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Abstract

Generative models at times produce “invalid” outputs, such as images with gen-
eration artifacts and unnatural sounds. Validity-constrained distribution learning
attempts to address this problem by requiring that the learned distribution have a
provably small fraction of its mass in invalid parts of space – something which stan-
dard loss minimization does not always ensure. To this end, a learner in this model
can guide the learning via “validity queries”, which allow it to ascertain the validity
of individual examples. Prior work on this problem takes a worst-case stance,
showing that proper learning requires an exponential number of validity queries,
and demonstrating an improper algorithm which – while generating guarantees
in a wide-range of settings – makes an atypical polynomial number of validity
queries. In this work, we take a first step towards characterizing regimes where
guaranteeing validity is easier than in the worst-case. We show that when the data
distribution lies in the model class and the log-loss is minimized, the number of
samples required to ensure validity has a weak dependence on the validity require-
ment. Additionally, we show that when the validity region belongs to a VC-class, a
limited number of validity queries are often sufficient.

1 Introduction

When sampling from a generative model, it is highly desirable that its outputs meet some basic
criteria of quality. In the case of text, this may mean that generated sentences respect grammar rules,
or avoid the use of biased or offensive language [1, 2]. When generating code, a criterion may be that
the generated code successfully compiles [3]. In image generation, we might wish to avoid blurry
outputs, or those possessing generation artifacts which clearly distinguish them from natural images
[4, 5].

In this paper, we examine the statistical cost of ensuring that learned distributions produce such
“valid” outputs. To do so, we consider an elegant formulation of the problem of learning such valid
models due to [3]. In their work, training data are generated according to a probability distribution P ,
and the binary “validity” of examples is determined by some unknown “validity function” v. Given
sample access to P and query access to v, a learner attempts to identify a probability distribution
which outputs invalid examples with probability at most ε2. At the same time, the distribution should
have a loss which is at most ε1 worse than that of the minimum loss model in a classQ which outputs
valid examples with probability 1. Here, query access to v captures the idea that collecting samples is
often cheap, but verifying validity is often less so, possibly requiring a human-in-the-loop.

The initial work of [3] suggests that choosing such a low-loss, high-validity distribution q̂ may require
a large number of validity queries. Under the assumption that P is “fully-valid”, i.e. outputs a valid
example with probability 1, they show that in the worst case, 2Ω(1/ε1) validity queries are required to
choose such a model q̂ from the class Q. They follow this result with an improper learning algorithm
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for choosing q̂ which, while achieving polynomial bounds on the number of validity queries, uses a
relatively large number of validity queries Õ

(
log(|Q|)/ε21ε2

)
.

The somewhat pessimistic picture painted by these fascinating complexity-theoretic results can be
tracked to their generality. Firstly, it’s possible that Q and P are significantly “mismatched”, i.e. the
support of each model q ∈ Q has only a small overlap with the support of the distribution P , in which
case the validity information contained in valid training samples is unhelpful to a proper learner.
Secondly, their improper learning algorithm is largely loss-agnostic, in that it generates guarantees
for a wide class of bounded loss functions. Finally, nothing is assumed about the form of the validity
function v, precluding provable estimation.

In this work, we offer a counterbalance to this picture, beginning an investigation into learning settings
where guaranteeing validity is cheaper than such results might indicate. We first consider learning
under complete elimination of model class mismatch, where Q is rich enough to contain the fully-
valid data distribution P , and the loss is the log-loss l(f(x)) = log(1/f(x)). It is intuitive that in this
setting, loss minimization alone should guarantee validity. Somewhat less intuitively, we demonstrate
an algorithm closely related to empirical risk minimization which uses just Õ

(
log(|Q|)/min(ε21, ε2)

)
samples to guarantee its output meets loss and validity requirements – in other words, validity comes
quickly under random sampling from P in this setting.

Secondly, we consider learning under a different realizability assumption, namely that the validity
region is a member of a VC-class of dimension D. In this setting, we provide an analysis of the
natural scheme of restricting the empirical risk minimizer to an estimate of the valid part of space. We
show that when small-loss models q ∈ Q have at least constant validity, this scheme uses Õ (D/ε2)
validity queries, implying a query cost reduction over the general-purpose algorithm of [3]. We also
show that learning under the capped log-loss can be used to relax the assumption of constant validity
at the cost of an extra factor of 1/ε1.

Our results suggest the existence of a rich web of settings in which validity may be cheaper than in
the general case. They also suggest that the choice of the loss plays an important roll in guaranteeing
valid outputs, compelling further investigation of the log-loss in particular.

2 Related Work

The framing of learning distributiuons in terms of PAC guarantees similar to [6] dates back to
[7], who consider the learnability of specific classes of discrete distributions under a realizability
assumption. A significant body of work on distribution learning has been developed overtime,
often focusing on algorithms for learning over parametric families or under specific “structural”
assumptions [8, 9, 10, 11]. The only theoretical contribution to validity-constrained distribution
learning under the formulation posed by [3] that we are aware of is that work itself.

The study of loss functions for the evaluation of probabilistic models has often been studied the
lens of “scoring rules” in the forecasting literature [12, 13, 14]. There are some notable recent
contributions towards expanding the understanding of when loss functions for distribution learning
display desirable properties, e.g. “properness”, which designates that the loss is minimized by the
true data distribution [8, 15].

The first half of this paper draws on intuition from hypothesis testing to evaluate the performance of
empirical risk minimization. Hypothesis testing is a major focus of the classical statistics literature
[16]. The bounds in the first half of the paper are due to analysis inspired by the Neyman-Pearson
lemma [17, 18], and rely on the approximation of total variational distance between product measures
[19].

The applied literature on generative modeling has consistently noted the problem of learned models
producing “invalid” examples [20, 21, 22, 4]. Various techniques have been proposed for mitigating
invalidity generally, and in domain specific settings [23, 20, 24]. While working under the assumption
that the validity function lies in a VC-class, the strategy we introduce has some rough semblance to a
“post-editing” procedure proposed by [24].
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3 Preliminaries

3.1 Problem Setup

Let X be a subset of Euclidean space Rd with finite Lebesgue measure λ. Let P denote the set
of all probability distributions on the measurable space (X ,FX ), where FX arises from Lebesgue
measurable sets intersected with X . Let P ∈ P be the data-generating distribution.

In the eyes of the learner, the function v : X → {0, 1} is a fixed and unknown “validity function”,
measurable with respect to the relevant distributions. The validity function denotes whether or not
an example x ∈ X is considered a valid output for a learned approximation of P . The learner is
given a model class of Q ⊂ P of probability distributions on X , each with density fq with respect to
λ, and afforded with the knowledge that at least one q ∈ Q is “fully-valid”, i.e. that there is some
q ∈ Q with invalidity V (q) := PrX∼q (v(X) = 1) = 1. We at times use the notion of “invalidity” of
a model, by which we mean I(q) = 1− V (q). Following the main exposition of [3], we assumeQ is
of finite cardinality.

The goodness-of-fit of a model q ∈ P is governed by a decreasing “local” loss function l : R≥0 →
R ∪ {∞}. Such a loss function gives rise to loss of model via LP (q; l) := EX∼P [l (fq(X))].
Given an i.i.d sample S from P , we let the empirical estimate of the loss of a model be LS(q; l) =∑
xi∈S l(fq(xi))/|S|. We use the shorthand LP (q) and LS(q) to denote the true and empirical losses

of q under the log-loss l(q) = log(1/fq(x)), where log denotes the natural logarithm. We take the
log-loss to be infinite at points where fq(x) = 0.

3.2 Goal of Learning

The goal of the learner is to choose some q̂ ∈ P which has a loss LP (q̂; l) similar to that of the
lowest-loss fully-valid model in Q, while simultaneously maintaining near full-validity. Explicitly,
consider the model

q∗ := arg min
q∈Q:V (q)=1

LP (q; l).

To describe the quality of an outputted model, we consider two learning parameters ε1 and ε2, where
ε1 is used to control the loss sub-optimality, and ε2 to control the invalidity. Formally then, the goal
of the learner is to output q̂ ∈ P satisfying L(q̂) ≤ L(q∗) + ε1 and I(q̂) ≤ ε2. To accomplish this
goal, the learner has sample access to P , and query access to v, i.e. a learner can draw any finite
number of i.i.d. samples from P , and any request the value of the validity function v at any finite
number of inputs in X .

At a minimum, we are interested in algorithms which require a number of samples from P and number
validity queries that is polynomial in log(|Q|), 1/ε1 and 1/ε2. Ideally, we would like to minimize the
number of validity queries given some polynomial number of samples from P . The motivation for
this goal is similar to the minimization of label queries in active learning for classification [25], where
samples from the marginal over instances are often cheap, but labeling such examples is assumed
expensive.

3.3 Full-Validity of P

We assume that all samples from the data-generating distribution P are valid, i.e. that V (P ) = 1.
Under such an assumption, the query demand of a learning algorithm can be conceptualized as the
overhead number of queries sufficient for choosing a good model under the standard procedure of
removing invalid examples from the training set.

If the data distribution is not fully-valid, and valid samples are required by an algorithm, the question
of minimizing the overall number of queries is dependent on the sample complexity of learning –
if one assumes that P has been constructed by “accepting” valid samples from some underlying
distribution which outputs a valid sample with constant probability, then the overall query cost
incurred by an algorithm is on the order of the larger of the number of samples and the number of
“overhead” validity queries it uses.

In this paper, we are primarily interested in the “overhead” number of queries, which we refer to as
the “number of validity queries” of a given scheme. In most cases, algorithm sample requirements
are similar to O(log(|Q|)/ε21), which allows for accurate loss estimation in many settings.
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3.4 Summary of Previous Results

The learning problem above is due to [3], who considered the possibility of specifying learning
algorithms meeting the above bi-criteria objective for any choice of bounded, decreasing, local loss
function.

This work gives some interesting insight into the difficulty of selecting such a low-loss, high-validity
model. They begin by giving a negative result, namely that any proper learning algorithm outputting
q̂ ∈ Q, must make 2Ω(1/ε1) validity queries in the worst case, regardless of the number of samples
available from P . This result arises from a specific problem instance wherein every q ∈ Q has a
significant amount of mass outside of the support of P , in which case samples from a fully-valid P
do not give information about v in parts of space relevant to the choice of q̂ ∈ Q.

On the other hand, they demonstrate an improper learning algorithm which achieves polynomial
bounds on samples and validity queries for any choice of loss meeting the above criteria. Their
algorithm harnesses a constrained ERM oracle, iteratively querying the validity of samples from the
model q ∈ Q which is the empirical loss minimizer putting no mass on points known to be invalid.
In particular, their scheme uses Õ(log(|Q|)/ε21) samples and Õ(log(|Q|)/ε21ε2) validity queries.

4 Learning Without Model Class Mismatch Under the Log-Loss

We first consider the problem of selecting a low-loss, high-validity model under a relaxation of two
of the main sources of difficulty in original problem formulation: the misalignment of the model
class Q with the data distribution P , and the lack of assumptions on the loss.

In particular, we consider the problem under a realizability assumption, namely that P ∈ Q, further
investigating the power of the log-loss. Such a setting is arguably more closely aligned with
contemporary learning settings with rich model classes that appropriately capture features of the
underlying data distribution, where the validity information contained in samples from P can be
exploited by convergence to the best information-theoretic representation of P in Q.

The log-loss is by far the most widely-used loss in practice [8]. It is a classic result of the proper
scoring rule literature that the log-loss is the unique strictly-proper local loss, i.e. the only local loss
under which for all distributions q 6= P , it holds that LP (P ; l) < LP (q; l). This highly desirable
property – implying that convergence to the optimum over P coincides with convergence to P –
makes the choice of an alternative outside of capped variants preferable only under specialized
circumstances.

4.1 Towards Validity without Validity Queries

Given that samples are assumed to be valid, and the log-loss permits convergence to the data
generating distribution, one would hope that simply selecting a model q̂ ∈ Q which is a sufficiently
good representation of P under the log-loss would yield validity guarantees in this setting. Simply
utilizing empirical risk minimization (ERM) is the canonical approach to this end, and one which,
given sufficient data from P , uses exactly zero validity queries.

Note that any model q with invalidity I(q) > ε2 necessary has dTV (q, P ) > ε2. In this case, q must
have at least ε2 mass in the invalid part of space, where P has none. Thus, if one can guarantee
that q̂ has dTV (q̂, P ) ≤ ε2, the validity requirement is met. Recalling the Pinsker inequality
dTV (q, q′) ≤ O(

√
dKL(q, q′)) relating total variational distance and KL-divergence, it follows that

obtaining a model q̂ which is at most ε22 sub-optimal in log-loss yields a model meeting the validity
requirement.

While this illustrates useful intuition for the setting, it glosses over two main issues. Firstly, empirical
estimates of the log-loss do not admit concentration guarantees – one can construct simple examples
where EX∼P [log(1/fq(X))] is unbounded above, but with high probability, the empirical estimate
LS(q) =

∑
x∈S log(1/fq(x))/|S| is approximately that of P [8]. Thus, selecting low-empirical loss

models can never yield loss guarantees. Secondly, this application of Pinsker’s inequality demands
ε22 loss sub-optimality, suggesting that ensuring validity via the selection of a good model under the
log-loss is even harder than guaranteeing a small loss.
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Algorithm 1 Modifying ERM to Yield Log-Loss Guarantees
1: procedure finite_log_loss(Distribution Class Q, S, ε∧ = min(ε1, ε2))
2: q̂ ERM ← arg minq∈Q

∑
xi∈S log (1/fq(xi))

3: return q̂ = (1− ε∧/8) · q̂ ERM + ε∧/8 · u . Mix ERM, uniform distribution
4: end procedure

We would hope that in the case that zero-query learning is possible, that guaranteeing validity
arises somewhat coincidently with convergence to P , meaning that the sample complexity is not
much worse given a validity requirement than without one. Thus, the path towards satisfaction
of the learning objectives requires subtle handling, and compels particular attention to the sample
complexity dependence on the validity parameter ε2.

4.2 Analysis of Empirical Risk Minimization

As indicated above, it is not possible to guarantee that empirical risk minimization (ERM) outputs a
model with small log-loss. It is, however possible to guarantee that it outputs a model which closely
resembles P and inherits validity guarantees with a small number of samples.

In particular, it’s possible to show that given sufficient samples, ERM yields a model with small total
variation to P when P ∈ Q. This is due to the following folklore theorem [8], which we prove under
assumption of density existence in the Appendix.

Lemma 4. Fix 0 < ε, δ < 1 arbitrarily, and let P, q ∈ P be distributions with densities with respect
to λ. Then if dTV (q, P ) ≥ ε, and S ∼ Pn for n ≥ Ω(log(1/δ)/ε2), it holds with probability≥ 1− δ
that

LS(P ) < LS(q).

Thus, at the statistical cost of estimating a coin bias, any distribution q with total variation ≥ ε from
the data distribution will reveal itself to be empirically inferior when the log-loss is used. This can be
easily leveraged to generate guarantees for ERM over Q in terms of total variation.

It is tempting to think that this is the entire story when it comes to guaranteeing validity. After all,
we argued above that small total variation from P is sufficient for ε2 invalidity. That said, simply
looking at total variation ignores a particular structural feature of distributions q with I(q) > ε2 – in
particular, such distributions have mass in parts of space in which P does not.

This observation can be used to construct tight lower bounds on the total variational distance between
product measures arising from P and q with I(q) > ε2. This leads to the following result, which
states that ERM yields a faithful representation of the data generating distribution that is at most ε2
invalid given a number of samples with a modest dependence on the validity parameter ε2.

Lemma 5. Fix 0 < δ, ε1, ε2 < 1 arbitrarily, and suppose P ∈ Q. If P is fully-valid under v, and
S ∼ Pn for n ≥ Ω

(
log(|Q|)+log(1/δ)

min(ε21,ε2)

)
, then with probability ≥ 1 − δ over S ∼ Pn, the ERM

solution
q̂ = arg min

q∈Q

∑
xi∈S

log(1/q(xi)),

satisfies both
dTV (q̂, P ) ≤ ε1 and I(q̂) ≤ ε2.

Note that this guarantee is not redundant – having dTV (q̂, P ) ≤ ε1 does not imply I(q) ≤ ε2 when
ε2 < ε1.

4.3 Attaining Log-Loss Guarantees

This result can be interpreted as a vote of confidence for the naive training of generative models under
the log-loss. Nevertheless, from a learning-theoretic perspective, there is a question whether or not it
is possible to guarantee low log-loss while maintaining validity with zero validity queries.
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While ERM cannot possibly furnish log-loss guarantees, it turns out that it is possible to modify the
output of ERM to generate log-loss guarantees at the cost of an extra polylogarithmic factor in the
sample complexity, at least when the densities fq are bounded above and below in their support.1

The idea, formalized in Algorithm 1, is simply to mix the output of ERM with the uniform distribution.
Giving the uniform distribution a mixture component on the order of min(ε1, ε2) can be shown to
ensure that the validity guarantees of the ERM output are preserved, while also giving the outputted
distribution support across the entire space. This leads to the following theorem.

Theorem 1. Fix 0 < δ, ε1, ε2 < 1 arbitrarily, and suppose P ∈ Q and that P is fully-valid under v.
If it holds that for each q ∈ Q that α ≤ fq(x) ≤ β for all x ∈ supp(q), then there is an

N ≤ Õ

(
log2 (1/min(ε1, ε2, α)) ·

(
log(|Q|) + log(1/δ)

)
min(ε21, ε2)

)
,

such that for all n ≥ N , with probability ≥ 1− δ, the output q̂ of Algorithm 1 satisfies

LP (q̂) ≤ LP (q∗) + ε1 and I(q̂) ≤ ε2.

Here the Õ notation hides a polylogarithmic dependence on 1/β, which is insignificant in most
regimes, and treats the density of the uniform distribution over X as a constant, which would
otherwise also enter polylogarithmically.

Theorem 1 shows that guarantees with respect to the unbounded log-loss are attainable improperly, i.e.
when the learner can choose q /∈ Q. It’s an interesting question whether the logarithmic dependence
on min(ε1, ε2) can be removed with a more subtle strategy.

4.4 Discussion of Optimality

One might suspect that achieving a smaller dependence than 1/ε2 on the validity parameter should
be impossible. We confirm this is true at least for proper learners, showing that the analysis of ERM
in Lemma 5 is tight in its dependence on ε2. This lemma is used to generate the validity guarantee in
Theorem 1.

Theorem 2. For all ε2 < 1/4 and for all proper learners L : S → P , if the sample S ∼ Pn is of
size n ≤ 1/8ε2, then there exists a triple (P,Q, v) with P ∈ Q and P fully-valid, on which L(S) has
invalidity I(L(S)) > ε2 with probability ≥ 1/4.

The intuition here is that while any invalid q ∈ Q has at least ε2 total variation from P , in the
worst case, the total variation between q and P is upper bounded by O(ε2) as well. This makes
distinguishing between P and some ε2 invalid distribution hard enough to generate such a lower
bound.

The sample requirement of 1/ε21, both in our guarantees and in previous work, is a standard offshoot
of loss estimation, irrespective of the search of a valid model. In general, one cannot expect
improvements to this end – this is the standard dependence one finds for estimating the means bounded
random variables. This suggests that the “realizable complexity” for this setting is 1/min(ε21, ε2) –
while non-zero losses should not be generally estimable using “realizable” techniques, guaranteeing
small invalidity can when P ∈ Q.

5 Utilizing Estimates of the Validity Function in Training

In the general formulation of the problem, the learner is given an arbitrary bounded, decreasing loss,
a model class Q which is mismatched with P , and has no a priori information about the validity
function v. In such a setting, it is clear that validity queries are necessary.

In this section, we consider a setting where it is known to the learner that v can be found in a
hypothesis class V of bounded complexity. Under such an assumption, we would hope to be able to
lower the number of validity queries beyond the bounds of [3].
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Algorithm 2 Post-Hoc Restriction of ERM to an Estimate of Valid Outputs
1: procedure valid_restriction(Distribution Class Q, Validity Class V , ε1, ε2, δ, γ)

2: S ← Ω
(
M2(log(|Q|)+log(1/δ))

ε21

)
i.i.d. samples ∼ P

3: q̂ ERM ← arg minq∈Q
∑
x∈S l(q(x))

4: SP ← Ω
(
M(D log(M/ε1)+log(1/δ))

ε1

)
i.i.d. samples ∼ P ,

Sq̂ ERM ← Ω
(
D log(1/γε2)+log(1/δ)

γε2

)
i.i.d. samples ∼ q̂ ERM

5: v̂ ← arg minh∈V
∑
x∈SP∪Sq̂ ERM

1[h(x) 6= v(x)] . Label Sq̂ ERM via queries to v

6: return fq̂ ∝ fq̂ ERM(x) · 1[v̂(x) = 1] if q̂ ERM ({v̂(x) = 1}) > 0 else fq̂ = fq̂ ERM

7: end procedure

5.1 Algorithm

A natural algorithm in this setting is to “correct” the invalidity of the empirical risk minimizer – to
restrict the empirical risk minimizer to parts of space which are valid with respect to an estimate of
the validity v̂. This is the precisely the idea formalized in Algorithm 2.

To generate guarantees for such a strategy, one must determine the distribution with respect to which
the estimate v̂ should be accurate. In our case, we generate accuracy guarantees over both P and the
ERM model q̂ ERM by selecting an estimate v̂ that has 0 empirical error over both distributions. The
source of the query complexity of the algorithm comes from the fact that samples arising from q̂ ERM
must be labeled by oracle calls to v. Noting that samples from P can be automatically labeled as
valid by the full-validity of P saves a constant factor over naively labeling all examples acquired in
the second half of the algorithm.

Accuracy under samples from P allows one to control the loss of q̂ by invoking the boundedness
of the loss in the disagreement region of v̂ and v, and guarantees with respect to q̂ ERM allow us to
bound the invalidity of the restriction. Because P is fully-valid, loss contributions from the agreement
region of v and v̂ correspond to parts of space where v̂(x) = 1 – as the loss is non-increasing, placing
more mass in such parts of space can never increase the loss contribution attributable to integrating
over this region.

Algorithm 2 also requires a parameter γ > 0. This parameter should be a validity lower bound on the
models q ∈ Q, providing a safeguard on the possibility of an “invalidity blowup” when restricting the
ERM output to a certain region of space – one must normalize the restriction to output a probability
distribution, which in this case means increasing mass in parts of space that are estimated to be valid.
An a priori lower bound on the validity allows for precise enough estimation of v̂ that increasing the
mass in such regions is unlikely to lead to appreciable invalidity in the final model.

It’s possible that the restriction of the ERM estimated valid region is undefined – this happens if and
only if the estimated valid region has zero mass under the ERM. Given validity lower bounds for
models q ∈ Q , this is a low probability event which can occur only when estimation of the validity
function is very poor relative to the query complexity. As one might imagine, the handling of this case
is immaterial for PAC-guarantees. We choose to arbitrarily define behavior in this case by outputting
the ERM model.

5.2 Guarantees

The restricted output q̂ of Algorithm 2 admits the following guarantee over loss sub-optimality and
invalidity.

1This does not yield uniform convergence over Q given that the support of q ∈ Q need not align with P
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Theorem 3. Suppose v ∈ V with VC-dimension V C(V) ≤ D, and that for each q ∈ Q, the validity
V (q) ≥ γ > 0. For all 0 < ε1, ε2, δ ≤ 1 and for all choices of non-increasing loss functions
l : R≥0 → [0,M ], Algorithm 2 requires a number of samples

≤ O
(
M2 (log(|Q|) + log(1/δ))

ε21
+
M (D log(M/ε1) + log(1/δ))

ε1

)
,

and a number of validity queries

≤ O
(
D log(1/γε2) + log(1/δ)

γε2

)
,

to ensure that with probability ≥ 1− δ, its output enjoys

LP (q̂; l) ≤ LP (q∗; l) + ε1 and I(q̂) ≤ ε2.

Thus, in regimes where e.g. γ ≥ Ω(ε1), D = Θ(log(|Q|)), this guarantee represents a reduced
number of queries under the Õ(M2 log(|Q|)/ε21ε2) bound of [3]. It also implies a “decoupling” of
the query complexity from ε1.

We note that the sample requirement from P is increased in certain regimes over the Õ(log(|Q|)/ε21)
requirement of [3]. This is, however, not a concern in most settings where validity queries are
expensive. If samples from a fully-valid P are readily obtainable, the setting is analogous to that of
active learning, where focus is directed to the number of labels requested in training.

Even if P must be constructed by “accepting” valid samples from some unfiltered P ′, a comparison
between the query complexity of Theorem 3 and the query bound of [3] is often still representative of
the relative data costs of the schemes. Supposing P ′ produces valid samples with constant probability,
the total number of validity queries made by each scheme is proportional to the scheme’s sample
requirements from P , plus the number of validity queries used in its execution. Essentially, to yield
validity query speedups, our scheme requires a VC bound on V which does not dwarf log(|Q|). Thus,
in most cases of interest, the querying the validity of Õ (MD/ε1) extra samples is asymptotically
inconsequential relative to O(M2 log(|Q|)/ε21), and the Õ (D/γε2) query budget required to execute
the algorithm given access to a fully-valid P .

5.3 Better Query Complexity Bounds

5.3.1 Exploiting the Power of Active Learning

Theorem 3 presents a somewhat pessimistic view of the potential of such a “post-filtering” scheme.

Firstly, it ignores the potential of active learners to improve query complexities over passive sampling.
Query complexities in active learning of classifiers are often expressed in terms of the “disagreement
coefficient” [26], often denoted via θ. In the realizable setting, query complexities of active learning
look like Õ(Dθ log(1/ε)) [27]. Definitionally, it can be shown that θ ≤ 1/ε. Thus, proving the gains
of active learning algorithms usually relies on bounding the disagreement coefficient non-trivially, i.e.
showing θ < o(1/ε), or ideally, θ ≤ O(1).

While this is challenging, as θ is both a class and distribution-dependent quantity, there is a literature
that addresses this potential in various settings – see the references in [25]. In principle, one could use
such an analysis to show that the query complexity of an active learning modification of Algorithm
2 is on a lower order than the guarantee of Theorem 3 when conditions are favorable. To this end,
it may be useful to note that a modification of Algorithm 2 wherein v̂ is selected as the ERM on a
dataset generated by a mixture of P and q̂ ERM admits guarantees as well.

5.3.2 Only Low-Loss Models Need Appreciable Validity

Another source of potential looseness in the statement of Theorem 3 is that it phrases the query
complexity in terms of the worst-case validity over models q ∈ Q. This is unnecessary – with high
probability, in the first step of the algorithm, one selects a model q ∈ Q with O(ε1) true loss. Thus,
what really matters for such a strategy is that models that have relatively small loss l do not have
invalidity nearing 1.
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This is a realistic scenario in the case that the loss function l – despite possibly not being proper
– prioritizes models which in some sense resemble the data generating distribution P . Indeed, it’s
somewhat difficult to envision a situation where a loss would be chosen that prioritizes models with
no relation to the data generating distribution. To this end, we give the following corollary to Theorem
3.
Corollary 1. Under the conditions of Theorem 3, if in addition it holds that all models q ∈ Q
with loss sub-optimality ε1 have validity greater than some constant, then the query complexity of
Algorithm 2 can be improved to

≤ O
(
D log(1/ε2) + log(1/δ)

ε2

)
.

5.3.3 Removing the Positive Validity Requirement

Using an idea found in the algorithm of [3], one can show that if a learner has access to single
distribution D with a density and at least some non-zero constant validity, and the densities fq are
bounded above, that Algorithm 2 can be modified so as to drop the requirement of positive validity
over models when learning under the capped log-loss.

By mixing the q̂ ERM with D, giving mixture component O(ε1) to D, one can generate similar
guarantees as those of Theorem 3. The modification can be found in the Appendix as Algorithm 3,
and enjoys the following guarantee.
Theorem 4. Suppose v ∈ V where V C(V) ≤ D, and that for each q ∈ Q, we have fq(x) ≤ β.
Suppose further that there is some known D ∈ P with density fD which has V (D) ≥ c > 0 for some
constant c. Then for all choices of 0 < ε1, ε2, δ < 1/2 and M > 0, Algorithm 3 requires a number
of samples

≤ Õ
(
M2 (log(|Q|) + log(1/δ))

ε21
+
M (D log(M/ε1) + log(1/δ))

ε1

)
,

and a number of validity queries

≤ O
(
D log(1/ε1ε2) + log(1/δ)

ε1ε2

)
,

to ensure that with probability ≥ 1− δ, its output enjoys

EX∼P
[

min (M, log(1/fq̂(X)))

]
≤ EX∼P

[
min (M, log(1/fq∗(X)))

]
+ ε1 and I(q̂) ≤ ε2.

Here, the Õ notation again hides factors polylogarithmic in 1/β.

Note that the Õ now appears in the sample complexity. This simply reflects the fact that theM -capped
log-loss can range between gap M and log(1/β) when working with densities bounded above by
β ≥ 1. In the case that densities can be bounded above by 1, as in the discrete setting of [3], this
dependence disappears.

6 Conclusion

This work is intended as a first-look into settings closer to the common-case, where ensuring validity
may be relatively cheap.

A more thorough investigation of the log-loss, as well as capped variants, seems a very relevant line of
further inquiry, given the widespread use of this family in practice and its useful information-theoretic
properties. A natural extension to the first part of this work would be to consider learning in the
agnostic case P /∈ Q under the log-loss, where one would hope to be able to exploit these properties
and the validity of training samples to keep the number of validity queries low.

In general, characterizing the sample and query demands of validity-constrained distribution learning
is challenging, given that proving lower bounds in general requires arguing against learners with two
tools at their disposal – sampling and actively querying validity. Work in this direction will likely
require some creative constructions.
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7 Appendix

7.1 Probability Distributions and Measure Theoretic Formalism

We work over Euclidean space Rd and let X be a Lebesgue measurable set with Lebesgue measure
λ(X ) < ∞. By λ and Lebesgue measurable set, we refer to the measure and σ-algebra F arising
from the usual construction of Lebesgue measure on Rd. By “distribution”, we mean a probability
measure on the measurable space (X ,FX ), where FX = {E ∩ X : E ∈ F}. Let u the uniform
distribution be the measure given by u(E) = λ(E)/λ(X ) for E ∈ FX . Let P denote the set of all
probability measures on (X ,FX ).

We assume that P ∈ P and q ∈ Q ⊂ P have densities fP and fq with respect to the reference
measure λ. At times, it will be useful to assume that densities are bounded away from zero in certain
parts of space. By saying densities are bounded in their support by β > α > 0, we mean that for
all x ∈ supp(q) := cl{x : fq(x) > 0}, we have α ≤ fq(x) ≤ β, where the closure is defined
through open balls in the Euclidean metric. Note that in this setting, we have q(supp(q)) = 1, as
q(supp(q)c) =

∫
1[x ∈ supp(q)c]fq(x)dλ(x) =

∫
0dλ = 0.

Denote via qn = q ⊗ · · · ⊗ q the product measure over the measurable space (X⊗n,F⊗nX ). Such a
measure corresponds to the process of taking n i.i.d. samples ∼ q. Denote the density of qn with
respect to λn via fnq .

We define log(1/0) = ∞. Following the conventions in [28], we say that 1[x ∈ E] · g(x) = 0 if
g(x) <∞ for x ∈ E and g(x) =∞ for some x ∈ Ec. This allows us to integrate over the finite part
of functions and get a finite result.

To facilitate digestibility, we refrain from measure theoretic notation as much as possible. It is at
times useful, particularly in dealing with total variation. We assume throughout that all functions we
encounter in the Appendix – including the fixed validity function v and functions in the validity class
V – are (X ,FX )-measurable.

7.2 Estimates of Validity, Invalidity

We fix the validity function v as an arbitrary function v : X → {0, 1}measurable with respect to each
distribution q arising in the Appendix. As discussed above, for a given model q ∈ P , the “validity” of
q is the quantity V (q) = PrX∼q (v(X) = 1), and the “invalidity” I(q) = 1− V (q). We will at times
be interested in estimating the validity of a model q using samples from q along with validity queries.
Given an i.i.d. sample {Xi}ni=1 from q, we let V̂ (q) =

∑n
i=1 v(Xi)/n be the natural estimate of the

validity of q.

At times, we will be interested in the validity of a model under an estimate of the underlying
validity function. To this end, given a model q ∈ P and a function g : X → {0, 1}, we let
Vg(q) = PrX∼q (g(X) = 1). Given a sample {Xi}ni=1, let V̂g(q) =

∑n
i=1 g(Xi)/n. Note that in the

language of this notation, we have V (q) = Vv(q) and V̂ (q) = V̂v(q). We extend this notation in the
natural way to invalidity quantities.

7.3 Analysis of Empirical Risk Minimization, Improper Algorithm in Realizable Setting

To begin our analysis of the realizable setting, we first observe that models with appreciable invalidity
look very different from a fully-valid data generating distribution – because they must have mass
in parts of space where P does not, they are separated in total variation from P by a margin. We
formalize this idea via the following.

Lemma 1. Fix 0 < ε < 1 arbitrarily. For any validity function v, if q ∈ P has I(q) > ε, and P ∈ P
has I(P ) = 0, then

dTV (P, q) > ε.

Proof. Fix the validity function arbitrarily. Consider the event E¬v = {x ∈ X : v(x) = 0}. Then
we have dTV (P, q) = supE⊆X |P (E)− q(E)| ≥ q(E¬v)− P (E¬v) > ε, where we have used that
I(P ) = 0 implies P (E¬v) = 0.
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We next extend this observation to the associated product measures, which are the main target of
analysis under i.i.d. sampling from P . The idea is to lower bound the total variation between product
measures by the difference in probabilities on the event that at least one example from a sample
of size n is invalid. Of course, for each sample, this happens with probability 0 under P and with
probability at least ε under any model q with at least ε invalidity. Thus, identically to how one shows
realizable rates for classification tasks, we attain a large total variation gap between P and any q with
appreciable invalidity – mistakes in classification are thus analogous to the generation of an “invalid”
samples in our setting.

Lemma 2. Fix 0 < ε < 1 and n ∈ N \ {0} arbitrarily. For any validity function v, if q ∈ P has
I(q) > ε, and P ∈ P has I(P ) = 0, then

dTV (Pn, qn) > 1− e−nε.

Proof. Fix the validity function arbitrarily. Consider lower bounding the total variation between the
product measures via the magnitude of the difference of their measures on the event

E≥1 =

{
(x1, . . . , xn) ∈ Xn : ∃i s.t. v(xi) = 0

}
.

Because P has perfect validity, any given draw from P has probability 0 of being invalid. Thus,
Pn(E≥1) = 0. On the other hand, the invalidity of q states that for any 1 ≤ i ≤ n, we have
q({x ∈ X : v(x) = 0}) > ε. Let Ev = {x ∈ X : v(x) = 1}, and note that q(Ev) < 1− ε. Then we
have

qn(E≥1) = 1− q(Ev)n

> 1− (1− ε)n

≥ 1− e−nε,

where the final inequality follows from the fact that (1 + x/n)n ≤ ex for x ≤ n.

We can then borrow from classical analysis of hypothesis testing given by the Neyman-Pearson
lemma to leverage this gap in total variation between product measures into a bound on the probability
that after n samples, a model with appreciable invalidity has a smaller loss than P .

Lemma 3. Fix 0 < ε < 1 and n ∈ N \ {0} arbitrarily. For any validity function v, if q ∈ P has
I(q) > ε, P ∈ P has I(P ) = 0, and q and P have densities with respect to the reference measure λ,
then

PrS∼Pn
(
qn(S) ≥ Pn(S)

)
≤ e−nε.

Proof. The proof follows that of the Neyman-Pearson lemma’s claim that the Likelihood Ratio Test
achieves the lower bound on the sum of Type I and Type II errors [18], combined with Lemma 2. We
give the full argument for completeness.

Fix the validity function arbitrarily, and note the following string of relations:

PrS∼Pn
(
qn(S) ≥ Pn(S)

)
=

∫
1[fnq (x) ≥ fnP (x)]fnP (x)dλn(x)

≤
∫

min
(
fnq (x), fnP (x)

)
dλn(x)

= 1− dTV (Pn, qn)

≤ e−nε,

where the switch to total variation in the second to last line is the result of a classic characterization
of total variation given by “Scheffé’s Theorem”, and the final line comes from Lemma 2.
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To generate loss guarantees, we need to be able to reason about models which do not have appreciable
invalidity. The next lemma is an analogue of the previous one – it is identical up to the replacement
of the condition that q have appreciable invalidity with a weaker one that the total variation between
a model q and the data distribution P is appreciable. When q does not have appreciable invalidity, we
can no longer rely on the structure of the supports of q and P to generate large margins for the total
variation separation of product measures, and have to fall back on more general estimates for total
variation between product measures.

Lemma 4. Fix 0 < ε, δ < 1 arbitrarily, and let P, q ∈ P be distributions with densities with respect
to λ. Then if dTV (q, P ) ≥ ε, and S ∼ Pn for n ≥ Ω(log(1/δ)/ε2), it holds with probability≥ 1− δ
that

LS(P ) < LS(q).

Proof. When q and P both possess densities, we can related the the probability that the likelihood of
q is at least that of P to their total variation, as in the Neyman-Pearson Lemma.

PrS∼Pn
(
Pn(S) ≤ qn(S)

)
=

∫
1[fnP (x) ≤ fnq (x)]fnP (x)dλn(x)

≤
∫

min
(
fnP (x), fnq (x)

)
dλn(x)

= 1− dTV (Pn, qn)

≤ e−ndTV (p,q)2/2

≤ e−nε
2/2.

Here, the second to last inequality is the consequence of powerful result of [19] (and later [29]),
namely that for any two collections of probability measures {qi}ni=1 and {pi}ni=1 over measurable
spaces {(Xi,Fi)}ni=1, the product measures over the respective collections qn and pn satisfy

1− exp

(
−1

2

n∑
i=1

dTV (qi, pi)
2

)
≤ dTV (qn, pn).

The final inequality follows from assumed gap in total variation between P and q.

The previous two results concern the testing of individual models against P . In the standard way, we
now leverage the finite cardinality to argue via a union bound that given enough samples from P , it’s
unlikely that the ERM model has a large total variation distance from P .

Lemma 5. Fix 0 < δ, ε1, ε2 < 1 arbitrarily, and suppose P ∈ Q. If P is fully-valid under v, and
S ∼ Pn for n ≥ Ω

(
log(|Q|)+log(1/δ)

min(ε21,ε2)

)
, then with probability ≥ 1 − δ over S ∼ Pn, the ERM

solution
q̂ = arg min

q∈Q

∑
xi∈S

log(1/q(xi)),

satisfies both
dTV (q̂, P ) ≤ ε1 and I(q̂) ≤ ε2.

Proof. Let QdTV >ε1 = {q ∈ Q : dTV (q, P ) > ε1}. By Lemma 4 and a union bound, it holds that

PrS∼Pn
(
dTV (q̂, P ) > ε1

)
≤ PrS∼Pn

(
∃q ∈ QdTV >ε1 s.t. LS(q) ≤ LS(P )

)
≤ |QdTV >ε1 | · max

q∈QdTV >ε1
PrS∼Pn

(
LS(q) ≤ LS(P )

)
≤ |Q|e−nε

2
1/2.
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In the same manner, let v be an arbitrary validity function, and let QI>ε2 = {q ∈ Q : I(q) > ε2}.
Then we have

PrS∼Pn
(
I(q̂) > ε2

)
≤ PrS∼Pn

(
∃q ∈ QI>ε2 s.t. LS(q) ≤ LS(P )

)
≤ |QI>ε2 | · max

q∈QI>ε2
PrS∼Pn

(
LS(q) ≤ LS(P )

)
≤ |Q| e−nε2 ,

where the final inequality holds by Lemma 3. Then finally,

PrS∼Pn
(
dTV (q̂, P ) > ε1 ∨ I(q̂) > ε2

)
≤ |Q|e−nε

2
1/2 + |Q|e−nε2 ,

and so choosing n ≥ 2(log(|Q|) + log(1/δ))/min(ε21, ε2) ensures that the sum of these final terms
is ≤ δ.

Before we can prove Theorem 1, we need one final intermediate result, which we now give. It
states that the value of the log-loss at any given x for a mixture distribution constructed by heavily
weighting one of two distributions is not much different than the value of the loss for the heavily
weighted component. This follows from the fact that the natural log is well-approximated by a linear
function near 1. We will use this result to argue that the loss of the output of Algorithm 1 is not
significantly different than that of the ERM in the support of the ERM.
Lemma 4. Fix 0 < ε < 1. For any q ∈ P having a density with respect to λ, the mixture
M = (1− ε/2)q + εu/2 has density fM (x) = (1− ε/2)fq(x) + εfu(x)/2 and this density satisfies

log

(
1/fM (x)

)
≤ ε+ log

(
1/fq(x)

)
,

for all x ∈ X .

Proof. The existence claim on the densities is immediate given the definition of u as the uniform
distribution with respect to the reference measure λ. To see the inequality, fix x ∈ X arbitrarily, and
note that fM (x) ≥ (1− ε/2)fq(x). Thus, we may write

log

(
1/fM (x)

)
≤ log

(
1

1− ε/2

)
+ log

(
1/fq(x)

)
≤
(

1

1− ε/2
− 1

)
+ log

(
1/fq(x)

)
≤ ε/2

1− ε/2
+ log

(
1/fq(x)

)
≤ ε+ log

(
1/fq(x)

)
,

where second equality comes from the fact that log(z) ≤ z − 1, the final follows from the fact that
z/(1− z) ≤ 2z for z ≤ 1/2.

To get guarantees for the log-loss, we make heavy use of the previous lemma. Being able to guarantee
a small total variational distance from the ERM to P and small invalidity means that the ERM output
is already likely to be a faithful representation of P with small invalidity. All that is then needed is to
eliminate the possibility that the ERM has a large log-loss because of small mismatches in support
with P .

To deal with this possibility, we mix the ERM model with the uniform distribution in accordance with
Algorithm 1. Because the weight given to the uniform distribution is O(min(ε21, ε2)), the invalidity
is close to that of the ERM. To show that such a move does not increase the loss significantly, we
split the contribution to the loss of the outputted model into two that arising from supp(q̂ ERM) and
it’s complement. We first observe that the ERM always has an empirical risk which is a faithful
estimator of the integral EX∼P [1[X ∈ supp(q̂ ERM)] · log(1/fq̂ ERM(x))], allowing us to bound this
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integral above in terms of the loss of P . The integral of the loss over supp(q̂ ERM)c can be shown to
be small using the lower bound on the density of the output model q̂ afforded by mixing with the
uniform distribution, and the fact that supp(q̂ ERM)c must have a small measure under P when the
ERM is close to P in total variation.
Theorem 1. Fix 0 < δ, ε1, ε2 < 1 arbitrarily, and suppose P ∈ Q and that P is fully-valid under v.
If it holds that for each q ∈ Q that α ≤ fq(x) ≤ β for all x ∈ supp(q), then there is an

N ≤ Õ

(
log2 (1/min(ε1, ε2, α)) ·

(
log(|Q|) + log(1/δ)

)
min(ε21, ε2)

)
,

such that for all n ≥ N , with probability ≥ 1− δ, the output q̂ of Algorithm 1 satisfies

LP (q̂) ≤ LP (q∗) + ε1 and I(q̂) ≤ ε2.

Proof. Fix v arbitrarily, and let ε∧ = min(ε1, ε2). To see the claim on the validity, note that by the
guarantee of Lemma 5, the assymptotic complexity of Lemma 5 yields the guarantee I(q̂ ERM) ≤ ε2/2
with probability ≥ 1− δ/3, in which case

PrX∼q̂
(
v(X) = 0

)
= PrX∼q̂ ERM

(
v(X) = 0

)
·
(

1− ε∧
8

)
+ PrX∼U

(
v(X) = 0

)
· ε∧

8

≤ ε2
2
·
(

1− ε∧
8

)
+ 1 · ε∧

8
< ε2.

The loss of the outputted model q̂ can be decomposed into the contributions from the loss in
supp(q̂ ERM) and it’s complement:

LP (q̂) = EX∼P
[
1[X ∈ supp(q̂ ERM)] · log(1/fq̂(X))

]
+ EX∼P

[
1[X ∈ supp(q̂ ERM)c] · log(1/fq̂(X))

]
.

To bound the first term, for each q ∈ Q, consider the function

Bq(x) =

{
log (1/fq(x)) if x ∈ supp(q),
0 else.

These functions are bounded above by log(1/α) and below by log(1/β) (if β < 1, simply
loosen the density upper bound), and thus for a sample X ∼ P , define bounded random vari-
ables Bq(X). By Hoeffding’s inequality and a union bound, it holds that a sample S of size
n ≥ Ω̃(log2(1/α)(log(|Q|) + log(1/δ))/ε21) from P is large enough such that with probability
≥ 1− δ/3, for each q ∈ Q, it holds that∣∣∣∣∣EX∼P [Bq(X)]− 1

n

∑
xi∈S

Bq(xi)

∣∣∣∣∣ ≤ ε1
8
.

Note that for each q ∈ Q with LS(q) <∞, it holds that LS(q) coincides with the empirical estimates
of EX∼P [Bq(X)], namely

1

n

∑
xi∈S

Bq(xi) =
1

n

∑
xi∈S

log (1/fq(xi)) .

Furthermore, this coincidence takes place for q̂ ERM with probability 1, as P ∈ Q implies that
LS(q̂ ERM) ≤ LS(P ) < ∞ with probability 1 – note that LS(P ) is a good estimator for LP (P ) in
the sense arising from an application of Hoeffding, as log(1/fP (X)) is bounded almost surely for
X ∼ P given that P has a density that is bounded in it’s support (as a member of Q). Thus, we may
write

EX∼P
[
1[X ∈ supp(q̂ ERM)] · log(1/fq̂(X))

]
≤ EX∼P

[
1[X ∈ supp(q̂ ERM)] · log(1/fq̂ ERM(X))

]
+
ε1
4

= EX∼P [Bq̂ ERM(X)] +
ε1
4

≤ LS(q̂ ERM) +
3ε1
8

≤ LP (q∗) +
ε1
2
,
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where we invoke Lemma 4 in the first step, and in the last step use that q∗ = P by the strict properness
of the log-loss.

To bound the second term, note that by the argument in given in Lemma 5, when
n ≥ Ω

(
log2(1/ε∧) · (log(|Q|+ log(1/δ)) /ε21

)
, it holds with probability ≥ 1 − δ/3 that

dTV (q̂ ERM, P ) ≤ ε1/8 log(8/ε∧). Because q̂ has density at least ε∧/8 everywhere in X ,2 we
have

EX∼P
[
1[X ∈ supp(q̂ ERM)c] · log(1/fq̂(X))

]
≤ log(8/ε∧) · EX∼P

[
1[X ∈ supp(q̂ ERM)c]

]
≤ log(8/ε∧) · dTV (P, q̂ ERM)

< ε1/2,

where in the second line we use the fact that q̂ ERM(supp(q̂ ERM)) = 1 to argue that dTV (P, q̂ ERM) ≥
P (supp(q̂ ERM)c). Combining the bounds on the two summands and union bounding the confidence
yields the full guarantee.

We note that this argument implies a slight more precise sample complexity bound given by

Õ

(
max

(
log(|Q|) + log(1/δ)

ε2
,

log2 (1/min(ε1, ε2, α))
(

log(|Q|) + log(1/δ)
)

ε21

))
,

which affords a minor improvement in certain regimes where ε2 < ε21.

7.4 A Zero-Query Lower Bound

Theorem 2. For all ε2 < 1/4 and for all proper learners L : S → P , if the sample S ∼ Pn is of
size n ≤ 1/8ε2, then there exists a triple (P,Q, v) with P ∈ Q and P fully-valid, on which L(S) has
invalidity I(L(S)) > ε2 with probability ≥ 1/4.

Proof. We give an argument inspired by the proof of a lower bound in Theorem 2 of [30].

Let X = [0, 1] ⊂ R. Fix the proper learner L and ε2 < 1/4 arbitrarily. Consider a model class
defined by Q = {P, P̃}, where P and P̃ have densities with respect to the Lebesgue measure

fP (x) = 1[x ∈ [0, 1− 2ε2]]
1

1− 2ε2
, fP̃ (x) = 1[x ∈ [2ε2, 1]]

1

1− 2ε2
.

This Q gives rise to two realizable problem instances of interest. Under the first, P is the data
generating distribution and v(x) = 1 everywhere except for in (1− 2ε2, 1], where v(x) = 0. Under
the second, P̃ is the data generating distribution and v(x) = 1 everywhere except for in [0, 2ε2),
where v(x) = 0. Assume by contradiction that for both problem instances, given a sample of
size n ≤ 1/8ε2, we have that I(L(S)) ≤ ε2 with probability > 3/4. In both cases, we have that
I(q) = 2ε2/(1− 2ε2) > ε2 for the model q which is not the data generating distribution. Thus, L(S)
is a model with I(L(S)) ≤ ε2 with probability > 3/4 over both problem instances if and only if it
identifies the data generating distribution with probability > 3/4 over both problem instances.

Consider the simple hypothesis tester defined by TL(S) = L(S), which by the above, outputs
the correct data generating distribution given a choice of P or P̃ – and given n ≤ 1/8ε2 samples
from either P or P̃ – with probability > 3/4. Note that the distributions P , P̃ have dTV (P, P̃ ) =
2ε2/(1 − 2ε2) ≤ 4ε2, where we use ε2 < 1/4 and z/(1 − z) ≤ 2z for small enough z in the
inequality. By a classic upper bound on the total variation between product measures [19], we have
that dTV (Pn, P̃n) ≤ 4nε2. Then, by Le Cam’s method and this upper bound on dTV (Pn, P̃n), we
have

inf
T :S→{P,P̃}

max
q∈{P,P̃}

PrS∼qn (TL(S) 6= q) ≥ 1

2
− 1

2
· dTV (Pn, P̃n) ≥ 1

2
− 2nε2.

Thus, if n ≤ 1/8ε2, the there is a choice of data generating distribution such that TL(S) incurs error
probability ≥ 1/4, which is a contradiction.

2When the uniform distribution has a density smaller than 1, there is an extra log factor to account for here.
We can WLOG this away by adding the condition that λ(X ) = 1, e.g. arising from normalized data.
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7.5 Strategies Arising from Estimation of the Validity Function

When the validity function v is known to lie in a class of bounded complexity, it is learnable, and
learned estimates may be utilized in the selection of a low-loss, high-validity model. An interesting
feature of the problem setup here is that unlike in most learning settings, the learner can actually
choose which distributions it would like estimate v with respect to, i.e. decide under which marginal
distributions over X the estimate v̂ should small disagreement with v.

We begin with a lemma arguing that whenever the ERM has positive probability of outputting an
example with v̂(x) = 1, and the disagreement of v̂ and v under a proposal distribution is small
enough, the restriction will indeed yield a low-validity model.

Lemma 5. Fix 0 < ε < 1 and a distribution q ∈ P absolutely continuous with respect to λ arbitrarily.
Further, fix V̂ (q) such that 0 < V̂ (q) ≤ V (q), and suppose that for some v̂ : X → {0, 1} we have

PrX∼q (v̂(X) 6= v(X)) ≤ V̂ (q)ε

2
.

Then whenever there is a distribution q̂ corresponding to

fq̂(x) ∝ fq(x)1[v̂(x) = 1],

it has invalidity I(q̂) ≤ ε.

Proof. Let Vv̂(q) = PrX∼q (v̂(X) = 1) denote the normalizing constant for the restriction to esti-
mated valid region. Note that the restriction corresponds to a probability distribution if and only if
Vv̂(q) > 0, and that in this case

fq̂(x) =
fq(x)1[v̂(x) = 1]

Vv̂(q)
.

It holds further that q̂ is absolutely continuous with respect to λ, and that we can write the following
chain of relations:

I(q̂) =

∫
1[v(x) = 0]fq̂(x) dλ(x)

≤ 1

Vv̂(q)

∫
1[v̂(x) 6= v(x)]fq(x) dλ(x)

≤ V̂ (q)

Vv̂(q)

ε

2

≤ V (q)

Vv̂(q)

ε

2
,

where the first inequality follows after inputting the definition of fq̂, and the final two inequalities
come by assumption. It’s further possible to show that validity of q can be approximated from above
by a constant multiple of Vv̂(q), which can be conceptualized as the validity of q if v̂ were the true
validity function. In particular,

V (q) =

(
Vv̂(q)− Vv̂(q)

)
+ V (q)

= Vv̂(q) +

∫ (
1[v(x) = 1]− 1[v̂(x) = 1]

)
fq(x) dλ(x)

≤ Vv̂(q) +

∫
1[v(x) 6= v̂(x)]fq(x) dλ(x)

≤ Vv̂(q) +
V̂ (q)ε

2

≤ Vv̂(q) +
V (q)ε

2
.

This implies that V (q) ≤ Vv̂(q)/(1 − ε/2), which yields V (q) ≤ 2Vv̂(q) as ε < 1. Utilizing this
inequality in the last line of the first string of inequalities gives the guarantee.
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The need for a lower estimate on the validity in the precision of the estimate for v̂ can be understood
as follows: when the proposal distribution has very small validity, the restriction to the estimation
of the valid parts of space under v̂ may create huge (or infinite) increases in mass over the proposal
distribution – in the language of Lemma 5, Vv̂(q) may be very small for a proposal distribution q. If
this is the case, the estimate v̂ must be more precise, as small errors in the estimation of the validity
function may lead to invalid parts of space having large mass under q̂.

We introduce another lemma before proving Theorem 3. It argues that for a model q̂ constructed by
accepting samples from some "proposal distribution" q that fall in the valid part of space under v̂, the
contribution to the loss from the part of space where v̂ agrees with v can never exceed the total loss of
the proposal distribution q. Essentially, we are exploiting the full-validity of P here – in the subregion
of the agreement region {v(x) = v̂(x)} on which the loss is computed, we have that v̂(x) = 1 by the
fact that X ∼ P is valid. This means that the density of q̂ can only be larger than the density of q in
this region, which under a non-increasing loss cannot increase the loss over that incurred by q.

Lemma 6. Fix 0 < ε, δ < 1, a validity function estimate v̂ : X → {0, 1}, and q ∈ Q arbitrarily.
Suppose l : R≥0 → [0,M ] is a non-increasing loss function. Then whenever

fq̂(x) ∝ fq(x)1[v̂(x) = 1]

corresponds to a probability distribution, it enjoys

EX∼P
[
l (fq̂(X)) · 1[v̂(X) = v(X)]

]
≤ LP (q; l).

Proof. Let Vv̂(q) = PrX∼q (v̂(x) = 1) be the normalizing constant for q̂, where we note that Vv̂(q) >
0 when fq(x)1[v̂(x) = 1] corresponds to a probability distribution.

Given that P is fully-valid, we have PrX∼P (v(X) = 1) = 1. By the fact that integration is defined
up to null sets, it holds that

EX∼P
[
l (fq̂(X)) · 1[v̂(X) = v(X)]

]
= EX∼P

[
l (fq̂(X)) · 1[v̂(X) = v(X) ∧ v(X) = 1]

]
.

Further, we may write

EX∼P
[
l (fq̂(X)) · 1[v̂(X) = v(X) ∧ v(X) = 1]

]
≤ EX∼P

[
l

(
fq(X)1[v̂(X) = 1]

Vv̂(q)

)
· 1[v̂(X) = 1]

]
≤ EX∼P

[
l

(
fq(X)

Vv̂(q)

)]
≤ EX∼P

[
l (fq(X))

]
= LP (q; l).

Here, the second to last inequality comes from the non-negativity of the loss along with the fact
that whenever v̂(X) = 0, the integrand is zero – when v̂(X) = 1, the loss is just evaluated at the
normalized density, and so the integrand introduced in this line is an upper bound for the previous
integrand. The final inequality comes from the non-increasingness of the loss function along with the
observation that Vv̂(q̂) ≤ 1 – in removing the normalizing constant, we can only make the value at
which the loss is evaluated at smaller, which cannot decrease the value of the loss.

We are now ready to prove the main result of the second half of the paper – the guarantee for
Algorithm 2. It combines the previous lemmas, noting further that the number of samples in SP is
sufficient to make the disagreement of v and v̂ small enough under P such that the contribution to the
loss in that part of space can be controlled by trivially applying the loss upper bound M .
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Theorem 3. Suppose v ∈ V with VC-dimension V C(V) ≤ D, and that for each q ∈ Q, the validity
V (q) ≥ γ > 0. For all 0 < ε1, ε2, δ ≤ 1 and for all choices of non-increasing loss functions
l : R≥0 → [0,M ], Algorithm 2 requires a number of samples

≤ O
(
M2 (log(|Q|) + log(1/δ))

ε21
+
M (D log(M/ε1) + log(1/δ))

ε1

)
,

and a number of validity queries

≤ O
(
D log(1/γε2) + log(1/δ)

γε2

)
,

to ensure that with probability ≥ 1− δ, its output enjoys

LP (q̂; l) ≤ LP (q∗; l) + ε1 and I(q̂) ≤ ε2.

Proof. Given that the loss is bounded, Hoeffding’s inequality applied to the random variables
l (fq(X)) for X ∼ P , and a union bound, imply that S is large enough that with probability
≥ 1− δ/3, we have that for all q ∈ Q, the empirical loss estimates LS(q; l) are at most ε1/4 away
from true losses LP (q; l). For any choice of q̂ ERM, because we have v ∈ V , it must hold that any
minimizer v̂ is consistent with the labeling under v of both SP and Sq̂ ERM . The standard rates of
convergence when choosing an arbitrary consistent hypothesis thus imply that the sizes of SP and
Sq̂ ERM are large enough to guarantee that, with probability ≥ 1− 2δ/3, we have

PrX∼P

(
v̂(X) 6= v(X)

)
≤ ε1

2M
∧ PrX∼q̂ ERM

(
v̂(X) 6= v(X)

)
≤ γε2

2
.

By a union bound, with probability ≥ 1− δ, all of these estimation accuracy events take place. We
condition on these favorable events taking place going forwards.

Note that conditioned on these favorable events, the normalizing constant q̂ ERM ({v̂(x) = 1}) > 0,
as for any ERM, we have

q̂ ERM ({v̂(x) = 1}) = EX∼q̂ ERM [1[v(x) = 1]]−
∫

(1[v(x) = 1]− 1[v̂(x) = 1]) dq̂ ERM(x)

≥ EX∼q̂ ERM [1[v(x) = 1]]−
∫
1[v(x) 6= v̂(x)]dq̂ ERM(x)

≥ γ − γε2
2

> 0.

Thus, the restriction of the ERM to the estimated validity region is a viable probability distribution,
and is outputted by the algorithm as q̂. For any estimate of the validity function v̂, we can decompose
the loss of q̂ as

LP (q̂; l) = EX∼P
[
l (fq̂(X)) · 1[v̂(X) = v(X)]

]
+ EX∼P

[
l (fq̂(X)) · 1[v̂(X) 6= v(X)]

]
.

First using Lemma 6, and then using the uniform convergence of the loss estimates, we can bound
the first term as

EX∼P
[
l (fq̂(X)) · 1[v̂(X) = v(X)]

]
≤ LP (q̂ ERM; l)

≤ LP (q∗l ; l) +
ε1
2

≤ LP (q∗; l) +
ε1
2
,

where q∗l = arg minq∈Q LP (q; l) is the lowest-loss model in the classQ. To upper bound the second
term in the loss decomposition, we can use the fact that PrX∼P (v̂(X) 6= v(X)) ≤ ε1/2M and the
upper bound on the loss to write

EX∼P
[
l (fq̂(X)) · 1[v̂(X) 6= v(X)]

]
≤M · EX∼P

[
1[v̂(X) 6= v(X)]

]
≤ ε1

2
,
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Algorithm 3 Restriction to ERM under Log-Loss without Validity Assumption
1: procedure valid_restriction_log(Distribution Class Q, Validity Class V , D, δ, ε1, ε2)

2: S ← Ω
(
M2(log(|Q|)+log(1/δ))

ε21

)
i.i.d samples ∼ P

3: q̂ ERM ← arg minq∈Q
∑
x∈S min(M,− log(fq(x)))

4: q̃ ERM ← (1− ε1/8) · q̂ ERM + ε1/8 · D . Mix with constant validity D

5: SP ← Ω
(
M(D log(M/ε1)+log(1/δ))

ε1

)
i.i.d. samples ∼ P ,

Sq̃ ERM ← Ω
(
D log(1/ε1ε2)+log(1/δ)

ε1ε2

)
i.i.d. samples ∼ q̃ ERM

6: v̂ ← arg minh∈V
∑
x∈SP∪Sq̃ ERM

1[h(x) 6= v(x)] . Label x ∈ Sq̃ ERM via v

7: return fq̂ ∝ fq̃ ERM(x) · 1[v̂(x) = 1] if q̃ ERM ({v̂(x) = 1}) > 0 else fq̂ = fq̂ ERM

8: end procedure

yielding the loss guarantee.

The validity guarantee follows directly from the fact that PrX∼q̂ ERM (v̂(X) 6= v(X)) ≤ γε2/2 and
Lemma 5, where γ furnishes the lower estimate for the validity of the model q̂ ERM.

The corollary to Theorem 3 stating that only low-loss models need appreciable validity is straightfor-
wards. One can simply add an extra line to the proof of Theorem 3, arguing that when the intersection
of good estimation events takes place, the loss of the ERM distribution is within O(ε1) of the optimal
loss across models in Q, meaning that it has validity greater than some constant c. Thus, one can run
Algorithm 2 with an Sq̂ ERM large enough to achieve O(ε2) disagreement rate between v̂ and v under
samples from q̂ ERM, lowering the label complexity.

The proof of Theorem 4 is very similar to that of Theorem 3. The main difference is that when the
loss is the capped log-loss, we can exploit a stability property under mixture similar to that introduced
in Lemma 4. This allows us to mix q̂ ERM with a distribution of constant validity to get a validity
lower bound on the final proposal distribution q̃ ERM without increasing the loss more than O(ε1).
The validity lower bound can then be used as in Theorem 3.

Theorem 4. Suppose v ∈ V where V C(V) ≤ D, and that for each q ∈ Q, we have fq(x) ≤ β.
Suppose further that there is some known D ∈ P with density fD which has V (D) ≥ c > 0 for some
constant c. Then for all choices of 0 < ε1, ε2, δ < 1/2 and M > 0, Algorithm 3 requires a number
of samples

≤ Õ
(
M2 (log(|Q|) + log(1/δ))

ε21
+
M (D log(M/ε1) + log(1/δ))

ε1

)
,

and a number of validity queries

≤ O
(
D log(1/ε1ε2) + log(1/δ)

ε1ε2

)
,

to ensure that with probability ≥ 1− δ, its output enjoys

EX∼P
[

min (M, log(1/fq̂(X)))

]
≤ EX∼P

[
min (M, log(1/fq∗(X)))

]
+ ε1 and I(q̂) ≤ ε2.

Proof. WLOG assume β ≥ 1, and consider learning over l̄(z) = min(M, log(1/z))− log(1/β), a
translation of the capped log-loss bounded below by 0 for all inputs to fq ∈ Q, and bounded above
by M̄ = M − log(1/β).

Similar to the proof of Theorem 3, with probability ≥ 1 − δ/2 over the sample S ∼ Pn, it holds
that for all q ∈ Q that

∣∣LS(q; l̄)− LP (q; l̄)
∣∣ ≤ ε1/8; in this case, we use the fact that fq ≤ β to

ensure that the random variables l̄ (fq(X)) for X ∼ P are bounded, allowing for an application of
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Hoeffding’s inequality over empirical estimates of a loss unbounded below. As above, for any choice
of q̃ ERM, the sizes of SP and Sq̃ ERM are such that with probability ≥ 1− 2δ/3,

PrX∼P

(
v̂(X) 6= v(X)

)
≤ ε1

2M
∧ PrX∼q̃ ERM

(
v̂(X) 6= v(X)

)
≤ cε1ε2

16
.

As before, by a union bound, these bounds both hold simultaneously with probability ≥ 1− δ. We
condition on this intersection of favorable events going forwards.

Note that when this intersection of events takes place, we have q̃ ERM ({v̂(x) = 1}) > 0. In this
case, we have that V (q̃ ERM) ≥ ε1V (D)/8 ≥ ε1c/8 as V (D) ≥ c, and so identically to our work in
Theorem 3, we may write

q̃ ERM ({v̂(x) = 1}) ≥ EX∼q̃ ERM [1[v(X) = 1]]−
∫
1[v̂(x) 6= v(x)]dq̃ ERM(x)

≥ cε1
8
− cε1ε2

16
> 0.

Thus, the restriction of q̃ ERM to the estimate of the valid region is defined and outputted by the
algorithm as q̂. To see that the loss guarantee then holds for such a q̂, consider the loss decomposition
used in the proof of Theorem 3:

LP (q̂; l̄) = EX∼P
[
l̄ (fq̂(X))1[v̂(X) = v(X)]

]
+ EX∼P

[
l̄ (fq̂(X))1[v̂(X) 6= v(X)]

]
.

We upper bound the second term exactly as in Theorem 3. To upper bound the first term, consider an
argument similar to that of the proof of Lemma 6. Let Vv̂(q̃ ERM) > 0 be the normalizing constant for
q̂. We can write

EX∼P
[
l̄ (fq̂(X))1[v̂(X) = v(X)]

]
≤ EX∼P

[
l̄

(
fq̃ ERM(X)1[v̂(X) = 1]

Vv̂(q̃ ERM)

)
· 1[v̂(X) = 1]

]
≤ EX∼P

[
l̄

(
fq̃ ERM(X)

Vv̂(q̃ ERM)

)]
≤ EX∼P

[
l̄ (fq̃ ERM(X))

]
.

Here, the non-increasingness of the loss still holds, leading to the final step. Now, fix some x ∈ X
arbitrarily, and note the following, in the style of Lemma 4:

l̄(fq̃ ERM(x)) + log(1/β) = log

(
1/fq̃ ERM(x)

)
∧M

≤
(

log

(
1

1− ε1/8

)
+ log

(
1/fq̂ ERM(x)

))
∧M

≤
(
ε1/4 + log

(
1/fq̂ ERM(x)

))
∧M

≤ log

(
1/fq̂ ERM(x)

)
∧M +

ε1
4
.

Thus, it holds that l̄(fq̃ ERM(x)) ≤ l̄(fq̂ ERM(x)) + ε1/4, and so we may write

EX∼P
[
l̄(fq̂(X))

]
≤ EX∼P

[
l̄ (fq̂ ERM(X))

]
+
ε1
4

= LP (q̂ ERM; l̄) +
ε1
4
.

Thus, we have written the loss in terms of the ERM, and so we have, as in Theorem 3, that the first
term of the loss decomposition can be bounded by LP (q∗) + ε1/2.

Given PrX∼q̃ ERM (v̂(X) 6= v(X)) ≤ cε1ε2/16, and the lower bound on the validity of q̃ ERM derived
in the third paragraph above, we can again apply Lemma 5 to get the validity guarantee.
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6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: [NA]
Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer:[NA]
Justification: [NA]
Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: [NA]
Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We read the code of ethics and are in compliance.
Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The societal impacts are limited for a theory work like ours.
Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: [NA]
Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification:[NA]
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:[NA]
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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