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ABSTRACT

Analog/Mixed-Signal (AMS) circuits play a critical role in the integrated circuit
(IC) industry. However, automating Analog/Mixed-Signal (AMS) circuit design has
remained a longstanding challenge due to its difficulty and complexity. Although
recent advances in Multi-modal Large Language Models (MLLMs) offer promising
potential for supporting AMS circuit analysis and design, current research typically
evaluates MLLMs on isolated tasks within the domain, lacking a comprehensive
benchmark that systematically assesses model capabilities across diverse AMS-
related challenges. To address this gap, we introduce AMSbench, a benchmark
suite designed to evaluate MLLM performance across critical tasks including circuit
schematic perception, circuit analysis, and circuit design. AMSbench comprises
approximately 8000 test questions spanning multiple difficulty levels and assesses
eight prominent models, encompassing both open-source and proprietary solutions
such as Qwen 2.5-VL and Gemini 2.5 Pro. Our evaluation highlights significant
limitations in current MLLMs, particularly in complex multi-modal reasoning
and sophisticated circuit design tasks. These results underscore the necessity of
advancing MLLMs’ understanding and effective application of circuit-specific
knowledge, thereby narrowing the existing performance gap relative to human
expertise and moving toward fully automated AMS circuit design workflows. Our
data is released at this URL.
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Figure 1: Overview of AMSbench. AMSbench includes multimodal question-answer pairs collected from both
academia and industry. The tasks are divided into schematic perception, circuit analysis, and circuit design.

1 INTRODUCTION

The rapid advancement of large language models (LLMs) and multimodal large language models
(MLLMs) has led to significant breakthroughs across diverse domains, including autonomous driv-
ing (Cui et al., 2024), scientific research (Hao et al., 2025; Yue et al., 2024), mathematics (Zhang
et al., 2024; Lu et al., 2023; Yang et al., 2024b), and programming (Zhong & Wang, 2024). In the
domain of Electronic Design Automation (EDA), these models have shown promise, particularly
in the automated design of digital circuits (Bhandari et al., 2025). On the contrary, automating
analog/mixed-signal (AMS) circuit design has been a longstanding challenge for its reliance on
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human experience. Today’s AI-driven automatic AMS design still faces considerable challenges due
to the scarcity of high-quality data and the intrinsic complexity of multi-modal data. As a result, the
exploration and application of LLMs in AMS circuit design remain limited and exhibit relatively poor
performance (Gao et al., 2025; Lai et al., 2025; Chen et al., 2024). Furthermore, current applications
focus on verbal information, while AMS circuits rely on other modalities as well, such as schematics,
plots, and charts.

A primary obstacle lies in the limited capability of existing MLLMs to accurately interpret circuit
schematics. Unlike netlists, schematics convey richer and more nuanced structural information
beyond abstract connectivity. Recent work (Tao et al., 2024; Bhandari et al., 2025) has recognized
this limitation and introduced tools capable of automatically converting schematics into netlists,
thereby enabling the creation of large-scale, high-quality datasets suitable for training models. Recent
advances in the visual capabilities of MLLMs (e.g., GPT-4o (Hurst et al., 2024) and Qwen2.5 (Yang
et al., 2024a)) have significantly improved schematic recognition accuracy, laying a solid foundation
for the automated analysis and design of AMS circuits. Despite these advancements, current applica-
tions often focus on isolated tasks—such as netlist generation (Lai et al., 2025; Liu et al., 2024) and
error identification (Chaudhuri et al., 2025)—while lacking comprehensive evaluation frameworks.
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Figure 2: Comparison of top MLLMs on 18 sub-
tasks(w/o DeepSeek-R1 on VQA tasks, which lacks
visual processing capaility)

In particular, there has been little systematic in-
vestigation into the following three fundamental
questions:

1. How accurately can models recognize and
interpret AMS circuit schematics?

2. What is the upper bound of domain-specific
knowledge that models can attain in AMS circuit
analysis and design?

3. To what degree are models capable of sup-
porting the automation of AMS circuit design?

To address these questions and bridge the ex-
isting research gaps, we propose AMSbench, a
comprehensive benchmark designed to evaluate
the capabilities of advanced models in the con-
text of AMS circuit design. AMSbench assesses
model performance across three key dimensions:
perception, analysis, and design.

In the perception task, the objective is to evalu-
ate how accurately MLLMs can generate netlists
directly from circuit schematics, reflecting their schematic recognition capabilities. This is a non-
trivial challenge due to the large number of components and their intricate interconnections. We
further decompose this task into sub-tasks such as component counting, component classification, and
interconnect recognition, culminating in the primary goal of accurate netlist generation. The analysis
task examines the models’ understanding of circuit-related images, ability to identify critical building
blocks, and comprehension of trade-offs among performance metrics—key aspects in AMS circuit
design and verification. Finally, the design task investigates whether models can synthesize circuits
that satisfy given specifications. We also evaluate their ability to generate appropriate testbenches to
assess circuit performance across multiple criteria.

To the best of our knowledge, AMSbench is the first holistic benchmark that systematically evaluates
the performance of advanced models in AMS circuits. The overall benchmarking results of state-
of-the-art models using AMSbench are illustrated in Fig. 2. Our contributions are summarized as
follows:

• We construct AMSbench, a large-scale, high-quality multimodal benchmark designed to
rigorously evaluate the perception, analysis, and design capabilities of MLLMs in the AMS
circuit domain. AMSbench consists of three major components: AMS-Perception (6k),
AMS-Analysis (2k), and AMS-Design (68).

2
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• We conduct a comprehensive evaluation of both open-source and proprietary models on
AMSbench, providing detailed comparisons and performance insights across all tasks.
Furthermore, we present in-depth analyses highlighting the key challenges that must be ad-
dressed to enhance the applicability of (M)LLMs in the AMS circuit domain, and we further
discuss several potential solutions and research directions to overcome these challenges.

• We release the AMSbench dataset at the provided URL, fostering transparency and repro-
ducibility in this emerging research area.

Table 1: Comparison between existing AMS datasets and benchmarks. Task includes three categories: P
(Perception), A (Analysis), and D (Design). Q&A stands for Question and Answer.

Dataset/Benchmark Modality Task Size Label Type Difficulty Level
AMSnet (Tao et al., 2024) Image-only P 1K Netlist %

Masala-CHI (Bhandari et al., 2025) Text & Image P 6K Netlist, Caption %

AnalogGenie (Gao et al., 2025) Text & Image D 3K Netilsit %

Analogcoder (Lai et al., 2025) Text-only D 24 Netlist "

MMCircuitEval (Zhao et al., 2025) Text & Image P&A&D 3k Q & A "

AMSbench(Ours) Text & Image P&A&D 8K Netlist, Caption, Q & A "

2 RELATED WORK

2.1 LLM FOR CIRCUIT DESIGN

LLMs have demonstrated remarkable potential in the field of EDA, excelling in tasks related to
system-level design (Yan et al., 2023), RTL (Blocklove et al., 2023; Fu et al., 2023), synthesis
and physical design of digital circuits. This success is primarily due to the modular nature of
digital circuit descriptions, which resemble software languages. However, AMS circuit designs,
with their transistor-level descriptions, pose a significantly greater challenge for LLMs in terms
of accurate understanding and description. Some exploratory work has been undertaken in AMS
circuit design (Pan et al., 2025; Fang et al., 2025). Artisian (Chen et al., 2024) develops a LLM that
automatically generates operational amplifiers by combining advanced prompt engineering techniques
like Supervised Fine-Tuning (SFT) and Tree of Thought. Analogcoder (Lai et al., 2025) proposes
using LLMs with predefined sub-circuit libraries to achieve an iterative design and optimization flow.
AnalogGenie (Gao et al., 2025) converts circuit topologies into Eulerian circuit representations and
uses SFT for synthesizing circuits based on the design requirements. To ensure that the generated
circuits can meet specifications, AnalogGenie applies Reinforcement Learning with Human Feedback
(RLHF) (Ouyang et al., 2022) as a post-training technique. ADO-LLM (Yin et al., 2024) combines
LLMs with Bayesian optimization to generate higher-quality candidate design samples, enhancing
efficiency in the transistor sizing process. Layout Copilot uses multiple intelligent agents to improve
the efficiency and performance of automated layout generation. AMSnet-KG (Shi et al., 2024)
employs a knowledge graph-based RAG (Retrieval-Augmented Generation) approach, based on
a large-scale, pre-constructed circuit database, to select and generate circuit topologies that meet
specifications. However, it is worth noting that these studies mainly focus on purely language-based
LLMs, while circuit design often relies heavily on schematic diagrams. Both Masala-CHAI (Bhandari
et al., 2025) and AMSnet (Tao et al., 2024) have pointed out that existing MLLMs still lack the
capability to effectively recognize circuit schematics.

2.2 BENCHMARKING FOR EDA

The academic infrastructure for LLM research in EDA has made significant progress. Abundant
available benchmarks and datasets have facilitated effective development of LLMs in EDA. Verilo-
gEval (Liu et al., 2023) and RTLLM (Lu et al., 2024) introduce benchmarks for evaluating RTL code
generation. However, these benchmarks focus primarily on digital circuits. Due to the complexity
and irregularity of analog circuits, AMS circuit design is highly experience-driven, making it difficult
to establish fair evaluation methods. Hence, benchmarks in the analog circuit domain remain scarce.
We summarize the existing datasets and benchmarks for AMS circuits in Table 1. Analogcoder (Lai
et al., 2025) proposes a benchmark to evaluate LLMs in AMS circuit design, categorizing circuits

3
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Figure 3: Pipeline of AMSbench construction process.

into three levels: easy, medium, and hard. However, it is limited to the main circuits and did not
touch any testbench. Currently, benchmarks in the AMS circuit and EDA domains are limited to
verbal questions. However, AMS circuit design is naturally multi-modal, as designers are required to
recognize, understand, and reason about circuit schematics.

3 AMSBENCH CONSTRUCTION

3.1 DATA COLLECTION AND CURATION

To cover a wide range of knowledge and typical question types in the AMS circuit domain, we gather
a diverse collection of research papers, textbooks (Razavi, 2005; Gray et al., 2009; Allen & Holberg,
2011; Sansen, 2007), commercial circuit datasheets and EDA tool. We convert all documents
from PDF to Markdown format using MinerU (Wang et al., 2024), enabling efficient extraction
of embedded visual elements such as circuit schematics. For schematic-to-netlist translation, we
utilize AMSnet (Tao et al., 2024) and OCR, which allows us to accurately recover component-
level connectivity and circuit topology. To enrich the dataset with semantic information, we use a
combination of manual annotations from field experts and outputs from state-of-the-art MLLMs (Hurst
et al., 2024; Yang et al., 2024a). We then apply carefully crafted prompt engineering and filter
strategies to generate detailed schematic captions. This process yields high-quality pairs of <circuit
schematic, caption>. For textbook-derived data, we organize content according to the logical structure
and chapter alignment of each source. For datasheet content, we extract structured performance
specifications associated with each circuit.

Based on the extracted information, we build a question–answer dataset, where questions are generated
through rules and manual design, and answers are obtained from both human experts and LLMs. We
adopted a multi-stage data quality control process, relying on professional circuit engineers as well as
doctoral and master’s students in circuit-related fields to filter and refine the generated data, thereby
assisting in the construction and quality assurance of AMSbench, as illustrated in Fig. 4.

3.2 EVALUATION

The goal of AMSbench is to thoroughly evaluate MLLMs on the potential applications and tasks in
the AMS circuit domain, as shown in Fig. 1. For the design of specific problems, we develop a multi-
dimensional evaluation framework that includes perception, analysis, and design. This framework
addresses the potential uses of MLLMs in assisting users with interpreting and designing circuit
schematics, both automatically and semi-automatically. Considering the complex data modalities and
diversity within the AMS circuit domain, the tasks encompass Visual Question Answering (VQA)
and Textual Question Answering (TQA). These include multiple-choice questions, computational
problems, and open-ended generative questions. We systematically construct questions for each task
at multiple levels to accommodate various difficulties and circuit types.

4
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Figure 4: Statistics and examples of AMSBench. Purple regions indicate perception task examples, whereas the
others correspond to analysis task examples. (a) Distribution of perception task data. (b) Distribution of analysis
task data.

Evaluation Dimensions For the perception tasks, we focus on recognizing elements in circuit
schematics. We define an element as any component or device represented by a line in a netlist, such
as transistors, resistors, subcircuit symbols, etc. As shown in Fig. 4, MLLMs are evaluated based on
three key aspects:

1. Accuracy in Element Counting: This measures how well the model can identify and count
the number of different elements in a schematic. We use tasks type-wise counting and element
classification.

2. Precision in Identifying Connectivity: This assesses the model’s ability to accurately determine
how elements are connected to each other. We use tasks connection judgment and connection
identification, where connection judgment uses true-false questions to decide whether two elements
are connected, and connection identification requires the model to state connecting elements.

3. Capability to Recognize the Entire Netlist: This evaluates whether the model can correctly identify
the complete netlist of the circuit. We use task topology.

Simulation

Specifications

Generated
topology

Generated
testbench

Given
testbench

Given
topology

TASK：Please generate a
<circuit> based on the  given
specification.

TASK：Please generate a
testbench based on the  given
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or PySPICE code

EXEMPLAR: SPICE testbench
netlist or PySPICE code

PROBLEM: specification PROBLEM: 
schematic image, netlist, metric

PREAMBLE：You are an analog integrated circuits expert.

Figure 5: Design task flow

Accurate identification of elements, connectivity, and ports
is fundamental to understanding and analyzing circuits.
The complexity of element types and their connections
in schematics makes this task particularly challenging. It
requires the MLLM to have a more rigorous perception
capability compared to traditional visual counting tasks.

The analysis tasks in AMSbench primarily assess the
MLLMs’ comprehension of circuit schematics. This in-
cludes recognizing and analyzing the functions of circuits,
as well as identifying key functional building blocks within
them, as illustrated in Fig. 4. Beyond schematic under-
standing, the analysis tasks also cover other critical aspects
of circuit design, such as interpreting signal waveforms,
evaluating switching timing, and analyzing layout-related
information. Additionally, we evaluate the understand-
ing of AMS circuits, such as trade-offs between different
circuit performance metrics by both LLMs and MLLMs. Accurately analyzing a circuit and its
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corresponding performance metrics is the foundation for ensuring accurate and effective circuit
design.

The design tasks in our study consider both circuit design and testbench design, as shown in Fig. 5.
Proper circuit design ensures that the functionality meets specifications, while effective testbench
design guarantees that the circuit’s performance can be accurately measured and validated. These two
tasks are central to the AI-driven automation of AMS circuit design. In setting up the circuit design
tasks, we adopt and expand upon the benchmark established by AnalogCoder (Lai et al., 2025).

Difficulty Levels We classify the questions into three difficulty levels. Specifically, for the percep-
tion task, we categorize the difficulty based on the number of elements in the circuit: simple (num <
9), medium ( 9< num < 16), and difficult (num > 16). For circuit functionality analysis, we classify
the problems according to the circuit type and group them into two levels based on their appearance
in educational stages: undergraduate and graduate levels. For testing the trade-offs between circuit
performances, we assign a classification suitable for engineers. For the design task, we classify the
circuits based on their complexity into three levels: simple, complex, and system-level circuits.

Table 2: Circuit design tasks. Number of (simple / complex / system-level) tasks are shown for each circuit type.
Circuit Type # of Tasks Circuit Type # of Tasks Circuit Type # of Tasks Circuit Type # of Tasks

Amplifier 7 / 0 / 0 Oscillator 0 / 2 / 0 Subtractor 0 / 1 / 0 LDO 0 / 1 / 0
Inverter 2 / 0 / 0 Integrator 0 / 1 / 0 Schmitt trigger 0 / 1 / 0 Comparator 0 / 1 / 0
Current mirror 2 / 0 / 0 Differentiator 0 / 1 / 0 VCO 0 / 1 / 0 PLL 0 / 0 / 1
Op-amp 2 / 2 / 0 Adder 0 / 1 / 0 Bandgap 0 / 1 / 0 SAR-ADC 0 / 0 / 1

Table 3: Testbench design tasks with number of metrics required per testbench suite.
ID Circuit Type # of Metrics ID Circuit Type # of Metrics ID Circuit Type # of Metrics

1 Cross-coupled differential amplifier 7 5 PLL 2 9 Unit capacitor 1
2 Comparator 2 6 MOS_Ron 1 10 Folded cascode OTA 5
3 Bootstrap 1 7 LDO 7 11 SAR-ADC 1
4 Telescopic cascode OTA 7 8 VCO 2 12 Bandgap 4

3.3 AMSBENCH STATISTICS

Fig. 4(a) illustrates the subtasks involved in the perception task along with the number of questions
at varying difficulty levels. Fig. 4(b) presents statistical information for the analysis task and its
various subtasks. The VQA tasks focus on evaluating the MLLM’s ability to interpret circuit-related
images, while the TQA tasks assess the model’s understanding of circuit knowledge and its awareness
of performance trade-offs. Table 2 and 25 present an overview of the design tasks for circuits and
testbenches, respectively. For the circuit design section, we incorporated the benchmarks provided
by AnalogCoder (Lai et al., 2025) and further extended them with additional circuit tasks, including
system-level circuit design. The testbench design tasks address a notable gap in the current community
by introducing a previously underexplored category.

4 EXPERIMENTS

4.1 MODELS

We perform experiments on mainstream closed-source MLLMs: GPT-4o (Hurst et al., 2024), Grok-
3 (gro, 2025), Gemini-2.5-pro (Team et al., 2023), Claude3.7 sonnet (Anthropic, 2024), Doubao-
1.5-vision-pro-32k (Guo et al., 2025b), and powerful open-source models: Kimi-VL (Team et al.,
2025), Qwen2.5-VL 72B (Yang et al., 2024a), DeepSeek-R1 (Guo et al., 2025a). We evaluate both
TQA tasks on all models, and VQA tasks on all models except DeepSeek-R1. We use all open-source
models with default parameters and deploy on up to 8 A100 GPUs.

4.2 METRICS

For multiple-choice questions, we adopt accuracy (ACC) as the evaluation metric. For multiple-
selection questions, we use the F1 score. For netlist recognition tasks, we define a Netlist Edit

6
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Distance (NED) as the evaluation metric, with the calculation procedure illustrated in Fig. 6. The
NED for each schematic image is normalized as shown in (1):

NEDnorm =
|GT ∪ Pred | − |GT ∩ Pred |

|GT |
(1)

（ ）（ ）

(a) Schematic

(d)

(b) GT (c) Pred

Figure 6: Edit distance computation be-
tween the GT and the predicted netlist.

For evaluating the circuit design tasks, we use pass@k as
the primary metric to measure the success rate of model-
generated circuits. Syntax@k and Metric@k are employed
to evaluate the generated testbenches. Syntax@k examines
the presence of syntactic errors that hinder simulation, and
Metric@k verifies the functional correctness of the corre-
sponding test circuits.

4.3 EXPERIMENTAL RESULTS

Perception Tasks: Table 4 presents the models’ performance on fundamental circuit schematic
recognition tasks. Specifically, component counting and classification, both of which are essential for
accurate netlist extraction. Gemini achieves the best overall results. However, due to the complexity
and diversity of component types, the models show limitations in accurate counting. For element
type classification, Gemini performs well, reaching 94% accuracy. Among open-source models,
Qwen2.5-VL achieves 86%, suggesting that open-source models still have room for improvement in
component type recognition.

The lower part of Table 4 presents the accuracy of MLLMs in identifying inter-device connectivity.
While the models can produce reasonably accurate predictions for local connections, they fall short
in reconstructing the complete netlist. Even netlists produced by the best-performing model, Gemini,
require substantial modifications to align with the ground truth. Closed-source models perform
significantly better on these tasks, whereas Kimi-VL fail to produce outputs in the correct format.

Table 4: Comprehensive comparison of models across perception tasks and circuit interconnect recognition.
Abbreviations adopted: Ele. Cls = Element Classification, Loc. Desc = Location Description, Conn. Judg =
Connection Judgment, Conn. Ident = Connection Identification.

Models
Total Counting Total Counting Type Counting Type Counting Ele. Cls

ACC (↑) MSE (↓) ACC (↑) MSE (↓) ACC (↑)

Gemini-2.5-pro 0.65 10.02 0.64 13.41 0.94
GPT-4o 0.51 19.05 0.54 28.18 0.91

Claude-3.7-sonnet 0.36 18.38 0.55 24.18 0.83
Grok-3 0.22 60.71 0.50 26.48 0.84

Doubao-1.5-vision-pro 0.24 38.13 0.51 24.76 0.93
Kimi-VL-A3B 0.15 49.19 0.44 34.96 0.66

Qwen2.5-VL-72B 0.43 19.59 0.49 18.59 0.86

Models
Loc. Desc Conn. Judg Conn. Ident Topology –

ACC (↑) ACC (↑) F1 (↑) NED (↓) –

Gemini-2.5-pro 0.61 0.85 0.88 0.91 –
GPT-4o 0.37 0.73 0.65 1.40 –

Claude-3.7-sonnet 0.48 0.76 0.71 1.65 –
Grok-3 0.50 0.70 0.65 1.84 –

Doubao-1.5-vision-pro 0.45 0.76 0.64 1.57 –
Kimi-VL-A3B 0.31 0.53 0.53 – –

Qwen2.5-VL-72B 0.56 0.77 0.52 2.38 –

Analysis Tasks: Table 5 summarizes the models’ capabilities of analyzing AMS circuits. In
schematic interpretation(Reasoning, Partition, Caption, Function), different MLLMs exhibit distinct
strengths: Gemini demonstrates the highest accuracy in identifying and analyzing functional building
blocks, while Claude-Sonnet provides more accurate overall descriptions of circuit behavior. Gemini
also demonstrated strong performance on other circuit-related images. Table 16 shows that current
models can achieve relatively high accuracy in analyzing circuit knowledge designed for undergradu-
ate and graduate education. However, they perform poorly in understanding the trade-offs between
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Table 5: Comparison of models on analysis tasks

Models
Reasoning Signal wave Switching timing Electrical characteristic Layout
ACC (↑) ACC (↑) ACC (↑) ACC (↑) ACC (↑)

Gemini-2.5-pro 0.92 0.94 0.96 0.92 0.75
GPT-4o 0.77 0.74 0.79 0.80 0.65

Claude-3.7-sonnet 0.91 0.86 0.87 0.92 0.83
Grok-3 0.61 0.84 0.85 0.82 0.63

Doubao-1.5-vision-pro 0.83 0.89 0.83 0.85 0.75
Kimi-VL-A3B 0.74 0.64 0.59 0.53 0.58

Qwen2.5-VL-72B 0.82 0.77 0.82 0.85 0.60

Models
Partition Caption Function (text) Function (image) TQA

F1 (↑) ACC (↑) ACC (↑) ACC (↑) ACC (↑)
Gemini-2.5-pro 0.80 0.70 0.95 0.94 0.72

GPT-4o 0.57 0.61 0.93 0.89 0.78
Claude-3.7-sonnet 0.64 0.98 0.88 0.74 0.74

Grok-3 0.59 0.41 0.77 0.22 0.74
Doubao-1.5-vision-pro 0.60 0.70 0.94 0.93 0.76

Kimi-VL-A3B 0.25 0.71 0.59 0.28 0.59
Qwen2.5-VL-72B 0.45 0.78 0.78 0.85 0.69

circuit performance metrics commonly encountered in industry. Even the best-performing model,
GPT-4o, only achieves 58% accuracy, indicating that LLMs currently lack a clear understanding of
the expected performance characteristics of each circuit in the design process.
Design Tasks: Table 6 shows the performance of the models in circuit design and testbench design
tasks. For circuit design, Grok-3 and Claude-Sonnet achieve the best results. However, for testbench
design, none of the current models can directly generate syntactically correct testbenches, with only
occasionally exceptions of GPT-4o. One possible reason is that the current pretraining data lacks
sufficient testbench-related knowledge. Additionally, the metrics that need to be measured vary across
different circuits, making testbench generation highly challenging.

Table 6: Comparison of models and circuit design and testbench design tasks. The data presents the average
results of all the circuits listed in Table 2. Detailed results are available in the appendix in Tables 18-27. Syntax:
generated testbench is syntactically correct to run simulation. Metric: generated testbench is topologically and
parametrically correct and produces the correct performance metric.

Model Circuit Design Testbench Design
Pass@3 Pass@5 Pass@10 Syntax@5 Metric@5

Gemini-2.5-pro 0.57 0.54 0.43 0 0
GPT-4o 0.47 0.49 0.42 0.084 0
Claude-3.7-sonnet 0.63 0.64 0.50 0 0
Grok-3 0.65 0.54 0.61 0 0
Doubao-1.5-vision-pro 0.45 0.24 0.15 0 0
Qwen2.5-VL-72B 0.47 0.41 0.33 0 0
Kimi-VL-A3B 0.41 0.25 0.13 0 0
DeepSeek-R1 0.55 0.51 0.45 - -

5 CHALLENGES AND POSSIBLE IMPROVEMENTS

Challenges of MLLMs in the interpretation of circuit-related images. Existing MLLMs remain
limited in accurately interpreting circuit schematics. Although some models can capture localized
connectivity patterns, their performance degrades when extracting complete netlists. A key challenge
lies in the domain gap between circuit schematics and the natural images typically used in MLLM
pretraining, which leads to misclassification of components—for example, failing to distinguish
between PMOS and NMOS transistors. In addition, MLLMs often struggle to correctly associate
pins and ports with their parent components, resulting in connectivity errors.

To enhance model’s recognition capability, one approach is to combine MLLMs with specialized
vision models such as object detection (Bhandari et al., 2025) or OCR, which improves baseline
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component recognition but does not fundamentally advance the MLLMs themselves. A more
promising direction is the construction of large-scale circuit-specific multimodal datasets, enabling
continual pretraining and post-training. We have conducted experiments on component grounding,
and the results show that MLLMs trained with such data exhibit improved perception of circuit
schematics, as illustrated in the Fig. 37.

Hallucinations in circuit analysis. In circuit analysis tasks, one major reason for poor perfor-
mance lies in the inability of the vision encoder to accurately and comprehensively embed visual
information, as discussed earlier. Another reason is the insufficient circuit-related knowledge of the
models themselves, which is also evident in text-only evaluation tasks. In existing works that combine
LLMs with AMS circuit design, LLMs are typically employed as analysis tools for downstream
design (Yin et al., 2024; Wei et al., 2025). A model with strong circuit analysis capabilities can
significantly reduce the parameter search space and partition the circuit into macros, thereby enabling
efficient layout generation. However, current models still lack the ability to accurately quantify
the trade-offs between circuit performance metrics, which limits their capability to recommend
appropriate circuit topologies under given target specifications.

One possible solution to enhance model performance in analysis tasks is to construct high-quality
datasets for training. However, due to the scarcity of documents related to circuit analysis and
design, training outcomes cannot be guaranteed. Another promising approach is to adopt Retrieval-
Augmented Generation (RAG), which dynamically collects high-quality multimodal data, cleans
it, and stores it in a vector database. During circuit analysis, the model can then retrieve relevant
knowledge from this database to support its reasoning and responses.

Struggles in AMS circuit design. Applying LLMs to AMS design involves three key stages:
topology design, testbench generation, and circuit sizing. End-to-end generation of directly usable
circuits remains highly challenging. For topology design, the primary requirement is to generate
novel yet functional circuits. Possible solutions include continual training of LLMs, combined with
prompt engineering. However, for complex and system-level circuits, directly producing a correct
design remains extremely challenging, as illustrated in Fig. 35. A divide-and-conquer strategy, where
submodules are designed and validated individually before integration, offers a more feasible path.
For testbench generation, the process is relatively standardized. Although it is still difficult to directly
generate usable testbenches, one feasible approach is leveraging predefined libraries and letting LLMs
perform targeted modifications. For circuit sizing, it is extremely difficult for an LLM to directly
produce circuits with desired sizing. One potential solution is to combine LLMs with traditional
black-box optimization algorithms, embedding domain knowledge into the optimization process to
accelerate convergence. Another promising approach is the use of multi-agent systems, where LLMs
emulate the workflow of human engineers. The former approach enables exploration of a broader
design space, albeit at the expense of efficiency, while the latter offers improved interpretability and
transparency, but the accumulation of hallucinations from each agent may negatively affect the final
performance.

6 CONCLUSION

This paper introduces AMSbench, a benchmark designed to evaluate the capabilities of MLLMs in the
AMS circuit domain. The benchmark comprehensively assesses model performance across three key
dimensions—schematic perception, circuit analysis, and circuit design—covering a variety of tasks.
AMSbench reveals significant limitations in current MLLMs, especially in schematic perception and
complex circuit design. While certain models perform adequately in basic component recognition
and simpler circuit analysis tasks, they notably struggle with advanced tasks, including accurate
schematic interpretation and system-level circuit design. Given the increasing interest in applying
MLLMs to automate AMS design processes, AMSbench provides an essential evaluation framework,
establishing a robust foundation for future advancements in this field. Achieving high-performance
scores on AMSbench would signify substantial progress and tangible benefits in the automation
of AMS circuit design. Future research will prioritize the expansion of datasets to enhance the
robustness and generalizability of multimodal models. It will investigate advanced methodologies,
such as RAG and RLHF, to augment design capabilities.
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REPRODUCIBILITY STATEMENT

We provide the complete examples of AMSbench in the Appendix C, and release the full evaluation
dataset at the provided anonymous URL to facilitate reproducibility.
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