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Abstract

Item categorization (IC) is an important core
technology in e-commerce natural language
processing (NLP). Given category labels’ long-
tailed distribution, IC performances on tail la-
bels tend to be poor due to sporadic supervision.
To address the long-tail issue in classification,
an increasing number of methods have been
proposed in the computer vision domain. In
this paper, we adopted a new method, which
consists of decoupling the entire classification
task into (a) learning representations in a k-
positive contrastive learning (KCL) way and (b)
training a classifier on balanced data set, into
IC tasks. Using SimCSE to be our self-learning
backbone, we demonstrated that the proposed
method works on the IC text classification task.
In addition, we spotted a shortcoming in the
KCL: false negative instances (FN) may harm
the representation learning step. After eliminat-
ing FN instances, IC performance (measured
by macro-F1) has been further improved.

1 Introduction

Item categorization (IC) is to classify a product into
a node in a category taxonomy. It is a fundamen-
tal task in e-commerce and the basis of personal
recommendations, query understanding and so on.
One of the challenges to building a highly effec-
tive IC system is products’ long-tailed (LT) label
distribution, where only a few head classes have
a lot of samples, while the other large volume of
tail classes only consists of a few samples. Conse-
quently, sporadic supervision on these tail labels
tends to cause unsatisfactory IC performance.
Recently, several novel LT-addressing methods,
e.g., methods utilizing self-supervision (Yang and
Xu, 2020) and contrastive learning (CL) (Kang
et al., 2021), have emerged in the computer vision
domain. However, the related research in natural
language processing (NLP) domain is still limited.
In this paper, we propose to utilize contrastive
learning to address the LT challenge in the IC

task. The proposed framework uses unsupervised
SimCSE (Gao et al., 2021) for data augmentation
and K-positive contrastive loss (KCL) (Kang et al.,
2021) to learn feature embeddings in balanced fea-
ture space. Moreover, we recognize false nega-
tive (FN) instances exist in KCL and apply two
different strategies: FN attraction and FN elimi-
nation to cancel them. The experimental results
on three Amazon product category datasets show
that the contrastive learning methods help on im-
proving the model performance on tail classes and
the FN cancellation can further improve CL-based
LT-addressing method. Our main contributions can
be summarized as:

* We apply contrastive learning to address the
LT challenge in the IC text classification.

* We recognize the false negative sample issue
in K-positive contrastive loss and apply a false
negative cancellation strategy to mitigate its
negative impact.

2 Related Work

Many methods have been proposed to address
the LT issue. One category of those methods re-
samples the data to balance the label distribution,
e.g., SMOTE (Chawla et al., 2002). Another cat-
egory of methods assign different weights to sam-
ples based on their label frequencies, e.g.,Class-
balanced loss (Cui et al., 2019), Label-Distribution-
Aware Margin loss (LDAM) (Cao et al., 2019) and
so on. Recently, a rwo-stage training strategy (ex-
ampled in (Kang et al., 2019; Zhou et al., 2020)),
which decouples the learning a feature encoder and
the learning of a classifier, has become influential
in computer vision and shows its superior perfor-
mance on addressing the LT issue.

Contrastive learning (CL) has been found to be
effective in providing high-quality encoders in a
simple self-learning fashion. For example, in com-
puter vision, SImCLR (Chen et al., 2020) uses the



consistence between an anchor image and its trans-
formed version and the in-consistence between the
anchor and other instances in a batch (in-batch neg-
ative instances) to guide encoder training. If any
in-batch negative instance shares the label carried
by the anchor image, such an instance is called false
negative (FN). FN samples are found to be harmful
to CL methods and corresponding mitigation meth-
ods are proposed (Huynh et al., 2020; Chen et al.,
2021). Inspired by the success of SImCLR in com-
puter vision, CL-based text representation learning
has been a hot research topic in NLP. SimCSE (Gao
et al., 2021) uses dropout operations existing in
Transformer to be an effective text augmentation
and can learn effective text representations. In the
LT-addressing two-stage method, self-learning has
been used in its representation learning stage, e.g.,
(Yang and Xu, 2020; Kang et al., 2021). Besides
simply using self-supervision, including the super-
vision signal from existing labels can improve the
representation learning (Khosla et al., 2020). How-
ever, introducing semantics information may suffer
from the long tail issue and hurt the performance
of tail classes. To address this issue, K-positive
contrastive loss (Kang et al., 2021) is proposed to
learn balanced feature representations.

3 Methodology

Let x denote the title of a product and y is its label.
The IC can be formulated as a text classification
task and can be described as: given a product title
x, IC needs to predict the category label y.

3.1 Unsupervised SimCSE

Recently, unsupervised SimCSE (Gao et al., 2021)
is proposed to learn sentence embeddings using a
self-supervised contrastive learning method. The
unsupervised SImCSE maximizes the agreement
of the representations of a positive pair by using
the InfoNCE loss represented in Eq. 1.
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where h, h™ and H~ are the representations of
the anchor sample x, a positive instance x* and
the set of negative instances. In the unsupervised
SimCSE, the positive instance is the same as the
anchor sample (i.e., zT = x). The negative sample
set consists of the set of all other samples in the
same batch as the anchor sample.

The anchor sample x and its positive sample 7 =

x are encoded using two different BERT (De-
vlin et al., 2018) based encoders which share the
same architecture but use different random dropout
masks. The encoder can be represented as:

h =tanh(MLP(BERT (z,z)))

h = tanh(MLP(BERT (z*,2"))) @

where BERT (z, z) denotes the BERT encoder
using a random dropout mask. M LP is a one-
layer fully connected layer and tanh represents the
hyperbolic tangent activation function. z and 2™
are two different random dropout masks in BERT
at rate of 0.1.

3.2 SimCSE with K-positive Contrastive Loss

To use important supervision signals provided by
the labels, we propose the SIMCSE-KCL frame-
work illustrated in Fig. 1(a) to incorporate the K-
positive contrastive loss (KCL) into the SimCSE
framework. Compared with the unsupervised Sim-
CSE, the SImCSE-KCL uses K more positive in-
stances randomly sampled from the batch contain-
ing the anchor. The KCL can be represented as:

1
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where I/ represents the self-augmented represen-
tation of x and H ;g represents the representation
set of the of sampled K positive samples from the
batch. H~ denotes the corresponding negative sam-
ple representation set given the anchor and positive
sample. K is the hyper-parameter representing the
defined positive pairs.

By incorporating the KCL into the SimCSE frame-
work, the SimCSE-KCL can both take advantage of
the contrastive loss to learn the balanced features
and improve the semantic discrimination ability
from the learned features.

3.3 False Negative Cancellation

A drawback of the SImCSE-KCL is some positive
samples will be considered as negative if there are
more than K + 1 samples belonging to the same
class in a batch. As shown in Fig 1(a), when K = 1,
the third sample is false negative and excluded from
the positive set in SImCSE-KCL. The occurrence
of such false negative samples may degrade the
quality of the learned embeddings and further hurt
the classification performance.

To alleviate the influence of the false negative sam-
ples, we propose two frameworks: SIimCSE-KCL-
FNA and SimCSE-KCL-FNE, which utilizes the
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(a) SimCSE-KCL

(b) SimCSE-KCL-FNA

(c) SimCSE-KCL-FNE

Figure 1: Illustration of the proposed frameworks: SimCSE-KCL, SimCSE-KCL-FNA and SimCSE-KCL-FNE,
when K = 1. Blue, red and green arrows denote the anchor, positive and negative instances correspondingly.
Specifically, dashed red arrow is the augmented sample and dashed green arrow represents the false negative sample.

attraction and elimination strategy as in (Grill et al.,
2020) to cancel false negative samples.

The SimCSE-KCL-FNA uses an attraction strategy,
where all positive samples rather than K sampled
positive instances are included in the positive set.
As shown in Fig. 1(b), the third sample considered
as a negative sample in SimCSE-KCL is included
in the positive set in SImCSE-KCL-FNA. When the
ground-truth labels are known, the loss in SimCSE-
KCL-FNA is the same as supervised contrastive
loss (Khosla et al., 2020). It uses more labels and
contains no noise compared with SImCSE-KCL.
The SimCSE-KCL-FNE uses the elimination strat-
egy shown in Fig. 1(c), which ignores the false
negative samples in calculating the contrastive loss
by neither including it in the positive sample set nor
in the negative sample set. We can find in Fig. 1(c)
the third sample is not used to calculate the loss.
Despite the less information used in SimCSE-KCL-
FNE, removing the noise in the data can boost the
performance of the models.

4 Experiment

Datasets: The experiments are performed on the
three categories of Amazon product (McAuley
et al., 2015; He and McAuley, 2016) datasets: Au-
tomotive, Beauty, and Electronics. Each sample
has a title and a category label. All three datasets
show long tail characteristics'

Experimental Setup: We compare the three pro-
posed frameworks with BERT using cross-entropy
loss (BERT-CE), cRT (Kang et al., 2019), and unsu-
pervised SimCSE (SimCSE,;). For both cRT and

"The details of statistics and label frequency are in Ap-
pendix.

SimCSE based models, we follow the two-stage
training protocol in (Kang et al., 2019).

The batch size is set to 32 and initial learning rate is
le — 5 with a linear decay. The datasets are prepro-
cessed following (Tayal et al., 2020). We split the
training datasets into two subsets: frain vs. dev that
is used to select hyperparameters and validate the
performance 2. The models are evaluated using two
metrics: macro F1 (F1,,) and weighted F1 (F1,,).
Note that macro F1 is frequently used in evaluating
LT-addressing methods. Since it calculates the F1
for each class and averages them, it is significantly
influenced by the performance of tail classes. We
report the results using the best models on the dev
set measured by macro F1.

False negative sample rate: Following (Chen
et al., 2021), we calculate the false negative rate
in SimCSE-KCL for the three datasets. The calcu-
lated false negative rates are 0.036 (Automotive),
0.068 (Electronics) and 0.102 (Beauty), showing
that there are significant number of false negative
samples when using KCL.

Performance with long-tailed IC: The experimen-
tal results are shown in the left part in Table 1.
We can observe that all contrastive learning-based
models outperform BERT-CE and cRT in terms
of macro F1, which suggests the effectiveness of
contrastive learning to address the long tail issue
in IC. Although cRT also uses two-stage training
and show success in some computer vision tasks,
its performance on IC is not as expected.

When comparing the SimCSE,; with the three
supervised contrastive methods, SimCSE-KCL,

2The code will be available.



Automotive Electronics Beauty ‘ Autoy Autop; Autor

r, Fl,t F1, Fl,t Fl, Fl,?1 ‘ Fl,t Fl,T Fl,7

BERT-CE 78.03 6395 67.68 5294 7144 56.64 | 7542 6451 51.78

cRT 7785 63.72 67.54 5299 7155 5588 | 7520 6399 51.78
SimCSE ¢ 76.36 6425 65.82 5330 7099 58.06 | 74.16 6492  54.65
SimCSE-KCL 76.87 65.17 65.18 5339 7144 5826 | 7499 65.06 55.36
SimCSE-KCL-FNA 76.54 64.65 66.08 53.69 71.65 5831 | 7446 64.88 54.53
SimCSE-KCL-FNE 7796 65.82 65.73 53.67 7143 5795 | 7597 65.78 55.61

Table 1: Model Performance on Long-tailed IC. The left part of the table shows the performance on the three
datasets: Automotive, Electronics and Beauty. The right part shows the results on the three subsets of the Automotive
dataset, where Autoy, Auto,; and Autor consist of the head, medium and tail classes in Automotive. The best
results are highlighted using bold fonts. F'1,, and F'1,, denote the weighted F1 and macro F1.

SimCSE-KCL-FNA, and SimCSE-KCL-FNE, we
can find at least one supervised contrastive meth-
ods can beat the SImCSE,; and in most cases
SimCSE,; is the worst model. It illustrates that
introducing semantics information can boost the
model performance. However, the way of introduc-
ing the semantics information should be carefully
chosen.

Moreover, we can observe that the false negative
cancelling contrastive loss outperforms all base-
lines including SimCSE-KCL in terms of macro
F1. This pattern suggests the necessity and effec-
tiveness to eliminate the influence of the false neg-
ative samples in SimCSE-KCL. When comparing
the two false negative cancelling strategies, we can
find the SimCSE-KCL-FNE works better on Au-
tomotive and Electronics datasets, while SImCSE-
KCL-FNA works better on the Beauty dataset. One
possible reason is that the different false negative
rates of the three datasets. The beauty dataset is
much larger than it of other two datasets. There-
fore the SimCSE-KCL-FNE loss will eliminate too
many samples and further degrade the performance
rather than improve it.

Performance on Subsets of Automotive: To in-
vestigate the performance of the models on the
classes with different label frequencies, we split
the whole Automotive dataset into three subsets:
Autoyy, Autoys and Autor and evaluate the models
by macro F1. Autoy consists of 132, 590 samples
in the most frequent 318 head classes. Autor is the
subsets including 7,855 samples in the least fre-
quent 317 tail classes. Auto,, includes the remain-
ing 20, 280 samples in the 318 medium classes.
As shown in the right part in Table. 1, SImCSE-
KCL-FNE outperforms all other models on all three

subsets and the improvement is more significant
in the tail classes, showing that the false negative
elimination and contrastive learning do address the
long tail issue. In addition, the performance de-
creases as the decrease of the label frequencies for
all the models, illustrating the lacking of samples
limits the model performance.

5 Conclusion

In modern large-scaled item categorization tasks,
category labels are naturally distributed in a long
tail pattern. This issue challenges the tail labels’
classification performance due to severe supervi-
sion missing. To address this challenge, we adopt
a two-stage LT-addressing method that was origi-
nally proposed in the image classification task. To
make this method work on our text classification
task, we use the recently proposed simCSE (Gao
et al., 2021) to do an effective text transformation
and KCL loss in the representation learning stage.
Furthermore, we recognize there are false nega-
tive samples caused by using the KCL loss and
propose two cancellation strategies to reduce the
corresponding influences. The experimental results
prove that the proposed method helps improve the
performance on long-tailed data and the false neg-
ative cancellation can help boost the performance
compared with KCL in IC.

For future research, there are several possible di-
rections: (1) more sophisticated text augmentation
in the CL stage, (2) more useful negative samples,
e.g., focusing on hard negative samples, and (3)
applications to more e-commerce NLP tasks, e.g.,
product attribute extraction.
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A Data Statistics and Label Frequency
Plots

Labels Samples Title Length

Automotive 953 160,725  9.90 £ 5.51
Beauty 229 159,805 10.26 £ 5.61
Electronics 500 86,357  14.90 £ 9.56

Table 1: Statistics of Datasets
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Figure 1: Label Frequency Histogram of Automotive,
Beauty and Electronics Dataset

The data statistics of the three datasets are shown
in Table. 1. In Fig. 1, the histogram of the label

frequencies of the three datasets are shown. All the
three datasets have the long-tailed issue.

B False Negative Calculation

the false negative rate fnr is the number of false
negative samples among top 25% the most similar
samples of the anchor in a batch, which can be
represented as:

>y Y en, maz(0,|B]| — (K +1))
(025 x | Bi| x (|Bi| — 1))

fnr=

N is the number of batches. B; is the set of samples
in batch 7 and |B;| is the number of samples in
batch i. |B}| is the number of samples belonging
to the same class as z; in the 25% most similar
samples with the sample z;.

To calculate the false negative rate, we use the
obtained embeddings of SimCSE-KCL in the first
stage after 10 epoch and report the average of five
runs. We calculate the false negative rate of those
three datasets where the batch size is set to 32 and
Kis setto 1.



