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Abstract

Iterative imputation is a prevalent method for missing data imputation, where
each feature is imputed iteratively by treating it as a target variable estimated
from all other features. However, iterative imputation method suffers from two
principal limitations: ❶ it imposes a single parametric model form to impute all
features, neglecting the potential for optimal models to vary among features, which
risks model misspecification; and ❷ it assumes every feature contains missing
values, overlooking the potential presence of non-missing features, termed as
oracle features, which are informative for imputation. To address these limitations,
we propose kernel point imputation (KPI), a bi-level optimization framework
for iterative missing data imputation. At the inner level, KPI adaptively learns
the optimal model form for each feature within a reproducing kernel Hilbert
space, addressing limitation ❶. At the outer level, KPI utilizes oracle features as
supervisory signals to iteratively refine the imputations, addressing limitation ❷.
Experiments demonstrate that KPI outperforms competitive imputation methods.
Code is available at https://github.com/FMLYD/kpi.git.

1 Introduction

Missing data are ubiquitous in real-world data collection and analytics [25, 46, 39]. For example, in
manufacturing, temperature sensors may fail due to overheating or electrical disruptions, compromis-
ing data integrity and impeding analytical workflows [1]. Similarly, equipment-monitoring systems
can experience connectivity loss in electrical sensors, impeding fault detection and introducing
security risks [36, 35]. These issues highlight the importance of missing data imputation (MDI)
techniques, which aim to recover missing data using observed data, thereby enhancing the integrity
of collected datasets [40, 38] and the reliability of subsequent data-driven applications [3, 2, 33, 43].

Existing MDI methods can be broadly categorized as discriminative or generative [7]. On the one
hand, discriminative methods, such as statistical imputation (e.g., mean and median imputation [45])
and iterative imputation (which iteratively estimates missing values using univariate models [27, 30]),
have been well developed. On the other hand, generative methods have recently attracted attention
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for their capacity to model complex data structures [1]. However, they often encounter training
challenges [19, 26] or rely on strong data assumptions [42, 28]. Empirically, generative methods
are frequently outperformed by discriminative methods [46, 24]. Therefore, discriminative methods
remain the preferred choice for MDI in practice [38].

Among discriminative methods, iterative imputation is widespread for its plain implementation
and strong performance. This approach specifies a univariate model for each feature conditioned
on the rest and iteratively updates missing values until convergence [27]. Despite its popularity,
standard iterative imputation faces two significant limitations. ❶ it imposes a single parametric
model form to impute all features, which risks model misspecification, as features often exhibit
heterogeneous dependencies that cannot be adequately captured by a fixed-form parametric model [7].
❷ it assumes every feature contains missing values, which neglects the potential of oracle features,
i.e., non-missing features, to serve as high-quality supervisory signals for imputation.

To counteract these two limitations, we reformulate iterative imputation as a bi-level optimization
problem. To address limitation ❶, the inner-level optimization adaptively selects functional forms
from a reproducing kernel Hilbert spaces (RKHS) for each feature, reducing model misspecification.
To address limitation ❷, the outer-level optimization aligns the imputed values with the oracle features,
leveraging them as direct supervisory signals. Subsequently, we propose kernel point imputation
(KPI), which expresses the optimal model as a linear combination of kernel functions, enabling
efficient solution via stochastic gradient descent. Furthermore, we design an adaptive kernel ensemble
strategy to dynamically combine kernels, thereby enhancing model expressiveness and alleviating
hyperparameter selection challenge amidst incomplete data.

Contributions. The key contributions of this study are summarized as follows:

• We identify two critical limitations in current iterative imputation methods: ❶ it imposes a single
parametric model form to impute all features, which risks model misspecification, and ❷ it
assumes every feature contains missing values, which overlooks the utility of oracle features.

• We introduce KPI, a bi-level MDI framework that addresses the identified limitations while
remaining compatible with gradient-based optimizers. Additionally, we develop a kernel ensemble
strategy to address the difficulty of hyperparameter selection amidst incomplete data.

• We conduct extensive experiments to demonstrate the superiority of KPI over competitive baseline
methods. Our results also confirm that both the model form optimization and the utilization of
oracle features can effectively enhance imputation performance.

2 Preliminaries

This study focuses on the MDI problem as an end goal. We do not treat imputation as a preprocessing
step for downstream tasks [7], such as time-series forecasting [33] or pseudo-labeling [12], as these
settings typically require joint optimization with task-specific objectives [17].

The MDI problem is specified by the following core components: ❶ Ideal matrix X(id) ∈ RN×D: the
non-missing (ideal) data matrix with N samples and D features; ❷ Missingness matrix M ∈ RN×D:
a binary matrix where Mn,d = 1 indicates missingness and Mn,d = 0 otherwise; ❸ Observed
matrix X(obs) ∈ RN×D: the data matrix containing missing values, expressed as X(obs) = X(id) ⊙
(1−M) + nan⊙M; ❹ Imputation matrix X(imp) ∈ RN×D: the matrix that replaces the missing
values in X(obs) with imputed values. On this basis, the task of MDI is to construct an imputation
matrix X(imp) based on X(obs) that closely approximates X(id). Different imputation methods differ
in how they map X(obs) to X(imp).

A prevalent family of methods is iterative imputation, which iteratively treats each feature as a target
variable and estimate its missing values from the remaining features. In the training stage, for arbitrary
1 ≤ d ≤ D, define the target feature Y

(obs)
d = X

(obs)
·,d . The method fits an imputation model fθ that

learns the dependency between the target feature and the other features by solving

min
θ

∥∥∥Y(obs)
d − fθ(X(obs)

·,−d )
∥∥∥2
2
, (1)

where X
(obs)
·,−d denotes X(obs) with the d-th column removed. This procedure is repeated for d =

1, ...,D, yielding D univariate imputation models. In the inference stage, imputation is performed
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(a) The implication of model misspecification.
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(b) The implication of overlooking oracle features.

Figure 1: Case study illustrating the limitations of iterative imputation. In panel (a), circular and
cross markers indicate observed and missing values, respectively, while lines represent imputation
model outputs. In panel (b), “✓” denotes whether a sample can be used for training the imputation
model for Y ; dark areas indicate missing indices in Y at missing ratios of 50% (left) and 75% (right).

iteratively: for each target feature, its missing values are estimated using the corresponding univariate
model, conditioning on the current values of the remaining features (including values imputed in
earlier steps). The resulting imputed features form the imputation matrix X(imp).

3 Methodology

3.1 Motivation

In this section, we discuss two limitations inherent to standard iterative imputation. ❶ It imposes
a single parametric model form to impute all features, such as a linear model [27] or a decision
tree [30]. This rigidity risks model misspecification, as the optimal functional form often varies
across features due to heterogeneous dependencies with other features [7]. For example, in a
manufacturing process, temperature may depend linearly on pressure, while vibration could depend on
pressure nonlinearly. A fixed parametric form cannot accommodate such heterogeneous dependencies,
resulting in suboptimal imputation performance. ❷ It assumes every feature contains missing
values. This assumption ignores the potential of oracle features—features that are fully or nearly non-
missing—to provide high-quality supervision for the imputation process. In practice, oracle features
are ubiquitous, such as demographic variables in healthcare records or reliable sensor readings in
industrial systems. By neglecting these features, current iterative imputation suffers from limited
supervisory signals, particularly in regimes with high missing ratios.

Case study. To substantiate the claims above, a case study is conducted. On limitation ❶, Fig. 1
(a) demonstrates that a fixed model form leads to model misspecification. In the left panel, a linear
model accurately fits the linear feature well but underfits the others; in the right panel, a nonlinear
model fits the sine feature well but overfits the others. Therefore, enforcing a single parametric model
form risks model misspecification that limits imputation performance. On limitation ❷, Fig. 1 (b)
illustrates that overlooking oracle features reduces the sample size usable for training fθ. To impute
the target feature Y , iterative imputation fits fθ using X1, . . . , X4 as inputs, and trains it only on
samples where Y is observed. Under high missingness, only a handful of samples remain (two in the
right panel), which is inadequate for learning a reliable estimation model. In contrast, X1,..., X4 are
non-missing oracle features, yet the method does not leverage them to provide additional supervision,
thereby missing an opportunity to improve imputation accuracy.

These limitations underscore the need for an improved iterative imputation approach. In particular,
there are three key questions that warrant investigation: (1) How to select the optimal model forms
for each feature to reduce model misspecification? (2) How to incorporate oracle features for training
imputation models? (3) Can these improvements enhance imputation performance in practice?

3.2 A bi-level optimization framework for iterative imputation

To address the two limitations above, we propose a novel bi-level optimization framework for iterative
imputation. The framework learns feature-specific model forms within a reproducing kernel Hilbert
space (RKHS) and integrates oracle features as explicit supervisory signals.
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• To address limitation ❶, we replace the fixed parametric estimator (fθ in (1)) with a nonparametric
function f optimized in an RKHSH. Taking the d-th feature as the target feature, we reformulate
the imputation task as a regularized functional optimization problem:

f∗ = argmin
f∈H

∥∥∥Y(obs) − f(X(obs)
·,−d )

∥∥∥2
2
+ λ∥f∥2H, with Y(obs) = X

(obs)
·,d , (2)

where f∗ is the optimal estimator for imputing the d-th feature. By optimizing overH, the estimator
can adapt its form to each feature, reducing the risk of misspecification.

• To address limitation ❷, we incorporate oracle features as supervisory signals for imputation.
Suppose X(imp) = X(obs) + X(miss), where X(miss) contains the imputed values to be learned
on missing entries (M = 1) and is fixed to nan elsewhere. For an oracle feature Y(obs) with
its corresponding optimal estimator f∗, we refine the imputations of the remaining features by
updating only their missing entries while keeping observed values fixed:

min
X(miss)

∥∥∥Y(obs) − f∗
(
X

(imp)
·,−d

)∥∥∥2
2
. (3)

This formulation is motivated by the following perspective: if X(imp) is correctly imputed, the
optimal estimator f∗ should produce estimates consistent with Y(obs). Conversely, large estimation
errors indicate that the current X(imp) violates the dependency encoded by f∗. This process
exploits oracle features as effective supervisory signals to update the other features.

Suppose X = X
(imp)
·,−d and Y(obs) = X

(obs)
·,d , combining (2) and (3) immediately yields:

min
X(miss)

min
f∈H

∥∥∥Y(obs) − f(X)
∥∥∥2
2
+ λ∥f∥2H, (4)

which is performed for d = 1, ...,D, treating each feature (including oracle features) in turn as the
target feature Y(obs). This bi-level optimization addresses both limitations of iterative methods.

3.3 Kernel function, universal property and learning objective

To solve the inner loop in (4), we approximate the optimum estimator f∗ via Gaussian kernels. We
start by clarifying key properties of kernel functions in Definition 3.1 and 3.2.

Definition 3.1 (Kernel function). Let X be a non-empty set. A function K : X × X → R is a
kernel function if there exists a Hilbert spaceH and a feature map ψ : X → H such that ∀x, x′ ∈ X ,
K(x, x′) := ⟨ψ(x), ψ(x′)⟩H .

Definition 3.2 (Universal kernel). For X a compact Hausdorff space, a universal kernel ensures
that any continuous function e : X → R can be approximated arbitrarily well within the RKHSH.
Specifically, for any ϵ > 0, there exists f ∈ H such that: supx∈X |f(x)− e(x)| ≤ ϵ.

The Gaussian kernel is defined by K(x, x′) = exp(−∥x− x′∥2 /2σ2) and is universal in the sense
of Definition 3.2 [29]. It implies that the RKHS of Gaussian kernel, defined asH = span{K(·, x) |
x ∈ X}, admits uniform approximation of any continuous function.

Lemma 3.3 (Representer theorem). Suppose h(∥f∥) : R+ → R is a non-decreasing function.
The minimizer of an empirical risk functional regularized by h(∥f∥) admits the form: f∗(·) =∑n

i=1 αiK(·, xi) where α = (α1, . . . , αn)
⊤ and K is the associated kernel function.

Lemma 3.4. Let Ys,Yt ∈ RB×1 be the target feature and Xs, Xt be the corresponding input
features; Suppose f∗ is the optimal model minimizing the empirical risk in the inner optimization of
(4), its output on Xt is given by f∗(Xt) = KXtXs · α, where α = (K+ λI)−1Ys; KXtXs is the
kernel matrix computed with Xt and Xs.

SinceH may be infinite-dimensional, directly identifying f∗ ∈ H is intractable. Lemma 3.3 yields a
finite-dimensional characterization of f∗, and Lemma 3.4 further implies that, given two batches of
target features (Ys, Yt) and input features (Xs, Xt), the outputs of f∗ on Xt admit the closed form:

f∗(Xt) = KXtXs(KXsXs + λI)−1Ys, (5)
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Figure 2: Visualization of the workflow of KPI, where the dataset contains 5 samples and 4 features.
The sampling batch size is set to 2. The last column is the oracle feature without missing values.

Therefore, the output of f∗ is expressed as a combination of kernel evaluations, retaining feature-wise
adaptation of model form while reducing (4) to a differentiable loss function:

min
Xs,Xt

∥∥Yt −KXtXs(KXsXs + λI)−1Ys
∥∥2
2
. (6)

The tuning of kernel hyperparameters (e.g., the Gaussian bandwidth) is notably challenging amidst
incomplete data. To alleviate this problem, we employ multiple kernels with distinct parameters
and learn to ensemble them adaptively. Suppose K1,K2, ...,KE are kernel matrices with different
hyperparameters, ∆ ∈ RK is a learnable simplex vector; we form the ensemble kernel as K∆ =
K1∆1 + ...+KE∆E. Putting together, the final objective becomes:

P =
∥∥Yt −K∆

XtXs(K∆
XsXs + λI)−1Ys)

∥∥2
2
. (7)

3.4 Overall workflow

While the learning objective is well defined, how to use it for imputation remains unclear. To this end,
we propose the kernel point imputation (KPI) method, which iteratively minimizes the objective (7)
to refine imputation of missing values. The core procedure is shown in Fig. 2 and detailed as follows.

Initialization. Given the incomplete dataset X(obs), we initialize missing values using the mean
of observed steps, obtaining an initial imputation matrix Ximp. The imputed values are treated as
learnable parameters, and their gradients are tracked throughout training.

Forward Pass. Two batches are sampled from the imputation matrix. In each iteration, a column
is randomly chosen as the target feature (Ys, Yt ∈ RB×1), with the remaining columns as input
features (Xs, Xt ∈ RB×(D−1)), where B represents batch size, s and t differentiates different batches.
The objective P is computed following (7).

Backward Pass. The gradients of P with respect to Xs, Xt and ∆ are calculated using automatic
differentiation. The imputed values in Xs and Xt as well as ∆ are then updated using gradient
descent with an update rate η:

Xs ← Xs − η∇XsP ⊙Ms,

Xt ← Xt − η∇XtP ⊙Mt,

∆←∆− η∇∆P,
(8)

where only the missing values (with M = 1) are updated, while the observed values (with M = 0)
remain unchanged during this process. Moreover, the gradient of the matrix inverse term is stopped
for numerical stability. KPI iteratively executes the forward and backward passes sampling different
batches until hitting the early-stopping criteria on the validation dataset. In this process, each feature
is iteratively treated as the target feature while the remaining features are treated as the input features.
This ensures that all features—including oracle features—are fully exploited as supervisory signals.
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Table 1: Imputation performance in terms of MSE and MAE.

Datasets BT CC CBV IS PK QB WQW

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Mean 0.742 0.452 0.837 0.789 0.829 1.165 0.754 4.145 0.740 2.841 0.589 4.682 0.764 1.121

Mode 0.948 0.770 0.935 1.159 1.026 1.749 0.925 7.741 1.254 7.832 0.593 6.240 0.823 1.372

Median 0.706 0.469 0.811 0.884 0.820 1.165 0.713 4.356 0.698 3.029 0.500 5.066 0.756 1.123

MICE 0.580 0.127 0.745 0.474 0.856 1.021 0.733 4.539 0.417 1.312 0.536 3.415 0.824 0.971

Miss.F 0.560 0.241 0.732 0.650 0.764 0.994 0.593 3.277 0.526 1.497 0.436 3.202 0.686 0.898

Sinkhorn 0.835 0.466 0.906 0.796 0.898 1.225 0.848 4.945 0.827 3.233 0.775 6.114 0.857 1.170

TDM 0.730 0.487 0.819 0.769 0.799 1.113 0.726 3.965 0.722 2.792 0.570 4.756 0.752 1.098

CSDI-T 0.726 1.870 0.849 2.683 0.821 3.802 0.761 15.493 0.731 12.291 0.575 19.919 0.780 4.084

MissDiff 0.719 1.332 0.840 1.699 0.816 3.523 0.749 13.432 0.728 14.462 0.564 23.320 0.758 5.184

GAIN 0.730 0.396 0.777 0.688 0.729 0.942 0.572 3.318 0.448 1.413 0.476 4.669 0.754 1.095

MIRACLE 0.795 0.674 0.487 0.305 0.831 1.154 3.208 45.816 3.518 36.784 0.521 3.975 0.555 0.685

MIWAE 0.582 0.266 0.746 0.630 0.807 1.071 0.636 4.118 0.525 1.804 0.475 4.977 0.657 0.844

Remasker 0.439 0.131 0.767 0.750 0.528 0.522 0.599 3.584 0.447 1.268 0.401 2.811 0.546 0.636

NewImp 0.465 0.177 0.412 0.292 0.405 0.401 0.431 2.495 0.320 0.857 0.332 2.992 0.497 0.692

KPI(Ours) 0.397 0.121 0.347 0.284 0.402 0.394 0.400 2.387 0.319 0.747 0.264 2.131 0.491 0.685

Note: Each entry represents the average results at four missing ratios: 0.1, 0.2, 0.3, and 0.4. The best and
second-best results are bolded and underlined, respectively.

4 Experiments

4.1 Experimental setup

• Datasets: The empirical study is performed on public tabular datasets from [1], including Blood
Transfusion(BT), Concrete Compression (CC), Connectionist Bench Vowel (CBV), Ionosphere
(IS) Parkinsons (PS), Qsar Biodegradation (QB), and Wine Quality White (QWQ). We simulate
missing data via a binary mask matrix, characterized by a predefined missing ratio. The specific
generation strategies of mask matrix in different missing scenarios are detailed in Appendix B.1.

• Baselines: The performance of KPI is compared against various imputation methods, including
iterative imputers (MICE [27], Miss.F. [30]), and generative models (GAIN [42], MIWAE [20],
Miss.D [25], CSDI-T [32], ReMasker [4], and NewImp [1]). We also assess methods that do not
conform to these categories, such as MIRACLE [9], Sinkhorn [24], and TDM [46].

• Implementation details: To ensure convergence, we cap the number of iterations at 500 and adopt
an early stopping criterion based on validation performance, with a patience of 10 epochs. The
Adam optimizer is used for training [8]. Key hyperparameters, namely η and B, are determined
by allocating 5% of the training data for validation and finetuning over [0.0001, 0.01] for η and
[64, 512] for B. Performance is assessed using modified mean absolute error (MAE) and mean
squared error (MSE), focusing on the imputed values at missing values, following [46, 7]. In
addition, we report the distribution discrepancy (WASS), measured as the Wasserstein distance [7].
The experiments are performed on a platform with two Intel(R) Xeon(R) Platinum 8383C CPUs @
2.70GHz and a NVIDIA GeForce RTX 4090 GPU.

4.2 Overall performance

Tab. 1 presents the average imputation results of KPI and baseline methods under missing ratios
pmiss = 0.1, 0.2, 0.3, and 0.4. Key observations are summarized as follows:

• The iterative imputers exhibits promising performance in most cases. For instance, MICE outper-
forms simple imputers by large margin over most datasets. MissForest employs random forest as
the base model, excelling in handling tabular data, which further improves imputation quality.

• The canonical generative imputers [32, 25], originally tailored for time-series data, often falling
behind iterative methods. This can be attributed to the implicit maximization of imputation
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(a) The results on the CC dataset.
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(b) The results on the CBV dataset.
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(c) The results on the IS dataset.
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(d) The results on the QB dataset.

Figure 3: The performance of Miss.F and KPI given varying ratios of oracle features.

Table 2: Varying kernel number results.

CC
E MSE ∆MSE WASS ∆WASS MAE ∆MAE
1 0.082 - 0.058 - 0.155 -
3 0.070 14.6%↓ 0.055 5.2%↓ 0.116 25.2%↓
5 0.069 15.9%↓ 0.046 20.7%↓ 0.108 30.3%↓
7 0.065 20.7%↓ 0.039 32.8%↓ 0.091 41.3%↓

CBV
E MSE ∆MSE WASS ∆WASS MAE ∆MAE
1 0.128 - 0.095 - 0.233 -
3 0.110 14.1%↓ 0.085 10.5%↓ 0.226 3.0%↓
5 0.098 23.4%↓ 0.075 21.1%↓ 0.216 7.3%↓
7 0.087 32.0%↓ 0.066 30.5%↓ 0.205 12.0%↓

BT
E MSE ∆MSE WASS ∆WASS MAE ∆MAE
1 0.334 - 0.109 - 0.363 -
3 0.318 4.8%↓ 0.101 7.3%↓ 0.352 3.0%↓
5 0.305 8.7%↓ 0.096 11.9%↓ 0.343 5.5%↓
7 0.302 9.6%↓ 0.089 18.3%↓ 0.338 6.9%↓

Table 3: Varying kernel function results.

CC
Kernel MSE ∆MSE WASS ∆WASS MAE ∆MAE
Linear 0.099 - 0.051 - 0.203 -
Poly 0.065 34.3%↓ 0.039 23.5%↓ 0.091 55.2%↓
Laplacian 0.068 31.3%↓ 0.042 17.6%↓ 0.093 54.2%↓
Gaussian 0.076 23.2%↓ 0.035 31.4%↓ 0.082 59.6%↓

CBV
Kernel MSE ∆MSE WASS ∆WASS MAE ∆MAE
Linear 0.089 - 0.087 - 0.219 -
Poly 0.087 2.2%↓ 0.088 1.1% ↑ 0.214 2.3%↓
Laplacian 0.083 6.7%↓ 0.080 8.1%↓ 0.211 3.7%↓
Gaussian 0.087 2.2%↓ 0.066 24.1%↓ 0.205 6.4%↓

BT
Kernel MSE ∆MSE WASS ∆WASS MAE ∆MAE
Linear 0.326 - 0.101 - 0.359 -
Poly 0.305 6.4%↓ 0.090 10.9%↓ 0.342 4.7%↓
Laplacian 0.316 3.1%↓ 0.091 9.9%↓ 0.346 3.6%↓
Gaussian 0.302 7.4%↓ 0.089 11.9%↓ 0.338 5.8%↓

entropy in diffusion models, which negatively impacts accuracy [1]. By contrast, recent generative
approaches such as NewImp and Remasker handle this issue and achieve strong results, obtaining
the best results among baseline methods.

• KPI improves the iterative imputers by adaptively selecting the optimal imputer for each feature and
involving oracle features as supervisory signals. This strategy consistently improves performance,
as evidenced by KPI outperforming all baselines across all 7 datasets—often by a substantial
margin, particularly on the CC and QB datasets—demonstrating strong practical effectiveness.

4.3 Impact of oracle features

In this section, we assess the impact of using oracle features as supervisory signal on imputation
performance. Specifically, we simulate based on complete datasets to generate varying ratios of oracle
features and evaluate the imputation performance. Two models are considered: KPI and another
canonical iterative imputer: Miss.F.

The results are presented in Fig. 3. As the ratio of oracle features increases, KPI consistently exhibits
lower imputation error, showcasing the utility of oracle features. In contrast, Miss.F shows little
improvement as oracle feature ratio increases. This difference arises because Miss.F only uses oracle
features as inputs, whereas KPI exploits them as supervisory signals to refine the imputation results.
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Figure 4: Varying learning rate and batch size results with missing ratios 0.1 and 0.2.

4.4 Impact of kernel strategy

In this section, we analyze the impact of kernel function and kernel amount (E) on imputation
performance. The key observations are summarized as follows.

• The multiple kernel ensembling mechanism has a substantial impact. As shown in Tab. 2, increasing
E from 1 to 7 consistently reduces MSE from 0.082 to 0.065, indicating a relative reduction of
20.7%. This gain is attributed to the increased flexibility in adaptively selecting kernel parameters,
allowing KPI to better represent the optimal imputation model for each feature.

• The performance of different kernel functions showcases the importance of kernel universality. The
linear kernel, which is not universal and has limited RKHS capacity, yields the worst performance.
The polynomial kernel, with a larger RKHS, performs better. The Gaussian kernel exhibits the
best overall performance. The superiority is attributed to its universality, i.e., the associated RKHS
admits uniform approximation of any continuous function. Such extensive RKHS capacity enables
KPI to optimize the imputation model for each feature, thereby enhancing imputation performance.

4.5 Parameter sensitivity analysis

In this section, we examine the influence of critical hyperparameters on the performance of KPI
in Fig. 4. Below are the key observations:

• The update rate (η) plays a pivotal role in controlling the volume of updates to the imputation
matrix each epoch. As η is reduced from 0.02 to approximately 0.01, both MAE and RMSE
decrease, indicating that a smaller η enhances update stability. However, further reduction of η
to 0.001 results in increased MAE and RMSE, where the meaningful update direction becomes
overshadowed by noise, preventing model convergence within the allocated epochs.

• The batch size (B) affects the scale of the problem in calculating discrepancies, with sizes ranging
from 64 to 1024 examined. There is a weak yet consistent decrease in MAE and RMSE as the
batch size increases to B = 512, enhancing the reliability of estimations. Increasing the batch size
beyond this point yields diminishing returns and may lead to unnecessary computational overhead.

5 Related works

The pervasive presence of missing data undermines the integrity of collected datasets and the reliability
of data-driven applications, underscoring the necessity for effective missing data imputation (MDI).
To achieve accurate MDI, existing approaches can be broadly categorized into two paradigms:
discriminative and generative, each with distinct advantages and limitations [7, 22].

The iterative method [30, 27, 44, 16] is one of the most popular methods in discriminative imputation,
initiated from imputation by chained equations (ICE) [27], which employs specific models to estimate
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missing values for each feature based on the remaining observable features. On the basis of ICE, a
line of work advocates for employing modern parametric models, such as neural networks [20, 9],
Bayesian models [27] and random forest [30], which enhances the capacity of imputation models
and thereby accommodating complex missing patterns. In a different line of work, various training
techniques are investigated within the paradigm, such as multiple imputation [27], ensemble learning
[30], and multitask learning [20], which enhance its utility in diverse contexts. While this paradigm
offers enhanced flexibility and accuracy, it fails to utilize the oracle features effectively and risks
model misspecification, which can lead to suboptimal imputation results in noisy environments. Our
research advances this methodology by handling the two limitations.

Apart from the iterative methods, there are other notable approaches in the discriminative paradigm.
The simple direct paradigm employs elementary statistical measures like mean, median, and mode to
replace missing values, offering quick and straightforward solutions. However, this approach lacks
the capacity to accommodate complex dependencies [18, 21], often producing trivial and inadequate
imputation results that fail to meet expectations in practice. Another notable approach is matrix
factorization, which decomposes the data matrix into two low-rank matrices, capturing the latent
structure of the data for imputation [10, 6]. This method is particularly effective in collaborative
filtering and recommendation systems [14, 37]. Recent advances explore a novel methodology based
on distribution discrepancy minimization[46, 24]. This approach builds on the assumption that, under
the independent and identically distributed (i.i.d.) condition, any two data batches should share
the same underlying distribution, thereby exhibiting minimal discrepancy. Subsequent studies have
extended this idea by refining discrepancy measures to accommodate different data characteristics
such as neighboring effects [39, 35], noisy observations [36], and temporal dependencies [38].

The generative paradigm restates imputation as a conditional generation problem, using advanced
generative models, such as generative adversarial networks [42, 31, 15] and diffusions [32, 41, 1], to
approximate data distributions and perform imputation. This strategy incorporates the strengths of
generative models, capturing and utilizing complex dependencies, which potentially enhances the
imputation quality when ample data is available. However, it also bears the defects with generative
models, such as the instability associated with adversarial training and the operational complexity of
diffusions [19, 26], hampering their use in practice.

6 Conclusion

Iterative imputation methods are widely used for handling missing data, yet existing approaches
are often limited by model misspecification and underuse of oracle features. To overcome these
limitations, we introduce KPI, a bi-level optimization framework which optimizes model form within
RKHS for each feature, reducing model misspecification, and exploits oracle features as effective
supervision. Extensive experiments on real-world datasets demonstrate that KPI achieves superior
imputation performance and effectively leverages oracle features.

Limitations & future work. In this work, we do not accommodate potential noise in datasets,
which is a prevalent challenge in industrial settings [6, 5]. Future research could incorporate robust
optimization techniques and truncate outliers in the kernel matrix which has potential to improve
noise robustness. Additionally, this work mitigates the difficulty of concise kernel parameter selection
via adaptive ensembling, which is an heuristic approach. Subsequent work may explore meta-learning
strategies with theoretical guarantees for accurate kernel parameter selection.
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A Theoretical justification

In this section, we delve into the theoretical underpinnings of the KPI framework. By exploiting the
universality, injectivity, and reproducing properties of kernel functions, we derive formal guarantees
for KPI and demonstrate how these properties translate into effective imputation.
Lemma A.1 (Representer theorem). Suppose h(∥f∥) : R+ → R is a non-decreasing function.
The minimizer of an empirical risk functional regularized by h(∥f∥) admits the form: f∗(·) =∑n

i=1 αiK(·, xi) where α = (α1, . . . , αn)
⊤ and K is the associated kernel function.

Proof. The proof can be found in Theorem 6.11 of Mohri et al. [23].

Theorem A.2 (Lemma 3.4 in the main text). Let Ys,Yt ∈ RB×1 be the target feature and Xs,
Xt be the corresponding input features; Suppose f∗ is the optimal model minimizing the empirical
risk in the inner optimization of (4), its output on Xt is given by f∗(Xt) = KXtXs · α, where
α = (K+ λI)−1y; KXtXs is the kernel matrix computed with Xt and Xs.

Proof. This is a standard theoretical result in kernel ridge regression, and we detail its proof here
with contextualization. Consider the samples Xs and Ys where Ys is the observed target, and Xs

comprises the input features. The empirical risk minimization objective with ℓ2 regularization to
select the optimal functional form is

min
f∈H
∥Ys − f(Xs)∥22 + λ∥f∥2H, (9)

which corresponds precisely to the inner loop of (4). According to Lemma A.1, when h is an identity
function (in (9)) andH is a RKHS associated with kernelK, the minimizer f∗ must admit the explicit
form

f∗(x) =

B∑
i=1

αiK(x, xsi), (10)

for some coefficients α1, . . . , αB.

Substituting this form into the empirical risk (9), the optimization problem becomes

min
α∈RB

∥Ys −KXsXsα∥22 + λα⊤KXsXsα, (11)

where KXsXs is the B × B Gram matrix, with (i, j)-th entry K(xsi , x
s
j), Y

s is the length-B target
vector, and α is the vector of coefficients.

Expanding the loss function in matrix notation yields

(Ys −KXsXsα)
⊤
(Ys −KXsXsα) + λα⊤KXsXsα. (12)

Due to symmetry of KXsXs , this simplifies to

Ys⊤Ys − 2Ys⊤KXsXsα+α⊤(K2
XsXs + λKXsXs)α. (13)

According to the first-order condition, setting the derivative with respect to α to zero and solving for
α gives

−2K⊤
XsXsYs + 2(K2

XsXs + λKXsXs)α = 0, (14)
which is equivalent to:

KXsXs(KXsXs + λI)α = KXsXsYs. (15)
Assuming KXsXs is invertible, we have:

(KXsXs + λI)α = Ys. (16)

which immediately follows from multiplying both sides by K−1
XsXs . Solving for α gives:

α = (KXsXs + λI)−1Ys. (17)

Substituting (17) into (10) leads to

f∗(x) =

B∑
i=1

αiK(x, xsi) = K(x)(KXsXs + λI)−1Ys, (18)
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where K(x) is the 1× B vector [K(x, xs1), · · · ,K(x, xsB)]. For a (possibly distinct) batch of inputs
Xt, evaluating f∗ at each xtj gives

f∗(xt1) =

B∑
i=1

αiK(xt1, x
s
i) =

[
K(xt1, x

s
1),K(xt1, x

s
2), ...,K(xt1, x

s
B)
]
(KXsXs + λI)−1Ys,

f∗(xt2) =

B∑
i=1

αiK(xt2, x
s
i) =

[
K(xt2, x

s
1),K(xt2, x

s
2), ...,K(xt2, x

s
B)
]
(KXsXs + λI)−1Ys,

...

f∗(xtB) =

B∑
i=1

αiK(xtB, x
s
i) =

[
K(xtB, x

s
1),K(xtB, x

s
2), ...,K(xtB, x

s
B)
]
(KXsXs + λI)−1Ys,

(19)
which may be stacked to give the vector-valued expression

f∗(Xt) = KXtXs(KXsXs + λI)−1Ys, (20)

where KXtXs is the matrix with entries [KXtXs ]ij = K(xti, x
s
j). The proof is completed.

Definition A.3 (Kernel Functions). Let x,x′ ∈ RD be two vectors in the input feature space. A
kernel function K : RD ×RD → R is a symmetric, positive semi-definite function that quantifies the
similarity between x and x′. Commonly used kernel functions include:

1. Linear Kernel: Klinear(x,x
′) = x⊤x′, which computes the inner product between two vectors

and corresponds to the case where no explicit feature transformation is applied.

2. Polynomial Kernel: Kpoly(x,x
′) =

(
x⊤x′ + c

)d
, where c ≥ 0 is a constant coefficient trading

off the influence of higher-order versus lower-order terms, and d ∈ N is the degree of the
polynomial. It enables learning non-linear dependencies by implicitly mapping the input features
into a higher-dimensional polynomial feature space.

3. Gaussian Kernel: Kgauss(x,x
′) = exp

(
−∥x−x′∥2

2σ2

)
, where ∥x − x′∥2 denotes the squared

Euclidean distance between x and x′, and σ > 0 is a scale parameter controlling the width of
the kernel. The Gaussian kernel is widely used due to its ability to model localized and highly
non-linear interactions.

B Implementation details

B.1 Dataset description and process strategy

In this paper, we use UCI datasets for model validation. To simulate missing data, we first construct a
binary mask matrix M. The observed data matrix, denoted as X(obs), is derived by element-wise
application of the complement mask 1−M to the non-missing data matrix X(id). On the generation
of M, we consider three canonical missing data mechanisms:

• Missing Completely at Random (MCAR): The probability of entry-wise missingness is indepen-
dent of both observed and unobserved data. To simulate MCAR, each entry of M is independently
set to 1 (missing) with probability pmiss, and to 0 (observed) with probability 1− pmiss.

• Missing at Random (MAR): The missingness of a variable depends only on values of observed
variables [34, 11]. To generate MAR scenarios, we randomly select a subset of features to be
always observed. The missingness in the remaining features is simulated using a logistic regression
model, where the observed features act as inputs. The model parameters are randomly initialized,
and the bias is calibrated to yield the desired missing ratio.

• Missing Not at Random (MNAR): The probability that a value is missing depends on the values
themselves [37, 13]. For MNAR simulation, we adopt the procedure in [1, 7]: the logistic model
used for MAR is repurposed, but its inputs are themselves masked by an independent MCAR
mechanism, making the missingness dependent on both observed and unobserved features.
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Figure 5: Running time of the forward pass (left panels) and backward pass (right panels) given
varying settings. Different colors indicate different kernel functions. The colored lines and the
shadowed areas indicate the mean values and the 99.9% confidence intervals.

B.2 Training protocols

To ensure reliable convergence, we set a maximum of 500 training iterations and adopt early stopping
based on validation performance, using a patience parameter of 10 epochs. Optimization throughout
is conducted using the Adam optimizer [8]. The kernel function is specified as the Gaussian kernel.
The main hyperparameters, specifically the update rate η, batch size B, kernel number E and variance
σ are determined by allocating 5% of the training data as a validation set and tuning over the intervals
η ∈ [0.0001, 0.01], B ∈ [64, 512], E ∈ [1, 7] and σ ∈ [0.01, 10]. All experiments are conducted on
a hardware platform comprising two Intel(R) Xeon(R) Platinum 8383C CPUs (2.70GHz) and an
NVIDIA GeForce RTX 4090 GPU.

B.3 Evaluation metrics

The imputed data matrix X(imp) is evaluated to assess imputation quality. Following the protocol
in [46], we primarily employ the modified mean absolute error (MAE) and root mean squared error
(RMSE) for evaluation:

MAE :=
1∑N

n=1

∑D
d=1 m̄nd

N∑
n=1

D∑
d=1

∣∣∣x(imp)
nd − x(obs)nd

∣∣∣ m̄nd, (21)

RMSE :=

√√√√ 1∑N
n=1

∑D
d=1 m̄nd

N∑
n=1

D∑
d=1

∥∥∥x(imp)
nd − x(obs)nd

∥∥∥2
2
m̄nd, (22)

where m̄nd ∈ M̄ indicates positions of imputed (originally missing) values with m̄nd = 1−mnd,
and x(obs)nd ∈ X(obs) is the ground-truth value from the non-missing data. As only the originally
missing values are imputed, we restrict the calculation of error metrics to the indices where m̄nd = 1.

In addition to the point-wise error metrics above, we also consider the squared Wasserstein distance
(abbreviated as WASS) [1], which quantifies the discrepancy between the distributions of the imputed
values and the corresponding ground-truth values at the missing positions (M = 1).

C Additional experimental results

C.1 An empirical analysis on complexity

In this section, we examine the practical computational complexity of KPI, typically the computational
cost per iteration, which includes both the forward and backward passes. We conduct experiments
using Intel® Xeon® Gold 6140 CPUs and Nvidia RTX 4090 GPUs, with each experiment repeated
100 times to ensure reliability.

The results are presented in Fig. 5. The running time per iteration remains limited (within 4 ms)
across a diverse range of hyperparameters, demonstrating the feasibility of KPI for real-world
applications. Other key observations are summarized as follows:

• To explore the impact of batch size (B), we vary B within a wide range from 32 to 1024 while
keeping the feature amount (D) to 8. The running cost of the forward pass increased with the batch
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Table 4: Imputation performance comparison with missing ratio of 0.1.

Datasets BT CC CBV IS PK QB WQW

Metrics MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS

MICE 0.118 0.027 0.155 0.075 0.196 0.16 0.175 0.406 0.097 0.133 0.122 0.271 0.192 0.151

Miss.F 0.123 0.037 0.172 0.111 0.185 0.149 0.141 0.295 0.128 0.163 0.102 0.284 0.164 0.129

Sinkhorn 0.840 0.434 0.903 0.614 0.896 0.837 0.850 2.047 0.841 1.513 0.784 2.622 0.856 0.755

TDM 0.724 0.415 0.815 0.545 0.787 0.690 0.720 1.592 0.731 1.295 0.565 1.977 0.745 0.650

CSDI-T 0.727 1.914 0.850 2.680 0.815 3.753 0.766 16.714 0.743 12.939 0.578 20.407 0.775 4.022

MissDiff 0.718 1.446 0.847 1.803 0.812 4.101 0.750 13.640 0.744 16.209 0.566 25.062 0.755 6.037

GAIN 0.739 0.355 0.759 0.479 0.690 0.541 0.532 1.137 0.399 0.460 0.409 1.192 0.736 0.621

MIRACLE 0.528 0.174 0.382 0.161 0.778 0.682 3.723 26.666 3.777 18.544 0.461 1.103 0.485 0.364

MIWAE 0.539 0.226 0.698 0.436 0.782 0.668 0.603 1.638 0.526 0.861 0.450 2.044 0.626 0.507

Remasker 0.365 0.099 1.041 0.830 0.448 0.249 0.715 1.775 0.500 0.739 0.489 1.737 0.503 0.364

NewImp 0.383 0.091 0.273 0.110 0.231 0.101 0.423 1.013 0.251 0.281 0.305 1.067 1.045 0.834

KPI(Ours) 0.084 0.022 0.023 0.01 0.051 0.016 0.093 0.217 0.071 0.066 0.05 0.219 0.082 0.058

Table 5: Imputation performance comparison with missing ratio of 0.2.

Datasets BT CC CBV IS PK QB WQW

Metrics MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS

MICE 0.145 0.027 0.171 0.097 0.208 0.218 0.186 0.915 0.102 0.243 0.13 0.589 0.2 0.211

Miss.F 0.141 0.058 0.173 0.131 0.187 0.206 0.144 0.589 0.133 0.316 0.106 0.579 0.168 0.181

Sinkhorn 0.834 0.428 0.907 0.711 0.902 1.079 0.842 3.908 0.819 2.572 0.773 5.036 0.854 1.030

TDM 0.725 0.431 0.812 0.659 0.800 0.939 0.720 3.097 0.710 2.167 0.567 3.855 0.750 0.927

CSDI-T 0.724 1.808 0.847 2.674 0.823 3.760 0.759 15.642 0.724 12.409 0.574 19.999 0.777 4.057

MissDiff 0.714 1.282 0.835 1.707 0.818 3.658 0.746 13.473 0.718 14.872 0.562 23.777 0.757 5.526

GAIN 0.727 0.350 0.759 0.585 0.701 0.739 0.526 2.231 0.409 0.830 0.407 2.292 0.724 0.853

MIRACLE 0.637 0.271 0.443 0.234 0.878 1.102 3.361 43.583 3.612 31.612 0.487 2.558 0.533 0.556

MIWAE 0.569 0.223 0.730 0.535 0.801 0.904 0.620 3.198 0.511 1.398 0.465 4.102 0.653 0.728

Remasker 0.403 0.108 0.412 1.223 0.488 0.392 0.613 2.959 0.450 1.077 0.397 2.482 0.523 0.531

NewImp 0.441 0.141 0.360 0.201 0.310 0.221 0.411 1.937 0.283 0.592 0.329 2.273 0.468 0.265

KPI(Ours) 0.095 0.032 0.077 0.051 0.085 0.064 0.098 0.436 0.075 0.128 0.062 0.322 0.103 0.11

size, as expected. This is attributed to the larger matrix inversion in (7), which cannot be efficiently
accelerated by GPUs. In contrast, the backward pass cost was weakly correlated with B, since
gradient computations after constructing the computation graph can be parallelized.

• To investigate the impact of feature amount (D), we maintain a constant batch size of 64. A weak
correlation between D and the running time is observed. This is because varying D primarily
affects the complexity of each kernel matrix computation, which can be effectively mitigated by
GPU acceleration. This highlights a practical advantage of KPI: its efficiency in handling datasets
with a large number of features.

• We observe that the type of kernel function also affects the running cost. The gaussian kernel
exhibits the largest running time compared to other kernel functions, in terms of both forward pass
and the backward pass.

C.2 Additional overall performance results given different missing ratios

Tab. 4-7 detail the imputation performance of KPI and baselines, with results for different missing
ratios: 0.1, 0.2, 0.3, and 0.4 listed separately. The results demonstrate that KPI consistently outper-
forms the baselines in all settings, achieving superior performance in terms of both MAE and WASS.
This consistent superiority across varying missing ratios underscores the effectiveness and robustness
of KPI for missing data imputation.
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Table 6: Imputation performance comparison with missing ratio of 0.3.

Datasets BT CC CBV IS PK QB WQW

Metrics MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS

mice 0.156 0.043 0.195 0.133 0.219 0.289 0.186 1.393 0.107 0.387 0.134 1.064 0.21 0.28

missforest 0.14 0.064 0.189 0.182 0.2 0.292 0.154 1.049 0.131 0.423 0.113 1.085 0.176 0.262

sink 0.828 0.475 0.911 0.853 0.904 1.368 0.851 6.014 0.828 3.898 0.774 7.291 0.859 1.313

tdm 0.733 0.506 0.825 0.834 0.809 1.260 0.730 4.796 0.723 3.337 0.571 5.629 0.754 1.240

CSDI-T 0.717 1.905 0.851 2.684 0.826 3.816 0.761 14.942 0.729 12.044 0.574 19.732 0.782 4.093

MissDiff 0.718 1.317 0.842 1.656 0.822 3.313 0.751 13.341 0.725 13.806 0.563 22.714 0.759 4.894

gain 0.742 0.413 0.780 0.729 0.736 1.041 0.566 3.702 0.460 1.656 0.434 3.637 0.730 1.140

miracle 0.951 0.850 0.535 0.371 0.841 1.302 3.036 54.592 3.432 43.764 0.542 4.814 0.582 0.792

miwae 0.593 0.273 0.769 0.692 0.818 1.210 0.650 4.974 0.527 2.113 0.480 5.810 0.667 0.955

remasker 0.459 0.134 0.552 0.371 0.541 0.586 0.534 3.949 0.415 1.365 0.349 2.928 0.557 0.724

NewImp 0.481 0.181 0.472 0.341 0.423 0.443 0.442 3.066 0.321 1.015 0.350 3.666 0.558 0.379

KPI(Ours) 0.104 0.028 0.116 0.088 0.122 0.122 0.102 0.712 0.083 0.217 0.069 0.562 0.148 0.215

Table 7: Imputation performance comparison with missing ratio of 0.4.

Datasets BT CC CBV IS PK QB WQW

Metrics MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS

MICE 0.162 0.03 0.223 0.168 0.233 0.354 0.186 1.824 0.111 0.549 0.15 1.491 0.222 0.329

MISS.F 0.156 0.083 0.198 0.226 0.192 0.346 0.154 1.346 0.133 0.595 0.114 1.254 0.177 0.326

Sinkhorn 0.837 0.530 0.904 1.008 0.889 1.616 0.847 7.810 0.821 4.948 0.768 9.508 0.860 1.582

TDM 0.737 0.596 0.824 1.037 0.802 1.561 0.733 6.376 0.724 4.367 0.578 7.565 0.758 1.574

CSDI-T 0.735 1.851 0.847 2.694 0.817 3.877 0.757 14.671 0.727 11.771 0.577 19.537 0.786 4.164

MissDiff 0.726 1.284 0.837 1.628 0.812 3.019 0.750 13.272 0.723 12.960 0.566 21.728 0.761 4.278

GAIN 0.712 0.464 0.812 0.960 0.791 1.448 0.665 6.203 0.522 2.708 0.653 11.553 0.826 1.767

Miracle 1.066 1.401 0.602 0.483 0.826 1.529 2.714 58.421 3.250 53.215 0.595 7.425 0.620 1.027

MIWAE 0.629 0.344 0.786 0.856 0.828 1.502 0.670 6.663 0.535 2.842 0.504 7.952 0.683 1.185

Remasker 0.528 0.182 1.022 1.541 0.636 0.860 0.534 5.653 0.424 1.891 0.368 4.096 0.601 0.926

NewImp 0.563 0.301 0.553 0.520 0.542 0.743 0.451 4.035 0.351 1.563 0.378 4.989 1.022 1.542

KPI(Ours) 0.113 0.039 0.132 0.134 0.144 0.191 0.107 1.022 0.09 0.337 0.084 1.028 0.159 0.303

C.3 Additional overall performance results given different missing mechanisms

Tab. 8 and 9 provide a detailed evaluation of the imputation performance of KPI and various baselines
under MAR and MNAR mechanisms, respectively. These missing mechanisms are more complex and
challenging compared to the MCAR setting reported in Tab. 1, but they are also more representative
of real-world scenarios.

The results demonstrate that KPI consistently outperforms the baselines in all settings, achieving
superior performance in terms of both metrics. This consistent superiority across different missing
mechanisms highlights the effectiveness and robustness of KPI for missing data imputation, making
it a reliable choice for diverse real-world applications.
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Table 8: Imputation performance comparison under MAR missing mechanism.

Datasets BT CC CBV IS PK QB WQW

Metrics MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS

MICE 0.481 0.109 0.626 0.349 0.839 0.652 0.677 1.113 0.492 0.946 0.604 2.42 0.824 0.775

MISS.F 0.718 0.727 0.632 0.404 0.783 0.572 0.58 1.261 0.797 1.517 0.58 2.671 0.709 0.63

CSDI-T 1.094 5.465 0.894 3.212 0.826 4.286 0.707 15.194 1.262 19.116 0.782 23.176 0.815 4.919

MissDiff 1.019 2.835 0.888 2.189 0.852 6.008 0.704 13.233 1.219 22.773 0.762 34.125 0.805 6.919

gain 1.082 1.187 0.782 0.570 0.700 0.503 0.456 0.609 0.709 1.383 0.552 1.716 0.729 0.672

MIRACLE 0.699 0.510 0.356 0.141 0.710 0.530 3.837 19.874 4.518 23.842 0.605 1.636 0.494 0.385

MIWAE 0.747 0.784 0.735 0.517 0.788 0.617 0.474 0.811 0.758 1.674 0.660 2.892 0.629 0.575

Remasker 0.598 0.689 1.023 0.854 0.467 0.235 0.691 1.149 0.668 1.062 0.557 1.563 0.489 0.397

Sinkhorn 1.106 1.319 0.958 0.718 0.923 0.804 0.829 1.350 1.257 3.392 0.904 3.032 0.905 0.912

TDM 1.015 1.313 0.855 0.614 0.823 0.653 0.691 0.995 1.194 3.311 0.752 2.739 0.794 0.776

NewImp 0.401 0.171 0.232 0.111 0.221 0.070 0.331 0.504 0.462 0.745 0.560 3.330 0.372 0.293

multikip 0.367 0.107 0.199 0.121 0.225 0.115 0.345 0.864 0.457 0.68 0.339 1.965 0.362 0.311

Table 9: Imputation performance comparison under MNAR missing mechanism.

Datasets BT CC CBV IS PK QB WQW

Metrics MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS

MICE 0.696 0.411 0.66 0.384 0.832 0.734 0.708 1.831 0.499 0.98 0.589 2.377 0.807 0.724

MISS.F 0.731 0.579 0.697 0.483 0.748 0.631 0.587 1.944 0.726 1.513 0.5 2.291 0.667 0.567

CSDI-T 0.885 3.105 0.885 2.923 0.838 3.922 0.759 16.833 1.016 14.173 0.683 20.330 0.795 4.275

GAIN 0.846 0.595 0.782 0.545 0.698 0.570 0.529 1.151 0.571 1.305 0.474 1.943 0.730 0.684

MIRACLE 0.655 0.319 0.371 0.163 0.842 0.802 3.725 27.093 4.196 25.052 0.576 2.249 0.518 0.437

MIWAE 0.658 0.424 0.735 0.508 0.808 0.731 0.559 1.535 0.628 1.400 0.561 3.318 0.641 0.577

Remasker 0.481 0.297 1.028 0.886 0.487 0.296 0.660 1.701 0.586 1.059 0.516 2.128 0.519 0.434

Sinkhorn 0.967 0.752 0.940 0.698 0.925 0.911 0.854 2.121 1.049 2.906 0.844 3.755 0.880 0.859

TDM 0.858 0.732 0.849 0.620 0.821 0.756 0.724 1.640 0.969 2.713 0.661 3.202 0.772 0.744

NewImp 0.645 0.461 0.585 0.593 0.562 0.837 0.442 3.945 0.434 2.328 0.441 7.161 0.601 1.102

multikip 0.573 0.257 0.271 0.22 0.357 0.352 0.391 1.344 0.423 0.769 0.286 1.967 0.458 0.563
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims in the abstract and introduction correctly summarize the theoretical
and empirical contributions of the paper. They are well-aligned with the scope, methods,
and results presented in the main text.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: There is a separate "Limitations" section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: In appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes, it is already provided. We will release our code soon.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: The code is not yet publicly released at submission time. We plan to make the
codebase and data processing scripts publicly available soon.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The experimental setting is detailed. Additional training configurations are
provided in Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Yes.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides sufficient details on computational resources in Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This work complies fully with the NeurIPS Code of Ethics. It uses only public
datasets and poses no foreseeable ethical risks.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This work poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: This work does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This work does not release any new asset.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This study does not involve any human participants or crowdsourcing tasks.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No human subjects or crowdsourced data were involved in this study; all
experiments used public datasets. IRB approval is thus not applicable.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This work does not involve any LLMs in its core algorithmic design or
empirical methodology.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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