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Self-derived Knowledge Graph Contrastive Learning for
Recommendation

Anonymous Authors

ABSTRACT
Knowledge Graphs (KGs) serve as valuable auxiliary information
to improve the accuracy of recommendation systems. Previous
methods have leveraged the knowledge graph to enhance item
representation and thus achieve excellent performance. However,
these approaches heavily rely on high-quality knowledge graphs
and learn enhanced representations with the assistance of care-
fully designed triplets. Furthermore, the emergence of knowledge
graphs has led to models that ignore the inherent relationships be-
tween items and entities. To address these challenges, we propose
a Self-Derived Knowledge Graph Contrastive Learning framework
(CL-SDKG) to enhance recommendation systems. Specifically, we
employ the variational graph reconstruction technique to estimate
the Gaussian distribution of user-item nodes corresponding to the
graph neural network aggregation layer. This process generates
multiple KGs, referred to as self-derived KGs. The self-derived KG
acquires more robust perceptual representations through the consis-
tency of the estimated structure. Besides, the self-derived KG allows
models to focus on user-item interactions and reduce the negative
impact of miscellaneous dependencies introduced by conventional
KGs. Finally, we apply contrastive learning to the self-derived KG to
further improve the robustness of CL-SDKG through the traditional
KG contrast-enhanced process. We conducted comprehensive ex-
periments on three public datasets, and the results demonstrate
that our CL-SDKG outperforms state-of-the-art baselines.

CCS CONCEPTS
• Information systems→ Recommender systems.

KEYWORDS
Recommendation system, contrastive learning, Knowledge graph

1 INTRODUCTION
Recommendation systems[16, 21, 50] play a crucial role in helping
online users discover relevant information by suggesting items
that align with their interests. Considering the interaction between
users and items as first-order neighbors of users in the user-item
graph neural networks (GNNs)[18, 24, 27, 58] have become widely
employed in the field of recommendation. Numerous studies have
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demonstrated that GNNs can capture high-order implicit connectiv-
ity in user-item interaction graphs, thereby improving the perfor-
mance of collaborative filtering [31, 42, 47]. However, when dealing
with a vast user-item interaction diagram [13, 35], unrelated items
may obscure the user’s genuine interests. In an attempt to mitigate
this selection error, some researchers often utilize message drop
techniques [2, 5, 7], randomly discarding outbound messages based
on the user-item diagram. Nevertheless, this approach can lead to
a sparser user-item interaction graph in extremely high sparsity
recommendation scenarios [15, 17, 23, 53], resulting in diminished
robustness of GNNs.

Subsequently, contrastive learning (CL) [19, 54, 55] offers a self-
supervised manner to learn user and item embeddings, demon-
strating its effectiveness in enhancing the robustness of GNNs.
Specifically, for each node in the user-item graph, its subgraph
undergoes random perturbation, involving the random discarding
of a subset of its subgraph edges. Notably, techniques like SGL
[38] and SLRec [46] leverage contrastive self-supervised tasks to
improve node representations in GNNs through self-discrimination
[39, 40, 49]. Then VGCL [45] samples the input graph to recon-
struct it and performs contrastive learning at both node and cluster
levels. Finally, CGCL [9] takes similar semantic structure repre-
sentations to design contrastive learning at three levels: neighbor
structure, candidate structure, and candidate neighbor, resulting
in high-quality node representations. However, in the process of
generating contrast subgraphs, the above methods disrupt the orig-
inal graph structure, potentially erasing valuable information and
consequently diminishing the representational power of nodes.

Recently, researchers have turned to Knowledge Graph (KG)
assisted GNNs [1, 6, 20, 25] to elevate the performance of recom-
mendation systems, which can overcome the potential disruption
caused by contrastive learning and enhance node representations.
Utilizing a relationship graph converter, RGTN [14] propagates in-
formation between nodes and employs various encoders to capture
both the structural and semantic features of nodes. Moreover, it
uses the attention fusion module to obtain the importance values
of knowledge graph nodes. Notably, KGCL [44] addresses noise
in knowledge graphs by incorporating additional supervised sig-
nals during the KG enhancement process, guiding cross-view con-
trastive learning paradigms that play an important role in unbiased
user-item interactions during gradient descent. Additionally, When
KGRec [43] conducts contrastive learning, it maintains consistency
between the two signals of knowledge and user-item interaction,
which employs the masking of important knowledge through high
rationalization scores. Despite these strengths, current KG-based
methods heavily depend on the quality of the used KG. Moreover,
an excessive reliance on KG may introduce a learning bias, where
models become dominated by KG features, potentially overlooking
valuable user-item connections in the original graph.

To address the challenges mentioned above and achieve excellent
performance and robustness, we present the Self-Derived subgraphs
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Contrastive Learning framework (CL-SDKG). In the initial step, we
use the graph from each GNN layer as input for the variational
graph reconstructor, allowing us to estimate the Gaussian distri-
bution of user-item nodes corresponding to the GNN aggregation
layer. This innovative approach enables the generation of multiple
knowledge graphs, referred to as self-derived knowledge graphs,
which can reduce undue reliance on the knowledge graph and
mitigate noise associated with it through the consistency of the
estimated structure. Moreover, the self-derived knowledge graphs
not only facilitate a better understanding of relationships between
user-item nodes but also serve as a mechanism for the model to com-
prehend and utilize valuable connections within the original graph.
This unique feature empowers the CL-SDKGmethod to comprehen-
sively leverage information from the original graph, avoiding biases
toward knowledge graphs. Additionally, we incorporate signals dur-
ing the original knowledge graph contrastive enhancement process
to conduct contrastive learning on the self-generated subgraphs.
This step further fortifies the model’s robustness, enabling it to
adapt more effectively to various user-item interaction scenarios
and suppress noise during gradient descent.

In summary, the main contributions of our paper are:
• We propose a novel recommendation algorithm CL-SDKG,
which has excellent robustness and better recommendation
performance, i.e., it can effectively reduce the noise infor-
mation brought by knowledge graphs and reduce excessive
dependence on knowledge graphs.

• We use a variational estimator to reconstruct the input graph
as a learnable version of the traditional knowledge graph,
which can effectively correct and supervise the model’s be-
havior during the learning process and enable the model to
learn effective knowledge connections of the data, without
overly relying on the traditional knowledge graph.

• We validated the effectiveness of CL-SDKG on three real-
world datasets. The experimental results strongly indicate
that CL-SDKG outperforms other advancedmethods in terms
of performance.

2 RELATEDWORK
2.1 GNN in Recommendation
Recommendation systems are increasingly gaining popularity among
users seeking personalized items. Traditionally, Relying on histori-
cal user-item interactions to uncover user preferences and interests,
collaborative filtering models [30, 56] have dominated the realm
of recommendation systems. However, these methods encounter
challenges stemming from intricate user behavior or data input
complexities. In response to these challenges, GNN-based recom-
mendation methods have garnered the attention of researchers.
Graph recommendation methods have proven to deliver impres-
sive recommendation performance, primarily owing to their adept-
ness in effectively leveraging graph structures to capture meaning-
ful connections between nodes during the iterative process. For
instance, AutoGCL [52] utilizes multiple graph view generators
to learn the probability distribution of input graphs. And it also
introduces sufficient enhanced variance in the contrastive learn-
ing process. To generate CL views, XSimGCL [48] utilizes invalid
graph enhancements, employing a simple and effective noise-based

embedding approach. LightGCN [10] enhances recommendation
performance by eliminating nonlinearity and obtaining the initial-
ization of embeddings by computing the network embedding on
the compressed graph for each node. This approach also alleviates
the over-smoothing phenomenon associated with sparse interac-
tion data in GNNS. However, the high sparsity of the user-item
interaction graph presents a challenge, as GNNs may lack sufficient
generalization ability, leading to an ineffective perception of the
dependency relationship between users and items.

2.2 Knowledge Graph
Enhanced knowledge graph recommendation involves two ways:
embedding enhancement and path enhancement. In the embed-
ded recommendation methods, the emphasis is on leveraging the
auxiliary information inherent in the knowledge graph. For in-
stance, Kopra [29] derives the corresponding user representation
by pinpointing relevant entities in the knowledge graph based on
the user’s click history. CKE [51], On the flip side, captures both
structural and semantic representations of items by extracting in-
formation from the heterogeneity of nodes and the knowledge
graph (KG), covering aspects such as structure, text, and vision.
In a similar vein, KGTORE [26] employs the knowledge graph to
learn potential representations of semantic features. This enables
the interpretation of user decisions as a personal sublimation of
item feature representations.

Enhancing path recommendation methods primarily focus on
the representations of meta-paths. In their work, [12] introduces
a three-way neural interaction model utilizing priority sampling
techniques to select better path instances. The model is based on
meta-paths, enhancing the representation ability of context, user,
and item, with the three elements reinforcing each other. RippleNet
[32] automatically extends users’ potential interests along links in
the KG, encouraging the propagation of user interests among knowl-
edge entities. In a similar vein, KGCN mines pertinent attributes
on the knowledge graph to efficiently capture correlations between
items. While path-based recommendation methods demonstrate
superior performance compared to embedding-based methods, as
they can capture higher-order knowledge perception dependencies,
they heavily rely on domain knowledge-based meta-path design.
Additionally, the exploration of different meta-paths involves sig-
nificant time costs.

2.3 Graph Contrastive Learning
Graph Contrastive Learning (GCL) has emerged as a prominent
trend in recent years within the research community. Many GCL
approaches [33, 38] incorporate additional supervisory signals from
raw data for recommendation. [44] introduces a universal Knowl-
edge Graph Contrastive Learning framework (KGCL) to reduce
noise information within KG-enhanced recommendation systems.
This approach utilizes the knowledge graph expansion pattern to
mitigate noise during information aggregation, leading to a more
resilient representation of item perception. KGRec [43] introduces
a novel self-supervised rationalization method, producing ratio-
nalization scores for knowledge triplets. Specifically, it integrates
generative and contrastive self-supervised tasks to enhance model
reconstruction by assigning high rationalization scores to crucial
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knowledge while masking it. However, GNNs combined with KG
recommendation methods [34, 36]heavily rely on the quality of
knowledge graphs. Moreover, excessive reliance on knowledge
graphs may cause the model to learn features biased towards the
KG, potentially overlooking useful connections between nodes in
the original graph. In comparison, our method CL-SDKG achieves
superior performance and robustness by utilizing self-generated
subgraphs from the original graph for contrastive learning.

3 PRELIMINARIES
In this section, we mainly introduce the key symbols and notations
used in our paper and formalize the definitions of our research prob-
lem. We adopt 𝜕 = (U,V), 𝑢 ∈ U and 𝑣 ∈ V represent individual
users and items, respectively. We construct a user-item interaction
diagram Gu = (𝑢, 𝐼, 𝑣) to represent whether the user and the item
have the interaction. Here, the presence of an interaction between
a user and an item is expressed as 𝐼 = 1. Conversely, the absence
of interaction is denoted as 𝐼 = 0. We use knowledge graphs con-
taining triples to represent the actual knowledge of related items,
represented as Gkg = (𝑒1, 𝑟𝑒1,𝑒2 , 𝑒2),𝑒1, 𝑒2 ∈ E𝑚 , where E is the𝑚-
dimensional vector set of knowledge entities, 𝑟𝑒1,𝑒2 represents the
relationship between two entities such as (engineer, build, house).
It’s crucial to emphasize that the entity set is not exactly equal to
the item set. Indeed, it is a subset of the entity set, enabling the re-
construction of meaningful connections between items and entities
within the knowledge graph.

We employ a variational estimator 𝐹 (Gi
kg |𝑢, 𝑣,G

i
u,Gkg), to esti-

mate the distribution of nodes corresponding to the iterated user-
item graph. This process yields multiple KGs, represented as Gi

kg
∗ .

Leveraging these KGs enhances our model’s ability to learn the rep-
resentation of the input graph, resulting in heightened robustness.

Finally, our task can be formally defined as follows: considering
a user-item interaction graph denoted by Gu , and a knowledge
graph represented by Gkg , Our objective is to develop a recom-
mendation model 𝐻 (𝑢, 𝑣 |Gu,Gkg,Gi

kg
∗), 𝜔), where 𝜔 represents

learnable parameters. The model outputs a value within the range
of [0, 1], indicating the likelihood of user 𝑢 interacting with item 𝑣 .

4 METHODOLOGY
In this section, wewill provide a detailed overview of CL-SDKG. The
overall framework of our CL-SDKG is illustrated in Figure 1. The
CL-SDKG comprises three main parts: (1) Knowledge aggregation
enhanced recommendation. (2) Variational graph reconstruction
and enhanced representation of self-derived KGs. (3) Contrastive
learning of self-derived KGs in user-item view. For initialization,
we use free embeddings 𝑢 ∈ U and 𝑣 ∈ V to represent user and
item nodes. The vectors 𝑢𝑖 and 𝑣 𝑗 correspond to user 𝑖 and item 𝑗

respectively. Subsequently, we will explore each component for a
more comprehensive understanding.

4.1 Knowledge Aggregation Enhanced
Recommendation

In dealing with a complex knowledge graph, we employ a funda-
mental principle involving the weighted learning of the probability
of knowledge triplet existence and the basic tenet of collaborative

interaction. The function applies a weighted graph attention mech-
anism to each knowledge triplet, incorporating learnable content:

𝐺𝑘𝑔
(
𝑒1, 𝑟𝑒1,𝑒2 , 𝑒2

)
=
𝑒1WQ ∗

(
𝑒2Wk ⊙ 𝑟𝑒1,𝑒2

)
√
𝑑

(1)

where 𝑒1, 𝑟𝑒1,𝑒2 , and 𝑒2 are entity representations of the head, rela-
tionship and tail.WQ andWk are the trainable weights of attention,
with a size of 𝑑 ×𝑑 . To capture the relevant entities, we rotate 𝑒1 to
the potential space of 𝑒2 by using the relationship 𝑟𝑒1,𝑒2 . We use a
knowledge triplet with a basic principle score ofGkg (𝑒1, 𝑟𝑒1,𝑒2 , 𝑒2) to
assist the recommendation system in enhancing recommendations.
To ensure comparability of the scores, we normalize the scores with
the following formulas:

𝜔
(
𝑒1, 𝑟𝑒1,𝑒2 , 𝑒2

)
=

exp
(
Gkg

(
𝑒1, 𝑟𝑒1,𝑒2 , 𝑒2

) )
∑
𝑒1,𝑟

′
𝑒1,𝑒2 ,𝑒

′
2∈𝜏𝑒1 exp

(
Gkg

(
𝑒1, 𝑟 ′𝑒1,𝑒2 , 𝑒

′
2

)) (2)

where 𝜏𝑒1 is the is the neighbors of 𝑒1, 𝜔
(
𝑒1, 𝑟𝑒1,𝑒2 , 𝑒2

)
is the nor-

malized scores, 𝑒′2 is the entity connected to 𝑒1, and 𝑟 ′𝑒1,𝑒2 is the
relations between 𝑒1 and 𝑒′2.

4.2 Variational Graph Reconstruction and
Enhanced Representation of Self-derived
Knowledge Graph

In the process of reconstructing variational graphs, we use VAE
to estimate the Gaussian distribution of nodes and edges in the
input graph to achieve graph reconstruction, thereby generating
new subgraphs.

VAE Brief. Given a training set, the variational autoencoder
[22] operates under the assumption that each sample 𝑥𝑖 is part
of it. Samples are constructed through a random process, where
𝑥 ∼ 𝑝𝛿 (𝑥 |𝑘). Additionally, we can derive the maximum likelihood
function:

log𝑝 (𝑥) = log
∫

𝑝𝛿 (𝑥 |𝑘)𝑝 (𝑘)d𝑘 (3)

where 𝑝 (𝑘) is the prior distribution of potential variables 𝑘 . How-
ever, since it is impossible for us to know all potential variables, VAE
adopts variational inference [8] and chooses to use inference mod-
els 𝑞𝜎 (𝑘 |𝑥) to model posterior distributions 𝑝𝛿 (𝑥 |𝑘). Furthermore,
variational autoencoders are optimized by minimizing evidence-
based lower bounds to obtain the best results:

𝐿𝑜𝑠𝑠𝐸𝐿𝐵𝑂 = −𝐸𝑘∼𝑞𝜎 (𝑘 |𝑥 ) [log(𝑝𝛿 (𝑥 |𝑘))] +𝐾𝐿[𝑞𝜎 (𝑘 |𝑥) | |𝑝 (𝑘)] (4)

where 𝑞𝜎 (𝑘 |𝑥) and 𝑝𝛿 (𝑥 |𝑘) represent the encoder and decoder
of the parameterized neural network; KL is the Kullback-Leibler
divergence [41] between 𝑞𝜎 (𝑘 |𝑥) and 𝑝 (𝑘), introducing constraints
to align it with the vicinity of a prior Gaussian distribution.

Then, we conveniently use Gaussian distribution of input graph
nodes and edges for graph reconstruction.

Graph Reconstruction. We aim to refactor the input user-
item interaction diagram and the initialized node representation.
The probability distribution of the input graph structure 𝑘 : 𝑦′ ∼
𝑝𝛿 (𝑦 |𝑘) is learnable. Each node in the input graph is encoded as
a Gaussian distribution 𝑞𝜎 (𝑘 |𝑦, 𝐸𝜆) = 𝑁 (𝑧𝑖 |𝜇𝜙 (𝑖), 𝑑𝑖𝑎𝑔(𝜎2𝜙 (𝑖))),
where 𝜇𝜙 (𝑖) and 𝜎2𝜙 (𝑖)represent the mean and variance of the corre-
sponding nodes, respectively. To leverage the deep representation
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Figure 1: The overall framework of CL-SDKG.

of user-item graphs more effectively, we estimate the mean and
variance of node distributions by utilizing GNN. After stacking
𝑁 multiple convolutional layers, we fuse the calculated mean and
utilize a Multi-Layer Perceptron (MLP) to calculate its variance.
Once the approximate posterior mean and variance are obtained,
we generate potential subgraphs 𝑘𝑖 by sampling in 𝑁 (𝜇𝑖 , 𝜎2𝑖 ). Since
this sampling process is non-differentiable, we adopt the reparame-
terization techniques to replace the sampling process:

𝜇 =
1
𝐿

𝑁∑︁
𝑛=1

𝜇𝑛 (5)

𝜎 = 𝑀𝐿𝑃 (𝜇) (6)

𝑘𝑖 = 𝜇𝑖 + 𝜎𝑖 ∗ 𝜉 (7)
where 𝜉 ∼ 𝑁 (0, 1) is the noise that follows a normal distribution.
Once the probability distribution of variables is estimated, our
primary objective is to reconstruct the original graph. Therefore,
we employ the inner product to calculate the probability score of
nodes 𝑖 and 𝑗 for connections:

𝑝 (intr𝑖 𝑗 = 1|𝑘𝑖 , 𝑘 𝑗 ) = sigmoid(𝑘⊤𝑖 , 𝑘 𝑗 ) (8)

where intr𝑖 𝑗 indicates whether there is interaction between nodes.
After deriving the subgraph 𝜁1, 𝜁2, we defined the consistency con𝑖
of the item’s knowledge graph structure based on the consistency
between graph encoded representations:

𝑐𝑜𝑛𝑖 = 𝑠 (𝑓𝜁 (𝑥𝑖 , 𝜁1), 𝑓𝜁 (𝑥𝑖 , 𝜁2)) (9)

where 𝑓𝜁 (·) represents the knowledge aggregation function for
relationship perception, and 𝑠 (·) is the cosine function for estimat-
ing the similarity between them. The consistency of the derived
knowledge structure can serve as a guide for each item, avoiding
certain deviations in the derived knowledge graph and alleviating
user-item interaction noise caused by random values of normal
distribution.

After obtaining the self-derived knowledge graph comparison
subgraph corresponding to each layer, we process it as a knowl-
edge graph. We can predict user interests more effectively by using
higher consistency in the knowledge graph structure to reduce
noise. To reduce noise in the subgraph, we entails identifying and
eliminating weakly correlated edges. Additionally, we incorporate
𝑐𝑜𝑛𝑖 into the data augmentation process for the user-item interac-
tion graph to mitigate the limitation of contrastive learning due to
pure drop operations. The specific formula for knowledge-guided
enhancement is as follows:

𝑤𝑢,𝑖 = exp (con𝑖 ) ;𝑝′𝑢,𝑖 = max
(
𝑤𝑢,𝑖 −𝑤min
𝑤max −𝑤min

, 𝑝𝜏

)
(10)

𝑝𝑢,𝑖 = 𝑝𝑥 • 𝜇𝑝 • 𝑝𝑢,𝑖 (11)
where 𝑝𝑢,𝑖 denotes the probability of the edge connected to the dis-
carded user 𝑢 and item 𝑖 .𝑤𝑢,𝑖 represents the attractiveness of item 𝑖

to user 𝑢. con𝑖 is the structural consistency score corresponding to
item 𝑖 . Then we normalize the maximum and minimum truncation
probabilities of𝑤𝑢,𝑖 , where 𝑝𝑥 is used to influence the strength of
the mean. Subsequently, we generate two mask vectors 𝑚𝑎𝑠𝑘1𝑢 ,
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𝑚𝑎𝑠𝑘2𝑢 based on the Bernoulli distribution:

𝜙 (Gu) = (𝜕,𝑀1
𝑢 ∗𝑉 ), 𝜙 (Gu) = (𝜕,𝑀2

𝑢 ∗𝑉 ) (12)

where 𝑓𝜙 (·) represents the operational symbols that enhance the
input graph and discard user-item interactions from the edge set 𝑉
based on inferred probabilities 𝑝𝑢,𝑖 .

4.3 User-item View Rationales Contrasting
After obtaining the enhanced self-derived knowledge graph, we
aim to preserve interactive connections that distinctly reflect user
interests with high rationality and effectiveness. To achieve this,
we opt to assign weights to each interaction edge based on the
average rationality score of the knowledge triplet from the original
knowledge graph. This approach effectively mitigates the impact
of interaction noise.

𝜈 =𝑚𝑒𝑎𝑛(𝐹 (𝑒1, 𝑟 , 𝑒2)) (13)

𝐹 (𝑒1, 𝑟 , 𝑒2) =
��𝜏𝑒1 �� · 𝜔 (𝑒1, 𝑟 , 𝑒2)

=

��𝜏𝑒1 �� · exp (𝑓 (𝑒1, 𝑟 , 𝑒2))∑
(𝑒1,𝑟 ′,𝑒′2)∈𝜏𝑒1 exp

(
𝑓

(
𝑒1, 𝑟 ′, 𝑒′2

)) (14)

where the lower 𝑣 indicates aweaker correlation between the knowl-
edge entities adjacent to the item and the corresponding recommen-
dation task in the knowledge graph. This correlation may introduce
deviations to the model. Consequently, we filter out these weak
connections with lower scores to enhance the model’s performance.
To address overfitting on user and item representations, we im-
plement a strategy involving polynomial distribution sampling to
eliminate edges originating from recommended connections. By
using the strategy, we effectively enhances the generalization and
robustness. We use a predefined feature fusion algorithm to acquire
the attempt-specific nodes of the item as contrastive embeddings.
We adopt iteratively LightGCN to represent the 𝐺𝑢,𝑖 :

𝑒𝑚𝑏𝑙𝑢 =
∑︁
𝑣∈𝜏𝑢

𝑥𝑙−1𝑣√︁
|𝜏𝑣 | |𝜏𝑢 |

; 𝑒𝑚𝑏𝑙𝑣 =
∑︁
𝑣∈𝜏𝑢

𝑥𝑙−1𝑢√︁
|𝜏𝑢 | |𝜏𝑣 |

(15)

After obtaining the acquisition of the representation for the user-
item interaction view, we aggregate the representations of each
layer to obtain the final comparison embedding. Then, we feed
enhanced comparison subgraphs into an MLP to further map them
into the same latent space:

𝑒𝑚𝑏∗𝑢 = 𝜎 (𝑥∗⊤𝑣𝑖 W∗
1 + 𝑏

∗
1)

⊤W∗
2 + 𝑏

∗
2 (16)

where W and 𝑏 are learnable weights and deviations. Furthermore,
to ensure alignment of item representations across different views
and enhance the robustness of the model, we incorporate a modified
InfoNCE loss for optimization. We set 𝜅 = exp(𝑠 (𝑒𝑚𝑏∗𝑣𝑖 , 𝑒𝑚𝑏

∗
𝑣𝑗
)/𝛽),

and 𝛾 = exp(𝑠 (𝑒𝑚𝑏∗𝑧𝑖 , 𝑒𝑚𝑏
∗
𝑣𝑗
)/𝛽)). This loss will assign a random

sample as a negative sample to each subgraph, and the specific
formula is as follows:

Loss𝐶𝐿−𝑆𝐷𝐾𝐺 =
∑︁
𝑣∈𝑉

− log
𝜅∑

𝑧∈{𝑣,𝑣′,𝑣′′ } (𝜅 + 𝛾) (17)

In the comparison loss, 𝑣 ′ and 𝑣 ′′ serve as negative samples ran-
domly drawn from sampled items. The similarity measurement 𝑠 (·)
is defined as the cosine similarity of the normalized vector. The

temperature hyperparameter 𝛽 regulates the difficulty of compari-
son compared to the target. A higher 𝛽 might make the comparison
more relaxed, with even slight differences being treated as similar,
while a lower 𝛽 would make the comparison more restrictive.

Furthermore, We have enriched the perceptual representation
of the existing knowledge graph, while combining self-derived
knowledge graphs and existing knowledge graphs to enhance the
recommendation system. Similarly, for the primary task, we uti-
lize 𝑦′𝑢𝑣 = 𝑒𝑚𝑏⊤𝑢 𝑒𝑚𝑏𝑣 as the prediction result for recommendation,
𝑒𝑚𝑏𝑢 is the enhanced user vector and 𝑒𝑚𝑏𝑣 is the enhanced project
vector. To refine the model parameters, we apply the widely em-
braced Bayesian Personalized Ranking (BPR) loss. We employ a
holistic loss function to optimize all losses:

𝐿𝑜𝑠𝑠𝑟𝑒𝑐 =
∑︁

(𝑢,𝑖,𝑧 ) ∈𝐷
− log𝜎

(
𝑦′𝑢𝑣 − 𝑦′𝑢𝑧

)
(18)

𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠𝑟𝑒𝑐 + 𝐿𝑜𝑠𝑠𝑚𝑎𝑠𝑘 + 𝜆1𝐿𝑜𝑠𝑠𝑘𝑔 + 𝜆2𝐿𝑜𝑠𝑠𝐶𝐿−𝑆𝐷𝐾𝐺 (19)

where 𝐿𝑜𝑠𝑠𝑘𝑔 represents the loss corresponding to the knowledge
graph, 𝐿𝑜𝑠𝑠𝑚𝑎𝑠𝑘 represents the mask loss. 𝜆1 and 𝜆2 are weights
associated with the loss of the knowledge graph and self-derived
subgraphs, respectively. These weights control whether the model
is more inclined to learn the representation of its nodes or the
representation of the knowledge graph nodes, and the sum of the
two is equal to 1. In addition, because 𝐿𝑜𝑠𝑠𝑚𝑎𝑠𝑘 enables the model
to reconstruct effective connections between relational contexts,
we add a mask loss [43] in CL-SDKG.

4.4 Complexity Analysis
In this section, we analyze the time complexity of the three main
modules in our CL-SDKG. (1) For knowledge aggregation enhanced
recommendation, we require the 𝑂 ( |𝐺𝑘𝑔 |𝑑) to calculate rationale
weighting and enhance the representation of KG, where |𝐺𝑘𝑔 | is
the number of knowledge triplets in KG. (2) For variational graph
reconstruction. CL-SDKG takes 𝑂 (( |𝑈 | + |𝑉 |)𝐿𝑑) to update GNNs,
where 𝐿 is the number of GNN layers. This module also requires
𝑂 (2|𝑉 |𝑑𝑁 + 2|𝑈 |) to generate self-derived subgraphs, where 𝐿 rep-
resents the number of non-zero elements in the adjacency matrix.
Besides, enhancing the representation of the self-derived subgraphs
incurs a cost of 𝑂 ( |𝐺𝑘𝑔 | + |𝑉 |𝑑). (3) For contrastive learning of
self-derived subgraphs in the user-item view, the module costs the
𝑂 (( |𝑒𝑚𝑏∗

𝑢1 | + |𝑒𝑚𝑏∗
𝑢2 |)𝑑).

5 EXPERIMENTS
5.1 Experimental Settings
5.1.1 Datasets. To thoroughly validate the effectiveness of CL-
SDKG and ensure a comprehensive evaluation of diversity, we
employed three distinct real-world datasets: Last FM, focusing on
music recommendations, MIND for news recommendations, and
Alibaba-iFashion, which caters to shopping recommendations. Fur-
thermore, to enhance the performance of recommendation systems
and mitigate noise introduced by knowledge graphs, we utilized
the approach outlined in [43] to preprocess the dataset. Table 1
summarizes statistical details regarding user-item interactions and
knowledge graphs for the three evaluation datasets.
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Table 1: Statistics of Three Evaluation Datasets.

Statistics Alibaba-iFashion Last-FM MIND

Users 114,737 23,566 100,000
Items 30,040 48,123 30,577

Interactions 1,781,093 3,034,796 2,975,319
Density 5.20E-04 2.70E-03 2.2E-4

Knowledge Graph

Entities 59,156 58,266 24,733
Relations 51 9 512
Triplets 279,155 464,567 148,568

5.1.2 Baseline Models. In our experiments, we select 14 advanced
recommendation algorithms as baselines for performance compari-
son. The description of these baselines is as follows.
Collaborative Filtering Method Recommendation.

• BPR [28]. It is an optimization standard directly aimed at
personalized ranking, which obtains the estimator of the
maximum posterior distribution through Bayesian analysis.

• NCF [11]. It is a universal framework rooted in neural net-
work collaborative filtering. Multi-layer perceptrons are em-
ployed to learn the interaction function between users and
items.

• GC-MC [3].It is a graph autoencoder framework based on
bipartite interactive graph differentiable message passing.
This algorithm utilizes message passing to generate potential
features of users and item nodes.

• LightGCN [10]. It is a streamlined Graph Convolutional
Network (GCN) model, obtaining user and item represen-
tations through linear propagation on the user-item inter-
action graph. The final representation is determined by the
weighted sum of representations learned across all layers.

• SGL [29]. It is a multi-to-many seq2seq architecture trained
usingMNMT targets, which has excellent scalability for tasks
such as cross-language AMR parsing.

Embedding-based Knowledge-aware Recommendation.

• CKE [51]. It is an integrated framework that utilizes collab-
orative learning to filter latent representations and semantic
representations of items in a knowledge base.

• KTUP [4]. It considers various preferences when translating
users into items, and then combines multiple transmission
schemes with KG to complete model joint training.

GNN-based KG for Recommenders.

• KGNN-LS [33]. It entails a knowledge-aware Graph Neural
Network incorporating label smoothing regularization. The
knowledge graph transforms into a user-specific weighted
graph, and a graph neural network is then applied to compute
personalized item embeddings.

• KGCN [34]. It is a comprehensive framework designed to ef-
ficiently capture the correlation between items by extracting
pertinent attributes from a knowledge graph.

• KGAT [36]. It pertains to knowledge graph attention net-
works, explicitly modeling high-order connections in the
knowledge graph in an end-to-end manner.

• KGIN [37]. It represents a novel information aggregation
scheme that recursively integrates relational sequences of
distant connections. This algorithm extracts valuable infor-
mation related to user intent and encodes it into representa-
tions of both users and items.

Self-Supervised KG for Recommenders.
• MCCLK [57]. It considers three graph views for knowledge
graph recommendation: a global-level structural view, a local-
level collaborative view, and a semantic view.

• KGCL [44]. It is a universal knowledge graph contrastive
learning framework. This framework can reduce the informa-
tion noise in knowledge graph-enhanced recommendation
systems.

• KGRec [43]. It integrates generative and contrastive self-
monitoring tasks, providing recommendations through ra-
tional blocking.

5.1.3 EvaluationMetrics. We adopt commonly used Recall@20 and
NDCG@20 as evaluation indicators to measure the performance of
our CL-SDKG and baselines. Furthermore, for a fair performance
evaluation, we partition the datasets into three segments for each
algorithm. Specifically, 70% is allocated for training, 10% for tuning
hyperparameters, and 20% for testing.

5.1.4 Parameter Settings. Using PyTorch as our deep learning frame-
work, we have implemented several baseline models by utilizing ei-
ther official or third-party code. To further refine our proposed algo-
rithm, we performed a hyperparameter search on the weight ratios
associated with self-derived knowledge graphs and external knowl-
edge graphs. Moreover, we search the weight of 𝐿𝑜𝑠𝑠𝐶𝐿−𝑆𝐷𝐾𝐺 in
the range of {0.1,. . . ,0.5,. . . ,0.9}, search the temperature of the CL
in the range of {0.1,. . . ,0.5,. . . 0.9}, and we set masking sizes in the
range of {128, 256}, maintaining proportions from from {0.2, 0.4, 0.6,
0.8}. Additionally, for all GNN-based methods, the number of GNN
layers is fixed at 2.

5.2 Overall Performance Experiments
As shown in Table 2, we present a comparison between our CL-
SDKG and baselines on the three real datasets. Based on the results,
we draw the following observations.

Our proposed CL-SDKG algorithm outperforms others in both
Recall and NDCG evaluation metrics. This superiority can be pri-
marily attributed to two factors. Firstly, we employ a variational
estimator to estimate the distribution of each node and introduce
noise, significantly enhancing the model’s robustness during the
reconstruction process. Additionally, the contrastive learning of
self-generated subgraphs diminishes the model’s reliance on Knowl-
edge Graphs (KG), thereby placing greater emphasis on discerning
meaningful connections between user-item interactions and more
effectively capturing user interest representations.

The approach of combining knowledge graphs does not consis-
tently outperform the Collaborative Filtering Method. It is evident
that, in both datasets, CKE and KTUP demonstrate superior rec-
ommendation performance compared to BPR, NCF, GC-MC, and
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Table 2: The overall performance evaluation results

Model Last-FM Alibaba-iFashion MIND

Recall NDCG Recall NDCG Recall NDCG

BPR 0.0690 0.0582 0.0822 0.0501 0.0385 0.0253
NCF 0.0699 0.0615 0.0506 0.0276 0.0308 0.0237

GC-MC 0.0709 0.0631 0.0845 0.0502 0.0386 0.0261
KGCL 0.0905 0.0769 0.1146 0.0719 0.0399 0.0247

LightGCN 0.0738 0.0647 0.1058 0.0652 0.0419 0.0253
SGL 0.0879 0.0775 0.1141 0.0713 0.0429 0.0275
KTUP 0.0865 0.0671 0.0976 0.0634 0.0362 0.0302

KGNN-LS 0.0881 0.0690 0.0983 0.0633 0.0395 0.0302
KGRec 0.0928 0.0792 0.1179 0.0739 0.0381 0.0279
KGAT 0.0870 0.0743 0.0957 0.0577 0.0340 0.0287
KGIN 0.0900 0.0779 0.1144 0.0723 0.0357 0.0225

MCCLK 0.0671 0.0603 0.1089 0.0707 0.0327 0.0194
CKE 0.0845 0.0718 0.0835 0.0512 0.0387 0.0247
KGCN 0.0879 0.0694 0.0983 0.0633 0.0396 0.0302

CL-SDKG 0.0939 0.0813 0.1192 0.0748 0.0433 0.0331

LightGCN. However, the performance of SGL stands out even more,
precisely highlighting the limitations of Knowledge Graphs (KG)
in recommendation tasks. This phenomenon is particularly pro-
nounced in datasets with complex knowledge graphs and sparse
interactions.

The knowledge-aware recommendation models based on GNNs
outperform the embedding-based models. It is evident that, in com-
parison to BPR and NCF, the knowledge-aware recommendation
model based on GNN exhibits superior performance. This advan-
tage arises from the linear propagation modeling utilized in the
embedding model, whereas GNNs can capture more intricate and
high-order information within the knowledge graph.

In the comparison between contrastive learning models (such
as MCCLK and KGCL) and unsupervised models (such as KGIN),
no model consistently excels on all datasets. The inconsistency
observed could stem from the limitations of random graph enhance-
ment or visually handcrafted cross-view pairing. These methods
may fall short in fully uncovering genuinely valuable knowledge
graph information for encoding user interests.

5.3 Weight Experiment of KG and
Self-Generated Subgraphs

To evaluate the influence of weights 𝜆2 and 𝜆1 associated with
KG and self-generated subgraphs on our CL-SDKG, we vary the
corresponding weight values within the range of (0.2, 0.8).

As shown in Figure 2, it is observed that the impact of 𝜆2 and
𝜆1 on CL-SDKG is not very significant. And when 𝜆2 = 0.6 and
𝜆1 = 0.4, we can see that our CL-SDKG obtains the best perfor-
mance. The model performs better when the weights of KG and
self-derived knowledge graphs are evenly matched in contrastive
learning, indicating good robustness. Additionally, when 𝜆2 is var-
iedwithin the range of (0.2, 0.4) and (0.6, 0.8), there is no substantial
improvement in the overall performance of the model. This obser-
vation precisely underscores the limitations of KG in optimizing
recommendation tasks, affirming the effectiveness of our work.
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Figure 2: The impact of 𝜆1 and 𝜆2 on CL-SDKG.

5.4 Ablation Experiment
In this section, we conduct ablation experiments about losses to
evaluate the impact of different losses on our CL-SDKG.

Based on the results shown in Table 3, 𝐿𝑜𝑠𝑠𝑟𝑒𝑐 is the loss we
only calculate for the recommendation task and use that loss to
update the model. 𝐿𝑜𝑠𝑠𝑟𝑒𝑐 + 𝐿𝑜𝑠𝑠𝑚𝑎𝑠𝑘 is the addition of the loss on
the MASK task to update the model based on the previous ones.
𝐿𝑜𝑠𝑠𝑟𝑒𝑐 + 𝐿𝑜𝑠𝑠𝑚𝑎𝑠𝑘 + 𝐿𝑜𝑠𝑠𝑘𝑔 is the experiment where we do not use
𝐿𝑜𝑠𝑠𝐶𝐿−𝑆𝐷𝐾𝐺 . And the last is the full version of our CL-SDKG. It
is evident that when employing different losses to optimize the
model, CL-SDKG with all losses in this paper achieves the best per-
formance. In comparison to other variants such as our CL-SDKG
without 𝐿𝑜𝑠𝑠𝐶𝐿−𝑆𝐷𝐾𝐺 , the full version of our CL-SDKG demon-
strates the most effective recommendation performance on three
real datasets. This underscores the significance of our proposed
self-generating subgraph contrastive learning module, which signif-
icantly enhances the recommendation performance of our model.

5.5 Robustness Analysis
In this section, we delve into the robustness of our CL-SDKG from
two perspectives: the number of layers and time parameters. Ini-
tially, we investigate the impact of graph inference layers on the
performance. Subsequently, we further demonstrate the robustness
of our CL-SDKG by examining the influence of temperature on con-
trastive learning. As shown in Figure 3, we compare our CL-SDKG
with two state-of-the-art models based on the GNN.

The impact of GNN-Layers. As Figure 3 shows, in the Last-FM
and Alibaba-iFashion datasets, we notice that as the number of
graph inference layers increases, the performance of recommenda-
tions gradually improves and then reaches a plateau. Specifically,
when the layer value is 1, the performance of all comparison meth-
ods is the worst. As the number of layers increases, other compari-
son methods vary widely, while our method consistently performs
the best and demonstrates stable improvement. This suggests that
when the number of layers is small, the graph network struggles to
accurately estimate node distribution, while when the number of
inference layers is excessively high it can lead to instability in esti-
mation quality due to over-smoothing. It is evident that CL-SDKG
outperforms other models overall and exhibits stronger robustness.

The impact of Temperature. Furthermore, as depicted in Fig-
ure 4, owing to the incorporation of contrastive learning in CL-
SDKG, we investigated the influence of temperature on contrastive
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Table 3: The impact of different losses on CL-SDKG

CL-SDKG(Loss)
Last-FM Alibaba-iFashion MIND

Recall NDCG Recall NDCG Recall NDCG

𝐿𝑜𝑠𝑠𝑟𝑒𝑐 0.0815 0.0705 0.1187 0.0745 0.0261 0.0145
𝐿𝑜𝑠𝑠𝑟𝑒𝑐 + 𝐿𝑜𝑠𝑠𝑚𝑎𝑠𝑘 0.0842 0.0737 0.1183 0.0741 0.0371 0.0291
𝐿𝑜𝑠𝑠𝑟𝑒𝑐 + 𝐿𝑜𝑠𝑠𝑚𝑎𝑠𝑘 + 𝐿𝑜𝑠𝑠𝑘𝑔 0.0921 0.0783 0.1178 0.0735 0.0374 0.0270
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Figure 3: The impact of GNN-Layers

learning by comparing it with other models at varying temperature
values. The results affirm the overall superiority of CL-SDKG com-
pared to other models. Modifying the temperature values does exert
a certain impact on the model’s performance, but for CL-SDKG,
the curve of change is relatively smooth, indicating it is not very
sensitive to hyperparameter variations and possesses a considerable
degree of robustness. In summary, CL-SDKG outperforms other
advanced algorithms in terms of recommendation performance and
robustness.

6 CONCLUSION
In this paper, we propose a novel self-derived knowledge graph con-
trastive learning (CL-SDKG) for recommendation. Our CL-SDKG
employs a variational estimator to estimate the distribution of input
graph nodes for deriving subgraphs that align with the original
input graph. We utilize contrastive learning on user-item views
to optimize the recommendation task. Experimental results on
multiple datasets demonstrate the remarkable advantages of our
CL-SDKG compared to state-of-the-art methods. In future work,
we aim to further explore effective ways to integrate self-generated
subgraphs with knowledge graphs, such as through graph adver-
sarial generative learning and hypergraphs. This direction holds
the potential to offer more possibilities in combining self-generated
subgraphs and knowledge graphs.
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