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Abstract

The performance of image classification on well-known benchmarks such as ImageNet is
remarkable, but in safety-critical situations, the accuracy often drops significantly under
adverse conditions. To counteract these performance drops, we propose a very simple mod-
ification to the models: we pre-pend a single, dimension preserving convolutional layer with
a large linear kernel whose purpose it is to extract the information that is essential for
image classification. We show that our simple modification can increase the robustness
against common corruptions significantly, especially for corruptions of high severity. We
demonstrate the impact of our channel-specific layers on ImageNet-100 and ImageNette
classification tasks and show an increase of up to 30% accuracy on corrupted data in the
top1 accuracy. Further, we conduct a set of designed experiments to qualify the conditions
for our findings. Our main result is that a data- and network-dependent linear subspace
carries the most important classification information (the essential), which our proposed
pre-processing layer approximately identifies for most corruptions, and at very low cost.

1 Introduction

Intensive research into DNN architectures (He et al., 2016; Szegedy et al., 2015; Tan & Le, 2019; Liu et al.,
2022d), improved for example by Neural Architecture Search (NAS) (Dosovitskiy et al., 2021; Tan & Le,
2019) and advanced training schemes (Touvron et al., 2021; Chen et al., 2023b), has produced impressive
classification results (Dosovitskiy et al., 2021; Foret et al., 2021). The performance of models on well-known
benchmarks such as ImageNet (Russakovsky et al., 2015), Cifar-100 (Krizhevsky & Hinton, 2009) and others
has improved significantly over the last decade. However, a persistent challenge arises when these systems are
exposed to adverse conditions, such as changes in lighting, weather and other optical corruptions (Hendrycks
& Dietterich, 2019; Müller et al., 2023). Despite achieving high accuracy on in-domain data, DNNs often
experience a significant drop in performance under these real-world challenges (Müller et al., 2023; Hendrycks
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et al., 2020; Sakaridis et al., 2021). Intensive research is therefore being carried out to increase model
robustness to various disturbances.

Figure 1: A pre-pended large kernel convolution layer
(ours) can increase the robustness of classification net-
works against unknown corruptions without additional
data augmentation. Here, we show ResNet50 improved
with a trainable pre-pended filter evaluated on Im-
ageNette (Howard, 2023) blur and corruptions from
OpticsBench (Müller et al., 2023). For each corrup-
tion type, five levels of severity are shown from left
to right. The variation, visualized via the box plots,
results from five di�erent seeds per model.

A common strategy to increase robustness is to ap-
propriately augment the original training dataset
with relevant diversification. Such data augmen-
tation techniques include geometric transforma-
tions, cutouts and mixing of images (Yun et al.,
2019), color jitter or the simulation of out-of-
distribution data by introducing common corrup-
tions (Hendrycks & Dietterich, 2019), and optical
corruptions (Müller et al., 2023). Other methods
involve adversarial training, whose objective is yet
at odds with robustness to some real-world corrup-
tion types (Yin et al., 2019).

In this paper, we propose a very simple yet e�ective
trick to improve model generalization, which con-
sists of pre-pending to the model a single large kernel
depth-wise convolution operation without strides.
The proposed layer is trained with the model and
can, in principle, learn a complete representation of
the image (e.g. with an identity mapping), but no
over-complete one. This is in contrast to the usual
first model layers that create over-complete repre-
sentations to facilitate sparse coding. Surprisingly,
we find that our simple input layer trained solely on

clean data without particular augmentation strategies increases classification robustness to various corrup-
tion types on multiple DNN architectures by up to 9.8% across 21 corruptions and by over 30% on specific
severities with less than 2k additional parameters (e.g. only 0.008% for ResNet50). See Fig. 1 for an example.
We thoroughly investigate this outcome with di�erent methods to learn such large per-color-channel, i.e.
dimension preserving kernels, and compare to the respective baseline trained without the extra layer.

Major Findings and Contributions Our empirical study indicates that the proposed, dimension-
preserving large kernel input layer, while being able to learn a complete data representation, tends to learn
a subspace projection. As such, it extracts the crucial content from the input training samples, i.e. the es-
sential, such as to preserve a high accuracy on clean data. The dropping of non-essential parts of the signal,
i.e. the learned subspace projection, automatically leads to an increase in the model’s generalization ability
without requiring for any corruption specific data augmentation. We show this on ImageNette (Howard,
2023) and ImageNet-100 (Tian et al., 2020) for the corruption types from Hendrycks & Dietterich (2019)
and Müller et al. (2023) across diverse image classification models. Further, we explore in a signal theory-
inspired study the properties of suitable kernels for the proposed layer, such as to gain deeper understanding
and foster future progress in this very cost e�cient direction of improving model generalization.

2 Related Work

Model robustness and stability have been discussed under various perspectives. In the following, we first give
a brief overview on standard benchmarks for the evaluation of classification robustness under corruptions,
then, we summarize related work on model hardening through adversarial training. The proposed method
di�ers significantly from these approaches, as no assumptions of potential threats to the model are made
during training. Instead, our approach implicitly encourages the model to learn the relevant signal content
while reducing parts of the input data that are less relevant (i.e. noise). To contextualize this finding, we
also discuss prior work on the interplay between learned frequencies and model robustness, as well as prior
art on image resampling for neural networks.
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Image Corruptions and Data Augmentations To improve classification robustness against corruptions,
data augmentation can be used to mimic the diversification of real data. AugMix (Hendrycks et al., 2020)
improves robustness to common corruptions, Müller et al. (2023) use optical blur kernels to additionally
improve accuracy on primary optical aberrations. Others use learned augmentation policies Cubuk et al.
(2018) or add more abstract augmentations with image combinations (Yun et al., 2019; Berthelot et al., 2019;
2020), feature map perturbations (Hendrycks et al., 2021), combinations of feature map perturbations and
image augmentation (Erichson et al., 2024), perturbed frequency representations (Yucel et al., 2023), or by
adapting/augmenting the style of training images (Li et al., 2023; Hong et al., 2021; Xue et al., 2023; Zhang
& Agrawala, 2023) using SotA generative models (Ho et al., 2020). All these methods significantly increase
the training time of a model. The robustness they provide is limited to corruptions that are similar to the
augmented data. In comparison, our models are trained only on the clean dataset, avoiding i) the guessing
of the corruptions, and ii) the computational overhead of an augmented data set, while o�ering improved
generalization ability of the trained model in many settings.

Furthermore, Knowledge Distillation (KD) can be used to distill the robustness from a teacher model to
increase adversarial robustness (Goldblum et al., 2020; Zi et al., 2021; Huang et al., 2023; Zhao et al., 2022)
or out-of-distribution robustness (Zhou et al., 2023). The importance of data augmentation in KD training
is discussed in (Wang et al., 2022). Such approaches are expected to reach very high ranges of robustness,
yet they can only be applied when large pre-trained models are available for the considered domain.

Adversarial Attacks and Training Corruption benchmarks, e.g. Hendrycks & Dietterich (2019);
Sakaridis et al. (2021), allow testing the model behavior w.r.t. predetermined corruption types. In con-
trast, adversarial attacks can add any (usually ‘-bounded) perturbation. They usually assume Lipschitz
continuity of robust models (Goodfellow et al., 2015; Kurakin et al., 2017; Wong et al., 2020; Carlini & Wag-
ner, 2017; Andriushchenko et al., 2020; Ilyas et al., 2018). When used during training, adversarial samples
can be employed to harden a model (Goodfellow et al., 2015; Rony et al., 2019; Engstrom et al., 2019; Zhang
et al., 2019; Wang et al., 2020; Wu et al., 2020; Zhang et al., 2019), where some strategies involve additional
loss terms (Engstrom et al., 2019; Zhang et al., 2019) or training data (Carmon et al., 2019; Sehwag et al.,
2021; Gowal et al., 2021) (e.g. 1M extra samples generated by Ho et al. (2020) are used in Gowal et al.
(2021); Rade & Moosavi-Dezfooli (2021); Rebu� et al. (2021) for adversarial training on CIFAR-10). While
significantly improving model robustness to adversarial samples, the additional training costs are immense.
The required compute resources increase e.g. by a factor of five to 15 even if the simple strategy of using
adversarial samples during training is employed. Further, it has been discussed e.g. in Yin et al. (2019);
Saikia et al. (2021); Gavrikov et al. (2023) that adversarial training is at odds with model generalization
to some real-world corruption types, which we focus on in this work. In contrast to the above discussed
methods, our approach only requires a negligible overhead of less than 2k additional parameters and our
models are trained using the respective standard training parameters, i.e. there are negligible extra-costs,
while improving model robustness to various common corruptions.

Learned Frequencies and Robustness Previous works have studied the e�ect of learned frequencies
within the shallow and deep layers of neural networks on model robustness (e.g. Yin et al. (2019)). In Saikia
et al. (2021), it is shown that regularizing a model to learn low frequencies and high frequencies separately
can improve robustness to common corruptions. Grabinski et al. (2022b) demonstrated a correlation between
aliasing in CNN downsampling layers and their susceptibility to adversarial attacks. Several approaches re-
duce or remove aliasing in the downsampling operators to improve the learned representations and their
robustness (Grabinski et al., 2022a; Li et al., 2021; Zhang, 2019; Hossain et al., 2023; Zou et al., 2020).
Further, Geirhos et al. (2018) showed that CNNs tend to focus on image textures rather than shapes to de-
termine an object class and Gavrikov et al. (2023) discuss how adversarial training can shift this bias towards
shapes with both positive and negative e�ects on model robustness to common corruptions, depending on
the corruption type. In contrast to these works, our approach solely focuses on the first model layer and no
specific bias towards high or low frequencies is added. Yet, by providing only a single large kernel where the
number of output channels equals the number of inputs, we implicitly encourage the model to focus on the
essential part of the data.

Large Kernel CNNs in the "Era of ViTs" Vision Transformers (Dosovitskiy et al., 2021) (ViT) trained
on huge amounts of data have recently been outperforming classical small kernel CNNs (He et al., 2016)
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Input Image (C x H x W)

Trainable Kernel (C x HK x WK)

Layer Output (C x H x W)

To original CNN

Figure 2: The architecture of our proposed trainable input layer. We learn a single depth-wise convolution to
encourage the model to represent the essential, i.e. the part of the input data that is crucial for classification.

on standard benchmarks, causing the community to shift its focus towards further improving transformer
based architectures (Yu et al., 2022; Chen et al., 2023a; Zhai et al., 2022). Contrarily, this has led to a
trend towards increasing the filter size within deep layers of CNNs, e.g., it was shown that even kernels
with 7◊7 convolutions in CNNs can allow them to outperform (Liu et al., 2022d) self-attention based vision
transformers (Dosovitskiy et al., 2021; Liu et al., 2022b). Extending on Tolstikhin et al. (2021), Smith et al.
(2023) very recently show that CNNs perform on par with vision transformers at scale. Our approach is
therefore mainly evaluated on CNNs, because they reach high accuracies even when trained on rather low
amounts of data, which facilitates our in-depth study. We show that our findings generalize to transformer
models (Dosovitskiy et al., 2021; Liu et al., 2022b) in Sec. D.1 in the appendix.

In Ding et al. (2022); Liu et al. (2022a); Peng et al. (2017), the concept of large kernel CNNs is expanded with
kernels up to sizes of 51◊51 within the network, where handling the memory consumption is a challenge.
Global filter networks (Rao et al., 2021) apply the filter in the frequency domain to allow for infinitely
extended filters. These cases further highlight the benefit of using large kernels within the network. While
we are also using a large kernel, our approach is di�erent from the above: We use this filter only for the model
input and perform an image-to-image mapping with it, encouraging the model to summarize the important
information in the data, so that the entire model remains light-weight and can be trained with a low amount
of data - yet improves robustness.

Learning CNN Inputs Several works have proposed to resample data in a non-uniform way at the model
input or in deep layers to allow for precise predictions in regions of interest, e.g. Ziwen et al. (2023); Hesse
et al. (2023); Thavamani et al. (2021); Jin et al. (2022). Such approaches aim for individual downsampling
patterns for every image. In contrast, our approach treats all images equally and operates under the station-
arity assumption, i.e. the applied convolution filter is constant over the entire image. Since downsampling
can lead to aliasing, other works propose to learn to uniformly downsample so that more information is
preserved (Talebi & Milanfar, 2021; Marin et al., 2019; Tu et al., 2023). They all aim to improve the model’s
prediction accuracy. In particular, Talebi & Milanfar (2021) propose to optimize a small deep neural net-
work for the downsampling task, where the output of the network is restricted to be an image. Similarly, the
output of our single layer is an image. Yet, our layer does not perform any resampling, avoiding potential
aliasing, nor does it provide any non-linearity and can therefore be analyzed using linear techniques.

3 Enhancing Prediction Stability with a Trainable Convolution Input Layer

Our aim is to investigate a simple approach to improve a model’s stability under corruptions without in-
creasing the training load. Our approach follows the intuition that it is beneficial to encourage a model to
learn the relevant information from the data while neglecting superfluous parts of it, e.g. noise. To do so,
we propose to add an extra convolution layer with a large kernel in front of the input layer of the model,
where the output dimensions equal the input dimensions, i.e. no over-complete input representation can
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be learned. If needed, the model can thus learn to preserve all data. Since, however, not all parts of the
training data are valuable for the classification process (e.g. noise), we hypothesize that less important parts
will likely be dropped in the learned mapping. The architecture, shown in Fig. 2, uses one kernel for each
input channel. The input to the layer is the to-be-classified image with C image color channels and a size
of H ◊ W . The kernel size of the convolutional input layer is C ◊ HK ◊ WK with a stride of 1, i.e. the
result of the depth-wise convolution has the same dimensions, as the input image. In contrast to a typical
convolutional layer, this input layer does not fuse the information of the color channels. The layer’s output
is propagated to the first layer of the otherwise unchanged DNN model, without additional non-linearity
applied. Empirically, as shown for example in Fig. 1, our simple approach leads to remarkable results.

Intuitively, the extra layer performs a specific linear transformation that can shift and/or block or emphasize
the color-dependent content of an image. The data range of the kernel is not limited to positive numbers, so
negative kernel values can also sharpen image content. This raises the question, which parts of the input data
are preserved in our layer, i.e. whether the layer acts, for example, as an amplifier by spatially distributing
the information in a better way, or whether it acts as a projection layer, where particular parts of the data
are explicitly dropped. In the following, we propose a systematic approach to empirically test these options,
by considering three di�erent kernel classes.

Study Design The two key characteristics of a linear transformation are a) its rank and b) its conditioning,
i.e. its noise amplification characteristics in the case of a nominally full-rank transformation. The latter is
characterized by the condition number (CN) of the transformation. Let · ú g be the linear transformation
e�ected by a convolution with the kernel g, and · ú g

≠1 its inverse, then

CN(· ú g) = |⁄max|
|⁄min| = 1/|⁄min|

1/|⁄max| = CN(· ú g
≠1),

where ⁄min and ⁄max are the minimum and the maximum eigenvalues of the transformation. The equation
shows that the forward kernel and the inverse kernel have the same condition number, which explains our use
of the term noise amplification. We use the condition number as a numerical indicator of the preservation
of signal content1.

While the linear behavior of our proposed pre-processing layer is well understood, the reaction of the sub-
sequent nonlinear network architecture to this modified input, is not. Our intention is to study the e�ect of
the above-mentioned kernel properties on classification robustness.

We therefore introduce three kernel classes for further studying the properties of the proposed convolutional
pre-processing layer, with the underlying hypothesis that signal content preservation or removal is a decisive
factor in the observed robustness increase.

name CN rank
class I (content preserving) unity/low full
class II (fully trained/static) medium full
class III (projection-type) large/infinite rank deficient

Table 1: Categories of kernels with their corresponding condition number (CN) and rank.

Class I: Content Preserving Kernels A minimal noise amplifying kernel is one whose associated linear
transformation has a determinant of one: such transformation is unitary, i.e. vector norms are not changed.

For a convolution kernel, the associated matrix is a circulant matrix with the convolution kernel in the rows
(assuming circular boundary conditions). The eigenvectors of circulant matrices form the Fourier basis,
which is the underlying reason for the convolution theorem. The associated eigenvalues are the Fourier
coe�cients. Since the product of the eigenvalues yields the determinant of the linear transformation, we see
that all Fourier coe�cients must have unit amplitude for the determinant to be unity. Since the Fourier
coe�cients are complex, they can still have arbitrary phases while fulfilling the unit amplitude constraint.
An additional consideration, however, is that the associated kernels be real. This forces the constraint that

1We emphasize that we are not arguing in an information-theoretic, but in a numerical sense.
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G(≠Ê) = G
ú(Ê) with G(Ê) being the Fourier spectrum, parameterized by angular frequency component Ê, of

the spatial kernel function g(x). The constraint implies that we have N/2 real degrees of freedom to construct
N pixel content-preserving kernels, where N = HK ◊ WK . We use this parameterization for our practical
layer implementation. A unit condition number can only be achieved for kernels of the same size as the
image (225◊225). We also experiment with smaller kernels (25◊25) of the same construction, also referring
to them as content preserving even though the condition number of the associated linear transformation is
a low number above unity (102 ≠ 103).

Class II: Fully Trained Kernels are parameterized by their real value entries in the spatial domain.
Positive and negative values are allowed, but not complex ones. In the absence of the aforementioned
constraints of class I kernels, we are free to choose the size of the kernels. An ablation study of the kernel
size for our proposed convolutional input layer is given in Sec. D.2 in the appendix, indicating that larger
kernels can further improve model stability while trading-o� accuracy on original data. We choose the kernel
size to be 25 ◊ 25, which provides a favorable trade-o� between both. We have observed that such freely
trained kernels yield condition numbers in an intermediate range of 104 ≠ 105. For comparison, we also
include a number of static kernels in class II.
Class III: Projection-type Kernels have a CN that is (numerically) infinite, since at least one Fourier
coe�cient is (numerically) zero. The removed subspace dimension is equivalent to the number of zero
Fourier coe�cients in the kernel’s spectrum. We explore two ways to generate such kernels. First, we
explore whether low-value Fourier coe�cients in the fully learned kernels of class II can be replaced by zeros
(thresholding), implying that the low values found by the optimization algorithm are e�ectively su�cient to
remove the subspace in question from the data for all purposes of the nonlinear network part. Second, we
encourage zero Fourier coe�cients by means of an additional L1-regularization on the Fourier coe�cients of
the fully trained kernel. The associated sparsity then encourages projection-type kernels. The interesting
characterizing number for projection-type kernels is the dimensionality of the null-space of the kernel, i.e. the
number of its zero Fourier coe�cients. A larger number indicates a higher rate of signal content removal.

4 Experimental Evaluation

Model Version CD OB CC
ResNet50 He et al. (2016) Base *0.800 *0.592 *0.487
ResNet50 He et al. (2016) Trainable *0.775 *0.685 *0.565
AlexNet Krizhevsky et al. Base *0.848 *0.572 *0.605
AlexNet Krizhevsky et al. Trainable *0.838 *0.670 *0.660

E�cientNet Tan & Le (2019) Base 0.907 0.604 0.605
E�cientNet Tan & Le (2019) Trainable 0.903 0.629 0.633

MobileNet Howard et al. Base 0.897 0.589 0.564
MobileNet Howard et al. Trainable 0.893 0.639 0.611

DenseNet161 Huang et al. Base 0.898 0.547 0.535
DenseNet161 Huang et al. Trainable 0.885 0.605 0.597
XSEResNext50 He et al. Base 0.936 0.652 0.607
XSEResNext50 He et al. Trainable 0.933 0.677 0.659

ConvNeXt Liu et al. (2022c) Base 0.824 0.516 0.489
ConvNeXt Liu et al. (2022c) Trainable 0.796 0.565 0.539
ViT Dosovitskiy et al. (2021) Base 0.812 0.525 0.511
ViT Dosovitskiy et al. (2021) Trainable 0.801 0.641 0.578

Swin v2 Liu et al. (2022b) Base *0.891 *0.571 *0.535
Swin v2 Liu et al. (2022b) Trainable *0.882 *0.698 *0.603

Table 2: Top1 Accuracy results on ImageNette for con-
ventionally trained DNNs (Base) and additional fully
trainable layer (Trainable). CD = Clean Data, OB
= OpticsBench (Müller et al., 2023), CC = Common
corruptions (Hendrycks & Dietterich, 2019). * = aver-
age from multiple seeds. The results on the corruption
benchmarks are averaged across severity and corrup-
tion. The highest accuracy per DNN is marked in bold.

In the following, we evaluate the DNN prediction
stability with our proposed, trainable image-to-
image convolution input layer. The DNNs we evalu-
ate are trained on di�erent publicly available subsets
of ImageNet (Russakovsky et al., 2015) to allow for
extensive experiments. ImageNette (Howard, 2023)
is a dataset consisting of 10 ImageNet classes. It has
9,469 training and 3,925 validation images (Howard,
2023). ImageNet-100 (Tian et al., 2020) uses 100
ImageNet classes with a total of 128k training and
5,000 validation images (Tian et al., 2020). In ad-
dition to ImageNette and ImageNet-100, we also
incorporate the full ImageNet-1k dataset, ensuring
a comprehensive assessment of the e�ectiveness of
our approach across varying scales and complexities
(Sec. D.6).

All baseline models and all models with additional
convolution input layer are trained from scratch on
clean data, without additional data augmentation,
i.e. following the standard training script. To en-
sure a comparability between the baseline and our
trained models, we only add our proposed input
layer to the corresponding model and do not change
any hyperparameters. The full details of chosen hy-
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perparameters are given in the supplementary material Sec. C. The implementation is based on PyTorch
and the training recipes follow maintainers & contributors (2016). In order to draw a more comprehensive
picture, some experiments were trained on five di�erent seeds. Subsequently, all models are evaluated on
clean data and on two corrupted datasets (Hendrycks & Dietterich, 2019; Müller et al., 2023). The perfor-
mance of these trainings can be examined in Table 2, 3, and 5. Furthermore, we trained our proposed model
adversarially and evaluate it against the baseline in the supplementary material Sec. D.7.

original defocus astigmatism coma contrast fog

4

Figure 3: Overview of di�erent corruptions from OpticsBench’s primary aberrations (astigmatism,
coma) (Müller et al., 2023) and rotationally symmetric defocus blur, contrast and fog from (Hendrycks
& Dietterich, 2019) applied to an ImageNet sample. OpticsBench’s astigmatism and coma introduce chro-
matic aberration (visible at the flower petals) and directional blur, which can challenge DNNs di�erently than
rotationally symmetric luminance blur. All corruptions are shown in the supplementary material, Sec. B.

Figure 4: Relative top1 accuracy improvements on
ImageNette (Howard, 2023). A fully trainable input
layer (class II) can increase the robustness of classifi-
cation networks against unknown corruptions without
data augmentation. We evaluate di�erent DNNs on
blur and noise corruptions from OpticsBench (Müller
et al., 2023) and Common Corruptions (Hendrycks &
Dietterich, 2019). For each corruption type, five levels
of severity are shown from left to right.

To test against corruptions, we use the common
corruptions from Hendrycks & Dietterich (2019),
which are each binned into five di�erent severi-
ties and apply them to ImageNette (Howard, 2023)
and ImageNet-100 (Tian et al., 2020). To test for
more diverse blur types, we also include the Op-
ticsBench from Müller et al. (2023), which covers
primary optical aberrations and is similarly orga-
nized. The blur kernels are size-matched to the
defocus-blur-corruption kernels from Hendrycks &
Dietterich (2019). Fig. 3 gives a visual impression
of some of the corruptions that we evaluate on.

For the sake of readability, we summarize all dif-
ferent corruptions into five super-categories (noise,
blur, compression, weather, color) and take the av-
erage of all the subcategories. By categorizing the
corruptions, we can more e�ectively highlight the
overall trends and impacts observed in our experi-
ments. We provide the full details and figures with
all individual corruptions in the supplementary ma-
terial in Sec. D. This section includes an in-depth
breakdown of each type of corruption with the dif-
ferent severities.

4.1 Trainable Large Kernels can Improve Prediction Stability

In the following, we compare the prediction stability under corruption of models with our proposed trainable
convolutional pre-processing filter to the respective baselines. First, the class II kernels are evaluated on the
ImageNette corruptions. In Fig. 4, we plot the performance relative to the baseline for better readability
across di�erent model families. Positive values indicate an improvement over the baseline model, and negative
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values indicate worse predictions. Absolute accuracies averaged over OpticsBench and Common Corruptions
and on clean data are given in Table 2.

Model Version CD OB CC
ResNet50 Base *0.801 *0.536 *0.406
ResNet50 Trainable *0.797 *0.558 *0.437
AlexNet Base 0.698 0.339 0.307
AlexNet Trainable 0.671 0.363 0.344

E�cientNet Base 0.796 0.480 0.394
E�cientNet Trainable 0.795 0.509 0.393
MobileNet Base 0.780 0.470 0.344
MobileNet Trainable 0.761 0.501 0.404

ViT Base 0.684 0.396 0.296
ViT Trainable 0.677 0.437 0.331

Swin v2 (tiny) Base 0.779 0.433 0.323
Swin v2 (tiny) Trainable 0.774 0.476 0.379

Table 3: Top1 accuracy results on ImageNet-100 for
conventionally trained DNNs (Base) and additional
fully trainable layer (Trainable). CD= Clean Data,
OB = OpticsBench (Müller et al., 2023), CC = Com-
mon corruptions (Hendrycks & Dietterich, 2019). * =
multiple seeds. The results onOB and CC are aver-
aged across severity and corruption.

Looking at all categories of corruption in Fig. 4,
it is noticeable that blur and noise benefit signif-
icantly from the additional input filter compared
to the baseline. For the other types, the accu-
racies are on par with the baseline, and in some
cases even get slightly below. This is especially
true for color corruptions, which is to be expected
since our proposed depth-wise convolutions can not
learn color re-combinations. Overall, yet in partic-
ular for ResNet50, the relative performance of the
trainable input layer improves with increasing sever-
ity for both noise and blur. As seen in Table 2,
the prediction accuracy improves by a large margin
on OpticsBench (Müller et al., 2023) and Common
Corruptions (Hendrycks & Dietterich, 2019) for all
models, e.g. 9.3% on OpticsBench and 7.8% on com-
mon corruptions for ResNet50, while the accuracy
on clean data is only slightly decreased. More re-
cently published models, such as the Vision Trans-
former (ViT) (Dosovitskiy et al., 2021) and the Swin
Transformer v2 (Liu et al., 2022b), outperform the
baseline on corrupted images by a higher margin when combined with our trainable input layer. Swin v2
with the additional input filter increases the performance by 12.7% on OpticsBench and 6.8% on Common
Corruptions, while only slightly lacking accuracy on the clean data of about 0.9%. A more detailed eval-
uation of these models can be found in the supplementary material Sec. D.1. A model, which is specially
designed for small ImageNet subsets, such as the XSEResNext50 (Howard, 2023), is also able to improve its
performance on corrupted images despite its high baseline accuracy, suggesting that incorporating the latest
training techniques to improve model performance does not undercut the benefits of the proposed method.

Model Version CD OB CC
ResNet50 Base 0.781 0.482 0.393
ResNet50 Fully trainable 0.774 0.509 0.425

Swin v2 (tiny) Base 0.788 0.395 0.292
Swin v2 (tiny) Fully trainable 0.771 0.426 0.326
Swin v2 (base) Base 0.783 0.423 0.320
Swin v2 (base) Fully trainable 0.783 0.459 0.355

Table 4: Results on ImageNet-1k for ResNet50,
MobileNet v3 large, and Swin Transformer v2 (tiny
and base). CD=Clean Data, OB = OpticsBench,
CC=Common Corruptions. The results on OB and
CC are averaged across severity and corruption.

Second, the same experiment is performed on
ImageNet-100 with the same types of corruption.
Table 3 lists the achieved accuracies on clean data,
OpticsBench (Müller et al., 2023) and common cor-
ruptions (Hendrycks & Dietterich, 2019). The train-
able layer improves again on average over the cor-
ruptions for each DNN. However, compared to the
results on ImageNette, the improvements are now
smaller. ResNet50 with the trainable large input
kernel performs best with an increase in accuracy of
+2.2% on OpticsBench and +3.1% on common cor-
ruptions. More results on ImageNet-100 are given
in the supplementary material Sec. D.6.

On the ImageNet-1k dataset (Russakovsky et al.,
2015), the performance di�erences between the baselines and our proposed input layer models are slightly
lower than on ImageNet-100. However, for higher severities our models significantly outperform the baseline.
Especially the transformer-based models benefit from the new input layer. These e�ects are visualized in
the supplementary material Fig. 47 to 50. The performance on clean data is just slightly in favor of the
baseline while evaluating on larger datasets as in Table 4. The larger version of the transformer-based Swin
v2 is even on par with the baseline on the clean data, while outperforming the baseline on both corrupted
evaluation datasets by 3.6% and 3.5%.
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In the following, we investigate with help of our proposed kernel classes I and III which properties the
learned kernels have. Understanding these properties is particularly intriguing because they allow the kernels
to represent the input data without an increase in dimension, while the subsequent networks generalize better
to many unseen corruption types.

4.2 Which Properties of Trainable Kernels can help? – Comparing Kernel Classes

Figure 5: Comparison of di�erent kernel types on cor-
rupted ImageNette data for ResNet50. For additional
kernels, see Table 5.

The results in Fig. 4, Table 2 and 3 show an im-
provement in prediction over many corruption types.
This raises the question of what kernel properties
cause these results, and whether they can be im-
proved further with di�erent kernels. In order to
deepen the considerations from Sec. 3, we analyze
numerous variants of the input layer kernel for a
ResNet50 and compare the di�erent kernel classes
I-III. The results for more models are given in the
supplementary material Sec. D. Table 5 lists the ab-
solute accuracies.

We visualize in Fig. 5 the results on ImageNette for
ResNet50 in an absolute fashion to compare the im-
pact of the di�erent kernel classes on corruption ac-
curacy. We plot the baseline and the fully trainable
layer (class II ) together with class I and III kernel
models. The content preserving kernels represent
class I and the L1 prior represents class III. Except for color corruptions, both the L1 prior model and
the fully trainable kernel model help to stabilize the predictions of the baseline model, while the content
preserving model helps only for noise and blur at high severities.

Kernel type class CD OB CC
None (Base) - *0.800 *0.592 *0.487

Preserve content I 0.754 0.476 0.513
Preserve content large I 0.645 0.478 0.440

Conv2D KS=25 II 0.655 0.601 0.501
Fully trainable II *0.775 *0.685 *0.565

Random initialization II 0.711 0.673 0.550
L1 prior III 0.712 0.699 0.567

Directional blur filter II 0.768 0.437 0.345
Gauss blur filter II 0.764 0.668 0.541

Table 5: Top1 accuracy results on ImageNette for
ResNet50 and di�erent input layer large kernel types.
CD = Clean Data, OB = OpticsBench (Müller et al.,
2023), CC = Common corruptions (Hendrycks & Di-
etterich, 2019). * = average from multiple seeds. The
results on the two corruption benchmarks are averaged
across severity and corruption. Bold: best model, un-
derline: second best.

Interestingly, the L1 prior model produces the most
favorable results for noise and blur corruptions, fol-
lowed by the fully trainable kernel, and achieves an
accuracy gain of more than 40% at noise severi-
ties 4 and 5. The predictions for blur with the L1
prior model remain almost constant at 72% accu-
racy, while the baseline accuracy drops below 40%
with increasing severity. The fully trainable kernel
model largely stabilizes the predictions, but drops
by around 10% at higher severities compared to the
L1 prior model. The compression corruption type
is more challenging for all models compared to the
baseline, while the fully trainable kernel and the L1
prior models perform similarly and increase in accu-
racy from severity 3. Interestingly, the baseline also
performs quite well here, which may be due to com-
pression artifacts within the original training data.

The content preserving kernel model performs sig-
nificantly worse than the baseline, while the L1 prior

and the fully trainable kernels tend to slightly increase prediction stability towards higher severities even
for hard corruptions (e.g. weather). While the L1 kernel yields rather high robustness, it is significantly
underperforming on clean data.

In summary, the L1 prior and the fully trainable versions seem to follow a similar pattern at similar levels of
corruption severities in Fig. 5 and largely increase the accuracy compared to the baseline for most corruptions
and severities. Yet, on clean data (e.g. in Table 5) the L1 prior leads to significantly lower accuracy (-6.8%
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w.r.t. the fully trainable filter). In contrast, the content preserving kernel model in Fig. 5 follows a similar
trend to the baseline for noise and blur and has the worst performance for all corruptions.

This analysis indicates that for many corruption types, it is beneficial to explicitly encourage the convolu-
tional image-to-image layer to project the input image onto a subspace in which certain spatial frequencies
are not represented. The un-regularized fully trainable layer seems to do this implicitly, while preserving
the essential information such as to perform well on clean data.

To further deepen our understanding, we present more experiments with other kernels from the three classes
in addition to the kernel variants shown in Fig. 5. First, di�erent sizes of class I kernels are compared to
see the trade-o� between content-preservation and feature locality. The subsequent group analyses di�erent
aspects of trainable class II filters. The last group compares di�erent class III filters to further study the
assumed subspace projection.

Content Preserving Kernels (Class I): To have a fully content preserving filter, the kernel needs to have
the same size as the to-be-convolved images. Thus, we experiment with two sizes of class I kernels. The first
kernel has the same size as the input images (225 ◊ 225). To also be able to compare the class I filters with
other classes, we designed and trained a 25◊25 "content preserving" kernel, i.e. a filter that would be content
preserving for 25 ◊ 25 patches. The accuracy of both kernels is given in Table 5. The larger kernel performs
significantly worse on the clean data as well as on the common corruptions. Moreover, in the OpticsBench
dataset and therefore also in the blur corruptions in Fig. 5, both kernel sizes perform comparably poorly.
Filters that purely re-arrange content, whether they preserve locality or not, do not lead to an increase in
prediction stability under corruptions.

Fully Trainable Kernels (Class II): We perform two additional experiments: one which replaces our
trainable color-dependent (depth-wise) convolution layer with a standard convolution layer of the same kernel
size (25 ◊ 25 ◊ 3). The other uses the proposed depth-wise convolution layer, but with random kernel initial-
ization, which validates the benefit of our fully trainable kernel. Both kernels are class II representations.

(a) Without Regularization (b) L1 Regularization

Figure 6: Evolution of spectra of (a) Fully Trainable
and (b) L1 Prior kernels. The bar height indicates the
average of the absolute value of the Fourier coe�cients
in di�erent frequency bands (DC component in the
front). Each epoch is normalized separately.

The standard convolution layer achieves signifi-
cantly lower accuracy on clean data and both bench-
marks. Re-combining color channels provides the
pre-filtering with more capacity and the ability to
better overfit the training data, i.e. it provides less
generalization. Yet, it yields better results than the
class I content preserving kernel model.

The random initialization model tests initialization
of the kernel and achieves comparable results to the
fully trainable case for the corrupted data while suf-
fering some loss in peak performance on clean data.

To test the impact of the trainability of our model,
we also evaluate two non-trainable blur filters, one
rotational-symmetric Gauss blur filter and a direc-
tional (horizontal coma) blur filter obtained from
OpticsBench (Müller et al., 2023). These have both lowpass characteristics and remove high frequency con-
tent. From the results in Table 5 the two blur filters have an in-domain accuracy comparable to the fully
trainable model. Only the Gaussian blur performs better than the baseline on the two corruption bench-
marks, while the directional blur model performs worse. Both perform substantially worse than the fully
trained filter.

Projection-type Kernels (Class III): The class III kernel (L1 prior) in Table 5, tends to reduce the
frequencies in the trainable layer via a Lasso regression on the frequency domain of the kernel. This can also
be visualized in Fig. 6 (b) where the kernel learns to discard higher frequencies. From Fig. 6 (a), it is evident
that the optimization reduces the Fourier coe�cients of higher frequencies of freely learned class II kernels
as well. To check whether numerically small frequency coe�cients contribute to the networks’ outputs, we
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use our trained models and remove the low magnitude frequencies without retraining. With this approach,
we were able to show that even after removing over 80 % of the frequency information (not necessarily
high-frequencies), the model’s performance is stable. The results over multiple removal intervals with our
models can be examined in Fig. 7.

With the insights of Fig. 7 and the increments in performance while training with an L1 prior on the
frequency domain of the trainable kernel, we conclude that low values in the fully trainable class II kernels
are numerically zero, i.e. they e�ectively implement projection-type kernels.

4.3 Comparison with Augmentation and Joint Trainable Large Kernel and Augmentation

Figure 7: Thresholding the trained convolutional
preprocessing kernels in the frequency domain
only marginally decreases the accuracy on Optics-
Bench (Müller et al., 2023).

Data augmentation is the de-facto standard for ro-
bustifying deep learning models. It comes at the
cost of a) an increased training data set and there-
fore enhanced training times, and b) a model for
the expected corruptions must be known or guessed.
Since our proposed technique does not rely on these
prerequisites, we study how the two approaches
compare and whether their combination can yield
further benefits.

We trained multiple models with Aug-
Mix (Hendrycks et al., 2020), a generic data
augmentation method, with default settings and
compare ResNet50 models trained without AugMix
(Base), with the same model trained with our
proposed input layer, but without Augmix (Trainable), and a model with AugMix in combination with
our proposed input layer (Augmix & Trainable). The trained models were evaluated on clean data,
OpticsBench (Müller et al., 2023) corrupted data and Common Corruptions (Hendrycks & Dietterich, 2019).
The result of these experiments is shown in Table 6.

Dataset Version CD OB CC

ImageNette

Base *0.800 *0.592 *0.487
Trainable (ours) *0.775 *0.685 *0.565

AugMix 0.781 0.561 0.512
AugMix & Trainable (ours) 0.795 0.774 0.639

ImageNet-100

Base *0.801 *0.536 *0.406
Trainable (ours) *0.797 *0.558 *0.437

AugMix 0.809 0.639 0.518
AugMix & Trainable (ours) 0.814 0.663 0.533

Table 6: Results from AugMix (Hendrycks et al.,
2020) training experiments on ImageNette (Howard,
2023) and ImageNet-100 (Tian et al., 2020) datasets.
CD= Clean Data, OB = OpticsBench (Müller et al.,
2023), CC = Common corruptions (Hendrycks & Di-
etterich, 2019). * = multiple seeds.

As AugMix works with similar corruption meth-
ods, as in Common Corruptions, the results are
improved by only using AugMix on both datasets.
When trained on ImageNette, using our pro-
posed input layer (Trainable), the improvement
outperforms a pure AugMix setting, while on
ImageNet-100, the converse is true. However, with
either dataset, using AugMix in combination with
our proposed input layer (AugMix & Trainable), the
performance in both corrupted datasets increases
significantly over every other combination. On
Imagenet-100 the combination of AugMix and our
input layer even outperforms the baseline on clean
data.

Table 7 presents a comprehensive comparison of various robustness methods applied to ImageNet-1k using
ResNet50. Next to the accuracy on di�erent datasets - Clean Data (CD), OpticsBench (OB), and Common
Corruptions (CC) - we compare the costs per epoch (CpE). Our proposed input layer model demonstrates a
notable improvement in OB and CC (0.509 and 0.425, respectively) with only a slight increase in CpE. When
combined with DeepAugment (DA), our method (DA & fully trainable) further enhances performance on OB
and CC (0.641 and 0.542, respectively) while maintaining a competitive CpE of 5,083 seconds. Furthermore,
this showcases, the ability to combine our proposed input layer with state-of-the-art robustness methods,
such as DeepAugment Hendrycks et al. (2021).
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5 Discussion

Version CD OB CC CpE [s]
Base 0.781 0.482 0.393 1,540

Fully trainable (ours) 0.774 0.509 0.425 1,580
AugMix (Hendrycks et al., 2020) 0.773 0.633 0.511 11,338

DeepAugment (Hendrycks et al., 2020) 0.769 0.637 0.529 4,971
DA & Fully trainable (ours) 0.776 0.641 0.542 5,083

NoisyMix (Erichson et al., 2024) 0.769 0.607 0.532 7,988
SIN_IN (Geirhos et al., 2018) 0.750 0.537 0.457 3,059

DAD (Zhou et al., 2023) 0.802 0.502 0.495 10,352

Table 7: Comparisons of di�erent robustness methods
on ImageNet-1k with ResNet50. CD=Clean Data, OB
= OpticsBench, CC=Common Corruptions, CpE =
Costs per epoch in seconds, DA = DeepAugment. The
results on OB and CC are averaged across severity and
corruption.

Our main findings can be summarized as follows: a
simple convolutional pre-processing layer can signif-
icantly improve the robustness against unseen cor-
ruptions even when trained only on clean data with-
out dedicated augmentation schemes. An analysis of
the learned kernels and experiments with di�erent
classes of kernels that were designed to explore dif-
ferent levels of preservation of signal content show
that projection-type kernels lead to the most ro-
bust results in the majority of corruptions while not
significantly reducing peak performance and perfor-
mance in the case of di�cult corruptions (weather
and color).

This indicates that a removal of signal content can
aid the robustness of classification networks against unknown corruptions with the associated benefits of
1) not having to model expected corruptions for an augmentation-style training and 2) a computationally
favorable implementation: only ¥ 2000 additional coe�cients are needed and training can be performed on
a smaller dataset as compared to an augmentation approach. Besides this, several methods exist, which
increase robustness by removing signal content: dropping high frequency wavelet coe�cients (Li et al., 2021)
allows for robust high-level features. Discarding high frequency content also helps in gaining robustness
to common corruptions Grabinski et al. (2022a); Zhang (2019). However, our prepended layer does add
negligible extra-costs without having to transform to any co-domain such as a Wavelet or Fourier basis.

We observe the usual trade-o� of peak-performance vs. robustness. Our experiments indicate that enforcing
sparsity of the frequency content of the proposed convolutional pre-processing layer is an alternative way of
achieving robust classification results, which is in line with previous findings (Yin et al., 2019). While this
trade-o� also indicates that the signal content responsible for successful classification and possible corruptions
do not occupy entirely disparate linear subspaces, it appears as if the signal content responsible for successful
classification is essentially a linear subspace of the data. Our proposed convolutional pre-processing layer
can therefore be interpreted as being an approximation of the responsible linear subspace. Yet, forcing the
projection with the sparsity prior on frequencies yields a shift in the trade-o� from high peak-performance to
higher robustness. In contrast, an unconstrained non-overcomplete layer can learn to represent the essential
content without any prior while better preserving the performance on clean data. A discussion of the
relationship to sparse coding is given in the supplementary material.

The complementary experiment of designing signal-content preserving kernels yielded no appreciable perfor-
mance improvement over the baseline, where the baseline, being an identity transformation, can be inter-
preted as signal-content preserving as well. This is an indication that the null-space of the high-performance
kernels carries information that can lead to over-fitting with an associated decrease in robustness of the
classification model.

Our proposed layer could, in principle learn a complete representation of the input images (an identity map-
ping) without increasing the loss in clean accuracy. The remaining question is why the layer actually learns
the subspace projection that allows to focus on more essential information and leads to better generalization.
One reason could be that the sparse classes, that are the output of classification, can propagate towards the
input layer, paired with the spatial inductive bias of the convolution operation itself, which is trained on
image data that is heavily correlated, i.e. neighboring pixels tend to be similar. The layer might therefore be
biased towards the global image structures and learn to represent fine details only where they are needed to
perform well on the training data (e.g. the essential high frequency details), which yields the observed ben-
efits. It would be interesting to study why this is not occurring in the standard initial layers of the network,
without additional regularization (Yin et al., 2019). We hypothesize that this is due to the over-completeness
of the representations of most early layers, making it quite likely for a model to represent relevant content
as well as noise. In contrast, our simple dimension-preserving layer can at most preserve the input data, and

12



Published in Transactions on Machine Learning Research (06/2024)

needs gradient signal from the model loss to learn to do so. It therefore learns to predominantly represent
the signal that is needed for the task at hand, i.e. the essential.

6 Conclusion & Future Work

We describe a novel, very simple robustifying scheme for classification networks that has the attractive
features of being light-weight, both in training and in inference mode, and not requiring knowledge on the
corruption model. Furthermore, we showed that the model is compatible with image augmentation. We
therefore believe that this simple technique has a large application potential. However, the current paper is
only a first step into its analysis. The convolution proposed and studied in this paper is a space-invariant
linear transformation, which appears like a sensible choice for classification problems. An open question is
whether other problems like semantic segmentation, tracking, etc. can benefit from similar strategies. In this
context, it is further unclear whether space-invariance is a desired property or whether more general linear
transformations could be beneficial, e.g. in yielding closer approximations to the relevant subspace of the
signal content. A connected question is how space-variant processing by the follow-up network a�ects the
initially space-invariant processing by our proposed layer.
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