
privacy-friendliness: We require no storage of
user data for replay, addressing concerns associated
with privacy. (2) Model parameter-friendliness:
By introducing only marginal cost of additional
parameters, our approach enables the learning of
new tasks without compromising the performance
of previous tasks. (3) Generalization-friendliness:
Our method does not rely on task IDs during
testing, making it compatible with instruction
tuning paradigm (Wang et al., 2022b), thus
preserving LLMs’ generalization ability on unseen
tasks.

Our main contributions are summarized as
follows:

• We introduce O-LoRA, a simple and efficient
approach for continual learning in language

1The dataset, code can be found at https://github.com/
cmnfriend/O-LoRA

models, incrementally learning new tasks in
orthogonal subspaces.

• Our method significantly outperforms prior
SOTA methods on standard continual learning
benchmarks.

• Experimental results show that our method
preserves the generalization ability of large
language models on unseen tasks, which was
lacking in previous approaches.

2 Background

2.1 Continual Learning Setup
Continual learning (Ke and Liu, 2022; Wang et al.,
2023b) focuses on developing learning algorithms
to accumulate knowledge on non-stationary data.
In supervised continual learning, a sequence of
tasks {D1, . . . ,DT } arrive in a streaming fashion.
Each task Dt =

{(
xt
i, y

t
i

)}nt

i=1
contains a separate

target dataset, where xt
i ∈ Xt , yt

i ∈ Yt. A single
model needs to adapt to them sequentially, with
only access to Dt at the t-th task. In general,
given a prediction model hΘ parameterized by
Θ, continual learning seeks to optimize for the
following objective across all tasks:

max
Θ

T∑
k=1

∑
x,y∈Dk

log pΘ(y | x) (1)

In this study, we tackle a more challenging setting.
During the training phase, the model is prohibited
from accessing any historical data. In the testing
phase, the model predicts a sample’s label without
knowing which task it belongs to.

2.2 LoRA
When pre-trained models (PTMs) adapt to specific
tasks, Hu et al. (2021) has demonstrated that
weight updates in PTMs exhibit a low "intrin-
sic dimension." For a pre-trained weight matrix
Winit ∈ Rd×k, LoRA constrains its update by
representing it with a low-rank decomposition
Winit + ∆W = Winit + AB, where A ∈ Rd×r,
B ∈ Rr×k, and the rank r ≪ min(d, k). Winit

remains fixed during training and does not receive
gradient updates, while A and B contain trainable
parameters. To illustrate the modified forward pass
of LoRA, consider the operation h = Winitx. With
LoRA, the modified forward pass becomes:

h = Winitx+∆Wx = Winitx+ABx (2)

https://github.com/cmnfriend/O-LoRA
https://github.com/cmnfriend/O-LoRA
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Figure 2: The framework of O-LoRA for language model continual learning. First, allowing the integration of
human expertise and enhancing generalization by instruction tuning. Next, approximate gradient subspaces of each
task respectively uning LoRA. For each sequentially incoming task, we incrementally learn a new LoRA while
enforcing orthogonality between the current task’s LoRA and the past ones.

3 Orthogonal Low-rank Adaptation

In this section, we introduce O-LoRA, illustrated in
Figure 2. First, we adopt instruction tuning as our
training paradigm. Then, we incrementally learn
new tasks within an orthogonal subspace while
keeping the LoRA parameters fixed for past tasks.
Lastly, we conduct a comparative analysis of our
method compared to existing approaches.

3.1 Instruction Schema

Instruction-following capability is essential to
LLMs as an interface between humans and AI
models (Wang et al., 2022b; Ouyang et al., 2022;
Wang et al., 2023d). We choose instruction
tuning as our training paradigm for two reasons:
1) Incorporating human expertise: The models
can leverage prior knowledge and benefit from
human expertise by providing explicit instructions,
leading to more efficient learning. 2) Enhanced
generalization: The explicit guidance helps models
capture the underlying principles, enabling better
generalization to unseen situations.

All task instructions follow the same uniform
schema, which is composed of 1) Task Definition
provides a detailed guide on how an input text (e.g.,
a sentence or a document) is expected to be mapped

to an output text. 2) Options are the output label
constraints for a task, which represent the set of
possible outputs that can be generated by the model
for a given input. 3) Text is the input sentence of
a task instance. This sequence is then fed into
the pre-trained language model along with the task
instruction and options. 4) Answer is the expected
output of the given sample.

3.2 Continual Learning in Orthogonal
Subspaces

Previous methods exhibit a common feature: all
tasks undergo updates within a shared vector space,
directly impacting the hidden layer outputs of the
model. Catastrophic forgetting happens in neural
networks when the gradient updates with respect
to a new task are applied to the model without
considering previous tasks.

Farajtabar et al. (2020) propose the Orthogonal
Gradient Descent (OGD) method for mitigating
this problem, which constrains the parameters to
move within the orthogonal space to the gradients
of previous tasks. With limited access to previous
task data, OGD approximates the current gradient
of previous data with the gradient in the previous
convergence parameters. However, OGD needs
to store gradients of all previous data. This can



be especially intractable for large-scale language
models with billions of parameters (Raffel et al.,
2020; Brown et al., 2020), which have become a
standard in the NLP field.

Is it possible to approximate the gradient
direction of previous tasks without storing histor-
ical gradients? In this study, we leverage the
low-rank subspace of LoRA (Hu et al., 2021)
as a proxy for the gradient subspace of past
tasks. Our fundamental insight is rooted in
the nature of LoRA: large pre-trained models
primarily fine-tune within a specific low-rank
subspace. This characteristic behavior suggests
that the LoRA parameters are not mere numerical
adjustments but encapsulate crucial model update
directions. Therefore, we hypothesize that the
gradient subspaces of previous tasks are succinctly
represented by the LoRA parameters. By learning
within a subspace orthogonal to the LoRA subspace
associated with previous tasks, we can prevent
interference with past task loss functions, thus
mitigating catastrophic forgetting.

We propose O-LoRA, which incrementally
learns new tasks in a direction orthogonal to the
LoRA subspace of past tasks while fixing the
previous parameters. For each task, we introduce
a set of LoRA parameters denoted as {At, Bt},
where A ∈ Rd×r, B ∈ Rr×k, and the rank
r ≪ min(d, k). We approximate the parameter
update subspace Ut for the t-th task as the subspace
spanned by the column vectors of At:

At = [a1t , a
2
t , ..., a

r
t ] (3)

Ut = span{a1t , a2t , ..., art} (4)

Let Bt = [b1t , b
2
t , ..., b

r
t ], where bit ∈ Bt represents

the linear weighting coefficients of the column
vectors in At.

To ensure the orthogonality between the sub-
space U and the subspace W , we need to satisfy:

< u,w >= 0, ∀u ∈ U , w ∈ W. (5)

Therefore, achieving orthogonality between the
LoRA subspaces of task i (U i) and task t (U t) can
be expressed as:

Oi,t = AT
i At = 0. (6)

Finally, our training objective is defined as:

∑
x,y∈Dt

log pΘ(y | x) + λ1

t−1∑
i=1

Lorth(Ai, At) (7)

RF PE TIF UT

EWC (Kirkpatrick et al., 2017) ✓ ✓
A-GEM (Chaudhry et al., 2018) ✓
MBPA++ (de Masson D’Autume et al., 2019) ✓
IDBR (Huang et al., 2021) ✓
L2P (Wang et al., 2022c) ✓ ✓ ✓
LwF (Li and Hoiem, 2017) ✓
OGD (Farajtabar et al., 2020) ✓ ✓
LFPT5 (Qin and Joty, 2021) ✓ ✓
EIP (Wang et al., 2023e) ✓ ✓ ✓
PP (Razdaibiedina et al., 2023) ✓ ✓

O-LoRA ✓ ✓ ✓ ✓

Table 1: The comparison between O-LoRA and other
continual learning methods. Specifically, RF indicates
whether the method is rehearsal-free. PE indicates
whether the method is parameter efficient. TIF indicates
whether task-id is available during inference. UT
indicates whether the method can be applied to solve
unseen tasks.

Lorth(Ai, At) =
∑
j,k

∥Oi,t[j, k]∥2 (8)

where Oi,t[j, k] denotes the element at the j-th row
and k-th column of Oi,t, and λ1 is the weights of
the orthogonality loss. During the training process,
to mitigate forgetting of past knowledge, we fix
the previous LoRA parameters {Ai, Bi|i < t}.
Following Hu et al. (2021), we only apply LoRA
to the attention weights of queries (Wq) and values
(Wv).

While the number of LoRA parameters grows
with the number of tasks during training, we can
merge the updates corresponding to the LoRA
parameters into the initial parameters to avoid GPU
memory inflation.

Winit := Winit +

t∑
i=1

AiBi. (9)

3.3 Comparisons Between O-LoRA and
Other Methods

In this section, we compare O-LoRA with other
existing continual learning methods across several
dimensions: rehearsal-free, parameter efficiency,
availability of task-id during inference, and appli-
cability to unseen tasks. As shown in Table 1, O-
LoRA demonstrates three distinct advantages: data
privacy-friendliness, model parameter-friendliness,
and generalization-friendliness.

Data privacy-friendliness. Rehearsal-based
methods (de Masson D’Autume et al., 2019; Huang
et al., 2021), which rely on storing past task
data in a buffer and replaying it during training,



are not suitable for scenarios with data privacy
concerns. Additionally, as the number of training
tasks increases, the cost of training new tasks using
replay-based methods also grows. In contrast,
our method does not require storing historical
data, alleviating concerns regarding data privacy.
Moreover, since we only modify the training loss,
there is no additional training cost incurred.

Model parameter-friendliness. Many previous
methods (Kirkpatrick et al., 2017; Farajtabar
et al., 2020) train the entire model parameters
for each task, while our method only introduces
marginal additional parameters for each task.
O-LoRA has lower requirements in terms of
computational resources and GPU memory during
training. Additionally, because the training of
LoRA freezes the pre-trained model parameters, it
is less prone to forgetting the knowledge acquired
during pre-training.

Generalization-friendliness. Traditional meth-
ods (Kirkpatrick et al., 2017; Chaudhry et al.,
2018; Wang et al., 2022c), primarily designed for
classification tasks, often fall short in generalizing
to unseen tasks due to their narrow task-specific
focus. In contrast, O-LoRA employs instruction
tuning (Wang et al., 2022b) as its training paradigm.
By incorporating explicit instructions or demon-
strations, the model can capture the underlying
principles or constraints of a task. This explicit
guidance helps the model generalize beyond the
specific examples in the training data, enabling it
to handle unseen situations more effectively. The
integration of human expertise through instruction
tuning enhances the generalization capabilities of
O-LoRA.

4 Experiments

4.1 Experimental Setup

4.1.1 Datasets

Standard CL Benchmark We evaluate our ap-
proach using the CL benchmark for language
models, which consists of five text classification
datasets introduced by Zhang et al. (2015): AG
News, Amazon reviews, Yelp reviews, DBpedia
and Yahoo Answers. We adopt the CL setup for the
T5 model, following LFPT5 (Qin and Joty, 2021),
and explore three different orders of the benchmark.
Appendix A.2 provides the task details, and the
sequences of tasks used in our experiments are
provided in Appendix A.3.

Large number of tasks Our method’s perfor-
mance on longer task sequences, posing a greater
challenge, is evaluated through experiments on
a continual learning benchmark of 15 datasets
(Razdaibiedina et al., 2023). This includes five
tasks from CL benchmark, four from GLUE
benchmark (MNLI, QQP, RTE, SST2) (Wang et al.,
2018), five from SuperGLUE benchmark (WiC,
CB, COPA, MultiRC, BoolQ) (Wang et al., 2019),
and the IMDB movie reviews dataset (Maas et al.,
2011). Following Razdaibiedina et al. (2023), we
select 1000 random samples for training each task
and hold out 500 samples per class for validation.

Unseen tasks Generation To assess the impact
of our approach on LLMs’ generalization ability,
we initially train an LLM on the Alpaca dataset
(Taori et al., 2023), an open-source multitask
instruction tuning dataset. We then use the pre-
trained LLM for sequential training on the standard
CL benchmark (Zhang et al., 2015). Our zero-
shot benchmark, MMLU (Hendrycks et al., 2020),
covers 57 subjects across various domains such as
STEM, humanities, and social sciences, assessing
world knowledge and problem-solving abilities
across various difficulty levels.

4.1.2 Metrics
Let ai,j be the testing accuracy on the i-th task after
training on j-th task, the metrics for evaluating is
Average Accuracy (AA), the average accuracy of
all tasks after training on the last task, 1

T

∑T
i=1 ai,T

4.1.3 Baselines
We evaluate O-LoRA against 10 baseline methods.
Importantly, among these baselines, only prompt-
based methods are exceptions; all others utilize the
LoRA framework. This uniformity in the founda-
tion ensures consistent parameter settings between
O-LoRA and its comparatives, guaranteeing a fair
comparison.

• SeqFT (de Masson D’Autume et al., 2019): train
all model parameters on a sequence of tasks
(without adding any regularization or replaying
samples from the previous tasks).

• SeqLoRA: fixed-size LoRA parameters are
trained on a sequence of tasks (without adding
any regularization or replaying samples from the
previous tasks).

• IncLoRA: incremental learning of new LoRA
parameters on a sequential series of tasks



Standard CL Benchmark Large Number of Tasks
Order-1 Order-2 Order-3 avg Order-4 Order-5 Order-6 avg

SeqFT 18.9 24.9 41.7 28.5 7.4 7.4 7.5 7.4
SeqLoRA 44.6 32.7 53.7 43.7 2.3 0.6 1.9 1.6
IncLoRA 66 64.9 68.3 66.4 63.3 58.5 61.7 61.2
Replay 55.2 56.9 61.3 57.8 55 54.6 53.1 54.2
EWC 48.7 47.7 54.5 50.3 45.3 44.5 45.6 45.1
LwF 54.4 53.1 49.6 52.3 50.1 43.1 47.4 46.9
L2P 60.3 61.7 61.1 60.7 57.5 53.8 56.9 56.1
LFPT5 67.6 72.6 77.9 72.7 70.4 68.2 69.1 69.2
O-LoRA 75.4 75.7 76.3 75.8 72.3 64.8 71.6 69.6

ProgPrompt 75.2 75 75.1 75.1 78.0 77.7 77.9 77.9
PerTaskFT 70.0 70.0 70.0 70.0 78.1 78.1 78.1 78.1
MTL 80.0 80.0 80.0 80.0 76.5 76.5 76.5 76.5

Table 2: Summary of the results on two standard CL benchmarks with T5-large model. Averaged accuracy after
training on the last task is reported. All results are averaged over 3 runs.

(without adding any regularization or replaying
samples from the previous tasks).

• Replay: finetune the whole model with a
memory buffer, and replay samples from old
tasks when learning new tasks to avoid forgetting.

• EWC (Kirkpatrick et al., 2017): finetune the
whole model with a regularization loss that
prevents updating parameters that could interfere
with previously learned tasks.

• LwF (Li and Hoiem, 2017): constrains the shared
representation layer to be similar to its original
state before learning the new task.

• L2P (Wang et al., 2022c): uses the input to
dynamically select and update prompts from the
prompt pool in an instance-wise fashion.

• LFPT5 (Qin and Joty, 2021): continuously train
a soft prompt that simultaneously learns to solve
the tasks and generate training samples, which
are subsequently used in experience replay.

• ProgPrompt (Razdaibiedina et al., 2023): adopts
a task-specific soft prompt for each distinct
task, sequentially appending it to prior learned
prompts. In essence, it trains individual models
per task, leveraging the task ID to select the
appropriate model during inference.

• PerTaskFT: train a separate model for each task.

• MTL: train a model on all tasks as multi-task
learning. This method is the upper bound of
continual learning.

4.1.4 Implementation Details
O-LoRA is a model-agnostic CL method that can
be used with any transformer-based model. In our
experiments, we use two language models adopted
by the previous lines of works in CL for NLP:
encoder-decoder T5 model (Raffel et al., 2020) and
decoder-only LLaMA model (Touvron et al., 2023).
To compare O-LoRA to the recent CL approaches
(Wang et al., 2022c; Qin and Joty, 2021), we use the
pre-trained T5-large model. To validate the impact
of our approach on the generalization ability of
LLMs for unseen tasks, we use pre-trained LLaMA-
7B model. All experimental results are reported as
the average of 3 runs. For more detailed settings,
refer to the Appendix A.1.

4.2 Main Results

Table 2 presents a performance comparison of O-
LoRA and baseline continual learning methods on
two CL benchmarks. Following LFPT5, we report
the results of three independent runs with different
task orders on the CL benchmark.

Results on Standard Continual Learning
Benchmarks On all task orders of the standard
CL benchmark, O-LoRA consistently outperforms
previous methods by a significant margin. Overall,
O-LoRA achieves a performance improvement of
over 24% compared to LFPT5, the previous state-



MMLU CL
LLaMA-7B 34.4 /
Alpaca-LoRA 37.5 /
Alpaca-LoRA-CL 23.3 46.7
Alpaca-inc-LoRA-CL 28.6 33.1

Alpaca-OLoRA-CL 33.6 76.8

Table 3: Performance comparison of different continual
learning methods applied to the Alpaca-LoRA-LLaMA
model. These methods are evaluated on MMLU(zero-
shot) and CL benchmmark(order 1).

of-the-art method. Our approach demonstrates
comparable performance to multi-task learning and
significantly outperforms PerTaskFT, indicating
that our method not only effectively avoids catas-
trophic forgetting but also leverages knowledge
from past tasks for efficient learning of new tasks.

Performance with Large Number of Tasks
On a more challenging benchmark with a large
number of tasks, O-LoRA outperforms the state-
of-the-art method, LFPT5, in terms of the average
performance across three orders of tasks. While
ProgPrompt performs better than our method
in handling long sequence tasks, its inherent
constraints cannot be overlooked. ProgPrompt
is strictly tied to tasks it’s trained on and leans
heavily on task IDs during inference, limiting its
generalization ability and making it less adaptive
for LLMs. It is worth noting that almost all existing
continual learning methods perform significantly
lower than PerTaskFT and MTL, indicating that
continual learning for a large number of tasks
remains a challenging problem.

Impact on the Generalization Ability of LLMs
We investigate the impact of O-LoRA on the
generalization of Large Language Models through
continual learning experiments. We start with
a fine-tuned LLaMA-7B language model on the
Alpaca dataset, then test models with and without
the O-LoRA constraint on the MMLU benchmark.
With MMLU being a four-classification problem,
a 25% accuracy equates to random guessing.
According to Table 3, models without O-LoRA
(Alpaca-LoRA-CL, Alpaca-LoRA-inc-CL) achieve
accuracies of 23.3% and 28.6% respectively,
comparable to random guesses. In contrast,
models with O-LoRA average at 33.6% accuracy,
demonstrate the effectiveness of O-LoRA in
maintaining generalization for unseen tasks.
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Figure 3: Histogram of prediction loss changes after
training on a new task. The O-LoRA constraint (λ1 =
0.5) helps reduce the changes in comparison to when it
is not present (λ1 = 0).

4.3 Discussions

Does O-LoRA preserve the loss of previous
tasks while training new tasks? We assessed
the efficiency of the low-rank subspace of LoRA
in approximating the gradient subspace of previous
tasks. In our evaluation, we applied an orthogo-
nality constraint with a weight of 0.5 (λ1 = 0.5).
In comparison, without the constraint (λ1 = 0),
new LoRA parameters are added for new tasks
with historical LoRA, and model parameters are
kept fixed. As Figure 3 shows, the O-LoRA
constraint helps keep the loss of previous samples
low, proving that the O-LoRA constraint effectively
counteracts catastrophic forgetting.

How does O-LoRA influence the output of
each layer in the model? We examine the
variation in hidden states for past task samples
in models trained with and without O-LoRA
constraints, using the T5-base model. Figure 4
demonstrates that the O-LoRA constraint mini-
mizes the variations, hence reducing the forgetting
of internal knowledge. We found that lower layers
encode more generic semantic knowledge that
can be shared across tasks. Conversely, higher
layers encode task-specific semantic knowledge
and change a lot during new task learning. The
decoder can capture relevant information from
these rich semantic representations, proving the
minimal impact of our method on past tasks.

How do different PLMs influence perfor-
mances? We evaluate the performance of models
across varying parameter sizes (T5-base, T5-large,
T5-XL) and distinct architectures (T5, LLaMA)
using the standard continual learning benchmark.
Our findings are as follows: 1) In the T5
series, O-LoRA’s average accuracy improves as
the parameter size increases. 2) Larger network
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Figure 4: Variation in hidden states across different
layers of the T5-base model with and without O-LoRA
constraints. (a) illustrates the changes in the hidden
states of each layer in the T5 encoder after training on
a new task. (b) demonstrates the changes in the hidden
states of each layer in the T5 decoder. Light blue color
indicates the utilization of orthogonality loss, while dark
blue represents the absence of orthogonal loss in the
training objective.

sizes appear to counteract catastrophic forgetting,
approaching the proficiency levels of multitask
learning. 3) Notably, even with a greater parameter
count in the LLaMA-7B model, the T5-3B model
registered a higher average accuracy. This implies
that encoder-decoder architectures might be more
resistant to forgetting.

What is the Optimal Rank r for O-LoRA?
To investigate the influence of the rank parameter
(r) on the performance of O-LoRA, we conduct
experiments using T5-Base on a standard CL
benchmark. Table 5 presents the results of varying
r values. Increasing the rank r improves the average
accuracy of the model to a certain extent. However,
we observe that there is not a significant difference
in performance between r=2 and r=16, indicating
that the gradient space of the model has a relatively
low intrinsic dimensionality.

Order
Model 1 2 3 avg MTL

T5-base 73.9 75.8 74.5 74.7 78.5
T5-large 75.4 75.7 76.3 75.8 80.0

T5-xl 78.9 79.0 77.9 78.6 79.9
LLaMA-7B 76.8 75.7 75.7 76.1 77.1

Table 4: Comparison of different PLMs’ performances
across three orders in a standard continual learning
benchmark. Results also include average accuracy
("avg") and multitask learning performance ("MTL").

Order
r-dim 1 2 3 avg

2 74.2 71.1 73.6 73.0
4 73.0 72.7 74.1 73.3
8 75.6 71.7 71.9 73.1
16 74.5 73.4 74.8 74.2
std 0.92 0.89 1.07 0.47

Table 5: Comparisons of different rank r of LoRA.
This experiment is conducted based on T5-Base on the
standard continual learning benchmark.

5 Related Work

5.1 Continual Learning

Continual learning (Ke and Liu, 2022; Wang
et al., 2023a) aims to develop learning algorithms
that can accumulate knowledge on non-stationary
data. Existing works can be broadly categorized
into rehearsal-based, regularization-based, and
architecture-based approaches. For an in-depth
discussion on continual learning in the era of large
language models, readers may refer to (Wang et al.,
2023b).

Rehearsal-based approaches (Lopez-Paz and
Ranzato, 2017; de Masson D’Autume et al., 2019;
Han et al., 2020; Bai et al., 2022) leverage a
memory buffer that stores examples from previous
tasks, training the model jointly with the current
task. Experience replay (ER) (Rolnick et al.,
2019) is a common strategy employed in rehearsal-
based approaches and serves as a strong baseline.
However, the storage and replay of data from
previous tasks raise privacy concerns, particularly
when dealing with sensitive information.

Regularization-based approaches (Kirkpatrick
et al., 2017; Li and Hoiem, 2017; Farajtabar et al.,
2020; Smith et al., 2023) incorporate additional



terms into the loss function to penalize changes in
crucial weights. For instance, Orthogonal Gradient
Descent (OGD) (Farajtabar et al., 2020) constrains
the parameters to move within the orthogonal
space defined by the gradients of previous tasks.
However, OGD requires storing gradients of all
historical data, which becomes infeasible for large
language models. Another work introduces C-
LoRA (Smith et al., 2023) for continual learning
of text-conditioned images, which regularizes the
similarity of new LoRA parameters with historical
versions, limiting their learning plasticity to new
tasks.

Architecture-based approaches (Wang et al.,
2023e; Razdaibiedina et al., 2023) focus on
dynamically expanding model capacity or isolating
existing model weights to mitigate interference
between new and old tasks. Progressive Prompts
(Razdaibiedina et al., 2023) learns separate prompts
for each incoming task and sequentially con-
catenates them with previously learned prompts.
However, such approaches essentially train distinct
expert models for different tasks, which restricts
their generalization ability to unseen tasks.

In contrast to existing methods, our approach
offers unique advantages in terms of data privacy,
model parameter efficiency, and generalization
capability, as discussed in the previous sections.

5.2 Parameter Efficient Tuning

Parameter Efficient Tuning (PET) (He et al.,
2021) has emerged as a significant research
direction aimed at optimizing model performance
while minimizing computational resources and
annotation efforts. Various approaches have been
proposed to achieve parameter efficiency in tuning,
including adapters (Houlsby et al., 2019), prompt
learning (Lester et al., 2021), LoRA (Hu et al.,
2021), and fine-tuning subsets of the model (Zaken
et al., 2021). One particularly promising approach
is the use of low-rank adapters, which have
demonstrated effectiveness in adapting models to
new tasks with minimal additional parameters.
Building upon LoRA, we propose an efficient
continual learning neural architecture in this work.
Our approach involves layering low-rank adapters
on the key and value projection matrices of
transformer blocks. By leveraging the benefits
of low-rank adapters, we aim to strike a balance
between model performance and computational
efficiency in the context of continual learning.

6 Conclusion

In this paper, we introduce O-LoRA, a novel ap-
proach that leverages orthogonal subspace learning
for continual learning in language models. O-
LoRA systematically addresses catastrophic forget-
ting by adopting an incremental learning strategy
within orthogonal subspaces. Distinguished by
its data privacy considerations, efficient model
parameter utilization, and robust generalization to
novel tasks, our method stands out. Empirical eval-
uations underscore O-LoRA’s efficacy in tackling
the intricacies of continual learning.

Limitations

While our method has demonstrated effectiveness
in empirical evaluations, there are a few limitations
to consider. Firstly, its performance and appli-
cability in more complex scenarios with a large
number of tasks, such as hundreds of tasks, require
further investigation. Additionally, although our
method does not rely on task identification during
inference, it still requires task identification during
training to train different LoRA parameters for
each task. Exploring methods for task-agnostic
training would be a valuable future direction. By
addressing these limitations, we can enhance the
scalability and task-agnostic capabilities of our
approach, further advancing the field of continual
learning for language models.
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A Appendix

A.1 Implementation Details

All of our experiments on t5 models were con-
ducted on a machine equipped with 8 NVIDIA
GeForce RTX 3090 and were implemented using
DeepSpeed repository. For all orders of task
streams, We trained the models with one epoch,
a constant learning rate of 1e-3, a batch size of
64(a batch size of 8 per GPU), a dropout rate of
0.1, and a weight decay rate of 0. Only the values
of λ1 and λ2 are different among order 1 to 6. For
order 1, order 2 and order 3, we set λ1 = 0.5, 0.5,
0.5, 0.5, λ2 = 0, 0, 0, 0. For every task in order
4(MNLI, CB, WiC, COPA, QQP, BoolQA, RTE,
IMDB, Yelp, Amazon, SST-2, DBpedia, Agnews,
MultiRC, Yahoo), we set λ1 = 0.5, 0.5, 0.5, 0.5,
0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 5, 5, 5, 5, and λ2

= 0, 0, 0.1, 0, 0, 0, 0.3, 0.1, 0.05, 0, 0.1, 0.1, 0.1,
0, 0.1 respectively. For order 5(MultiRC, BoolQA,
WiC, MNLI, CB, COPA, QQP, RTE, IMDB, SST-2,
DBpedia, Agnews, Yelp, Amazon, Yahoo), we set
λ1 = 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, and λ2 =
0, 0.1, 0, 0.1, 0.1, 0, 0.1, 0.3, 0.1, 0.5, 0, 0.1, 0, 0.1,
0.1 respectively. For order 6(Yelp, Amazon, MNLI,
CB, COPA, QQP, RTE, IMDB, SST-2, DBpedia,
Agnews, Yahoo, MultiRC, BoolQA, WiC), we set
λ1 = 0.5, 0.5, 0.02, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,
0.5, 0.5, 0.5, 0.5, 0.5, and λ2 = 0, 0, 0, 0.1, 0, 0,
0.3, 0, 0.1, 0.1, 0, 0.1, 0, 0.1, 0.3 respectively.

A.2 Datasets

Table 4 shows details of the 15 datasets we used for
our CL experiments, along with their evaluation
metrics. Overall, we used datasets from CL
benchmark (Zhang et al., 2015), GLUE (Wang
et al., 2018) and SuperGLUE (Wang et al., 2019)
benchmarks, and added IMDB movie reviews
dataset, following (Razdaibiedina et al., 2023).

A.3 Task Sequence Orders

We report task orders used for our CL experiments
across T5 and LLaMA models in Table 5.

A.4 Task Instructions
Table 6 shows prompts for different tasks. NLI
denotes natural language inference, including
MNLI, RTE and CB. SC denotes sentiment
analysis, including Amazon, Yelp, SST-2 and
IMDB. TC denotes topic classification, including
AG News, Dbpedia and Yahoo.

A.5 Detailed results of MMLU Zero-shot



Dataset name Category Task Domain Metric
1. Yelp CL Benchmark sentiment analysis Yelp reviews accuracy
2. Amazon CL Benchmark sentiment analysis Amazon reviews accuracy
3. DBpedia CL Benchmark topic classification Wikipedia accuracy
4. Yahoo CL Benchmark topic classification Yahoo Q&A accuracy
5. AG News CL Benchmark topic classification news accuracy
6. MNLI GLUE NLI various accuracy
7. QQP GLUE paragraph detection Quora accuracy
8. RTE GLUE NLI news, Wikipedia accuracy
9. SST-2 GLUE sentiment analysis movie reviews accuracy
10. WiC SuperGLUE word sense disambiguation lexical databases accuracy
11. CB SuperGLUE NLI various accuracy
12. COPA SuperGLUE QA blogs, encyclopedia accuracy
13. BoolQA SuperGLUE boolean QA Wikipedia accuracy
14. MultiRC SuperGLUE QA various accuracy
15. IMDB SuperGLUE sentiment analysis movie reviews accuracy

Table 6: The details of 15 datasets used in our CL experiments. NLI denotes natural language inference, QA denotes
questions and answers task. First five tasks correspond to the standard CL benchmark, all other tasks are used in
long-sequence experiments.

Order Model Task Sequence
1 T5, LLaMA dbpedia → amazon → yahoo → ag
2 T5, LLaMA dbpedia → amazon → ag → yahoo
3 T5, LLaMA yahoo → amazon → ag → dbpedia

4 T5
mnli → cb → wic → copa → qqp → boolqa → rte → imdb →
yelp → amazon → sst-2 → dbpedia → ag → multirc → yahoo

5 T5
multirc → boolqa → wic → mnli → cb → copa → qqp → rte
→ imdb → sst-2 → dbpedia → ag → yelp → amazon → yahoo

6 T5
yelp → amazon → mnli → cb → copa → qqp → rte → imdb →
sst-2 → dbpedia → ag → yahoo → multirc → boolqa → wic

Table 7: Six different orders of task sequences used for continual learning experiments. Orders 1-3 correspond
to the standard CL becnhmark adopted by prior works. Orders 4-6 are long-sequence orders spanning 15 tasks,
following (Razdaibiedina et al., 2023).

Task Prompts

NLI
What is the logical relationship between the "sentence 1" and the "sentence 2"?
Choose one from the option.

QQP
Whether the "first sentence" and the "second sentence" have the same meaning?
Choose one from the option.

SC What is the sentiment of the following paragraph? Choose one from the option.
TC What is the topic of the following paragraph? Choose one from the option.

BoolQA
According to the following passage, is the question true or false? Choose one
from the option.

MultiRC
According to the following passage and question, is the candidate answer true
or false? Choose one from the option.

WiC
Given a word and two sentences, whether the word is used with the same sense
in both sentence? Choose one from the option.

Table 8: Instructions for different tasks.



MMLU-task LLaMA-7B Alpaca-LoRA Alpaca-LoRA-CL Alpaca-inc-LoRA-CL Alpaca-OLoRA-CL
math 27 25.9 20.4 23.4 21.6
health 38.2 40.9 24.8 30.7 36.1

physics 30.8 32.5 22.2 27.7 30.3
business 40.3 50.3 25.2 32.3 38.7
biology 33.5 38.1 21.8 29.1 35.7

chemistry 25.4 27.7 17.2 20.1 23.8
computer science 30.6 35 27.2 30.8 31.3

economics 31.3 31.4 23 27 28
engineering 28.3 32.4 22.8 23.4 24.1
philosophy 32.6 34.5 23 26.1 32.1

other 37.2 46.9 24.6 33.5 42.1
history 39 45.8 25.1 33.3 42.3

geography 31.8 44.4 18.2 25.8 33.3
politics 37.7 40.1 21.8 28.2 33.6

psychology 39.4 40.4 22.8 28.3 35
culture 40.1 49.1 25.9 32.5 41

law 31.9 32.5 23.6 28.5 32.4
Weighted Avg. 34.4 37.5 23.3 28.6 33.6

Table 9: Detailed zero-shot results on MMLU benchmark of different CL methods.


