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Abstract

In this work, we present SynTable, a unified and flexible001
Python-based dataset generator built using NVIDIA’s Isaac002
Sim Replicator Composer for generating high-quality syn-003
thetic datasets for unseen object amodal instance segmen-004
tation of cluttered tabletop scenes. Our dataset genera-005
tion tool can render complex 3D scenes containing ob-006
ject meshes, materials, textures, lighting, and backgrounds.007
Metadata, such as modal and amodal instance segmen-008
tation masks, object amodal RGBA instances, occlusion009
masks, depth maps, bounding boxes, and material proper-010
ties can be automatically generated to annotate the scene011
according to the users’ requirements. Our tool eliminates012
the need for manual labeling in the dataset generation pro-013
cess while ensuring the quality and accuracy of the dataset.014
In this work, we discuss our design goals, framework archi-015
tecture, and the performance of our tool. We demonstrate016
the use of a sample dataset generated using SynTable for017
training a state-of-the-art model, UOAIS-Net. Our state of018
the art results show significantly improved performance in019
Sim-to-Real transfer when evaluated on the OSD-Amodal020
dataset. We offer this tool as an open-source, easy-to-use,021
photorealistic dataset generator for advancing research in022
deep learning and synthetic data generation.023

1. Introduction024

Amodal completion is a perceptual ability that enables the025
perception of whole objects, even when they are partially026
occluded [1, 16]. It encompasses three key tasks: amodal027
shape completion, amodal appearance completion and oc-028
clusion order. Amodal shape completion involves predict-029
ing the complete structure of an object beyond its visi-030
ble portion, typically represented as a binary segmenta-031
tion mask that includes both visible and occluded regions.032
Amodal appearance completion refers to the process of in-033
ferring the likely apperance of the hidden regions of an ob-034
ject based on its visible parts (RGB values of hidden pix-035

(a)

(b)

Figure 1. (a) RGB outputs of photorealistic cluttered tabletop
scenes generated by SynTable pipeline. (b) Visualization of RGB
Images, Depth Images, Object Amodal Masks, Object Visible
Masks, Object Occlusion Masks, and Object Visible Bounding
Boxes.

els). Occlusion Order considers the occlusion relationship 036
between objects, distinguishing between occluders (objects 037
that obscure others) and occludees (objects being occluded), 038
which can involve no occlusion or bi-directional occlusion. 039
Humans are capable of “filling in” the occluded appearance 040
of invisible objects, owing to their vast experience in per- 041
ceiving countless objects in various contexts and scenes. 042
This ability to infer an object’s complete structure from its 043
partial appearance is critical for systems requiring holistic 044
scene understanding, such as augmented or virtual reality, 045
and robotics and automation. In modern vision systems, 046
accurately comprehending occluded objects in cluttered en- 047
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vironments is essential for tasks ranging from object inter-048
action to environment reconstruction.049

There are three key challenges in amodal instance seg-050
mentation: Firstly, the lack of large-scale, high-quality051
datasets for unseen object amodal instance segmentation052
(UOAIS) limits the performance of vision systems in real-053
world applications [3]. While datasets exist for object de-054
tection and segmentation [6, 10, 14, 17, 30], only a few055
address UOAIS [2]. This is largely due to the difficulty056
of manually annotating amodal data, as human annota-057
tors must estimate occluded regions, leading to inherent058
subjectivity and inconsistencies in ground-truth annotations059
[2, 22, 32].060

Secondly, synthetic datasets often suffer from visual061
domain mismatch due to non-photorealistic rendering or062
insufficient domain randomization [29], resulting in poor063
Sim-to-Real transfer. Existing tools prioritize rendering064
speed over photorealism, limiting their utility for training065
robust vision models, which results in a poor Sim-to-Real066
transfer that will inevitably reduce the performance of algo-067
rithms in real-world applications.068

Thirdly, the lack of automated tools for generating069
amodal annotations and evaluating occlusion relationships070
hinders progress in this domain. Existing evaluation metrics071
focus on visible object regions but do not assess a model’s072
ability to infer occlusion order — a critical capability for073
systems operating in cluttered scenes. For example, un-074
derstanding occlusion hierarchies enables sequential task075
planning and reduces errors caused by overlapping objects.076
However, manual annotation of such relationships is pro-077
hibitively time-consuming, necessitating simulation tools as078
a more cost-effective and accurate solution.079

In this work, we address these challenges by developing080
SynTable, a unified Python-based tool for generating cus-081
tomizable, photorealistic datasets for UOAIS in cluttered082
scenes. While our experiments focus on tabletop environ-083
ments (common in interaction tasks), our framework gen-084
eralizes to diverse settings. SynTable integrates rendering085
and annotation into a single pipeline, allowing users to con-086
trol scene complexity, object variety, and annotation types.087
Built on NVIDIA’s Isaac Sim Replicator Composer, it lever-088
ages high-fidelity ray tracing and domain randomization to089
bridge the Sim-to-Real gap.090

Our key contributions are summarized as follows:091

1. We develop a pipeline to automatically render photoreal-092
istic cluttered tabletop scenes and generate ground truth093
amodal instance segmentation masks, eliminating man-094
ual labeling in dataset generation. Our designed dataset095
generation tool creates photorealistic and accurately-096
labeled custom datasets for UOAIS (refer to Figure 1(a)).097

2. Our tool provides a rich set of annotations related to098
amodal instance segmentation (refer to Figure 1(b)):099
modal (visible) and amodal instance segmentation100

masks, RGBA object instances, occlusion masks, occlu- 101
sion rates, and occlusion order adjacency matrix. Users 102
can easily select which annotations to include in their 103
dataset based on the requirements of their application. 104

3. We proposed a novel method to evaluate how accurately 105
an amodal instance segmentation model can determine 106
object occlusion ordering in a scene by computing the 107
scene’s Occlusion Order Accuracy (ACCOO). 108

4. We generated an open-sourced large-scale sample syn- 109
thetic dataset using our tool consisting of amodal in- 110
stance segmentation labels for users to train and evaluate 111
amodal segmentation models on 1075 novel objects, de- 112
signed to benchmark amodal segmentation in occlusion- 113
rich scenarios. 114

2. Related Works 115

2.1. Amodal Instance Segmentation in Vision Sys- 116
tems 117

Recent advances in amodal instance segmentation aim to 118
enhance object detection and tracking in complex scenes. 119
However, challenges such as limited training data and Sim- 120
to-Real gaps persist, particularly in cluttered environments 121
where occlusion reasoning is critical. 122

Lack of Large-scale High-quality Training Data. 123
While datasets like [7, 9, 31] have advanced amodal seg- 124
mentation for indoor scenes, few address occlusion-rich 125
scenarios in everyday interaction tasks. Existing efforts 126
often focus on narrow domains: for example, [12] intro- 127
duced a benchmark for multi-object interaction in industrial 128
settings, but its limited scene and object diversity restrict 129
broader applicability. Similarly, the Object Segmentation 130
Database (OSD) [24] and Object Cluttered Indoor Dataset 131
(OCID) [25] pioneered tools for segmentation in cluttered 132
scenes but lack amodal annotations. Recent work by Back 133
et al. [2] manually added amodal masks to OSD, yet this 134
approach remains labor-intensive and prone to human error. 135

Sim-to-Real Problem. Synthetic datasets like the Table- 136
top Object Dataset (TOD) [29] and UOAIS-Sim [2] strug- 137
gle with photorealism and domain randomization, leading 138
to significant Sim-to-Real gaps. For instance, TOD’s non- 139
photorealistic rendering limits its utility for training models 140
deployed in real-world applications such as augmented re- 141
ality or autonomous navigation. 142

2.2. Tools for Generating Synthetic Datasets 143

With the rapid development of deep learning, the demand 144
of researchers for synthetic datasets has increased in recent 145
years, leading to the increased development of various tools 146
for generating these datasets [28]. For robotics and com- 147
puter vision applications, PyBullet and MuJoCo [27] are 148
commonly used physical simulators to generate synthetic 149
data. Xie et al. [29] pre-trained an RGB-D unseen object 150
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instance segmentation model using PyBullet. Tobin et al.151
[26] used MuJoCo to generate synthetic images with do-152
main randomization, which can bridge the Sim-to-Real gap153
by realistically randomizing 3D content. Simulation tools154
such as PyBullet and MuJoCo typically come with render-155
ers that are accessible and flexible, but they lack physically156
based light transport simulation, photorealism, material def-157
initions, and camera effects.158

To obtain better rendering capabilities, researchers also159
explored the use of video game-based simulation tools, such160
as Unreal Engine (UE4) or Unity 3D. For example, Qiu and161
Yuille [23] exported specific metadata by adding a plugin162
to UE4. Besides, Unity 3D can generate metadata and pro-163
duce scenes for computer vision applications using the offi-164
cial computer vision package. Although game engines pro-165
vide the most advanced rendering technology, they priori-166
tize frame rate over image quality and offer limited capabil-167
ities in light transport simulation.168

Ray-tracing technology has gained significant traction in169
creating photorealistic synthetic datasets, as it enables the170
simulation of light behavior with high accuracy. Software171
applications such as Blender, NVIDIA OptiX, and NVIDIA172
Isaac Sim have all incorporated ray-tracing techniques into173
their functionality. The Replicator Composer, a compo-174
nent of NVIDIA Isaac Sim, constitutes an excellent tool175
for creating tailored synthetic datasets to meet various re-176
quirements in robotics. In this work, we leverage this plat-177
form to design a customized pipeline to generate a synthetic178
dataset tailored to the specific demands of UOAIS for clut-179
tered tabletop scenes.180

3. Method181

Our dataset generation pipeline is illustrated in Figure 2.182
Parameters and configurations of the scenes to be rendered183
are defined in a parameter file. Objects, materials, and light184
sources used in our pipeline are referred to as assets. The185
scene is prepared by rendering a tabletop scene with float-186
ing objects in Isaac Sim. A physical simulation is run to187
drop the rendered objects onto the table. For every view188
within a scene, camera viewpoints and lighting conditions189
are re-sampled. Subsequently, the annotations are captured190
to create the dataset. We provide additional details about191
each step of our data generation pipeline in Section 8 of our192
supplementary materials.193

3.1. Preparing Each Scene194

To prepare each scene, a table is randomly sampled and ren-195
dered in the center of a room, as shown in Figure 4. The196
texture and materials of the table, ceiling, wall, and floor197
are randomized for domain randomization while objects are198
added with randomized coordinates and orientations. We199
randomly sample (with replacement) Nlower to Nupper num-200
ber of objects for each scene. Objects are initialized with201

real-life dimensions, mass, collision properties, randomized 202
rotations and coordinates, ensuring diverse object arrange- 203
ments across scenes. Additional details about our scene 204
preparation method can be found in Section 8.1. 205

3.2. Physical Simulation of Each Scene 206

Rendered objects are dropped onto the table through a 207
physics simulation to ensure the random placement of ob- 208
jects in the scene. Objects that rebound off the tabletop sur- 209
face and land beyond the spatial coordinate region of the 210
tabletop surface are removed, excluding extraneous objects 211
from annotations. We provide more details about our phys- 212
ical simulation in Section 8.2. 213

3.3. Sampling of Camera Viewpoints 214

To capture annotations for each scene from multiple view- 215
points, we enhance the approach of Gilles et al. [18] (which 216
only uses fixed viewpoints) by capturing the V number of 217
viewpoints at random positions within custom radii of two 218
concentric hemispheres of custom radii. The calculation of 219
the Cartesian coordinates of each viewpoint can be found 220
in 8.3 of our supplementary materials. Each viewpoint is 221
oriented such that the camera looks directly at the center of 222
the tabletop surface. 223

3.4. Sampling of Lighting Conditions 224

To simulate various indoor lighting conditions for each 225
viewpoint, we resample L spherical light sources using a 226
method similar to Section 8.3. Please refer to Section 8.4 in 227
our supplementary materials for more details. In contrast to 228
Back et al.’s [2] approach of using point light sources, we 229
use spherical light sources emitting light in all directions to 230
mimic light bulbs. Furthermore, we uniformly sample the 231
temperatures and intensity of the light sources. Users can 232
customize the number of spherical light sources, as well as 233
their intensities and temperatures. 234

3.5. Capturing of Ground Truth Annotations 235

The process of capturing the annotations for a scene is il- 236
lustrated in Figure 3. In each view, the RGB and depth im- 237
ages of the tabletop scene will be captured (Figure 3(a)). 238
The built-in segmentation function in Isaac Sim Replicator 239
Composer is used to capture the scene’s instance segmen- 240
tation mask from a viewpoint (Figure 3(b)). Subsequently, 241
the visible mask of each object is cropped from the scene’s 242
segmentation mask. 243

For object amodal mask generation, we have developed 244
the following steps. Initially, all objects’ visibility are dis- 245
abled. For each object o in the scene, its visibility is enabled 246
and the instance segmentation function is utilized to capture 247
its amodal mask and the amodal RGBA instance (Figure 248
3(c)). We compute the object’s occlusion mask and occlu- 249
sion rate, as presented in (Figure 3(d)). After capturing all 250
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Figure 2. High-level overview of synthetic data generation pipeline.

RGB Depth Instance Segmentation Extract Object Visible Masks

Object
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Occlusion Order Adjacency Matrix (OOAM)
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Figure 3. The process of capturing annotations for a scene. For each viewpoint, (a) RGB and depth with all objects (b) object visible masks
& bounding box, (c) object amodal masks (including object amodal RGBA instances), (d) object occlusion masks and occlusion rate, (e)
occlusion order adjacency matrix are captured.

object masks, we use Algorithm 1 to generate the Occlusion251
Order Adjacency Matrix (OOAM) for this viewpoint (Fig-252
ure 3(e)). For a scene with M objects, the OOAM contains253
M ×M elements, where the element (i, j) is a binary value254
in the matrix that indicates whether the object i occludes255
the object j. Given the OOAM, we can easily construct the256
Occlusion Order Directed Graph (OODG) to visualize the257
occlusion order in the viewpoint (Figure 3(e)). We provide258
a detailed explanation of the OODG in Section 11 of our259
supplementary materials. After that, the visibility of all ob-260
jects is enabled to prepare for the capturing of annotations261
from the next viewpoint of the scene.262

Algorithm 1 A function to generate the OOAM of objects in a viewpoint.

Input: Arrays of visibleMasks and occlusionMasks of objects in a scene
Output: The OOAM of objects in a viewpoint
1: function GENERATE OOAM(visibleMasks, occlusionMasks)
2: Initialize OOAM as matrix of zeros
3: for each object i in length(VisibleMasks) do
4: for each object j in length(OcclusionMasks) do
5: if (i != j): then
6: intersect = sum(visibleMasks[i] ∩ occlusionMasks[j])
7: if (intersect > 0) : then
8: OOAM[i][j] = 1
9: return OOAM

10: Note: object i occludes object j if OOAM[i][j] = 1

4. Dataset Details 263

To demonstrate the capabilities of SynTable, we gener- 264
ated a sample synthetic dataset of cluttered tabletop scenes, 265
SynTable-Sim, using our pipeline, to train and evaluate 266
UOAIS models. Note that users can also generate other 267
custom datasets that meet the specific requirements of their 268
application using the SynTable pipeline. 269

4.1. Object Models Used in Generating SynTable- 270
Sim 271

We use 1075 object CAD models from the Google Scanned 272
Objects dataset [8] and the Benchmark for the 6D Object 273
Pose Estimation (BOP) [13] to generate our train dataset. 274
The Google Scanned Objects dataset features more than 275
1030 photorealistic 3D scanned household objects with 276
real-life dimensions, and BOP features 3D object models 277
from household and industrial objects. Upon inspection of 278
the Google Scanned Objects dataset, we filter out invalid 279
objects that contain more than two instances in each model 280
and keep the remaining 891 valid objects for our training 281
dataset. From the BOP, we exclude 21 objects from the 282
YCB-Video dataset that we include in our validation dataset 283
and use the remaining 184 objects for our training dataset. 284
We also create a synthetic validation set using 78 novel ob- 285
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Table 1. A comparison of publicly available unseen object instance segmentation datasets for cluttered tabletop scenes. # indicates the
number of items. VI: Visible Instances. OI: Occluded Instances. Avg. OR %: Avg. Occlusion Rate %, i.e., the fraction of occluded

pixels to amodal pixels across all object instances in the dataset. AM: Availability of amodal masks. OM: Availability of occlusion masks.
Order: Availability of occlusion order relation information between objects. R/S: Real or Synthetic. - indicates that the data was not

available in the literature. ∗ indicates that the values were not provided in the original literature, but we were able to compute the values.

Dataset #Images #Objects #Scenes #VI #OI Avg. OR (%) AM OM Order R/S
OCID [25] 2,390 89 96 19,097∗ - - % % % R
OSD [24] 111 - 111 474∗ - - % % % R

OSD-Amodal [2] 111 - 111 474∗ 237∗ 24.11∗ " " % R
UOAIS-Sim 25,000 375 500 356,885∗ 127,129∗ 11.16∗ " " % S(Tabletop) [2]

SynTable-Sim 50,000 1075 1000 744,454 482,921 17.56 " " " S(Ours)

jects from the YCB dataset [4]. We sample a table object286
from 10 Omniverse Nucleus table assets to provide random-287
ization for each scene. To load the 3D object models into288
Isaac Sim, we converted the OBJ and texture files to the289
Universal Scene Description (USD) format.290

4.2. Dataset Configuration291

With 50 viewpoints for each scene, we generated 900 scenes292
to create 45,000 RGB-D images for the training dataset and293
100 scenes to create 5,000 RGB-D images for the valida-294
tion dataset. Nlower = 1 to Nupper = 40 objects are rendered295
in randomly textured tabletop planes in each scene. We used296
130 materials from Omniverse Nucleus material assets to be297
randomly applied on the walls, floor, and table for domain298
randomization purposes. Llower = 0 to Lupper = 2 spheri-299
cal lights are sampled for each scene. The viewpoint and300
lighting hemisphere parameters are automatically sampled301
based on the table dimensions. The camera parameters used302
are horizontal aperture: 2.63, vertical aperture: 1.96, and fo-303
cal length: 1.88 to mimic the configuration of the RealSense304
LiDAR Camera L515. The rest of the parameters follow the305
default configurations of the pipeline.306

4.3. Syntable-Sim Versus Other Cluttered Tabletop307
Datasets308

We compare our SynTable-Sim dataset with several exist-309
ing cluttered tabletop datasets in Table 1. Our tabletop310
dataset is the only one that provides complete annotations311
for all aspects of amodal instance segmentation. Further-312
more, our dataset contains the most extensive variety of ob-313
jects, the highest number of occlusion instances, and the314
second highest average occlusion rate — critical factors that315
significantly enhance the complexity and realism of training316
scenarios. These characteristics make our dataset very chal-317
lenging for amodal instance segmentation tasks.318

Additionally, SynTable-Sim exhibits a significantly319
higher proportion of heavily occluded objects in its train-320
ing set compared to UOAIS-Sim, aligning more closely321
with the OSD-Amodal dataset, as shown in Figure 7 in the322

supplementary materials. This high occlusion density en- 323
sures that models trained on our dataset generalize better to 324
real-world cluttered environments. Moreover, the weakly 325
connected component size, which quantifies the number of 326
mutually overlapped regions per OODG and serves as a 327
metric for scene complexity [15], is consistently larger in 328
SynTable-Sim compared to UOAIS-Sim (Figure 8 in the 329
supplementary materials). This indicates that our dataset 330
presents significantly more intricate occlusion patterns, en- 331
abling amodal segmentation models to learn more robust 332
occlusion reasoning capabilities. 333

5. Experiments 334

In this section, we present the results of our experiments 335
aimed at evaluating the effectiveness of our dataset genera- 336
tion pipeline in producing synthetic datasets with good Sim- 337
to-Real transfer performance. We used our SynTable-Sim 338
sample dataset to train a state-of-the-art (SOTA) UOAIS 339
model, UOAIS-Net [2]. UOAIS-Net is evaluated on the 340
SynTable-Sim validation set and the OSD-Amodal [2] test 341
set. To verify consistency of our results and further demon- 342
strate the capability of SynTable to improve the perfor- 343
mance of a variety of different UOAIS models, we also train 344
and evaluate three other UOAIS models—Amodal MR- 345
CNN [11], ORCNN [11], ASN [21]—on the SynTable-Sim 346
and OSD-Amodal datasets respectively. 347

5.1. Training Strategy 348

We train UOAIS-Net on the UOAIS-Sim tabletop and 349
SynTable-Sim datasets using an NVIDIA Tesla V100 GPU 350
with 16 GB of memory. For both datasets, we used 90% 351
of the images for training and 10% for validation. To train 352
UOAIS-Net using the UOAIS-Sim tabletop dataset, we use 353
the same hyperparameters as Back et al. [2]. To train 354
UOAIS-Net with SynTable-Sim, we modified the depth 355
range hyperparameter, which is used to preprocess input 356
depth images. Specifically, we changed the range from the 357
2500 mm to 40000 mm range set by Back et al. to a nar- 358
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rower range of 250 mm to 2500 mm. This adjustment is359
required because our dataset reflects real-world proportions360
and has a smaller depth range than the UOAIS-Sim dataset.361
We also use a similar training strategy to train Amodal MR-362
CNN, ORCNN, and ASN.363

5.2. Evaluation Metrics364

We measure the performance of UOAIS-Net on the follow-365
ing traditional metrics [5, 19, 29]: Overlap P/R/F, Bound-366
ary P/R/F, and F@.75 for the amodal, visible, and invisi-367
ble masks. Overlap P/R/F and Boundary P/R/F evaluate the368
whole area and the sharpness of the prediction, respectively,369
where P, R, and F are the precision, recall, and F-measure370
of instance masks after the Hungarian matching, respec-371
tively. F@.75 is the percentage of segmented objects with372
an Overlap F-measure greater than 0.75. We also report the373
accuracy (ACCO ) and F-measure (FO ) of occlusion classi-374
fication, where ACCO = δ

α
, FO = 2PoRo

Po+Ro
, Po = δ

β
, Ro = δ

γ
.375

α is the number of the matched instances after the Hun-376
garian matching. β , γ , and δ are the number of occlusion377
predictions, ground truths, and correct predictions, respec-378
tively. We provide more details about the evaluation metrics379
in Section 9 of our supplementary materials.380

Due to the subjectivity of the invisible masks of objects,381
the evaluation of the performance of the UOAIS model382
solely based on the overlap and boundary P/R/F of seg-383
mented objects may be inaccurate. The current UOAIS384
occlusion evaluation metrics measure how well the model385
can predict whether individual objects are occluded. How-386
ever, these metrics neglect hierarchical occlusion relation-387
ships, which are crucial for systems requiring structured388
scene understanding. The Occlusion Order Adjacency Ma-389
trix (OOAM) encodes these relationships, and the derived390
Occlusion Order Directed Graph (OODG) enables applica-391
tions such as sequencing interactions in cluttered environ-392
ments (for example, retrieving obscured items) or render-393
ing occluded objects in augmented reality. To quantify a394
model’s ability to infer occlusion hierarchies, we propose395
the Occlusion Order Accuracy Occlusion Order Accuracy396
(ACCOO) metric as defined in Equation 1.397

ACCOO =
sum(similarityMatrix)−gtOOAMDiagonalSize

gtOOAMSize−gtOOAMDiagonalSize
(1)398

In Equation 1, similarityMatrix is the element-wise399
equality comparison between the ground truth OOAM,400
gtOOAM, and the predicted OOAM, predOOAM. As an ob-401
ject cannot occlude itself, the diagonal of any OOAM is al-402
ways 0. Thus, we subtract the number of elements along the403
diagonal of gtOOAM, gtOOAMDiagonalSize, from the cal-404
culation of ACCOO. ACCOO is used to evaluate the model’s405
ability to accurately determine the order of occlusions in a406
clutter of objects by comparing the OOAM generated by407
the model to the ground truth OOAM using Algorithm 2.408

We give a specific example of how to compute ACCOO in 409
Sections 10 and 11 of our supplementary materials. 410

Algorithm 2 Evaluating Occlusion Ordering Accuracy

Input: The arrays of the ground truth and predicted visible and occlusion
masks (gtVisible, gtOcclusion, predVisible, predOcclusion)

Output: Scene occlusion order accuracy ACCoo
1: gtOOAM = GENERATE OOAM(gtVisible,gtOcclusion)
2: Get groundtruth-prediction assignment pairs after Hungarian matching
3: Extract predVisible and predOcclusion masks from assignment pairs
4: predOOAM = GENERATE OOAM(predVisible, predOcclusion)
5: similarityMatrix = (predOOAM == gtOOAM) ▷ Compare the

similarity between the predicted and ground truth OOAMs
6: Calculate ACCoo using Equation 1

5.3. Results 411

Table 2 compares the performance of UOAIS-Net on the 412
OSD-Amodal dataset after training on the UOAIS-Sim 413
tabletop dataset and our SynTable-Sim sample dataset. We 414
conducted four sets of experiments. In each set of experi- 415
ments, we vary the amount of data augmentation used and 416
the size of the dataset we use for training. 417

In our first set of experiments, we can see that the 418
UOAIS-Net trained on the SynTable-Sim dataset signifi- 419
cantly outperforms the UOAIS-Net trained on the UOAIS- 420
Sim tabletop dataset in all metrics. Even when we train 421
UOAIS-Net using a dataset of the same size as UOAIS- 422
Sim (SynTable-Sim-0.5X), the performance is still remark- 423
ably better than the UOAIS-Net trained on the UOAIS-Sim 424
tabletop dataset across all metrics. A detailed breakdown 425
of the precision P, recall R, and F-measure F, and F@.75 426
scores for the amodal, invisible and visible masks for our 427
first set of experiments is shown in Table 3. We observe 428
that except for the Boundary precision scores of the invisi- 429
ble masks, UOAIS-Net achieves substantial improvements 430
in all other metrics. 431

In the next three sets of experiments, we observe that 432
even when we include data augmentation, the performance 433
of UOAIS-Net trained on the UOAIS-Sim tabletop dataset 434
is still worse than that trained on the SynTable-Sim dataset 435
without using any data augmentation. We also provide im- 436
ages of the inference results on the OSD-Amodal dataset in 437
Section 12 of our supplementary materials. 438

Similarly, from Table 4, the UOAIS-Net model trained 439
on the SynTable-Sim dataset outperforms the one trained on 440
UOAIS-Sim tabletop dataset in all metrics when both mod- 441
els are benchmarked on SynTable-Sim validation dataset. 442

We evaluated the effectiveness of SynTable-Sim across 443
different UOAIS models comprising distinct architectures. 444
Table 5 compares the performance of UOAIS models— 445
Amodal MRCNN, ORCNN, ASN, and UOAIS-Net—on 446
the OSD-Amodal dataset after training on the UOAIS-Sim 447
tabletop dataset and our SynTable-Sim sample dataset. For 448
each model result in our experiments, we used seed 7 for 449
training. Generally, across most metrics, the UOAIS mod- 450
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Table 2. The performance of UOAIS-Net on the OSD-Amodal dataset after training on the UOAIS-Sim and SynTable-Sim datasets.
UOAIS-Net is trained with RGB-D images. CR: Crop Ratio lower bound. HF: Horizontal Flip. CA: Colour Augmentation. PD: Perlin
Distortion. OV: Overlap F-measure, BO: Boundary F-measure, F@.75: Percentage of segmented objects with an Overlap F-measure

greater than 0.75, FO : Occlusion F-Measure, ACCOO: Occlusion Order Accuracy

No. Training Set Augmentation Amodal Mask Invisible Mask Occlusion Visible Mask ACCOOCR HF CA PD OV BO F@.75 OV BO F@.75 FO ACCO OV BO F@.75
1 UOAIS-Sim (Tabletop) % % % % 42.4 34.1 47.1 21.6 15.2 18.5 43.1 61.8 42.5 32.3 37.1 12.7
1 SynTable-Sim (Ours) % % % % 80.9 61.8 78.1 52.4 31.2 41.3 75.7 86.7 81.1 64.3 74.4 82.9
1 SynTable-Sim-0.5X (Ours) % % % % 80.7 63.8 77.3 51.9 30.2 42.9 75.7 84.1 80.5 65.4 71.7 82.7

2 UOAIS-Sim (Tabletop) 0.8 " % % 26.1 33.1 66.7 15.5 7.7 20.4 60.8 78.1 25.9 27.6 51.8 42.7
2 SynTable-Sim (Ours) 0.8 " % % 67.7 56.0 81.2 49.4 30.1 48.6 72.5 89.8 71.8 61.3 78.2 86.6
2 SynTable-Sim-0.5X (Ours) 0.8 " % % 75.6 61.2 83.5 53.6 31.2 48.5 75.5 90.1 76.8 64.5 78.3 87.0

3 UOAIS-Sim (Tabletop) 0.8 " " " 71.8 62.8 81.4 55.6 31.3 44.6 75.1 86.2 70.2 63.2 73.2 79.6
3 SynTable-Sim (Ours) 0.8 " " " 78.3 58.8 81.9 54.0 29.7 43.9 66.6 93.2 79.2 60.4 77.2 87.7
3 SynTable-Sim-0.5X (Ours) 0.8 " " " 74.0 57.5 83.3 49.2 23.9 41.0 65.7 93.4 74.2 59.2 79.2 87.6

4 UOAIS-Sim (Tabletop) 0.5 " " " 49.0 50.3 82.7 42.3 23.9 40.3 68.9 84.0 47.3 50.0 70.6 80.4
4 SynTable-Sim (Ours) 0.5 " " " 64.4 51.5 84.3 47.3 24.2 47.4 60.0 91.9 65.3 53.7 78.2 87.0
4 SynTable-Sim-0.5X (Ours) 0.5 " " " 55.0 47.2 85.9 43.2 22.0 48.4 55.4 91.5 55.3 46.6 76.9 87.8

Table 3. A breakdown of the evaluation results of UOAIS-Net on the OSD-Amodal dataset for the first set of experiments after training
on the UOAIS-Sim and SynTable-Sim dataset. P: Precision, R: Recall, F: F-measure, F@.75: Percentage of segmented objects with an

Overlap F-measure greater than 0.75, FO : Occlusion F-Measure, ACCOO: Occlusion Order Accuracy

Training Set
Amodal Mask Invisible Mask Visible Mask Occlusion

ACCOOOverlap Boundary F@.75 Overlap Boundary F@.75 Overlap Boundary F@.75 FO ACCOP R F P R F P R F P R F P R F P R F
UOAIS-Sim 35.9 65.4 42.4 31.4 42.8 34.1 47.1 55.9 24.5 21.6 45.3 19.3 15.2 18.5 36.2 61.3 42.5 30.8 39.2 32.3 37.1 43.1 61.8 12.7(Tabletop)

SynTable-Sim 81.0 82.5 80.9 59.1 66.8 61.8 78.1 69.3 51.8 52.4 34.6 42.6 31.2 41.3 80.1 83.2 81.1 62.4 68.1 64.3 74.4 75.7 86.7 82.9(Ours)

Table 4. The performance of UOAIS-Net on the SynTable-Sim validation dataset after training on the UOAIS-Sim and SynTable-Sim
datasets. UOAIS-Net is trained with RGB-D images. OV: Overlap F-measure, BO: Boundary F-measure, F@.75: Percentage of
segmented objects with an Overlap F-measure greater than 0.75, FO : Occlusion F-Measure, ACCOO: Occlusion Order Accuracy

Training Set Amodal Mask Invisible Mask Occlusion Visible Mask ACCOOOV BO F@.75 OV BO F@.75 FO ACCO OV BO F@.75
UOAIS-Sim (Tabletop) 38.0 37.8 35.9 14.1 12.9 7.6 47.2 72.9 40.4 38.9 34.8 31.6
SynTable-Sim (Ours) 84.5 78.4 75.6 41.4 37.7 21.5 76.1 82.4 86.8 81.8 74.4 77.5

els trained on SynTable-Sim outperform the same mod-451
els trained on the UOAIS-Sim tabletop dataset. There is452
also a significant improvement in the results of ACCoo for453
Amodal MRCNN, ORCNN, and ASN when trained on454
our SynTable-Sim as compared to the UOAIS-Sim table-455
top dataset. This is consistent with the performance trend456
observed for UOAIS-Net and, therefore, demonstrates that457
SynTable is an effective tool for generating high-quality458
datasets that can improve the performance of UOAIS mod-459
els. A detailed breakdown of the precision P, recall R, and460
F-measure F, and F@.75 scores for the amodal, invisible,461
and visible masks are shown in Table 6.462

As shown in Table 7, the UOAIS models trained on the463
SynTable-Sim dataset outperform the same models trained464
on the UOAIS-Sim tabletop dataset in all metrics when they465
are benchmarked on the SynTable-Sim validation dataset.466

Our experiments demonstrate the effectiveness of our467

proposed dataset generation pipeline, SynTable, in improv- 468
ing the Sim-to-Real transfer performance of SOTA deep 469
learning computer vision models for UOAIS. These results 470
highlight the potential of SynTable for addressing the chal- 471
lenge of annotating amodal instance segmentation masks. 472

6. Conclusion 473

In conclusion, we present SynTable, a novel synthetic data 474
generation pipeline for generating photorealistic datasets 475
that facilitated amodal instance segmentation of cluttered 476
tabletop scenes. SynTable enables the creation of complex 477
3D scenes with automatic annotation of diverse metadata, 478
eliminating the need for manual labeling while ensuring 479
dataset quality and accuracy. We demonstrate the effective- 480
ness of the SynTable pipeline by generating a photoreal- 481
istic amodal instance segmentation dataset and using it to 482
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Table 5. The performance of Amodal MRCNN, ORCNN, ASN, and UOAIS-Net on the OSD-Amodal dataset after training on the
UOAIS-Sim and SynTable-Sim datasets. UOAIS-Net is trained with RGB-D images. OV: Overlap F-measure, BO: Boundary F-measure,

F@.75: Percentage of segmented objects with an Overlap F-measure greater than 0.75, ACCOO: Occlusion Order Accuracy

Training Set Method Amodal Mask Invisible Mask Occlusion Visible Mask ACCOOOV BO F@.75 OV BO F@.75 FO ACCO OV BO F@.75

UOAIS-Sim (Tabletop)

Amodal MRCNN 36.7 26.9 45.7 8.8 4.8 7.7 39.2 54.8 38.7 26.3 32.2 15.6
ORCNN 36.3 25.4 47.0 12.2 6.7 9.0 43.8 59.2 30.5 21.8 29.6 21.5

ASN 40.5 33.6 49.8 17.4 12.1 15.0 47.0 63.2 39.3 31.6 36.8 17.8
UOAIS-Net 49.0 50.3 82.7 42.3 23.9 40.3 68.9 84.0 47.3 50.0 70.6 80.4

SynTable-Sim (Ours)

Amodal MRCNN 74.5 57.5 77.2 41.3 23.5 37.6 69.3 79.4 73.8 57.7 66.1 79.2
ORCNN 74.2 58.2 77.1 44.7 24.3 33.8 72.9 82.2 72.0 58.3 67.7 79.1

ASN 78.2 60.2 75.3 46.4 27.7 35.8 72.6 83.0 78.1 61.8 68.9 80.2
UOAIS-Net 64.4 51.5 84.3 47.3 24.2 47.4 60.0 91.9 65.3 53.7 78.2 87.0

Table 6. A breakdown of the precision, recall, and F-measure of the amodal, invisible, and visible mask predictions by Amodal MRCNN,
ORCNN, ASN, and UOAIS-Net on the OSD-Amodal dataset after training on the UOAIS-Sim and SynTable-Sim dataset. P: Precision,

R: Recall, F: F-measure

Training Set Method
Amodal Mask Invisible Mask Visible Mask

Overlap Boundary F@.75 Overlap Boundary F@.75 Overlap Boundary F@.75P R F P R F P R F P R F P R F P R F

UOAIS-Sim
(Tabletop)

Amodal 27.9 66.7 36.7 22.5 39.8 26.9 45.7 20.2 24.9 8.8 16.4 19.9 4.8 7.7 30.1 60.5 38.7 22.0 37.8 26.3 32.2MRCNN
ORCNN 26.3 71.1 36.3 19.8 42.4 25.4 47.0 41.5 22.7 12.2 33.9 17.9 6.7 9.0 21.4 63.4 30.5 16.6 38.2 21.8 29.6

ASN 31.7 67.8 40.5 28.6 45.4 33.6 49.8 47.6 23.4 17.4 38.8 20.2 12.1 15.0 32.0 63.5 39.3 28.2 41.5 31.6 36.8
UOAIS-Net 37.2 85.5 49.0 41.1 71.3 50.3 82.7 50.9 54.0 42.3 24.8 41.1 23.9 40.3 35.4 81.6 47.3 41.3 69.3 50.0 70.6

SynTable-Sim
(Ours)

Amodal 72.3 81.6 74.5 54.6 64.5 57.5 77.2 54.9 48.0 41.3 30.3 38.8 23.5 37.6 72.1 78.4 73.8 55.1 63.7 57.7 66.1MRCNN
ORCNN 73.7 80.8 74.2 55.6 64.5 58.2 77.1 61.0 47.1 44.7 31.1 38.6 24.3 33.8 69.8 79.1 72.0 55.7 64.3 58.3 67.7

ASN 78.2 80.3 78.2 57.8 64.9 60.2 75.3 65.2 46.2 46.4 32.9 38.7 27.7 35.8 77.5 80.1 78.1 60.4 65.4 61.8 68.9
UOAIS-Net 53.9 86.3 64.4 40.9 74.6 51.5 84.3 53.0 60.0 47.3 20.5 48.3 24.2 47.4 55.0 86.2 65.3 43.2 75.3 53.7 78.2

Table 7. The performance of Amodal MRCNN, ORCNN, ASN, and UOAIS-Net on the SynTable-Sim validation dataset after training
on the UOAIS-Sim and SynTable-Sim datasets. UOAIS-Net is trained with RGB-D images. OV: Overlap F-measure, BO: Boundary

F-measure, F@.75: Percentage of segmented objects with an Overlap F-measure greater than 0.75, ACCOO: Occlusion Order Accuracy

Training Set Method Amodal Mask Invisible Mask Occlusion Visible Mask ACCOOOV BO F@.75 OV BO F@.75 FO ACCO OV BO F@.75

UOAIS-Sim (Tabletop)

Amodal MRCNN 27.1 25.2 23.8 6.7 6.2 3.5 35.8 66.0 29.1 26.2 23.5 19.0
ORCNN 30.9 29.0 28.1 12.5 11.4 8.0 39.9 68.4 31.8 30.2 27.3 23.1

ASN 33.3 34.4 35.3 10.3 9.1 5.0 47.6 72.3 35.0 36.0 34.1 31.6
UOAIS-Net 39.9 40.5 38.6 17.0 15.5 9.6 49.6 74.9 41.6 40.7 35.9 31.6

SynTable-Sim (Ours)

Amodal MRCNN 83.5 76.2 72.5 35.4 31.8 16.4 73.2 80.3 85.7 79.1 71.1 72.8
ORCNN 83.4 76.0 72.2 34.4 29.3 15.3 67.2 73.7 85.3 78.9 70.9 73.0

ASN 83.6 76.9 73.9 38.5 35.1 18.5 74.8 81.5 86.1 80.0 72.8 75.8
UOAIS-Net 83.7 77.5 75.1 40.3 36.7 20.2 75.5 82.0 86.2 80.1 73.3 77.4

train UOAIS-Net. As a result, UOAIS-Net achieves signif-483
icantly improved Sim-to-Real transfer performance on the484
OSD-Amodal dataset, particularly in determining the ob-485
ject occlusion order of objects in a cluttered tabletop scene.486
SynTable advances amodal segmentation for systems that487
require occlusion-aware perception, such as robotics, aug-488
mented reality. By automating annotation of amodal masks489
and appearance via photorealistic rendering, and scene oc-490

clusion order, our pipeline addresses a key bottleneck in 491
training robust vision models with amodal perception ca- 492
pabilities. 493
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SynTable: A Synthetic Data Generation Pipeline for Unseen Object Amodal
Instance Segmentation of Cluttered Tabletop Scenes

Supplementary Material

7. Overview645

This supplementary material offers dataset visualization,646
qualitative results, and additional technical details to sup-647
port the main paper. Section 9 provides a comprehensive648
elaboration of the evaluation metrics employed. Section 10649
illustrates how occlusion order accuracy is calculated and650
the validity of the metric. Furthermore, Section 11 delin-651
eates the process of generating an occlusion order directed652
acyclic graph from the occlusion order adjacency matrix to653
classify objects in three distinct order layers. Lastly, Section654
12 showcases some qualitative inference results of UOAIS-655
Net on the OSD-Amodal dataset.656

8. Additional Details About the Dataset Gener-657

ation Process658

8.1. Preparing Each Scene659

The method to prepare each scene is shown in Figure 4.660
A table is randomly sampled from the assets in Omniverse661
Nucleus and is rendered at the center of a room. The tex-662
ture and materials of the table, ceiling, wall, and floor are663
randomized for every scene to ensure domain randomiza-664
tion. The objects are added to the scene with randomized665
x, y, and z coordinates and orientations. We randomly sam-666
ple (with replacement) Nlower to Nupper objects to render for667
each scene. By default, Nlower = 1, Nupper = 40. Each ob-668
ject is initialized with real-life dimensions, randomized ro-669
tations and coordinates, allowing for diverse object arrange-670
ments across scenes. Each object also has mass and colli-671
sion properties so that they can be dropped onto the tabletop672
in our physics simulation.673

8.2. Physical Simulation of Each Scene674

Upon completing the scene preparation, the rendered ob-675
jects are dropped onto the table surface using a physics sim-676
ulation. The simulation is paused after t seconds (t = 5 by677
default), halting any further movement of the objects. Dur-678
ing the simulation, any objects that rebound off the tabletop679
surface and fall outside the spatial coordinate region of the680
tabletop surface (i.e., either below the table or beyond the681
width and length of the table) are automatically removed.682
This is necessary to prevent the inclusion of extraneous and683
irrelevant objects outside the specified tabletop region dur-684
ing the annotation process from different viewpoints.685

0.2 ×
w

0.2 × w

0.2 × l

0.2 × l

0.6 × l

0.6 × w

1 m
0.2 m

l
wh

Figure 4. Initialization of objects with randomized coordinates
and rotations. The initial position of the objects in the scene is
randomized but constrained to be within the dimensions of the 3D
orange box. The orange box is 0.2 m above the tabletop. The roll,
pitch, and yaw of each object are also randomly sampled within
the range of 0◦ to 360◦.

8.3. Sampling of Camera Viewpoints 686

To capture annotations for each scene from multiple view- 687
points, we enhance the approach by Gilles et al. [18]— 688
which only uses fixed viewpoint positions—by introducing 689
a feature that captures V number of viewpoints at random 690
positions within two concentric hemispheres, as illustrated 691
in Figure 5. V can be set by the user. The radii of the 692
two concentric hemispheres are uniformly sampled within 693
the range rview lower m to rview upper m, where rview lower and 694
rview upper are defined in Equations 2 and 3. Users may 695
also set fixed values for rview lower and rview upper should they 696
wish to do so. 697

rview lower = max
(

w
2
,

l
2

)
(2) 698

699
rview upper = 1.7× rview lower (3) 700

The hemisphere’s spherical coordinates are parameter- 701
ized using three variables rview, u, and v. To generate the 702
camera coordinates in the world frame, we first obtain the 703
radius of the hemisphere rview by uniform sampling between 704
rview lower and rview upper. Next, we uniformly sample u,v ∈ 705
[0,1], then substitute all the sampled values into Equations 706
4, 5 and 6 to compute the cartesian coordinates of the cam- 707
era. 708
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lh
w

View 1

View 2

View 3

(0, 0, h)
rview_lower0.2 m

rview_upper

Figure 5. Sampling of camera viewpoints within concentric hemi-
spheres (shown in blue). The two concentric hemispheres’ origins
are centered at the tabletop surface’s center coordinate with an off-
set of 0.2 m in the positive z direction in the world frame. This
allows the camera viewpoints to minimally have a direct line of
sight to the tabletop surface to capture part of the tabletop plane.
This figure is best viewed zoomed in.

x = rview sin(arccos(1− v))cos(2πu) (4)709
710

y = rview sin(arccos(1− v))sin(2πu) (5)711
712

z = rview cos(arccos(1− v)) (6)713

Once the camera coordinates are set, the orientation of714
each camera is set such that each viewpoint looks directly715
at the center of the tabletop surface (0, 0, h).716

8.4. Sampling of Lighting Conditions717

To simulate different indoor lighting conditions, we resam-718
ple L spherical light sources between Llower to Lupper for719
each viewpoint (Figure 6). By default, we set Llower and720
Lupper to be 0 and 2, respectively. To position L spherical721
light sources for a viewpoint, we adopt a similar approach to722
the camera viewpoint sampling method discussed in Section723
8.3. In contrast to the approach by Back et al. [2], we use724
spherical light sources that emit light in all directions. Fur-725
thermore, we uniformly sample light source temperatures726
between 2,000 K to 6,500 K. The default light intensity of727
each light source is uniformly sampled between 100 lx to728
20,000 lx, and the default light intensity of ceiling lights729
in the scene is also sampled uniformly between 100 lx to730
2,000 lx. To achieve diverse indoor lighting conditions for731
tabletop scenes, users have the flexibility to adjust the num-732
ber of spherical light sources, as well as their intensities and733
temperatures.734

Similar to the sampling method for the camera viewpoint735
coordinates, we have designed a feature that samples the736
lower and upper radii bounds for the light sources based737
on the camera hemisphere’s upper bound radius, rview upper.738
The sampled lower and upper bound radii constraints for the739
lighting hemisphere rlight lower and rlight upper are as follows:740

rlight lower = rview upper +0.1m (7)741
742

rlight upper = rlight lower +1m (8)743

Light 1

rlight_lower
rlight_upper

Figure 6. Sampling of lighting within concentric hemispheres
(shown in pink). Each spherical light source lies within the con-
straints of two concentric hemispheres of arbitrary radius between
rlight lower to rlight upper. Note that the radii constraints for the
spherical light source concentric hemispheres are larger than those
for the camera viewpoints’ and are customizable by the user.

8.5. Capturing of Ground Truth Annotations 744

The process of capturing the ground truth annotations for 745
a scene is illustrated in Figure 3. At each view, the RGB 746
and depth images of the tabletop scene will be captured 747
(Figure 3(a)). The built-in instance segmentation function 748
in Isaac Sim Replicator Composer is employed to capture 749
the instance segmentation mask of the entire scene from a 750
viewpoint (Figure 3(b)). Subsequently, each object’s visi- 751
ble mask is cropped from the instance segmentation mask 752
of the scene. To obtain the amodal mask of each object on 753
the simulated tabletop scene, we have developed the subse- 754
quent steps. 755

Initially, all objects’ visibility is disabled. For each ob- 756
ject o within the scene, its visibility is enabled, and the 757
instance segmentation function is utilized to capture its 758
amodal mask (Figure 3(c)). Following this, we compute the 759
object’s occlusion mask and occlusion rate, as presented in 760
(Figure 3(d)). The occlusion mask of an object o can be ac- 761
quired by subtracting its visible mask from its amodal mask. 762

The occlusion rate of the object o can be computed by 763
dividing the number of pixels in the occlusion mask by the 764
number of pixels in the amodal mask. If the occlusion rate 765
of the object o is equal to 1, it implies that object o is com- 766
pletely obscured from the viewpoint, thus we do not save 767
the object o’s annotation for this view. The visibility of 768
object o is then disabled to capture the masks of the next 769
object. Following the preservation of all objects’ masks, 770
we use Algorithm 1 to generate the Occlusion Order Ad- 771
jacency Matrix (OOAM) for this viewpoint (Figure 3(e)). 772
For a scene with M objects, the OOAM contains M ×M 773
elements, where the element (i, j) is a binary value in the 774
matrix which indicates whether object i occludes object j. 775
Given the OOAM, we can easily construct the Occlusion 776
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Order Directed Graph (OODG) to visualize the occlusion777
order in the viewpoint (Figure 3(e)). We provide a detailed778
explanation of the OODG in our supplementary materials.779
After that, the visibility of all objects is enabled to prepare780
for the capturing of annotations from the next viewpoint of781
the scene.782

8.6. Saving of Ground Truth Annotations783

We saved the RGB and depth images as PNG images. The784
OOAM of the objects in each image is saved as a NumPy785
file. The amodal, visible, and occlusion masks are saved786
as Run-length Encoding (RLE) in COCO JSON format to787
optimize disk space used by the generated datasets. We also788
recorded each object’s visible bounding box, image ID, and789
object name in the generated COCO JSON file.790

9. Details about Evaluation Metrics791

In this paper, we employ the precision/recall/F-measure792
(P/R/F) metrics, as defined in [5, 19, 29]. This metric favors793
methods that accurately segment the desired objects while794
penalizing those that produce false positives. Specifically,795
the precision, recall, and F-measure are calculated between796
all pairs of predicted and ground truth objects. The Hun-797
garian method, employing pairwise F-measure, is utilized798
to establish a match between predicted objects and ground799
truth. Given this matching, the Overlap P/R/F is computed800
by:801

P =
∑i |ci ∩g(ci)|

∑i |ci|
, R =

∑i |ci ∩g(ci)|
∑ j

∣∣g j
∣∣ (9)802

F =
2PR

P+R
(10)803

where ci denotes the set of pixels belonging to predicted804
object i, g(ci) is the set of pixels of the matched ground805
truth object of ci after Hungarian matching, and g j is the set806
of pixels for ground truth object j.807

Although the aforementioned metric provides valuable808
information, it fails to consider the boundaries of the ob-809
jects. Therefore, Xie et al. [29] proposed the Boundary810
P/R/F measure to supplement the Overlap P/R/F. The cal-811
culation of Boundary P/R/F involves the same Hungarian812
matching as used in the computation of Overlap P/R/F.813
Given these matchings, the Boundary P/R/F is computed814
by:815

P =
∑i |ci ∩D [g(ci)]|

∑i |ci|
, R =

∑i |D [ci]∩g(ci)|
∑ j

∣∣g j
∣∣ (11)816

F =
2PR

P+R
(12)817

Here, overloaded notations are used to represent the sets818
of pixels belonging to the boundaries of the predicted object819

i and the ground truth object j as ci and g j, respectively. 820
The dilation operation is denoted by D[·], which allows for 821
some tolerance in the prediction. The metrics we use are 822
a combination of the F-measure described in [20] and the 823
Overlap P/R/F as defined in [5]. 824

In our work, we use the Overlap and Boundary P/R/F 825
evaluation metrics to evaluate the accuracy of the predicted 826
visible, invisible, and amodal masks. In the context of 827
the Overlap P/R/F metrics, ci denotes the set of pixels 828
belonging to the predicted visible, invisible, and amodal 829
masks, g(ci) denotes the set of pixels belonging to the 830
matched ground-truth visible, invisible and amodal masks 831
annotations, and g j is the ground-truth visible, invisible and 832
amodal mask. The meaning of ci, g(ci), and g j are similar 833
in the context of the Boundary P/R/F metrics. 834

An additional vital evaluation metric used in our paper 835
is the F@.75. This metric represents the proportion of 836
segmented objects with an Overlap F-measure greater than 837
0.75. It is important not to confuse this metric with the F- 838
measure computed for the Overlap and Boundary P/R/F. 839
The F-measure for Overlap and Boundary is a harmonic 840
mean of a model’s average precision and average recall, 841
while F@.75 indicates the percentage of objects from a 842
dataset that can be segmented with high accuracy. The F 843
in F@.75 refers to the F-measure computed for a ground 844
truth object after the Hungarian matching of the ground 845
truth mask j with the predicted mask i as defined in [5] and 846
stated in Equation (14). 847

Pi j =

∣∣ci ∩g j
∣∣

|ci|
, Ri j =

∣∣ci ∩g j
∣∣∣∣g j

∣∣ (13) 848

Fi j =
2Pi jRi j

Pi j +Ri j
(14) 849

The notation ci denotes the set of pixels that belong to 850
a predicted region i, while g j represents all the pixels that 851
belong to a non-background ground truth region j. In ad- 852
dition, Pi j represents the precision score, Ri j represents the 853
recall score, and Fi j represents the F-measure score that cor- 854
responds to this particular pair of predicted and ground truth 855
regions. 856

10. Occlusion Order Accuracy ACCoo metric 857

Given an image v that depicts a typical cluttered tabletop 858
scene, we get the ground truth-prediction assignment pairs 859
after Hungarian matching as illustrated in Figure 9. The 860
predicted masks will then be re-indexed to match the ids of 861
the ground truth masks. Following that, the predVisible and 862
predOcclusion masks that belong to the assigned pairs will 863
be extracted. After that, the ground truth OOAM (gtOOAM) 864
and the predicted OOAM (predOOAM) will be obtained us- 865
ing Algorithm 1. 866
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Figure 7. Histogram of occlusion rate for UOAIS-Sim tabletop, SynTable-Sim and OSD-Amodal datasets

Figure 8. Histogram for number of regions per connected component (connected component size) for UOAIS-Sim tabletop, SynTable-Sim
and OSD-Amodal datasets
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Figure 9. Hungarian Matching and calculating Occlusion Order Accuracy of image v

Figure 9 also illustrates the calculation of occlusion or-867
der accuracy in an image v. The similarity matrix (denoted868
as similarityMatrix in Figure 9) is obtained by conducting869
an element-wise equality comparison between the gtOOAM870
and predOOAM. After that, ACCoo can be calculated using871
Equation 1.872

In Equation 1, the ACCoo represents the ratio of the num-873
ber of correct predicted occlusion nodes over the number874
of ground truth occlusion nodes. Let #correctPredictedOc-875
clusionNodes denote the number of correct occluder and oc-876
cludee predictions for all objects in a viewpoint (represented877
by green highlighted cells in similarityMatrix in Figure 9).878

A summation of all the elements in the similarity ma-879

trix is carried out to obtain #correctPredictedOcclusionN- 880
odes. Let #groundtruthOcclusionNodes denote the num- 881
ber of ground truth occluder and occlude nodes in a view- 882
point. To obtain #groundtruthOcclusionNodes, we count 883
the number of elements (gtOOAMSize) in the ground truth 884
OOAM. As an object cannot occlude itself, the diagonal of 885
any OOAM is always 0, and the diagonal of any similarity 886
matrix is always 1 (depicted as grey highlighted cells in Fig- 887
ure 9). Thus, we subtract the number of elements along the 888
diagonal of the gtOOAM (denoted by gtOOAMDiagonal- 889
Size) from the calculation of #correctPredictedOcclusionN- 890
odes and #groundtruthOcclusionNodes. 891

Correct occlusion order predictions occur when the pre- 892
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dicted occlusion relationship for each object matches the893
ground truth. Incorrect occlusion order predictions can re-894
sult from erroneous predictions or missing visible mask pre-895
dictions of object instances. When there are missing pre-896
dictions, setting the corresponding row and column of the897
missing object instance in the similarity matrix to 0 pe-898
nalizes the model for the missing object predictions. The899
smaller element-wise sum of the similarity matrix leads to900
a smaller ACCoo. This demonstrates the appropriate assign-901
ment of penalties by ACCoo to different error types for mea-902
suring object occlusion ordering in a scene.903

11. Occlusion Order Directed Acyclic Graph904

(OODAG)905

After obtaining the Occlusion Order Adjacency Matrix906
(OOAM), we can generate the occlusion order directed907
graph from it. For each non-zero entry (i, j) in the OOAM,908
we draw a directed edge from node i to node j. If the entry909
is zero, we do not draw an edge. A non-zero entry at (i, j)910
represents that object i is occluding object j.911

For example, the OOAM generated in Figure 10 shows912
that (i, j) = (1,12) where i and j are the object indices (the913
bounding box labels) in the image. This means that object 1914
occludes object 12, and a directed edge will point from ob-915
ject 1 to 12. From the generated Directed Occlusion Graph,916
we can also check if the graph is cyclic or acyclic using917
graph cyclic detection methods such as Depth First Search918
(DFS) and Breadth First Search (BFS). Only if the graph919
has no directed cycles (Directed Acyclic Occlusion Graph)920
can topological sorting be implemented.921

In the generated Occlusion Order graph, we further clas-922
sify objects in three different order layers - Top, Intermedi-923
ate, and Bottom. Objects at the top layer represent objects924
that are not occluded by any other object. Objects in the in-925
termediate layers mean that they are occluded but they also926
occlude other objects. For objects in the bottom layer, they927
are occluded but they do not occlude other objects.928

12. Qualitative Inference Results of UOAIS-929

Net on the OSD-Amodal Dataset930

After training the UOAIS-Net model [2] on both SynTable-931
Sim and UOAIS-Sim (tabletop) datasets [2], we present932
some of our qualitative results in Figure 11. As discussed933
in the main text of our paper, the UOAIS-Net trained on the934
SynTable-Sim dataset exhibits superior performance in con-935
trast to the UOAIS-Net trained on the UOAIS-Sim tabletop936
dataset. This observation is further supported by the infer-937
ence results presented in Figure 11. Furthermore, as the938
scene becomes more and more cluttered, the UOAIS-Net939
model trained on the SynTable-Sim dataset evidently out-940
performs that of the UOAIS-Net trained on the UOAIS-Sim941
tabletop dataset.942
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Figure 10. A visualisation of annotations for a cluttered tabletop image generated by SynTable
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RGB Depth
SynTable-Sim

(Ours) UOAIS-Sim

Figure 11. Comparison of the inference results on the OSD-Amodal dataset. SynTable-Sim (Ours): the performance of UOAIS-Net on
the OSD-Amodal dataset after training on the SynTable-Sim dataset. UOAIS-Sim: the performance of UOAIS-Net on the OSD-Amodal
dataset after training on the UOAIS-Sim tabletop dataset. 8
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