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a b s t r a c t

Semiparametric methods for longitudinal data with dependence within subjects have
recently received considerable attention. Existing approaches that focus on modeling the
mean structure require a correct specification of the covariance structure as misspecified
covariance structures may lead to inefficient or biasedmean parameter estimates. Besides,
computation and estimation problems arisewhen the repeatedmeasurements are taken at
irregular and possibly subject-specific time points, the dimension of the covariance matrix
is large, and the positive definiteness of the covariance matrix is required. In this article,
we propose a profile kernel approach based on semiparametric partially linear regression
models for the mean and model covariance structures simultaneously, motivated by
the modified Cholesky decomposition. We also study the large-sample properties of the
parameter estimates. The proposed method is evaluated through simulation and applied
to a real dataset. Both theoretical and empirical results indicate that properly taking
into account the within-subject correlation among the responses using our method can
substantially improve efficiency.

Crown Copyright© 2011 Published by Elsevier B.V. All rights reserved.

1. Introduction

In longitudinal studies, repeated measurements are made on subjects over time and responses from a subject are very
likely to be correlated (Liang and Zeger, 1986; Diggle et al., 2002). Semiparametric methods for analyzing longitudinal
data with dependence within subjects have received a lot of attention in recent years (see Lin and Carroll, 2001, 2006;
Wang et al., 2005; Fan et al., 2007; Fan and Wu, 2008; Lombardia and Sperlich, 2008). When modeling longitudinal
data semiparametrically, the within-subject correlation must be taken into account; otherwise, the estimators for both
parametric and nonparametric components may be inefficient (see Daniels and Zhao, 2003; Li et al., 2009) or biased (when
missing values present, see Wang and Carey, 2003). Therefore, the proper estimation of covariance matrices could feature
prominently in forecasting the trajectory of an individual’s responses over time and substantially improving the efficiency
for parameter estimates (Fan et al., 2007).

Wu and Pourahmadi (2003) proposed a nonparametric method for estimating covariance matrix. However, their
proposedmethod could not deal with irregular observedmeasurements. To address the irregular time points issue, Fan et al.
(2007) considered semiparametric varying-coefficient partially linear models with a parametric correlation structure while
a nonparametric variance function was allowed. Fan andWu (2008) proposed a difference-based technique to estimate the
parametric regression coefficients and provided a robust estimator for the variance function. Consistency and asymptotic
normality for the quasi-maximum likelihood estimators of the parameters in the correlation function were developed.
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Unfortunately, the estimates of covariancematrices obtained by bothmethods cannot be guaranteed to be positive definite.
Moreover, the estimation of mean and covariance structure has to be done in a 2-step fashion. By parametrically modeling
means and covariances, Ye and Pan (2006) proposed the generalized estimating equation (GEE) method to simultaneously
estimate both the mean regression coefficients and covariance structure parameters. Motivated by the modified Cholesky
decomposition, Leng et al. (2010) extended the results to the partially linearmodel and the GEEmethod based on regression
spline was developed. One disadvantage of this approach is the knots selection in B-spline smoothing, which could lead to
tedious computational time. Based on the conditional likelihood, the general profile kernel method proposed by Lin and
Carroll (2006) can get efficient estimates; however, the computation could be complicated.

Based on kernel regressions, a new approach for estimating the mean and covariance structure parameters is proposed
in this paper. The proposed method can handle irregular and possibly subject-specific time points data, and the estimated
covariance matrices are positive definite. For the model given in the paper, our method is more computationally efficient
than the general profile likelihood approach proposed by Lin and Carroll (2006). We show in theory that our regression
coefficient estimates for the mean and covariance structure are semiparametrically efficient, i.e., their asymptotic variances
achieve the semiparametric efficiency bounds. Furthermore, our approach produces more accurate covariance matrix
estimate than the method of Leng et al. (2010) and is robust to misspecification of the covariance structure.

We organize our article as follows. In Section 2, we consider the semiparametric partially linear model for the mean and
model covariance structures simultaneously, motivated by the modified Cholesky decomposition. We describe the profile
likelihood approach for estimating the parameters. The asymptotic properties of the estimators are given in Section 3. In
Section 4, simulation studies are conducted to evaluate the performance of the proposedmethod.We analyze a longitudinal
dataset of CD4 cell count of human immunodeficiency virus seroconverters to illustrate our methodology in Section 5. A
brief discussion is presented in Section 6. Technical proofs and a detailed algorithm are relegated to the Appendix.

2. Modeling and estimation procedures

Suppose that a random sample of n subject is coming from the following semiparametric partially linear model

yij = z ′

ijβ + m(tij) + ϵij, (1)

where yij is a response for ith subject at time tij, zij is a p-dimensional covariate for j = 1, . . . , Ji and i = 1, . . . , n. Here, β is
a p × 1 vector of regression coefficient associated with zij, andm(·) is an unknown smooth function of tij. In this model, the
mean response is linearly related to zij, while its relation with tij is not specified up to any finite number of parameters. This
model combines the flexibility of nonparametric regression and parsimony of linear regression. When the relation between
yij and zij is of main interest and can be approximated by a linear function, it offers more interpretability than a purely
nonparametric model. Let Zi = (zi1, . . . , ziJi)

′, and define Ti and ϵi similarly.
Another important feature of the semiparametric partially linear model in (1) is that it allows different subjects to be

observed at different time points (i.e., tij with j = 1, . . . , Ji). Here, we assume that ϵi is normally distributed with mean zero
and covariance matrix Σi given the covariates, observed times and Ji. Lin and Carroll (2001) demonstrated that in order
to reach the semiparametric information bound, the within-subject correlation must be properly taken into account in
both the parametric and nonparametric estimation procedures. Unfortunately, even when the true correlation structure
is used, the standard kernel estimator of the nonparametric function proposed by Lin and Carroll (2001) will not be a
suitable choice. In fact, unless either the ‘working independence’ assumption or the undersmoothing step is employed,
the parameter estimators could be

√
n-inconsistent (see also Lin and Carroll, 2001). Hence, the way that the within-subject

correlation being properly incorporated into both parametric and nonparametric estimations becomes another challenge to
the semiparametric partially linear model in (1) for longitudinal data analysis. To overcome the above problems, we model
the covariance matrix of Σi’s in (1) via the modified Cholesky decomposition approach considered in Pourahmadi (1999).
Briefly, for eachΣi, there exist a unique lower triangularmatrix Pi with 1’s as diagonal entries and−φijl as the (j, l)th element
and a unique diagonal matrix Di = diag{σ 2

i1, . . . , σ
2
iJi
} with σ 2

ij > 0 such that

PiΣiP ′

i = Di. (2)

This diagonalization allows modeling Pi and Di instead of the covariance matrix Σi. Two immediate advantages of (2) are
noteworthy. First, it guarantees the positive definiteness of Σi. That is, if we can find estimates P̂i and D̂i of Pi and Di,
respectively, then an estimator of Σi can be simply obtained as Σ̂i = P̂−1

i D̂iP̂ ′−1
i , which is positive definite. Second, it is

possible to model Pi and Di since their nonredundant entries have statistical interpretation. That is, the subdiagonal entries
of Pi are the regression coefficients when each ϵij (j = 1, . . . , Ji) is regressed on its predecessors ϵi,j−1, . . . , ϵi,1 and the
entries of Di are the corresponding prediction error variances. More precisely, for j = 2, . . . , Ji,

ϵij =

j−1−
l=1

φijlϵil + δij,

where −φijl is the (j, l)th element (for l < j) of Pi, and σ 2
ij = var(δij) is the jth diagonal element of Di. Here, φijl’s and

σ 2
ij ’s are referred as generalized autoregressive parameters (GARPs) and innovation variances (IVs), respectively. As a result,
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modeling the covariance matrix, through Pi and Di, is equivalent to modeling a sequence of regressions. In this article, we
model the GARP/IV parameters using the following linear and log link functions

φijl = w′

ijlγ , log σ 2
ij = u′

ijλ, (3)

wherewijl and uij are q×1 and d×1 vectors of covariates, respectively. These design vectors are used to model the GARP/IV
parameters as functions of subject-specific covariates and/or tomodel structure on the φijl and σ 2

ij within a subject. For some
examples of structured GARP/IV models, see Pourahmadi and Daniels (2002).

Under ϵi being normally distributed with mean zero and covariance matrix Σi given covariates zij, observed times tij and
Ji, model (1) can be rewritten, via (2), as follows

yij = z ′

ijβ + m(tij) +

j−1−
l=1

(yil − z ′

ilβ − m(til))φijl + δij (4)

where (δi1, . . . , δiJi)
′ is normally distributed with mean zero and covariance Di = diag{σ 2

i1, . . . , σ
2
iJi
}. It is noted that (4) is an

autoregression-type equation of the longitudinal observations on each individual.
Here, our main focus is to improve efficiency of the estimates of β , γ and λ given in (1) and (3). The smooth function

m(·) given in (1) can also be estimated. For any given symmetric standard kernel function K(t), we propose the following
so-called Cholesky decomposition based semiparametric estimation (CDSE) procedure to estimate the parameters. This
procedure consists of two sub-procedures, namely Procedures A and B. Briefly, Procedure A provides initial/starting values
for parameters β andm(·) while Procedure B obtains efficient semiparametric estimators for all parameters (i.e., β , γ , λ via
the profile likelihood estimation approach based on (4)).

Procedure A (Initial Estimators of β and m(·)).

A1. For given β , let m̂I(t; β) = {
∑n

i=1
∑Ji

j=1 Kh(tij − t)(yij − z ′

ijβ)}/{
∑n

i=1
∑Ji

j=1 Kh(tij − t)}, where Kh(t) = h−1K(t/h) and
h is any appropriate bandwidth.

A2. Let S(β) =
∑n

i=1
∑Ji

j=1(yij − z ′

ijβ − m̂I(tij, β))2 =
∑n

i=1
∑Ji

j=1(ŷij − ẑ ′

ijβ)2, where ŷij = yij − {
∑n

u=1
∑Ji

v=1 Kh(tuv −

tij)yuv}/{
∑n

u=1
∑Ji

v=1 Kh(tuv − tij)}, and ẑij = zij − {
∑n

u=1
∑Ji

v=1 Kh(tuv − tij)zuv}/{
∑n

u=1
∑Ji

v=1 Kh(tuv − tij)}.

An initial value for β is β̂I = argminβ S(β), which can readily be obtained by the ordinary least square regression method.

A3. An initial estimate of m(·) is then computed by m̂I(t) = m̂I(t; β̂I).

Procedure B (Efficient Semiparametric Estimators). Let rij(β,m) = yij − z ′

ijβ − m.

B1. For any given β and γ in (1) and (3), let

m̂(t; β, γ ) =

n∑
i=1

Ji∑
j=1

Kh(tij − t)

yij − z ′

ijβ −

j−1∑
l=1

ril(β̂I , m̂I(til))φijl


n∑

i=1

Ji∑
j=1

Kh(tij − t)

.

B2. Obtain the profile likelihood estimators of β, γ , λ as follows

(β̂ ′, γ̂ ′, λ̂′)′ = argmax
β,γ ,λ


−

1
2

n−
i=1

Ji−
j=1

log σ 2
ij

−
1
2

n−
i=1

Ji−
j=1


rij(β, m̂(tij; β, γ )) −

j−1∑
l=1

ril(β, m̂(til; β, γ ))φijl

2

σ 2
ij

 , (5)

where σ 2
ij and φijl are given in (3). The parameter estimates can be computed by the algorithm given in the Appendix.

B3. Improve nonparametric component by

m̂(t) = m̂(t; β̂, γ̂ ).

β̂, γ̂ and λ̂ obtained via our proposed CDSE approach are efficient semiparametric estimators for models (1) and (3).
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We summarize our CDSE approach as follows. Firstly, ignoring the correlation among errors in (1), we obtain an initial
estimator, which is essentially the ‘working independence estimator’ (Lin and Carroll, 2001, WI estimator), and is the most
efficient conventional local kernel estimator. Secondly, in order to obtain the efficient estimators for regression coefficients
in Procedure B, correlation has been incorporated into estimation by the autoregression-type equation (4) and initial
estimators given in Procedure A.

Remark 1. The estimation procedure here is analogous to that proposed by Severini and Wong (1992) and Lombardia and
Sperlich (2008).

Remark 2. The general profile likelihood approach proposed by Lin and Carroll (2006) can achieve efficiency for estimates
of the parameters. However, getting solutions to both the kernel estimating equation (i.e., the equation for getting the
nonparametric estimate) and the profile kernel estimating equation (i.e., the equation for obtaining the parameter estimates)
requires intensive iterative steps. In practice, a 2-stratum loop (the outside loop is the iterative steps for getting solution to
the profile kernel estimating equation, and the inside loop is the iterative steps for getting solution to the kernel estimating
equation for the given parametric component) is needed to get the estimates of the parameters. Even worse, when the
total number of observations

∑
Ji is large,

∑
Ji parallel inside loops must be accomplished in order to get m̂(tij; β, γ , λ)

(j = 1, . . . , Ji; i = 1, . . . , n). Compared with the general method by Lin and Carroll (2006), the nonparametric estimate
suggested by our method is explicit in step B1, which makes the solution to (5) simpler. Therefore, for the model given in
this paper, our proposed method requires shorter computing time. Unlike Fan et al. (2007) and Fan and Wu (2008) s’ two-
step fashion methods (i.e., the estimation of covariance structure must adopt the estimate of the mean from the previous
step), our proposed method can estimate the covariance structure and mean simultaneously as is indicated in step B2.

3. Asymptotic properties of the estimators

In this section, we investigate the large-sample properties of the estimators given in Section 2. For this purpose, we give
the following regular conditions which are mild and can be found in Speckman (1988), Pepe and Couper (1997), Lin and
Carroll (2001), Wang et al. (2005), You and Zhou (2006), and Fan et al. (2007).
Assumptions:

1. J1, . . . , Jn are independently and identically distributed with E(J1) < ∞, and ti1, . . . , tiJi are independently and
identically sampled from a density f (t) given Ji.

2. Given Ji and Ti,

zijs1 = g1s1(tij) + η
(1)
ijs1

, uijs2 = g2s2(tij) + η
(2)
ijs2

, wijls3 = g3s3(tij, til) + η
(3)
ijls3

,

where {η
(1)
ijs1

}, {η
(2)
ijs2

} and {η
(3)
ijls3

} are mutually independent variables with means being zero, and are all independent of
ϵi, for l = 1, . . . , j − 1; j = 1, . . . , Ji; i = 1, . . . , n; s1 = 1, . . . , p; s2 = 1, . . . , d and s3 = 1, . . . , q. Moreover,∑p

s=1 supt∈Ω |g1s(t)| < ∞,
∑d

s=1 supt∈Ω |g2s(t)| < ∞ and
∑q

s=1 sup(t1,t2)∈Ω×Ω |g3s(t1, t2)| < ∞.
3. E(yij|zij, tij) = E(yij|zij, tij, (zil, til)l≠j), which is called the PA condition.
Let A1 = E(Z1 − E(Z1 | T1))′Σ−1

1 (Z1 − E(Z1 | T1)), A2 = E{
∑J1

j=1
∑j−1

l=1
∑j−1

k=1 σ1lkw1jlw
′

1jk/σ
2
1j}, and A3 = EU ′

1U1/2, where
E(Z1 | T1) = (E(z11 | t11), . . . , E(z1J1 | t1J1))

′, σ1jl = Σ1(j, l), and U1 = (u11, . . . , u1J1)
′.

We present the main results in the following theorem and leave the proof in the Appendix.

Theorem 3.1. Let β0, γ0, λ0, and m0(t) be the true values of β , γ , λ, and m(t), respectively. Suppose that the assumptions given
above and the conditions in the Appendix hold. We have the following results:
(a) If the matrices A1, A2 and A3 are positive definite and as n → ∞, then

√
n

β̂ − β0
γ̂ − γ0

λ̂ − λ0

 L
−→ N


0, diag(A1, A2, A3)

−1

, (6)

where n is the total number of subjects. Moreover, the estimators β̂ , γ̂ , and λ̂ are efficient semiparametric estimators of β0,
γ0, and λ0, respectively.

(b) The nonparametric component estimator m̂(t) satisfies

m̂(t) − m0(t) = {E(J1)f (t)}−1 1
n

n−
i=1

Ji−
j=1

Kh(tij − t)


rij(β0,m0(tij)) −

j−1−
l=1

ril(β0,m0(til))φijl



+
1
2
h2C2(K)A(t) + op(cn), (7)

where C2(K) =

t2K(t)dt, b(t) = m′′

0(t)+2f ′(t)m′

0(t)/f (t), A(t) = b(t)+{2E(J1)}−1E{(J1 −1)J1}E{b(t1l1)φ1j1 l1 | t1j1 =

t} (l1 < j1), and cn = {log(1/h)/(nh)}1/2 + h2.
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Remark 3. The semiparametric efficiency of β̂ , γ̂ , λ̂ indicates that the estimation procedure proposed in this article is
reasonable (see Chamberlain, 1987; Kitamura et al., 2004; Liang et al., 2004).

Remark 4. From the orthogonality between the mean regression coefficients and error parameters, and the orthogonality
between γ and λ by the statistical interpretation of Cholesky decomposition of covariance matrices, the mutual asymptotic
independence among β̂ , γ̂ , and λ̂ is natural and intuitive, which coincides with the results given in Pourahmadi (2000) and
Ye and Pan (2006).

Remark 5. The first term of (7) dominates the asymptotic variance of m̂(t)while the second term dominates the asymptotic
bias. We have

m̂I(t) − m0(t) = {E(J1)f (t)}−1 1
n

n−
i=1

Ji−
j=1

Kh(tij − t)rij(β0,m0(tij)) +
1
2
h2C2(K)b(t) + op(cn).

From the statistical interpretation of Cholesky decomposition of covariance matrices, we can conclude that our proposed
m̂(t) uniformly outperforms the WI estimator m̂I(t), if the asymptotic variance is adopted as the criterion. This can also be
seen in the analysis of CD4 count dataset. The asymptotic bias of our proposed estimate differs from that of m̂I(t).

4. Simulation study

In this section, we investigate the finite sample performance of the proposed estimators in Section 2. We generate 1000
datasets, each consisting of n = 150 subjects from models given in (1) and (3). We sample the time points following the
method described in Fan et al. (2007). That is, each individual has a set of scheduled time points, {0, 1, 2, 3, 4, 5, 6, 7, 8},
and each scheduled time, except time 0 and 1, has a 20% probability of being passed. The actual observation time is a random
perturbation of a scheduled time: a uniform [−0.5, 0.5] random variable is added to a non-skipped scheduled time. This
results in different observed time points tij per subject, i.e., leading to subject-dependent or irregular time points.

Let zij = (zij1, zij2)′. We generate the covariates as follows: zij1 = arctan(tij) + ξij, where ξij follows the standard normal
distribution, zij2 follows a Bernoulli distribution with success probability 0.5, uij = (1, arctan(tij) + τij)

′, where τij follows
the standard normal distribution, and wijl = (1, θijl)′, where θijl ∼ N(0, 0.1), for l = 1, 2, . . . , j − 1, j = 1, 2, . . . , Ji,
and i = 1, 2, . . . , n. In this simulation, we take β = (1, 0.5)′, λ = (0.5, 0.5)′, γ2 = 0.5, and the nonparametric function
m(t) = sin(2π t/8). We set γ1 = 0.2, 0.3, and 0.5 to represent weakly, moderately, and highly correlated random errors
within the same individual, respectively. Note that too strong a correlation between zij and tij may result in asymptotically
biased estimates of β . In our simulation studies, we compare our proposed method with the WI method (Lin and Carroll,
2001) and the ‘‘spline’’ method proposed by Leng et al. (2010) (with log σ 2

ij being modeled in (3), and with knots selected
following their method). We also estimate β using the true correlation structure (i.e., the parameter vector (γ ′, λ′)′ is
evaluated at its true value instead of its estimated value).

Table 1 summarizes the results for the estimates of β , based on 1000 simulated datasets. Here, ‘‘Bias’’ represents the
sample average over 1000 estimates subtracting the true value of β , ‘‘SD’’ represents the sample standard deviation over
1000 estimates, ‘‘Median’’ represents the median of the 1000 estimates subtracting the true value, and ‘‘MAD’’ represents
themedian absolute deviation of the 1000 estimates divided by a factor of 0.6745 (see Fan et al., 2007). It can be seen that our
proposedmethod is more efficient than theWImethod. For instance, the relative efficiency of β̂1, [MAD(WI)/MAD(CDSE)]2

of β̂1, is about 27.23 for highly correlated random error, 3.279 for moderately correlated error, and 1.942 for weakly
correlated error, respectively (see, Table 2). Moreover, the MADs of our CDSE method are almost the same regardless of the
strength of the correlation among random errors. In other words, the strength of the correlation among random errors does
not affect the efficiency of our proposed method. On the other hand, the MAD of the WI method changes greatly, i.e., MAD
increaseswith the strength of correlation.When the true correlation structure is used, we observe that the relative efficiency
[MAD(CDSE)/MAD(True)]2 is nearly identical to 1 (see, Table 2), regardless of the strength of the correlation among random
errors, which indicates that the CDSE estimator is as efficient as the estimator when the true covariance matrix is known.

The proposed CDSE method and ‘‘spline’’ method possess almost the same efficiency for β̂ , γ̂ and λ̂ (see, Tables 1 and
3). However, it is noteworthy that λ̂1Spline yields larger bias (or median) than λ̂1CDSE (see, Table 3). This may be due to the
fact that we estimate covariance structure and mean parameters simultaneously as is indicated in step B2. As suggested by
an anonymous reviewer, we can use the entropy loss function, L(Σ, Σ̂) = n−1 ∑n

i=1{trace(ΣiΣ̂
−1
i ) − log |ΣiΣ̂

−1
i | − Ji},

to compare accuracy in estimating the covariance matrix, where Σi is the true covariance matrix and Σ̂i is its estimate.
We summarize the results in Table 4. Our approach performs better than the ‘‘spline’’ method in terms of smaller SDs and
entropy losses.

For the proposed CDSE method and the ‘‘spline’’ method (see, Table 3), their MAD’s for γ̂ become lower when the
random errors are highly correlated while their MADs for λ̂ are nearly the same regardless of the strength of the correlation
among errors. This phenomenon is due to the fact that γ describes the strength of dependence among responses and thus
more information for γ will be reflected in the stronger correlation situation while λ contains little information from the
correlation among errors. Also, β̂ becomes more efficient in highly correlated cases for both methods (see, Table 1).
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Table 1
Performance of β̂ . (All values are multiplied by a factor of 1000.)

Methods β̂1 β̂2

Bias Median SD MAD Bias Median SD MAD

γ1 = 0.2
WI −5.428 −1.665 62.159 62.242 1.233 −2.598 124.43 119.70
True 4.068 1.533 43.324 44.410 0.728 0.581 88.792 94.709
CDSE 4.052 1.119 43.416 44.659 0.800 0.445 88.844 93.132
Spline −1.005 −3.230 43.333 44.132 1.332 3.249 88.926 94.332
γ1 = 0.3
WI 4.700 3.422 78.092 76.542 −15.87 −11.43 155.22 153.84
True 3.788 3.193 41.741 42.437 −1.593 1.703 82.107 82.051
CDSE 3.712 3.455 41.841 42.270 −1.735 3.356 82.095 82.319
Spline −2.289 1.773 42.404 42.402 −1.943 1.996 82.188 81.989
γ1 = 0.5
WI −3.428 −3.418 183.69 185.14 6.294 1.627 350.71 350.04
True 3.081 2.228 35.421 35.054 −1.580 1.930 71.940 72.955
CDSE 3.063 2.108 35.418 35.480 −1.989 0.486 72.026 72.679
Spline −1.005 −1.746 35.133 35.391 −2.103 −1.197 72.826 73.299

Table 2
The relative efficiency: [MAD(WI)/MAD(CDSE)]2 (WI:CDSE) and [MAD(CDSE)/MAD(True)]2 (CDSE:True).

β̂1 β̂2

γ1 = 0.2 γ1 = 0.3 γ1 = 0.5 γ1 = 0.2 γ1 = 0.3 γ1 = 0.5

WI:CDSE 1.942 3.279 27.23 1.652 3.493 23.20
CDSE:True 1.011 0.992 1.024 0.967 1.007 0.993

Table 3
Performance of (γ̂ ′, λ̂′)′ estimated by the CDSE method and the Spline method (All values are multiplied by a factor of 1000.)

Parameters CDSE method Spline method
Bias Median SD MAD Bias Median SD MAD

γ1 = 0.2
γ̂1 −0.060 0.280 10.578 10.553 −0.090 0.411 10.572 10.648
γ̂2 3.853 0.074 153.90 149.31 6.461 4.782 153.73 149.53
λ̂1 −9.545 −8.190 56.426 58.374 −20.54 −19.04 57.779 57.509
λ̂2 −3.156 −3.841 37.237 37.586 6.286 5.712 37.843 38.576

γ1 = 0.3
γ̂1 −0.056 0.134 8.0890 8.2217 −0.057 0.176 8.0614 8.0381
γ̂2 −5.423 −5.735 133.48 129.47 −3.250 −2.061 133.58 129.31
λ̂1 −6.379 −5.746 56.006 57.646 −17.36 −16.41 56.642 56.720
λ̂2 −5.737 −5.895 38.523 38.264 3.133 2.299 39.054 38.769

γ1 = 0.5
γ̂1 0.224 0.178 4.4040 4.4111 0.207 0.307 4.3442 4.2499
γ̂2 −1.052 2.471 88.675 86.876 1.856 2.577 87.801 86.616
λ̂1 −0.585 −1.001 59.312 57.664 −19.46 −20.78 59.098 57.349
λ̂2 −3.325 −3.651 38.296 37.663 6.067 6.802 38.891 40.561

Table 4
The means and the SDs (in parentheses) for L(Σ, Σ̂). (All values are
multiplied by a factor of 1000.)

Method γ1 = 0.2 γ1 = 0.3 γ1 = 0.5

CDSE 178.13(52.063) 209.09(54.542) 463.99(95.477)
Spline 179.52(52.549) 211.02(54.890) 469.79(99.027)

Next, we study the robustness of our proposed method. For this purpose, the simulated datasets are generated as before
except that a disturbance∆ΣiJi×Ji = σ 2

[(1−ρ)IJi×Ji+ρJJi×Ji ] is added toΣi with IJi×Ji being the identitymatrix and JJi×Ji being
a matrix with all elements equal to 1. Let ρ = 0.25, σ 2

= 0.2, and Yi is generated from N(Ziβ +m(Ti), Σ∗

i = Σi + ∆Σi) for
i = 1, 2, . . . , n. We summarize the results in Table 5. We can see that our CDSE estimates of β here are muchmore efficient
than the non-disturbance-caseWI estimates in Table 1. Moreover, the efficiency of our CDSE estimates changes little due to
this disturbance. It is noted that the ‘‘spline’’ method and our proposed CDSE method demonstrate similar robust behavior
in this covariance structure disturbance investigation.
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Table 5
Impacts on β̂ when response data are generated from disturbed covariance matrices. (All values are multiplied by a factor of 1000.)

Methods β̂1 β̂2

Bias Median SD MAD Bias Median SD MAD

γ1 = 0.2
CDSE 4.080 5.457 44.223 39.857 −1.653 0.863 92.141 90.047
Spline 2.005 1.705 44.299 40.958 −1.944 −2.003 91.984 90.633
γ1 = 0.3
CDSE 1.376 2.417 45.910 45.964 2.540 7.569 88.071 88.658
Spline −2.729 −2.413 46.065 44.936 2.518 8.233 87.929 88.536
γ1 = 0.5
CDSE 3.719 5.083 39.335 40.307 −5.011 −6.319 78.166 75.557
Spline 3.227 1.512 39.062 40.233 −5.103 −5.675 77.201 75.624
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Fig. 1. MADs of the CDSE estimates of β1 based on 1000 datasets when the bandwidth varies from 0.1 to 0.5, here γ1 = 0.5.

Bandwidth selection
In this article, we focus on statistical inference for the parameters (β ′, γ ′, λ′)′ and are interested in the efficiency of the

parameter estimates. We find that bandwidth selection is less critical for the parameter estimates than for the estimate of
m(t). For example, for γ1 = 0.5, when the bandwidth parameter varies from0.1 to 0.5, the change ofMAD for β̂1 is negligible
(see, Fig. 1). For this reason and for the sake of simplicity, we fix the bandwidth parameter at 0.4 in our simulation study;
however, this particular bandwidth choice does not represent the optimal choice. It is noted that for high frequency functions
such as m(t) = sin(2π t), the bandwidth parameter for our proposed CDSE method is suggested to be less than 0.4 while
the number of knots for the ‘‘spline’’ method proposed by Leng et al. (2010) must be larger than the integer part of M1/5,
where M is the number of distinct values in {tij, j = 1, . . . , Ji; i = 1, . . . , n} in order that the parameter estimates for both
methods can achieve the expected efficiency. For the ‘‘spline’’ method, it is tedious and thus time consuming to determine
the number of knots, compute the internal knots and select the locations of knots. However, it is relatively simpler and thus
requires less computations to determine bandwidth parameter for our proposed CDSE method.

5. Application to the longitudinal CD4 cell count data

Weapply the semiparametricmodel given in (1) to the longitudinal CD4 cell count data amongHIV seroconverters (Zeger
and Diggle, 1994). For comparison purpose, we analyze this dataset by theWI method (Lin and Carroll, 2001), our proposed
CDSE method, and the ‘‘spline’’ method. Following the model adopted in Leng et al. (2010), the number of internal knots
is taken to be 7, which is also the optimal number of knots according to the leave-one-subject-out cross-validation. This
study involved 369 subjects whose CD4 counts were measured during a period ranging from 3 years before to 6 years after
seroconversion. A total of 2376 CD4 measurements were available, and the number of CD4 observations per subject varied
from 1 to 12, with most of the subjects having between 4 and 10 observations. It is of interest to estimate the average time
course of CD4 counts and the effects of other covariates including age (zij1), smoking status measured by packs of cigarettes
(zij2), drug use (yes, 1; no, 0) (zij3), number of sex partners (zij4) and depression status measured by the CESD Scale (the
Center for Epidemiologic Studies Depression Scale, large values indicating more depression symptoms) (zij5). Let tij be the
year since seroconversion. We apply the Cholesky decomposition of the covariance matrix of measures coming from each
subject. Here, we let wijl (in (3)) to be (1, tij − til, (tij − til)2, (tij − til)3)′ following the arguments in Ye and Pan (2006), and
uij (in (3)) to be (zij1, zij2, zij3, zij4, zij5, 1, tij, t2ij , t

3
ij )

′. All analyses are conducted on the square root transformed CD4 counts
as this transformation can reduce the skewness of the original CD4 measurements, as indicated by Zeger and Diggle (1994).
We simply adopt a leave-one-subject-out cross-validation method to choose the optimal bandwidth of 0.25.
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Table 6
Regression coefficients and the corresponding standard errors in the CD4 cell counts study in HIV
seroconverters using the WI method, the CDSE method, and the ‘‘spline’’ method.

Methods Age Smoking Drug Sexual partners Depression

WI 0.0148 (0.0380) 0.973 (0.177) 1.084 (0.554) −0.0702 (0.0634) −0.0323 (0.0254)
CDSE 0.0090 (0.0256) 0.760 (0.113) 0.862 (0.300) 0.0332 (0.0361) −0.0333 (0.0128)
Spline 0.0094 (0.0257) 0.769 (0.114) 0.907 (0.299) 0.0381 (0.0360) −0.0315 (0.0127)

Table 7
Estimates of γ and λ, and the corresponding standard errors in the CD4 cell counts study in HIV seroconverters using
the CDSE method and the ‘‘spline’’ method.

Methods γ̂1 γ̂2 γ̂3 γ̂4 λ̂1 λ̂2 λ̂3 λ̂4 λ̂5

(0.048) (0.077) (0.033) (0.0039) (0.0039) (0.021) (0.070) (0.0087) (0.0031)
CDSE 0.690 −0.583 0.177 −0.0178 −0.0023 0.094 −0.031 0.0065 −0.0053

(0.048) (0.077) (0.032) (0.0039) (0.0040) (0.021) (0.071) (0.0087) (0.0031)
Spline 0.688 −0.577 0.174 −0.0175 −0.0024 0.092 −0.022 0.0048 −0.0049
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Fig. 2. Estimates of m(t) (average time course of squared-root CD4 number) (left) and their estimated pointwise SEs (right). The dotted, solid, and short
dashes curves correspond to the WI estimates, the CDSE estimates, and the ‘‘spline’’ method estimates, respectively.

Table 6 gives the estimates ofβ based on theWImethod, the proposed CDSEmethod, and the ‘‘spline’’method. The values
in parentheses are standard errors (SEs) of the estimates. Based on our proposed method, we can conclude that (i) age and
the number of sexual partners have no significant effects on the CD4 cell counts, (ii) smoking and recreational drug use
are significantly positively associated with the CD4 cell numbers, and (iii) depression symptom is significantly negatively
associated with the CD4 counts. It is noted that there is a sign difference for number of sexual partners between the WI
method and our proposed CDSE method. In this case, our proposed method seems to suggest a more sensible conclusion
that themore the sexual partners the higher the CD4 cell counts, which is also consistentwith the conclusion drawn in Zeger
and Diggle (1994). Consistent with the theorem and simulation results, our proposed CDSE method yields overall smaller
SEs than the WI method. From Tables 6 and 7, our proposed method reaches similar conclusions as those from the ‘‘spline’’
method.

Finally, the nonparametric curve estimates based on the WI method (i.e., dotted line), our proposed CDSE method
(i.e., solid line), and the ‘‘spline’’ method (i.e., short dashes line) are plotted in Fig. 2 (left). The CD4 counts were stable
before seroconversion and sharply decreased after seroconversion. By taking the correlation into account, our proposed
method and the ‘‘spline’’ method both suggest that the decreasing trend remained even 3 years after seroconversion. The
estimated SEs are given in Fig. 2 (right). The SE of our proposed curve estimate is uniformly smaller than that of the WI
estimate, which agrees with the theory. Moreover, the SE of our proposed curve estimate is uniformly smaller than that of
the ‘‘spline’’ estimate.

Similar to Cook andWeisberg (1982),wedefine the PRESS (predicted residual sumof squares) as
∑

i
∑

j r
2
ij (β̂(−i), m̂(−i)(tij))

with rij(·, ·) being defined in Section 2, where β̂(−i) and m̂(−i)(·) are the estimates with the ith subject excluded. The PRESS
value of our proposed method is 86917, which is smaller than that of the ‘‘spline’’ method (the PRESS value of the ‘‘spline’’
method is 87743). Based on the PRESS measure, our CDSE method works with less prediction error and is thus appealing.
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6. Conclusion

Based on the modified Cholesky decomposition, we propose a two-step-procedure to obtain efficient semiparametric
estimates for β , γ and λ via profile likelihood approach for the longitudinal partially linear model. Here, γ and λ are used
to characterize the within-subject correlation through GARP/IV parameters. Our proposed method is more computationally
efficient than the general method proposed by Lin and Carroll (2006). Our approach can be applied to unbalanced data and
guarantees the positive definiteness of the estimated covariance matrices. Theorem and simulation results show that our
proposed method performs better than the WI method (Lin and Carroll, 2001). Specifically, our proposed method produces
less bias for λ̂1 andmore accuracy in estimating the covariance matrix than the ‘‘spline’’ method by Leng et al. (2010). In the
real data analysis, the SE of our proposed nonparametric curve estimate for the mean is uniformly smaller than that of Leng
et al. (2010). Moreover, our CDSE method outperforms the ‘‘spline’’ method when the PRESS is used as the criterion.

From the results of our simulated studies given in Table 5, ourmethod is robust to disturbance of the covariance structure.
Hence, our proposed model and method could be widely applicable in practice. It would be of future research interest to
consider semiparametric models for the mean and the covariance structure simultaneously as pointed out by one referee.
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Appendix

A.1. Conditions and proof

The following technical conditions are imposed. Theymay not be the weakest possible conditions; but, they are imposed
to facilitate the proofs.

1. The density function f (t) has compact support Ω , and is Lipschitz-continuous and bounded away from 0. The function
K(·) is a symmetric density function with a compact support.

2. As is common in longitudinal data analyses, there exists an integer K0 such that Ji ≤ K0, for i = 1, 2, . . . , n.
3. nh8

→ 0 and nh2/(log n)2 → ∞.
4.m(·) has a continuous second order derivative.
Detailed proof of Theorem 3.1 is given in a longer version of this paper available from the authors.

Lemma 1. Suppose that the assumptions given in Section 3 and the conditions above hold. We have

m̂(t; β, γ ) = m(t; β, γ ) + Op(cn),

holds uniformly in t, where m(t; β, γ ) = m0(t)− g1(t)′(β −β0) with g1 = (g11, . . . , g1p)′, and cn = {log(1/h)/(nh)}1/2 + h2.

We define

Q (β, γ , λ,m(·)) = −
1
2


n−

i=1

Ji−
j=1

u′

ijλ +

n−
i=1

Ji−
j=1


rij(β,m(tij)) −

j−1∑
l=1

ril(β,m(til))w′

ijlγ

2

exp(u′

ijλ)

 ,

and α = (β ′, γ ′, λ′)′. α0 denotes the true value of α. From (5), we have

0 =
1

√
n

∂

∂α
Q (β̂, γ̂ , λ̂, m̂(·; β̂, γ̂ ))

=
1

√
n

∂

∂α
Q (β0, γ0, λ0, m̂(·; β0, γ0)) +

1
n

∂2

∂α∂α′
Q (β, γ , λ, m̂(·; β, γ )) |α=α∗

√
n(α̂ − α0), (8)

where α∗
= (β∗

′

, γ ∗
′

, λ∗
′

)′ lies between α̂ and α0. By Taylor’s expansion and Lemma 1, following the same lines as the proof
of Lemma 2 in Severini and Wong (1992), tedious calculations show:

Lemma 2. Suppose that the assumptions given in Section 3 and the conditions above hold.

1
√
n

∂

∂α
Q (β0, γ0, λ0, m̂(·; β0, γ0)) =

1
√
n

∂

∂α
Q (β0, γ0, λ0,m(·; β0, γ0)) + op(1).
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Following the same arguments of Carroll et al. (1997), we can obtain:

Lemma 3. Suppose that the assumptions given in Section 3 and the conditions above hold.

m̂(t) − m0(t) =


n−

i=1

Ji−
j=1

Kh(tij − t)

−1
1
n

n−
i=1

Ji−
j=1

Kh(tij − t)


rij(β0,m0(tij)) −

j−1−
l=1

ril(β0,m0(til))φijl



+
1
2
h2C2(K)b(t) +

1
2
h2C2(K)


n−

i=1

Ji−
j=1

Kh(tij − t)

−1 n−
i=1

Ji−
j=1

j−1−
l=1

Kh(tij − t)b(til)φijl + op(cn),

where C2(K) =

t2K(t)dt and b(t) = m′′

0(t) + 2f ′(t)m′

0(t)/f (t).

Proof of Theorem 3.1. By (8) and Lemma 2, we can obtain (6). The semiparametric asymptotic efficiency of the estimators
β̂ , γ̂ , and λ̂ can be obtained following the same arguments of Begun et al. (1983). From Lemma 3, (7) comes immediately. �

A.2. The main algorithm

The solutions for β, γ , and λ of (5) can be obtained iteratively by the following iterative procedure, and the procedure is
natural from Verbyla (1993) and Daniels and Pourahmadi (2002) s’ algorithms.

Step 0. Given a initial value (β ′

(0), γ
′

(0), λ
′

(0))
′, use models (3) to form the lower triangular matrices Pi(0) and diagonal

matrices Di(0), then Σi(0) are obtained as the starting values of Σi.
Step (n + 1, 1). β is updated through

β(n+1) = (Ẑ ′Σ−1Ẑ)−1Ẑ ′Σ−1Y̌ |λ=λ(n),γ=γ(n)
,

where Ẑ = (ẑ11, . . . , ẑ1J1 , . . . , ẑnJn)
′, Σ = diag{Σi}

n
i=1, and Y̌ = (y̌11, . . . , y̌1J1 , . . . , y̌nJn)

′ with y̌ij = yij −

{
∑n

u=1
∑Ji

v=1 Kh(tuv − tij)(yuv −
∑v−1

k=1 ruk(β̂I , m̂I(tuk))w′

uvkγ )}/{
∑n

u=1
∑Ji

v=1 Kh(tuv − tij)};
Step (n + 1, 2). γ is updated as

γ(n+1) = (Z̃ ′D−1Z̃)−1Z̃ ′D−1(Y − Zβ − m̂) |β=β(n+1),γ=γ(n),λ=λ(n)
,

where D = diag{σ 2
ij }

n Ji
i=1j=1, Y = (y11, . . . , y1J1 , . . . , ynJn)

′, Z = (z11, . . . , z1J1 , . . . , znJn)
′, m̂ = (m̂(t11; β, γ ), . . . ,

m̂(t1J1; β, γ ), . . . , m̂(tnJn; β, γ ))′, and Z̃ = (Z(1)′, . . . , Z(n)′)′ with Z(i) = (z(i, 1), . . . , z(i, Ji))′, here z(i, j) =
∑j−1

v=1(yiv −

z ′

ivβ − m̂(tiv; β, γ ))wijv;

Step (n + 1, 3). λ can be updated by

λ(n+1) = λ(n) + (U ′U)−1U ′(D−1d − 1) |β=β(n+1),γ=γ(n+1),λ=λ(n)
,

where U = (u11, . . . , u1J1 , . . . , unJn)
′, d = (d11, . . . , d1J1 , . . . , dnJn)

′ with dij = (yij − z ′

ijβ − m̂(tij; β, γ )−
∑j−1

v=1(yiv − z ′

ivβ −

m̂(tiv; β, γ ))w′

ijvγ )2, and 1 denotes the
∑n

i Ji × 1 vector of unit elements.
Until convergence, we get the estimators β̂ , γ̂ , and λ̂ on (5).
A convenient initial value for (γ ′, λ′)′ is γ(0) = 0 and λ(0) = 0. In other words, the (Ji × Ji) identity matrix may be chosen

as the starting value for the covariance matrix Σi.
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