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Abstract
Strategic classification addresses a learning prob-
lem where a decision-maker implements a classi-
fier over agents who may manipulate their features
in order to receive favorable predictions. In the
standard model of online strategic classification,
in each round, the decision-maker implements and
publicly reveals a classifier, after which agents
perfectly best respond based on this knowledge.
However, in practice, whether to disclose the clas-
sifier is often debated—some decision-makers be-
lieve that hiding the classifier can prevent mis-
classification errors caused by manipulation. In
this paper, we formally examine how limiting the
agents’ access to the current classifier affects the
decision-maker’s performance. Specifically, we
consider an extended online strategic classifica-
tion setting where agents lack direct knowledge
about the current classifier and instead manipulate
based on a weighted average of historically imple-
mented classifiers. Our main result shows that in
this setting, the decision-maker incurs (1− γ)−1

or kin times more mistakes compared to the full-
knowledge setting, where kin is the maximum
in-degree of the manipulation graph (representing
how many distinct feature vectors can be manip-
ulated to appear as a single one), and γ is the
discount factor indicating agents’ memory of past
classifiers. Our results demonstrate how withhold-
ing access to the classifier can backfire and de-
grade the decision-maker’s performance in online
strategic classification.

1. Introduction
In online strategic classification, a decision-maker makes
decisions over a sequence of agents who may manipulate
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their features to receive favorable outcomes (Brückner &
Scheffer, 2011; Hardt et al., 2016; Ahmadi et al., 2023).
For example, in college admissions, when a decision-maker
evaluates applicants, students may retake the SAT, switch
schools, or enroll in easier classes to boost their GPAs in
hopes of gaining admission. Similarly, in loan approval,
where a classifier assesses applicants based on their credit
scores, individuals may open or close credit cards or bank
accounts to improve their credit scores.

More formally, an agent (x, y) consists of a pre-
manipulation feature vector x and a ground-truth label y.
When modeling strategic manipulation, we assume that each
agent has limited manipulation power. We adopt manipu-
lation graphs, initially introduced by Zhang & Conitzer
(2021), to represent feasible manipulations. In this graph,
the nodes correspond to all possible feature vectors. There
is an edge from x to x′ if and only if an agent with the
feature vector x can manipulate their feature vector to x′.
Additionally, there is always a self-loop at each node, as
agents can choose to remain at x by doing nothing.

A sequence of agents (x1, y1), (x2, y2), . . . arrives sequen-
tially. In each round t, the decision-maker implements a
classifier ht, and the agent (xt, yt) manipulates their feature
vector from xt to a neighbor vt in an attempt to receive
a positive prediction under ht. In prior work, it is usu-
ally assumed that the decision-maker is transparent—they
reveal their current classifier to the agents before manip-
ulation—and that agents are rational—they best respond
by manipulating to a reachable feature that is labeled as
positive (if one exists) in the most cost-efficient way. Specif-
ically, if all their neighbors are labeled as negative, they
remain at their current feature without making any changes,
as manipulation would not help change the prediction from
negative to positive. Many algorithms developed in prior
work (e.g. Ahmadi et al., 2023; 2024; Cohen et al., 2024a)
heavily rely on this standard tie-breaking assumption.

However, in real-world applications, the decision-maker
may withhold their classifier to prevent agents from manipu-
lating their features. Nevertheless, even without knowledge
of the current classifier, agents will still attempt to optimize
their outcomes through strategic manipulation. This raises a
fundamental question:

Can decision-makers benefit from hiding the classifiers?
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More specifically, we assume that agents only have knowl-
edge of previously implemented classifiers when they re-
spond. For example, in centralized college admissions, uni-
versities often publish past cutoff scores, revealing previous
classifiers.

In this setting, we consider natural models of agents’ behav-
ior that exhibit heuristic rationality. One natural approach is
for agents to best respond to the classifier from the previous
round. For example, student applicants may assume that the
admission rule will closely resemble the one used last year.
Another heuristic method is to best respond to the average
of historically implemented classifiers. We unify these ap-
proaches by considering a general framework where agents
best respond to a weighted average of historical classifiers.

Under this model, we answer our central question negatively.
We show that when agents best respond to a weighted aver-
age of past classifiers, the decision-maker incurs (1− γ)−1

or kin times more mistakes, where kin is the maximum in-
degree of the manipulation graph and γ ∈ (0, 1) is the
discount factor representing agents’ memory of past classi-
fiers. This implies that the decision-maker may not benefit
from hiding the classifiers but incur a substantial increase in
the mistake bound.

To better understand this problem, we first analyze a simple
base case by removing the standard tie-breaking assump-
tion—that agents remain at their original feature vector x
when their entire neighborhood is labeled as negative. We
show that removing this assumption can already hurt the
decision-maker, increasing the mistake bound by a factor
of Θ(kin). This not only serves as a building block but also
highlights that even a small perturbation in agents’ perceived
classifiers can significantly impact the mistakes made by the
decision-maker.

Contributions. We summarize our contributions as follows.

• When agents best respond to the current classifier with ar-
bitrary tie-breaking, we provide a lower bound on the mis-
take bound, showing that the decision-maker will make
Ω(kin) times more mistakes. We also propose an algo-
rithm that achieves a matching upper bound.

• When agents best respond to the weighted average of
history with arbitrary tie-breaking, we establish a lower
bound on the mistake bound, showing that the decision-
maker will make (1 − γ)−1 or kin times more mistakes.
Additionally, we propose an algorithm with mistake
bound of O((1− γ)−1 · kin).

• We also explore the scenario where agents run online
learning algorithms, and discuss the challenge of mod-
eling learning agents through diminishing regret due to
their nonstatic and large action space.

1.1. Related Work

The research on strategic machine learning—which focuses
on designing machine learning algorithms that remain robust
in the presence of strategic behaviors—dates back to the
works of Dalvi et al. (2004); Brückner & Scheffer (2011);
Dekel et al. (2010). Within this field, strategic classification
was first studied by Hardt et al. (2016), who examines the
accuracy of classification tasks when agents can modify their
features to receive more favorable outcomes. Overall, our
work contributes to the literature of strategic classification
in the following three aspects.

(I) Learnability in the online setting. Our work focuses
on the online setting where the decision-maker (also called
the learner) aims to make irrevocable classification deci-
sions to a sequence of agents arriving one by one. Among
the prior works that analyze the mistake bound/Stackelberg
regret in such settings (Dong et al., 2018; Chen et al., 2020;
Ahmadi et al., 2021; 2023; 2024; Shao et al., 2023; Cohen
et al., 2024a), our work is most closely related to that of Ah-
madi et al. (2023; 2024); Cohen et al. (2024a). These works
model the agents’ ground-truth labels as induced by graph-
based manipulations (Zhang & Conitzer, 2021; Lechner &
Urner, 2022) toward an unknown hypothesis within a given
hypothesis class with bounded complexity, an assumption
analogous to realizability in classical online learning (Little-
stone, 1988). Building on this framework, our work is the
first to analyze how the mistake bound changes under alter-
native models of agent behaviors, specifically when agents
best respond to a weighted sum of historical classifiers rather
than the current classifier.

(II) Agent behavioral models beyond best response.
There have also been recent works exploring alternative
agent behaviors beyond the simple best-response model,
including noisy response (Jagadeesan et al., 2021), gradient
descent (Zrnic et al., 2021), and non-myopic agents optimiz-
ing for discounted future rewards (Haghtalab et al., 2022). In
contrast, our settings assume that agents cannot observe the
current classifier but manipulate based on historical observa-
tions. Xie & Zhang (2024) also assumes agents best respond
to previous decision policy but they focus on welfare and
fairness. We compare the learner’s optimal mistake bound
both when the classifier is revealed and when it is withheld.
More broadly, these studies fit within the context of repeated
Stackelberg (principal-agent) games with learning agents,
(e.g. Haghtalab et al., 2022; 2024; Blum et al., 2014), where
recent work focuses on designing principal’s algorithms to
strategize against agents who employ specific online learn-
ing algorithms such as no-regret algorithms (Braverman
et al., 2018; Deng et al., 2019; Mansour et al., 2022; Fiez
et al., 2020; Brown et al., 2024). While these works gener-
ally assume known or fixed/stochastic games, part of our
main challenge arises from the fact that agents’ initial fea-
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tures are unknown and chosen by an online adversary. Fur-
thermore, as we will discuss in Section 5, defining learning
agents in strategic classification presents unique challenges
due to the dynamic and large action spaces.

(III) Decision-maker’s strategy beyond full transparency.
Our study studies the decision-maker’s choice between mak-
ing the classifiers fully transparent or withholding infor-
mation. Prior works have explored other forms of partial
transparency mechanisms in the offline setting, such as re-
leasing a subset of potential classifiers that includes the
actual implemented classifier (Cohen et al., 2024b), incor-
porating randomness and noise (Braverman & Garg, 2020),
withholding the classifier so that agents employ imitation
and social learning (Ghalme et al., 2021; Bechavod et al.,
2022; Akyol et al., 2016), providing feedback on the classi-
fier with varying levels of accuracy (Barsotti et al., 2022),
and revealing counterfactual explanations instead of the clas-
sifier itself (Tsirtsis & Gomez Rodriguez, 2020). Our main
contribution to this thread is studying the online interac-
tion between the decision-maker and a stream of agents,
and to quantitatively characterize the impact of information
disclosure strategies on the decision-maker’s performance.

While our work also focuses on the accuracy perspective,
many works have explored various other perspectives of
strategic classification, such as encouraging genuine im-
provements versus discouraging “gaming” (e.g. Ahmadi
et al., 2022; Bechavod et al., 2021; Haghtalab et al., 2021;
Liu et al., 2020), understanding the causal implications (e.g.
Miller et al., 2020; Bechavod et al., 2021; Shavit et al., 2020;
Perdomo et al., 2020), and fairness concerns (e.g. Hu et al.,
2019; Liu et al., 2020; Milli et al., 2019).

2. Model
Throughout this work, we focus on the binary classification
task in the online setting. Let X denote the feature vector
space and Y = {0, 1} denote the label space. A hypothesis
h : X 7→ Y (also called a classifier or a predictor) is a
function that maps feature vectors to labels. We denote
by H ⊂ YX the hypothesis class. A fractional predictor
f : X 7→ [0, 1] is a function that maps feature vectors to the
probability of being labeled as 1.

An example (x, y) ∈ X × Y , referred to as an agent in this
context, consists of a pre-manipulation feature vector x and
a ground-truth label y. We consider the task of sequential
classification where the decision-maker (aka learner) aims
to classify a sequence of agents (x1, y1), (x2, y2), . . . that
arrives in an online manner. In each round t, the decision-
maker implements a classifier ht, and the agent (xt, yt) ma-
nipulates their feature vector from xt to vt with an attempt
to receive a positive prediction under ht. The interaction
between the decision-maker and the agents (which repeats

for t = 1, . . . , T ) is described in Protocol 1.

Protocol 1 Decision-Maker/Agent Interaction
1: for t = 1, . . . , T do
2: The learner implements a classifier ht ∈ YX .
3: The environment picks an agent (xt, yt).
4: The agent manipulates from xt to vt.
5: The learner observes the post-manipulation feature

vector vt and the true label yt, and makes a mistake
if ht(vt) ̸= yt.

6: end for

Manipulation Graph. Agents will try to maximize their
chance of receiving a positive prediction by modifying their
feature vector to some reachable feature vectors. Following
prior works (e.g. Zhang & Conitzer, 2021; Lechner & Urner,
2022; Ahmadi et al., 2023; Lechner et al., 2023), we model
the set of reachable feature vectors through a manipulation
graph G = (X , E), where the nodes are all feature vectors
in X . For any two feature vectors x, x′ ∈ X , there is a
directed edge from x to x′—i.e., (x, x′) ∈ E—if and only
if an agent with initial feature vector x can manipulate to
x′. Additionally, there is always a self-loop at each node
x ∈ X , i.e., ∀(x, x) ∈ E , as agents can choose to remain at
x by doing nothing.

For each node x ∈ X , let Nout[x] = {x′|(x, x′) ∈ E}
and Nin[x] = {x′|(x′, x) ∈ E} denote the out- and in-
neighborhoods of x in the manipulation graph G. Let
kout = supx∈X |Nout[x]| and kin = supx∈X |Nin[x]| denote
the maximum out-degree and maximum in-degree of the
manipulation graph, respectively.

Agent Behavior Models. At each round t, an agent ma-
nipulates their feature vector from xt to a reachable vector
vt ∈ Nout[xt] with the intent to maximize their probability
of receiving a positive prediction. Concretely, the agent
either observes ht or forms an estimate h̃t based on the in-
formation available to them, and then chooses vt ∈ Nout[xt]

among those that maximize ht(v) or h̃t(v). We formal-
ize the set of such best response manipulations as the best
response set:

Definition 2.1 (Best Response Set). Given a (potentially
fractional) predictor h ∈ [0, 1]X , the best response function
BRh : X 7→ 2X will map x to the set of reachable neighbors
with the highest predicted value, i.e.,

BRh(x) := argmaxv∈Nout[x]
h(v) .

We consider three models of agent behaviors based on (1)
how they break ties when there are multiple options inside
BRh(x), and (2) how agents form their estimate h̃t.

• (Revealed-Std) Revealed Classifier + Best-Response
with Standard Tie-breaking. This is the standard setting
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in the literature of strategic classification, e.g., Ahmadi
et al. (2023); Cohen et al. (2024a); Ahmadi et al. (2024).
In this case, the decision-maker reveals the implemented
0-1 classifier ht ∈ {0, 1}X to the agent in each round.
The agent best responds to ht by choosing vt ∈ BRht

(xt).
Specifically, if every reachable feature vector in Nout[xt]
is labeled as 0 under ht—i.e., when ht(BRht

(xt)) = 0—
the agent chooses vt = xt as they have no incentive to
manipulate if manipulation does not yield a positive clas-
sification. Otherwise, if there are neighbors labeled as 1,
ties among them are broken arbitrarily.

• (Revealed-Arb) Revealed Classifier + Best-Response
with Arbitrary Tie-breaking. As a variation of
Revealed-Std, in Revealed-Arb, the agents still observe
ht and best responds to it, but break ties arbitrarily among
the vectors in BRht

(xt)
1. In particular, even if all neigh-

bors in Nout[xt] are labeled negative, the agent may still
choose to move rather than stay, due to the arbitrary nature
of tie-breaking. We introduce this model as an interme-
diary step toward our main setting, where agents do not
observe ht directly, but instead best respond to an estimate
h̃t. Estimation errors can make some out-neighbors ap-
pear more favorable — even when all are actually negative
under ht — so agent’s best response to h̃t may resemble
a best response to ht under arbitrary tie-breaking. This
motivates us to consider the Revealed-Arb setting.

• (γ-Weighted) Unrevealed Classifier Estimated via
Weighted Sum of History. This is the main setting of this
paper. In each round t, the agent cannot observe the imple-
mented classifier ht, but only has access to the historically
implemented classifiers h1, . . . , ht−1. As a natural heuris-
tic, the agent estimates ht by taking a weighted average
of these historical classifiers,

h̃γ
t =

∑t−2
τ=0 γ

τht−1−τ∑t−2
τ=0 γ

τ
=

1− γ

1− γt−1
·
t−2∑
τ=0

γτht−1−τ ,

γ ∈ (0, 1) is a discount factor that reflects how quickly the
agent’s memory of older classifiers diminishes. The agent
then chooses vt ∈ BRh̃γ

t
(xt) with arbitrary tie-breaking.

By adjusting the values of γ, this model captures a spec-
trum of agent behaviors. When γ → 1, h̃γ

t approaches
the average of all historical classifiers, reminiscent of
fictitious play in repeated games. When γ → 0, h̃γ

t ap-
proaches ht−1, meaning that the agent uses a one-step
memory and best responds only to the most recent classi-
fier.

1The tie-breaking may be adversarially chosen to induce the
maximum number of mistakes. However, this differs from adver-
sarial perturbations studied in robustness literature (e.g., (Mon-
tasser et al., 2019)), since the agent only chooses from vectors that
maximize ht.

Learner’s Objective. The learner’s objective is to minimize
the total number of classification mistakes. For a sequence
of agents S = (xt, yt)t∈[T ], the learner’s mistake bound is

Mϕ(S) =

T∑
t=1

1[ht(vt) ̸= yt],

where ϕ ∈ {Revealed-Std,Revealed-Arb, γ-Weighted} de-
notes one of the three agent behavioral models described
above, which determines how vt is chosen. We also use
Mϕ(A, S) to denote the mistake bound of a specific algo-
rithm A. Following prior works (Ahmadi et al., 2021; 2023;
Cohen et al., 2024a), we focus on the strategic realizable
setting, where there exists an optimal hypothesis h⋆ ∈ H
that perfectly classifies the agent sequence S when each
agent (xt, yt) best responds to h⋆. Formally, this means

∀(xt, yt) ∈ S, h⋆(BRh⋆(xt)) = yt.

We focus on this realizable setting because, across all three
agent behavior models that we consider, there exists a
learner strategy that achieves zero mistakes by using the
optimal-in-hindsight classifier h⋆ across all rounds. Con-
sequently, the mistake boundM(S) aligns with the notion
of Stackelberg regret, which measures the learner’s perfor-
mance relative to the best fixed strategy in hindsight in this
principal-agent framework. In either of the three settings
ϕ ∈ {Revealed-Std,Revealed-Arb, γ-Weighted}, we use

Mϕ(H) = sup
S strategic realizable under H

Mϕ(S)

to denote a learner’s worst-case mistake bound across all
strategic realizable sequences. Similar toMϕ(A, S), we
sometimes useMϕ(A,H) to emphasize the algorithm A.
Following a common assumption in the literature (Cohen
et al., 2024a; Ahmadi et al., 2024; 2023), we focus on deter-
ministic algorithms.

In the standard setting, Ahmadi et al. (2023); Cohen et al.
(2024a) show thatMRevealed-Std(H) = O(kout · Ldim(H)),
where Ldim(H) is the Littlestone dimension of H (Little-
stone, 1988). They also establish that Ω(kout · Ldim(H))
is a tight lower bound for all deterministic algorithms. In
this paper, we characterize the optimal mistake bound in the
other two settings of Revealed-Arb and γ-Weighted.

2.1. Summary of Results

• We show that in the Revealed-Arb setting, the learner suf-
fers an extra kin multiplicative factor in the mistake bound
than the Revealed-Std setting. More specifically, we show
that there exists family of instances where Ω(kinkout ·
Ldim(H)) is a lower bound forMRevealed-Arb(H) for de-
terminisitc algorithms (Thm 3.3). We also propose an al-
gorithm that reduces our learning problem to classical on-
line learning problem and prove thatMRevealed-Arb(H) =
Õ(kinkout · Ldim(H)), see Cor 3.2.
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• When agents lack information of the current classifier,
and instead best respond to h̃γ

t with a discount factor
γ ∈ (0, 1), we propose a reduction algorithm that trans-
forms the γ-Weighted setting into the Revealed-Arb set-
ting, achieving

Mγ-Weighted(H) = O
(
(1− γ)−1

)
· MRevealed-Arb(H)

= Õ
(
(1− γ)−1 · kinkout · Ldim(H)

)
.

This implies a Õ
(
(1− γ)−1 · kin

)
multiplicative gap

compared to the Revealed-Std deterministic lower bound
of Ω(kout · Ldim(H)) (Ahmadi et al., 2023; Cohen et al.,
2024a). We also show in Theorem 4.4 that for determin-
istic algorithms, both the (1 − γ)−1 and kin factors are
necessary in different regimes of the γ-Weighted setting.

3. Revealed Classifiers with Arbitrary
Tie-breaking

In this section, we study Revealed-Arb setting, which serves
as a building block for our main setting where the classifiers
are not revealed. In the Revealed-Arb setting, the decision-
maker reveals the classifier ht at each round, then the agent
(xt, yt) manipulates their feature vector from xt to vt that
is chosen arbitrarily from the best response set, i.e.,

vt ∈ BRht(xt).

In particular, this model allows agents to move arbitrarily
to any out-neighbor, even when both vt and xt are labeled
negative by ht. In contrast, prior works such as Ahmadi
et al. (2023); Cohen et al. (2024a); Ahmadi et al. (2024)
assumes that agents remain at xt when ht labels all the out-
neighbors Nout[xt] as negative. This assumption is critical
to their results as it allows the decision-maker to exactly
infer an agent’s true feature vector when it ends up labeled
as negative by the classifier. Specifically, when ht(vt) = 0,
the decision-maker can deduce that xt = vt and penalize all
the hypotheses inH that misclassify this agent.

Understanding arbitrary tie-breaking as an intermedi-
ate step toward the γ-Weighted setting. Addressing the
challenges arising from arbitrary tie-breaking is an impor-
tant intermediate step towards our main γ-Weighted setting.
In the γ-Weighted setting, agents lack access to the current
classifier and instead use the weighted sum of historically
implemented classifiers as an estimate. This estimation
inevitably introduces small errors that cause the agents to
perceive certain out-neighbors as more favorable than oth-
ers, even when all are labeled as negative under ht. As
a result, when the agent’s estimate h̃t is close to ht, their
best response to h̃t can still be viewed as a best response
to ht, but under arbitrary tie-breaking rules (which we will
formalize in Section 4). Therefore, we first remove the stan-
dard tie-breaking assumption, and study the Revealed-Arb
setting before analyzing the γ-Weighted setting.

We will present our upper bound in the Revealed-Arb setting
in Section 3.1 and lower bound in Section 3.2.

3.1. Upper Bound

In this section, we provide an upper bound onMRevealed-Arb
by establishing a reduction to classical (non-strategic) online
learning. While the main idea is similar to that of Cohen
et al. (2024a), we need to address the challenge of no longer
being able to observe the agent’s true feature vector xt under
false negative mistake (i.e., when the agent’s true label is
yt = 1, but the classifier ht incorrectly labels the agent
as 0). We address this challenge via a more careful and
conservative procedure of updating the expert class. We
present the algorithm in Algorithm 1.

At a high level, Algorithm 1 maintains a set E of weighted
experts and predicts x as 1 only when the total weight of
experts predicting it as 1 is sufficiently large. Each expert
runs a classical non-strategic online learning algorithm, such
as the SOA algorithm (Littlestone, 1988), with different
inputs. Each time a mistake is made, the algorithm penalizes
the experts who made incorrect predictions. The challenge
lies in identifying whether an expert has made a mistake,
as we do not know the original feature vector xt and thus
cannot determine the post-manipulation feature vector had
we followed this expert. Additionally, we aim for at least
one expert to perform nearly as well as the optimal classifier
h⋆. To achieve this, we seek to feed the expert the post-
manipulation feature vector that would have resulted had
we implemented the optimal classifier h⋆.

The algorithm uses the observed vt ∈ BRht
(xt) to enu-

merate all possible manipulated feature vectors that would
have allowed the agent to be correctly classified had they
best responded to the optimal classifier h⋆. Then, at least
one expert in E is fed with the same trajectory induced by
best-responding to h⋆.

In particular, when Algorithm 1 incurs a false negative mis-
take, the agent might have manipulated from an in-neighbor
xt ∈ Nin[vt], as permitted by the adversarial tie-breaking
rule. To account for this, our algorithm first identifies
all the in-neighbors of vt that cannot manipulate to re-
ceive a positive classification under ht—i.e., those who
has ht(Nout[x]) = 0—as possible candidates for xt. This
forms the set X̃t as described in Line 9 of Algorithm 1. Our
algorithm then considers all potential manipulations of xt

under h⋆ and forms the set Ṽt in Line 10. These nodes are
then used to update the experts as a way of enumerating all
possible trajectories consistent with h⋆.

We provide the guarantee for Algorithm 1 in Theorem 3.1
and defer its proof to Appendix A.1.

Theorem 3.1 (Upper Bound on MRevealed-Arb). Let
M ns(A,H) be the mistake bound ofA in the standard (non-
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Algorithm 1 Reduction from Revealed-Arb to classical
(non-strategic) online learning

1: Input: A standard online learning algorithmA, manip-
ulation graph G, maximum out-degree kout, and maxi-
mum in-degree kin

2: Initialization: Expert set E = {A}. Initial weight
wA = 1.

3: for t = 1, 2, . . . do
4: Prediction: ∀x ∈ X , set ht(x) = 1 if and only if

∑
A∈E:A(x)=1

wA ≥
∑

A∈E wA

2(kout + 1)(kin + 1)
.

5: Update: //when ht makes a mistake at the observed
node vt

6: if ht(vt) = 1 and yt = 0 (false positive mistake)
then

7: for all A ∈ E satisfying A(vt) = 1, update A by
feeding it with (vt, 0), update weight wA ← 1

2wA

8: else if ht(vt) = 0 and yt = 1 (false negative mistake)
then

9: X̃t ← {x ∈ Nin[vt] | ht(Nout[x]) = 0} //Possible
candidates for xt based on observed vt

10: Ṽt ← ∪x∈X̃t
Nout[x] //Possible manipulations of

xt under the optimal classifier h⋆

11: for all A ∈ E s.t. ∀x′ ∈ Ṽt, A(x′) = 0, do
12: feed (x′, 1) to A for each x′ ∈ Ṽt to obtain a

new expert A(x′, 1)

13: Replace A in E with {A(x′, 1) | x′ ∈ Ṽt},
assign weights wA(x′,1) = wA/(2|Ṽt|)

14: end for
15: end if
16: end for

strategic) online learning setting when the inputs are (non-
strategic) realizable byH. In online strategic classification
where the agent sequence is strategic realizable under H,
and each agent best responds to ht with adversarial tie-
breaking, Algorithm 1 achieves

MRevealed-Arb(H) = O(kin · kout · ln(kinkout)) ·M ns(A,H).

It is well-known that the Standard Optimal Algo-
rithm (SOA) (Littlestone, 1988) achieves mistake bound
M ns

SOA(H) = Ldim(H) in the standard realizable online
learning (where Ldim(H) is the Littlestone dimension of
H). By plugging this non-strategic mistake bound into
Theorem 3.1, we obtain an upper bound onMRevealed-Arb,
summarized in the following corollary.

Corollary 3.2 (Upper bound on MRevealed-Arb). For any
hypothesis class H with Littlestone dimension d, and any
manipulation graph G with out-degree kout and in-degree

kin, in the strategic realizable setting, when the agents best-
respond to ht with adversarial tie-breaking, our Algorithm 1
with A = SOA can achieve mistake bound

MRevealed-Arb(H) = O(kin · kout · ln(kinkout) · d).

3.2. Lower Bound

In this section, we provide a lower bound ofMRevealed-Arb
that matches the upper bound up to logarithm factors. We
defer the proof of Theorem 3.3 to Appendix A.2.

Theorem 3.3 (Lower bound on MRevealed-Arb). For any
d, kin, kout ∈ N with kout ≥ kin, there exists a hypothesis
class H with Littlestone dimension d, and manipulation
graph G with maximum in (resp. out)-degree kin (resp. kout),
such that in the strategic realizable setting, any deterministic
learning algorithms must suffer

MRevealed-Arb(H) = Ω(kin · kout · d).

Our construction is built upon the lower bounds in Ahmadi
et al. (2023); Cohen et al. (2024a). We defer the formal
construction to Appendix A.2. Here, we provide some intu-
ition on why removing the standard tie-breaking assumption
makes the problem harder.

Consider a manipulation graph that has a subgraph structure
shown in Figure 1. Suppose we have a hypothesis class
where each hypothesis hi labels agents with the original
feature vector xi (∀i = 1, 2, 3) as positive and all others as
negative. Let the optimal hypothesis be hi⋆ .

Consider the scenario where the decision-maker implements
the all-negative function and the adversary selects agent
xi⋆ . In the Revealed-Arb setting, if the tie-breaking always
favors x0, the decision-maker makes a mistake but observes
the post-manipulation feature at x0, thereby gaining no
information about i⋆. This is in contrast to the Revealed-Std
setting, where agent xi⋆ cannot obtain a positive prediction
through manipulation and thus remains at xi⋆ , enabling the
learner to successfully identify the optimal hypothesis.

x0

x1 x2 x3

Figure 1. A subgraph of the lower bound construction.

4. Best Response to the Weighted-Sum of
History

In this section, we study the γ-Weighted setting. In round t,
the agents cannot observe the current implemented classifier
ht. They will only best respond to the weighted average

6
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of historical classifiers h̃γ
t = 1−γ

1−γt−1 ·
∑t−2

τ=0 γ
τht−1−τ for

some γ ∈ (0, 1) as defined in Section 2, i.e., vt ∈ BRh̃γ
t
(xt)

with adversarially tie-breaking. We show that the learner
will suffer O((1− γ)−1 · kin) times more mistakes.

4.1. Upper Bound

Theorem 4.1 (Upper bound onMγ-Weighted). For any hy-
pothesis classH with Littlestone dimension d and any ma-
nipulation graph G with out-degree kout and in-degree kin,
in the strategic realizable setting, when the agents best-
respond to the γ-weighted sum of the history h̃γ

t , there exists
a learning algorithm that achieves a mistake bound of

O
(
min

{
d(1− γ)−1 · kinkout ln(kinkout), |H|

})
.

We design two separate algorithms to achieve
the bounds of O(|H|) (in Lemma 4.2) and
O
(
(1− γ)−1 · kinkout ln(kinkout)d

)
(by combining

Lemma 4.3 and Corollary 3.2) respectively.

While achieving O(|H|) is usually trivial in most online
learning problems (including our Revealed-Arb setting), it
becomes subtle in the γ-Weighted setting. Typically, this
linear guarantee can be obtained by trying each hypothesis
in H and discarding it once it makes a mistake. However,
in the γ-Weighted setting, even if we have identified the
optimal classifier h⋆ and used it as the current classifier ht,
it may still make a mistake since the agent is not necessarily
best responding to ht.

To achieve this linear guarantee, we refine the approach of
trying all hypotheses as shown in Algorithm 2. Specifically,
we predict x as positive if any existing hypothesis labels
x as positive. If we make a false positive mistake, we can
eliminate one hypothesis. A false negative mistake can occur
only if a false positive mistake happened in the previous
round. Thus, we obtain the following guarantee. The proof
of Lemma 4.2 is deferred to Appendix B.2.

Algorithm 2 Conservative algorithm for γ-Weighted

1: Initialization: expert set E = H
2: for t = 1, 2, . . . do
3: Prediction: at each point x, ht(x) = 1 if and only if

there exists h ∈ E such that h(x) = 1.
4: Update: //when observe a mistake at vt
5: if yt = 0 then
6: E ← E\{h : h(vt) = 1}
7: end if
8: end for

Lemma 4.2. For any hypothesis class H, in the strategic
realizable setting, when the agents best-respond to the γ-
weighted sum of the history h̃γ

t , Algorithm 2 achieves a
mistake bound of O(|H|).

To achieve the second mistake bound of
O
(
d(1− γ)−1 · kinkout ln(kinkout)

)
, we design a re-

duction to Revealed-Arb as shown in Algorithm 3. Given
any algorithm A with a mistake bound guarantee in the
Revealed-Arb setting, we update A and implement a new
classifier only after a sufficiently large number of repeated
mistakes, say Φ repeated mistakes. When the implemented
classifier remains the same h for at least Φ repeated
mistakes, the weighted average of historical classifiers will
be close to h. Consequently, when agents best respond to
h̃γ
t , they are in fact best responding to ht. However, as

mentioned at the beginning of Section 3, tie-breaking in this
setting is adversarial.

Algorithm 3 Reduction from γ-Weighted to Revealed-Arb
1: Input: Parameters γ; an online learning algorithm
A that achieves mistake bound MRevealed-Arb(A) for
Revealed-Arb agents.

2: Initialization: Update frequency: Φ ←
⌈ln( 13 )/ ln(γ)⌉+ 1.
Number of mistakes since the most recent update: ϕ←
0.
Clock (current time step) of algorithm A: i← 1.

3: for t = 1, 2, . . . do
4: Commitment: Commit to classifier ht ← hA

i .
//Use A’s i-th output.

5: Prediction: Agent (xt, yt) arrives, manipulates to vt,
and receives label ht(vt).

6: Update: //when we make a mistake at the observed
node vt

7: if ht(vt) ̸= yt then
8: ϕ← ϕ+ 1.
9: if ϕ == Φ then

10: //If the learner has made Φ mistakes since the
last update of A

11: Update A: Feed A with observation (vt, yt);
i← i+ 1.

12: ϕ← 0. //Reset the mistake counter
13: end if
14: end if
15: end for

By running Algorithm 3, the total number of mistakes is
bounded by the mistake bound of A multiplied by the num-
ber of mistakes between each update of A, which is Φ.
Lemma 4.3 (Mistake bound of Algorithm 3). Let
MRevealed-Arb(A,H) be an upper bound on the number of
mistakes that A makes on any strategic realizable sequence
of agents in the Revealed-Arb setting. Then the γ-Weighted
setting, i.e., vt ∈ BRh

γ
t
(xt) for all t ≥ 1, the mistake bound

of Algorithm 3 satisfies

Mγ-Weighted(H) ≤
(⌈

ln( 13 )

ln(γ)

⌉
+ 1

)
· MRevealed-Arb(A,H).
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We defer the proof of Lemma 4.3 to Appendix B.1. Combin-
ing Lemma 4.3 and Corollary 3.2, we achieve the mistake
bound of O

(
(1− γ)−1 · kinkout ln(kinkout)d

)
.

4.2. Lower Bound

In this subsection, we will provide the lower bound on
Mγ-Weighted, which shows that both the kin factor and the
(1 − γ)−1 factor are unavoidable in certain regimes. We
defer the proof to Appendix B.3.

Theorem 4.4 (Lower bound on Mγ-Weighted). For any
d ∈ N and discount factor γ ∈ (0, 1), there exists a hy-
pothesis class H with Littlestone dimension d and a ma-
nipulation graph G with kin = kout = 2, such that in the
strategic realizable setting, when agents best-respond to h̃γ

t ,
any deterministic learning algorithm must suffer a mistake
bound of

Mγ-Weighted = Ω
(
min

{
d(1− γ)−1, |H|

})
.

In the special case of γ → 0, for any kin, kout ∈ N where
kout ≥ (1 + Ω(1)) · kin, there exists an instance with max-
imum in (resp. out)-degree kin (resp. kout), such that any
deterministic learning algorithm must have

Mγ-Weighted = Ω(d · kin · kout).

In Theorem 4.4’s lower bound, the kin factor arises due to
arbitrary tie-breaking, which is consistent with the lower
bound in the Revealed-Arb setting. This component of the
lower bound is established using a modified version of the
instance used in the proof of Theorem 3.3.

On the other hand, the (1− γ)−1 factor reflects the cost of
having historically implemented incorrect hypotheses. In
fact, this lower bound still holds even when agents adopt
standard tie-breaking. The construction is based on repli-
cating a simple star graph (with one center and two leaves)
by |H| times, as illustrated in Figure 2. Each hypothesis
hi ∈ H labels the right leaf of the i-th star as positive
and the left leaves of all the other stars as positive, i.e.,
hi = 1x=xi,R or x∈{xj,L|j ̸=i}.

x1,B

x1,L x1,R

xi,B

xi,L xi,R

xH,B

xH,L xH,R

· · · · · ·

Figure 2. The graph used to establish the lower bound on
Mγ-Weighted for general γ ∈ (0, 1).

Note that if the agent best responds to the current classifier
(as in the Revealed-Std or Revealed-Arb setting), then this
instance is easy to learn as d, kin, kout are all constants. In

fact, the learner can guarantee only a single mistake: by
initially predicting the left leaf of each star as positive, the
learner will eventually make a mistake on the star corre-
sponding to the optimal hypothesis hi⋆ , at which point the
learner can then switch to implementing hi⋆ and makes no
further mistakes.

However, the above approach incurs (1 − γ)−1 mistakes
in the γ-Weighted setting. The adversary can repeatedly
present correctly labeled agents to build up weight on xi⋆,L

in the learner’s γ-weighted classifier h̃γ
t , before inducing

a mistake in the i⋆-th star. Once the learner identifies i⋆

through the mistake and attempts to switch to the correct
prediction over the i⋆-th star by 1xi⋆,R

, it must continue
implementing this new hypothesis for (1 − γ)−1 rounds
of repeated deployment of 1xi⋆,R

before the best response
of agent xi⋆,B switches from xi⋆,L to xi⋆,R. During this
transition — which forces the agent to “forget” the influence
of past classifiers — the learner continues to make mistakes.

In the full proof of Theorem 4.4 which we present in Ap-
pendix B.3, we show that this (1−γ)−1 blow-up in mistakes
is inevitable for any learning algorithm, unless |H| is small
and the learner adopts a more conservative algorithm (e.g.,
Algorithm 2) to achieve mistake bound of |H|.

5. Learning Agents
In recent years, repeated Stackelberg games with learn-
ing agents have become a rapidly growing area of study
(see Brown et al. (2024); Haghtalab et al. (2024); Collina
et al. (2024) for a non-exhaustive list). In such settings, in
each round, the decision maker first selects a policy (cor-
responding to the classifier in strategic classification), and
the agents subsequently choose an action (corresponding
to which neighbor to manipulate to) by running an online
learning algorithm instead of directly best responding. How-
ever, these results cannot be directly applied to strategic
classification, as the agents’ action sets, Nout[xt], vary over
time. In contrast, the existing literature typically focuses on
games such as auctions (Braverman et al., 2018; Cai et al.,
2023) and contract design (Guruganesh et al., 2024), which
assume a static action set for agents throughout the game.

Defining learning agents in strategic classification presents
unique challenges, since we need meaningful performance
guarantees for their learning algorithms. While regret (or
variations such as swap-regret) is a standard performance
measure in many game-theoretic settings, it does not trans-
late directly to strategic classification for two reasons.

1. The agents’ action sets, Nout[xt], vary over time, making
the standard regret notions inapplicable because they
usually assume a static action set. Although adopting
sleeping regret (where an action/feature vector is only
feasible in rounds where it is reachable from the agent’s
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initial feature vector) as a performance measure could
address this issue, it remains an open direction due to the
second challenge below.

2. Classical regret bounds often depend on the size of the
action set. In graph-based strategic classification, actions
correspond to nodes, and the total number of possible
actions can be extremely large or even infinite, rendering
traditional regret guarantees impractical or meaningless.
Even in a geometric setting (e.g. Dong et al., 2018; Shen
et al., 2024) where features are d-dimensional vectors in
a Euclidean space and can be grouped based on geomet-
ric adjacency, Haghtalab et al. (2024) have highlighted a
similar challenge of overcoming exponential dependency
on the dimension d.

Though existing results cannot be directly applied to obtain
performance guarantees for the agent’s learning algorithm,
we still aim to provide some insights into learning agents. A
popular category of learning algorithms considered in this
context is mean-based learning algorithms. Adapting the
definition to the context of strategic classification, mean-
based algorithms can be defined as follows.

Definition 5.1 (Mean-Based Learning Algorithms (Braver-
man et al., 2018)). Let ht =

1
t−1

∑t−1
τ=1 hτ be the empirical

average of historical classifiers. An algorithm is η-mean-
based if it is the case that whenever ht(v

′) < ht(v)− η for
v, v′ ∈ Nout[xt], the probability that the algorithm chooses
to manipulate to node v′ is at most η. An algorithm is called
mean-based if it is η-mean-based for some η = o(1).

Mean-based algorithms encompass most standard online
learning algorithms, such as the Multiplicative Weights al-
gorithm, the Follow-the-Perturbed-Leader algorithm, the
ε-Greedy algorithm, and so on (Braverman et al., 2018).
Our main γ-Weighted setting with γ → 1, also falls in the
mean-based class with η = 0. As shown in Section 4, the de-
cision maker suffers Θ(|H|) mistakes in this case. However,
the situation can be worse for other mean-based algorithms.
We observe that if η is non-zero, the decision maker could
suffer an infinite number of mistakes even in the strategic
realizable setting.

More specifically, given the average of historical classi-
fiers, ht =

1
t−1

∑t−1
τ=1 hτ , let v1 = argmaxv∈Nout[xt] ht(v)

and v2 = argmaxv∈Nout[xt]\{v1} ht(v) be the empirically
best and second best neighbors. For a mean-based al-
gorithm A, we define a monotonically decreasing func-
tion σA

t : [0, 1] 7→ [0, 1] such that σA
t (ht(v1) − ht(v2))

is a lower bound of the probability of choosing the sec-
ond best neighbor v2. For example, for Multiplicative
Weights where the probability of choosing a neighbor v
is proportional to exp(εt · ht(v)) with learning rate εt,
σA
t (z) ≥ exp(−εt·(t−1)·z)

kout
. For ε-Greedy with exploration

rate εt, σA
t (z) ≥ εt/kout.

The function σA
t captures the bounded rationality of learn-

ing agents: as the gap between the best and second-best
manipulations shrink, they have higher probability of choos-
ing the suboptimal action even when the learner is already
implementing the optimal classifier. This leads us to the
following observation. See Appendix C for a formal version
and the proof.

Observation 5.2 (informal). There exists a hypothesis class
H = {h1, h2} of size 2 and a manipulation graph G with
kin, kout ≤ 3 such that when agents run Multiplicative
Weights/ε-Greedy with εt set to be 1√

T
or 1√

t
(which are the

most common choices of parameters), the decision maker
will suffer infinite mistakes as T goes to infinity.

6. Discussion and Future Directions
In this paper, we investigate the question of whether
decision-makers should make classifiers transparent in on-
line strategic classification. We focus on a non-transparent
setting in which agents do not observe the current classifier
but manipulate their features based on a γ-weighted average
of historical classifiers. We show that compared with the
fully transparent setting, hiding the classifiers leads to an
additional multiplicative factor of (1 − γ)−1 or kin in the
decision-maker’s mistake bound. Notably, the kin factor is
unavoidable even in the transparent setting when the agent
switch from standard to adversarial tie-breaking among mul-
tiple best responses. We complement these lower bounds
with algorithms whose mistake bounds grow by at most
a Õ((1 − γ)−1 · kin) factor relative to the the transparent
setting.

There remains several open directions for future work. An
immediate question is to close the gap between upper and
lower bounds. While our lower bound shows the kin and
(1 − γ)−1 factors are individually unavoidable in differ-
ent regimes, it remains to extent our construction in Theo-
rem 4.4 to simultaneously deal with any combinations of kin
and γ. Another open problem is extending our analysis to
randomized algorithms (where the adversary’s choice of the
agent sequence cannot depend on the realized classifiers)
or the agnostic setting (where the optimal classifier makes
nonzero mistakes). The characterizations for both setting
are particularly challenging and has remained open even in
the standard transparent setting (Ahmadi et al., 2023; 2024;
Cohen et al., 2024a). Finally, as discussed in Section 5, it
remains open to consider other models of learning agents
with nontrivial performance guarantee for both the decision-
maker and the agents. We believe that sleeping regret is
a natural candidate for agent’s performance measure, but
deriving meaningful sleeping regret bounds is challenging
due to the large action space.
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A. Omitted Proofs from Section 3
A.1. Proof of Theorem 3.1

Theorem 3.1 (Upper Bound onMRevealed-Arb). Let M ns(A,H) be the mistake bound of A in the standard (non-strategic)
online learning setting when the inputs are (non-strategic) realizable byH. In online strategic classification where the agent
sequence is strategic realizable under H, and each agent best responds to ht with adversarial tie-breaking, Algorithm 1
achieves

MRevealed-Arb(H) = O(kin · kout · ln(kinkout)) ·M ns(A,H).

Proof of Theorem 3.1. Suppose A is the standard online learning algorithm that is input to Algorithm 1, and let M be the
number of mistakes that A makes on any realizable sequence. To keep track of the algorithm’s progress, we use Wt to
denote the total weight of experts at the beginning of round t, i.e.,

Wt :=
∑
A∈E

w
(t)
A .

We first show that whenever Algorithm 1 makes a mistake at round t, the total weight satisfies

Wt+1 ≤
(
1− 1

4(kout + 1)(kin + 1)

)
·Wt.

We analyze the following two cases.

Case 1: False positive mistake. In this case, the agent is labeled as ht(vt) = 1 after manipulation, but the true label is
yt = 0. Since the true label is 0, the realizability of input sequence S implies that the optimal hypothesis h⋆ should label the
entire neighborhood Nout[xt]—including vt—as 0. Therefore, we proceed by updating all experts that predict A(vt) = 1
by feeding them with the example (vt, 0), and halving their weights. Since ht(vt) = 1, according to the prediction rule in
Line 4, we must have ∑

A∈E:A(vt)=1

w
(t)
A ≥

Wt

2(kout + 1)(kin + 1)
.

Therefore, the updated total weight satisfies

Wt+1 = Wt −
1

2

∑
A∈E:A(vt)=1

w
(t)
A

≤
(
1− 1

4(kout + 1)(kin + 1)

)
·Wt

Case 2: False negative mistake. In this case, the agent is predicted as ht(vt) = 0, but the true label is yt = 1. This
implies that our learner ht labeled the entire out neighborhood Nout[xt] with 0, otherwise, if there is an x′ ∈ Nout[xt] with
ht(x

′) = 1, xt would have manipulated to x′ and received a positive label. In addition, since the sequence of agents is
realizable, we know that h⋆(BRh⋆(xt)) = 1, i.e., h⋆ must label some node in Nout[xt] as 1.

However, the main challenge in this adversarial tie-breaking setting is that we do not observe the true label xt. Instead, we
know that xt can be any of the in-neighbors of vt that satisfies ht(Nout[x]) = 0 (which means ht labels all nodes in Nout[x]
as 0). Thus, we can construct a set of candidates for xt as follows (as described in Line 9 of Algorithm 1):

X̃t := {x ∈ Nin[vt] | ht(Nout[x]) = 0}

Since X̃t contains all possible choices of xt, any expert that labels the union of their out-neighborhood (i.e., Ṽt :=
∪x∈X̃t

Nout[xt]) as all negative must be wrong. Based on our prediction rule, we can show that the total weight of such

12
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experts should take up a significant fraction of Wt: ∑
A∈E:∀x′∈Ṽt,A(x′)=0

w
(t)
A

≥Wt −
∑
x′∈Ṽt

∑
A∈E:A(x′)=1

w
(t)
A

(a)
≥

(
1− |Ṽt|

2(kout + 1)(kin + 1)

)
Wt

(b)
≥
(
1− kin · kout

2(kout + 1)(kin + 1)

)
Wt

≥ 1

2
Wt.

In the above inequalities, step (a) is because all nodes in Ṽt are labeled as 0 by ht, which, according to the prediction rule in
Line 4, implies that for any x′ ∈ Ṽt, we have

∑
A∈E:A(x′)=1 w

(t)
A < Wt

2(kout+1)(kin+1) . Step (b) is because the size of Ṽt is at
most kin · kout.

According to the algorithm, we split each of such A into |Ṽt| experts—i.e., {A(x′, 1) | x′ ∈ Ṽt}—and split the weight 1
2wA

equally among them. Thus, we have Wt+1 ≤ (1− 1
4 )Wt ≤

(
1− 1

4(kout+1)(kin+1)

)
·Wt.

Deriving the final mistake bound. We have proved that whenever Algorithm 1 makes a mistake, the total weight Wt is
reduced by a multiplicative factor of 1

4(kout+1)(kin+1) . Let N denote the total number of mistakes that Algorithm 1 makes.

Then we have total weight in the final round is at most
(
1− 1

4(kout+1)(kin+1)

)N
.

On the other hand, note that there exists an expert A⋆ ∈ E that is an execution ofAwith trajectory (v′t, yt) during the mistake
rounds, where v′t ∈ BRh⋆(xt). Since the agent sequence (xt, yt)t≥1 is strategic realizable, we have h⋆(BRh⋆(xt)) = yt,
which implies h⋆(v′t) = yt. In other words, the inputs of A⋆ are realizable under h⋆. According to the mistake bound
assumption of A, A⋆ makes at most M mistakes.

Now we analyze the weight of A⋆. At each mistake round t, if the A⋆ makes a false positive mistake, its weight is reduced by
half. If A⋆ made a false negative mistake, it is split into a few experts, one of which is fed by (v′t, yt) where v′t ∈ BRh⋆(xt).
This specific new expert’s weight is reduced by at most 1

2(kout+1)(kin+1) . Thus, since A⋆ makes at most M mistakes, its

weight at the final round will be at least
(

1
2(kout+1)(kin+1)

)M
.

Combining these two observations, we have(
1− 1

4(kout+1)(kin+1)

)N

≥
(

1

2(kout+1)(kin+1)

)M

,

which yields the mistake bound of Algorithm 1:

N ≤ 4(kout + 1)(kin + 1) ln(2(kout + 1)(kin + 1))M.

The proof is thus complete.

A.2. Proof of Theorem 3.3

Theorem 3.3 (Lower bound onMRevealed-Arb). For any d, kin, kout ∈ N with kout ≥ kin, there exists a hypothesis classH
with Littlestone dimension d, and manipulation graph G with maximum in (resp. out)-degree kin (resp. kout), such that in the
strategic realizable setting, any deterministic learning algorithms must suffer

MRevealed-Arb(H) = Ω(kin · kout · d).

13
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x0

x1

x2
xk1

x11 x12
· · ·

x1k2
x21 x22

· · ·
x2k2

· · ·

xk1,1 xk1,2

. . .
xk1,k2

Figure 3. Example for lower bound construction for the Revealed-Arb setting.

Proof of Theorem 3.3. Consider a graph with nodes x0, x1, . . . , xk1
, x11, . . . , x1k2

, . . . , xk1,1, . . . , xk1,k2
as shown in Fig 3

with k2 > k1. The maximum out-degree is k2 and the maximum in-degree is k1. The hypothesis class contains all singletons
over the leaves. Suppose the target hypothesis is hi⋆,j⋆ . Then only agents with original feature vectors at xi⋆ and xi⋆,j⋆ are
labeled as positive. For any deterministic algorithm, at time t, there are the following cases:

• If ht is all-negative, the adversary can pick xt = xi⋆ and tie-breaking favors x0. Then we only observe vt = x0, yt = 1
and ŷt = 0. ht makes a mistake but learn nothing.

• If ht labels x0 as positive, the adversary can pick xt = x0 and tie-breaking favors x0. Then we observe vt = x0,
yt = 0 and ŷt = 1. Again, ht makes a mistake but learn nothing.

• If ht labels any node xi in the second layer as positive, the adversary can pick xt = x0 and tie-breaking favors xi.
Then we observe vt = xi, yt = 0 and ŷt = 1. Again, ht makes a mistake but we learn nothing.

• Hence, ht can only label some leaves as positive. When it labels any leaf xij other than the target one as positive, the
adversary picks xt = xij being that leaf and tie-breaking favors xij . ht makes a mistake and learns that xij is not the
target leaf.

Therefore, the algorithm will make k1k2 mistakes. The Littlestone dimension of this hypothesis class is 1. We can extend
the result to Littlestone dimension being d by making d independent copies of this example.

B. Omitted Proofs from Section 4
B.1. Proof of Lemma 4.3

Lemma 4.3 (Mistake bound of Algorithm 3). LetMRevealed-Arb(A,H) be an upper bound on the number of mistakes that
A makes on any strategic realizable sequence of agents in the Revealed-Arb setting. Then the γ-Weighted setting, i.e.,
vt ∈ BRh

γ
t
(xt) for all t ≥ 1, the mistake bound of Algorithm 3 satisfies

Mγ-Weighted(H) ≤
(⌈

ln( 13 )

ln(γ)

⌉
+ 1

)
· MRevealed-Arb(A,H).

Proof of Lemma 4.3. Let A′ be the algorithm obtained by applying the reduction in Algorithm 3 to A. Let (ti)i≥1 be the
time steps in which line 11 of Algorithm 3 is called. The key to establishing this lemma is to show that, for any t = ti, the
agent’s response will best respond to the current ht with arbitrary tie-breaking by manipulating to vt = BRh̃γ

t
(xt).

To see this, note that the condition in Line 9 ensures that A′ has made at least Φ = ⌈ln( 13 )/ ln(γ)⌉+ 1 mistakes in the time
interval [ti−1 + 1, ti], which implies that ti − (ti−1 + 1) ≥ Φ− 1. Moreover, during this time interval, A′ has been using

14
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the same classifier hA
i−1. Therefore, at time t = ti, the γ-discounted average classifier can be written as

h̃γ
t =

1− γ

1− γt−1
·
t−1∑
τ=1

γτ−1ht−τ

=
1− γ

1− γt−1
·
Φ−1∑
τ=1

γτ−1ht +
1− γ

1− γt−1
·
t−1∑
τ=Φ

γτ−1ht−τ (ht−τ = ht for τ ≤ Φ− 1)

=
1− γΦ−1

1− γt−1
· ht +

γΦ−1 − γt−1

1− γt−1
· h̃ (h̃ := 1−γ

γΦ−1−γt−1

∑t−1
τ=Φ γτ−1ht−τ )

=(1− εt) · ht + εt · h̃. (εt := γΦ−1−γt−1

1−γt−1 )

In the above equation, we have

εt =
γΦ−1 − γt−1

1− γt−1
≤ γΦ−1 ≤ γln( 1

3 )/ ln(γ) =
1

3
.

This implies that h̃γ
t is already very close to the true ht. If ht(BRht(xt)) = 1, then we claim BRh̃γ

t
(xt) ⊂ BRht(xt) because

for any xt’s neighbor v /∈ BRht
(xt), it holds that

h̃γ
t (v) = (1− εt) · ht(v) + εt · h̃(v) = εt · h̃(v)

≤ εt < 1− εt ≤ max
v′∈Nout[xt]

h̃γ
t (v

′).

If ht(BRht
(xt)) = 0, then BRh̃γ

t
(xt) being some v ∈ Nout[xt] can be viewed as breaking tie adversarially for best

responding to ht.

Per guarantee of algorithmA, we conclude that the number of mistakes thatA′ makes on the subsequence S′ = (xti , yti)i≥1

is at mostMRevealed-Arb(A,H).

Finally, it remains to bound the mistakes on the entire sequence S. Since A calls A′ once per Φ mistakes, the total number
of mistakes is at most

Mγ-Weighted(A′,H) ≤ Φ · MRevealed-Arb(A,H)
= (⌈ln(1/3)/ ln(γ)⌉+ 1) · MRevealed-Arb(A,H).

The proof is thus complete.

B.2. Proof of Lemma 4.2

Lemma 4.2. For any hypothesis classH, in the strategic realizable setting, when the agents best-respond to the γ-weighted
sum of the history h̃γ

t , Algorithm 2 achieves a mistake bound of O(|H|).

Proof of Lemma 4.2. First we show that h⋆ is always in E. For any yt = 0, h⋆(vt) = 0 because maxv∈Nout[xt] h
⋆(v) = 0.

Then h⋆ will never be removed from E.

Next we show the number of false negative error is no larger than the number of false positive error. Suppose we make
a false negative mistake at time t, i.e., yt = 1 and ht(vt) = 0. For v ∈ BRh⋆(xt), h1(v) = · · · = ht−1(v) = 1 because
h⋆(v) = 1 and h⋆ ∈ E at time 1, · · · , t − 1. Then we have h̃γ

t (v) = 1 by the definition of h̃γ
t . Moreover it holds that

h̃γ
t (vt) ≥ h̃γ

t (BRh⋆(v)) = 1. So h1(vt), · · · , ht−1(vt) must all be positive. ht(vt) = 0 means that E is updated at time
t− 1 otherwise ht−1 will be the same as ht. So a false negative mistake can only occur right after a false positive mistake.

Every time we make a false positive mistake, at least one hypothesis will be removed from E otherwise vt won’t be classified
as positive. So the number of false positive mistakes is upper bounded by the number of candidate hypothesis |H| and the
number of total mistakes is upper bounded by 2|H|.
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B.3. Proof of Theorem 4.4

Theorem 4.4 (Lower bound onMγ-Weighted). For any d ∈ N and discount factor γ ∈ (0, 1), there exists a hypothesis class
H with Littlestone dimension d and a manipulation graph G with kin = kout = 2, such that in the strategic realizable setting,
when agents best-respond to h̃γ

t , any deterministic learning algorithm must suffer a mistake bound of

Mγ-Weighted = Ω
(
min

{
d(1− γ)−1, |H|

})
.

In the special case of γ → 0, for any kin, kout ∈ N where kout ≥ (1 + Ω(1)) · kin, there exists an instance with maximum in
(resp. out)-degree kin (resp. kout), such that any deterministic learning algorithm must have

Mγ-Weighted = Ω(d · kin · kout).

Proof of Theorem 4.4. We prove this theorem by establishing the two lower bounds separately. First, adapting the construc-
tion in Theorem 3.3, we show that as γ → 0, the freedom of arbitrary tie-breaking forces the decision-maker to suffer
d · kin · kout mistakes. Next, we use a different instance that exploits the agent’s effective memory length to show that
MRevealed-Arb = Ω

(
min

{
d(1− γ)−1, |H|

})
. Combining these bounds completes the proof.

x0

x1

x2
· · ·

xk1

x1,1
· · ·

x1,2 x1,k2
x2,1 x2,2

· · ·
x2,k2

· · ·
xk1,1xk1,2

· · ·
xk1,k2

Figure 4. Lower bound construction when γ → 0

Part 1: Mγ-Weighted = Ω(d · kin · kout) as γ → 0. For this lower bound, consider the graph that is the same as that in
Figure 3, but all nodes in the first layer (namely x1, x2, . . . , xk1) are connected by a clique, as shown in Figure 4. This
modification gives kout = k1 + k2 and kin = k2. As in Theorem 3.3, we let the hypothesis class consist of all singletons
over the leaves, i.e.,H = {hi,j = 1xi,j

| i ∈ [k1], j ∈ [k2]}. Suppose the target hypothesis is some unknown hi⋆,j⋆ ∈ H.
Under the strategic realizability assumption, only agents originally located at xi⋆ or xi⋆,j⋆ have positive true labels.

For γ → 0, best responding to h̃γ
t is equivalent to best responding to ht−1. We will construct an adversary that induces at

least one mistake in every two rounds in the first 2k1k2 rounds. This will establish a lower bound of Ω(kin · (kout − kin)) =
Ω(kin · kout) under the assumption that kout ≥ (1 + Ω(1)) · kin.

Consider two consecutive rounds t− 1 and t (where t = 2, 4, . . . , 2k1k2). If the learner already makes a mistake at round
t − 1, then a mistake have been induced across these two rounds. Otherwise, we show below how to force a mistake in
round t by performing a case discussion of both ht−1 — which the agent xt best responds to — and the current classifier ht.
We let the initial version space contain all hypotheses.

1. If ht−1 labels x0 by positive, then consider two sub-cases. If ht(x0) = 1, the adversary can pick (xt, yt) = (x0, 0),
and make the tie-breaking favor x0. This forces ht to make a false positive mistake but learns nothing.

On the other hand, if ht(x0) = 0, then the adversary picks some (i⋆, j⋆)2 consistent with the current version space,

2Since the learner’s algorithm is deterministic, the adversary can simulate the interaction between the algorithm and the adversary, and
pick the hypothesis hi⋆,j⋆ that is the last one to be removed from the version space. This makes the realizable hypothesis consistent
across all rounds.
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sets (xt, yt) = (xi⋆ , 1), and again makes the tie-breaking favor x0. As a result, the t-th agent will manipulate to x0 and
induces a false negative mistake while revealing no information.

2. If ht labels any leaf node xi,j as positive, then the adversary picks (xt, yt) = (xi,j , 0), and removes hypothesis hi,j

from the version space if it has not been removed yet. This induces a false positive mistake. Since the learner made no
mistake in round t− 1, we can assume that ht−1 labels all leaf nodes as negative.

3. We are left with the case where ht−1(x0) = −1 and ht labels all leaf nodes as negative. In addition, from case 2, it is
without loss of generality to assume that ht−1(xi,j) = −1 for all i ∈ [k1] and j ∈ [k2], as otherwise the learner could
have induced a false positive mistake in round t− 1 already. Therefore, only the middle layer {x1, . . . , xk1

} can be
potentially labeled as positive by ht−1. Due to arbitrary tie-breaking and the added clique, we can assume that all
nodes in {x0, x1, . . . , xk1

} manipulates to the same node xi where i ∈ argmaxi∈[k1] ht−1(xi) in response to ht−1.
Now consider the following two subcases:

If ht(xi) = 1, then the adversary can choose (xt, yt) = (x0, 0), which will manipulate to xi and induce a false positive
mistake. If ht(xi) = 0, then the adversary chooses (xt, yt) = (xi⋆ , 1) from the version space3 and induces a false
negative mistake, while revealing no information about i⋆.

Note that the proof of this case crucially relies on the additional clique structure. Without this clique, the learner can
set ht−1 to predict all middle-layer nodes (x1, . . . , xk1

) as positive, and set ht to predict all nodes as negative. This
would cause all leaf nodes xi,j to manipulate to their parent xi, while the middle-layer nodes stay put. In this case, for
the adversary to induce a mistake, it would have to reveal information about i⋆, which would allow the learner to either
eliminate up to k2 hypotheses in a single round.

Since the version space initially contains k1 · k2 classifiers, the above construction can be used to induce at least k1 · k2 − 1
mistakes before the version space becomes empty. This establishes the Ω(k1 · k2) mistake bound when d = 1. For general
d, we can create d independent copies of the same instance to obtain a bound of Ω(k1 · k2 · d).

Part 2: For any γ ∈ (0, 1), Mγ-Weighted = Ω
(
min

{
d(1− γ)−1, |H|

})
. For simplicity, we consider the agents best

respond to unnormalized weighted sum of history

h
γ

t =

t−2∑
τ=0

γτht−1−τ

in this proof because the agents will make the same manipulation for h̃γ
t and h

γ

t . We first provide an example for hypothesis
class with Littlestone dimension being 1. Consider the graph with x1,B , x1,L, x1,R, . . . , xH,B , xH,L, xH,R as shown in
Fig 2. There are H classifier in the hypothesis classH with hi defined as hi(xj,B) = 0 for all j; hi(xj,L) = 1, hi(xj,R) = 0
for any j ̸= i; and hi(xi,L) = 0, hi(xi,R) = 1. Suppose the target hypothesis is hi⋆ .

At each round t, there are three cases regarding the weighted sum of historical classifiers h
γ

t :

1. If there exists i ̸= i⋆ such that h
γ

t (xi,B) = max{hγ

t (xi,B), h
γ

t (xi,L), h
γ

t (xi,R)}, we consider the following two cases
of ht.

(a) If ht labels xi,B as negative, the adversary can pick xt = xi,B . The agent will always stay at xi,B under standard
tie-breaking rule. We will observe vt = xi,B , yt = 1 and ŷt = 0. ht makes a mistake but learns nothing.

(b) If ht labels xi,B as positive and h
γ

t (xi,B) > h
γ

t (xi,R), the adversary can pick xt = xi,R. The agent will
manipulate to xi,B . ht makes a mistake but learns nothing.

(c) If h
γ

t (xi,B) = h
γ

t (xi,R) ≥ h
γ

t (xi,L) and ht labels both xi,B and xi,R as positive, the adversary can pick xt = xi,R.
The agent will stay at xi,R. ht makes a mistake and we can eliminate hi.

(d) If h
γ

t (xi,B) = h
γ

t (xi,R) ≥ h
γ

t (xi,L) and ht labels xi,B as positive and xi,R as negative, we can’t force a mistake
at this round. However, h

γ

t+1(xi,B) will be strictly larger than h
γ

t+1(xi,R) because ht(xi,B) > ht(xi,R). Then we
force a mistake in round t+ 1 without revealing any information like we did in (a) and (b) above.

3Again, assume that hi⋆,j⋆ is the last hypothesis that remains in the version space.
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2. If there exists i ̸= i⋆ such that h
γ

t (xi,R) = max{hγ

t (xi,B), h
γ

t (xi,L), h
γ

t (xi,R)} but h
γ

t (xi,B) < h
γ

t (xi,R), we consider
the following two cases of ht.

(a) If ht labels xi,R as positive, the adversary can pick xt = xi,R. The agent will stay at xi,R. We will observe yt = 0
and ŷt = 1. ht makes a mistake and we can eliminate hi.

(b) If ht labels xi,R as negative, the adversary can pick xt = xi,B . With probability over 1/2, the agent will
manipulate to xi,R. We will observe yt = 1 and ŷt = 0. ht makes a mistake but we can’t make any progress.

3. If h
γ

t (xi,L) > h
γ

t (xi,B) and h
γ

t (xi,L) > h
γ

t (xi,R) for all i ̸= i∗, we consider the following cases of ht.

(a) If ht labels xi,L as negative, the adversary can pick xt = xi,B . The agent will manipulate to xi,L. ht makes a
mistake but learns nothing.

(b) If ht labels xi,L, xi,B , xi,R all as positive, the adversary can pick xt = xi,R. If the agent stays at xi,R, we make a
mistake and can eliminate hi. If the agent manipulates to xi,B , we make a mistake but can’t learn anything.

(c) If ht labels xi,L and xi,R as positive and labels xi,B as negative, the adversary can pick xt = xi,B . The agent will
manipulate to xi,L. We don’t make a mistake but we also learn nothing. The only benefit in this round is that
γ-weighted-sum will receive more weight for xi,R than xi,B from ht.

(d) If ht labels xi,L as positive and xi,R as negative, the adversary will pick xt = xi,B . Again we don’t make mistakes
and learn nothing. But γ-weighted-sum will receive more weight for xi,L than xi,R from ht.

Start from some time T . We hope to achieve one of the following goals at time T ′ > T where T ′ is some number we will
choose later:

• There exists a feasible i such that hT ′(γ)(xi,L) > hT ′(γ)(xi,R) +
1

3(1−γ) .

• There exists a feasible i such that hT ′(γ)(xi,R) > hT ′(γ)(xi,B).

• We make at least one mistake and the hypotheses we can eliminate is no more than the mistakes we make.

The third case will happen once one of 1(a-d), 2(a), 2(b), 3(a), 3(b) happens. So we would assume only 3(c) and 3(d) occur
between time T and T ′.

For any feasible i at time T , we define Ai = {T ≤ t < T ′|ht(xi,L) = 1, ht(xi,R) = 1, ht(xi,B) = 0}, Bi = {T ≤ t <
T ′|ht(xi,L) = 1, ht(xi,R) = 0, ht(xi,B) = 1} and Ci = {T ≤ t < T ′|ht(xi,L) = 1, ht(xi,R) = 0, ht(xi,B) = 0}. We
further define ∆A =

∑
t∈Ai

γT ′−t, ∆B =
∑

t∈Bi
γT ′−t and ∆C =

∑
t∈Ci

γT ′−t. Then we can have that

hT ′(γ)(xi,L) = γT ′−ThT (γ)(xi,L) + ∆A +∆B +∆C

= γT ′−ThT (γ)(xi,L) +
1− γT ′−T

1− γ
,

hT ′(γ)(xi,R) = γT ′−ThT (γ)(xi,R) + ∆A,

hT ′(γ)(xi,B) = γT ′−ThT (γ)(xi,B) + ∆B ,

If neither of the two goals is achieved for i, then it must hold that
1

3(1− γ)
≥ hT ′(γ)(xi,L)− hT ′(γ)(xi,R)

= γT ′−T
(
hT (γ)(xi,L)− hT (γ)(xi,R)

)
+∆B +∆C

≥ ∆B +∆C

and

∆A ≤ ∆B + γT ′−T
(
hT (γ)(xi,B)− hT (γ)(xi,R)

)
≤ 1

3(1− γ)
−∆C + γT ′−T

(
hT (γ)(xi,B)− hT (γ)(xi,L)

)
≤ 1

3(1− γ)
−∆C ≤

1

3(1− γ)
.
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Combining the two inequalities above, we have that

1− γT ′−T

1− γ
= ∆A +∆B +∆C ≤

2

3(1− γ)
.

This requires γT ′−T ≥ 1
3 , which won’t be true for T ′ > T + ln 3

ln(1/γ) . So at least one of the first goal is achieved at time T ′.
Next we claim we can achieve one of the following goals at time T ′′ ≥ T ′

• hT ′′(γ)(xi,L) > hT ′′(γ)(xi,R) +
1

3(1−γ) .

• hT ′′(γ)(xi,R) > hT ′′(γ)(xi,B) and hT ′′(xi,R) = 1.

• We make at least one mistake and the hypotheses we can eliminate is no more than the mistakes we make.

From the derivation above, we can assume the third case never happens after T . If the first case also never happens after T ′,
we know it must hold that ht(γ)(xi,R) > ht(γ)(xi,B) for any t ≥ T ′. So if there exists t ≥ T ′ such that ht(xi,R) = 1, we
can finish proving the claim. On the other hand, if ht(xi,R) = 0 for all the t ≥ T ′, for T ′′ = T ′ + ln 1.5

ln(1/γ) , we have that

hT ′′(γ)(xi,L)− hT ′′(γ)(xi,R) ≥
T ′′−1∑
t=T ′

γT ′′−1−t (ht(xi,L)− ht(xi,R))

=
1− γT ′′−T ′

1− γ

≥ 1

3(1− γ)
.

This is because hT ′(γ)(xi,L) ≥ hT ′(γ)(xi,R) and ht(xi,L) = 1 for all the t ≥ T . It means the first case will happen at T ′′

which causes contradiction.

If the second case happens, we can choose xT ′′ = xi,R. We will make a mistake and eliminate hi.

If the first case happens, we will choose hi as the target classifier. For t = T ′′, . . . , T ′′ + ln(4/3)
ln(1/γ) − 1, it will always hold

that h
γ

t (xi,L) > h
γ

t (xi,R) because

h
γ

t (xi,L)− h
γ

t (xi,R)

≥ γt−T ′′ (
hT ′′(γ)(xi,L)− hT ′′(γ)(xi,R)

)
−

t−1∑
s=T ′′

γt−1−s

≥ γt−T ′′ 1

3(1− γ)
− 1− γt−T ′′

1− γ

≥ 4γt−T ′′ − 3

3(1− γ)
> 0.

We will discuss all the cases during t = T ′′, . . . , T ′′ + ln(4/3)
ln(1/γ) − 1 in which we can force mistakes in at least half of the

rounds.

• If h
γ

t (xi,B) > h
γ

t (xi,L), we consider the following two cases of ht.

– If ht(xi,B) = 1, the adversary will choose xt = xi,L. The agent will manipulate to xi,B . ht will make a mistake
but learn nothing.

– If ht(xi,B) = 0, the adversary will choose xt = xi,R. The agent will manipulate to xi,B . ht will make a mistake
but learn nothing.

• If h
γ

t (xi,B) = h
γ

t (xi,L) > h
γ

t (xi,R), we consider the following four cases of ht.
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– If ht(xi,L) = 1, the adversary will choose xt = xi,L. The agent will stay at xi,L. ht will make a mistake.
– If ht(xi,B) = 0, the adversary will choose xt = xi,R. The agent will manipulate to xi,B . ht will make a mistake

but learn nothing.
– If ht(xi,L) = 0 and ht(xi,B) = 1, we won’t force a mistake in this round. But h

γ

t+1(xi,B) and h
γ

t+1(xi,L) won’t
be the same and we can definitely force a mistake in round t+ 1 as discussed above.

Based on the analysis above, the learner will either make at least ⌈ ln(4/3)
2 ln(1/γ)⌉ mistakes to know the target functions or make at

least |H|−1 mistakes to eliminate all the alternative functions. It is easy to show that ⌈ ln(4/3)
2 ln(1/γ)⌉ ≥

ln(4/3)
4 (1−γ)−1 for any

0 < γ < 1. So the mistake bound is Ω(min{(1− γ)−1, |H|}). For Littlestone dimension d, we can create d independent
copies of the above instance. The mistake bound will be Ω(min{d(1− γ)−1, |H|}).

C. Omitted Details and Proofs from Section 5
Observation C.1 (Formal version of Observation 5.2). There exists a hypothesis class H = {h1, h2} of size 2 and a
manipulation graph G with kin, kout ≤ 2 such that for any mean-based learner A, the decision maker will suffer at least∑T

t=T
2 +1 min{σA

t ( t−1−T/2
t−1 ), ct} number of mistakes, where ct = Ω(1) is the probability of choosing empirical best

neighbor.

Note that learning/exploration rate is usually set to be εt =
1√
T

in Multiplicative Weights/ε-Greedy when the number of

rounds is T , then we have
∑T

t=T
2 +1 σ

A
t ( t−1−T/2

t−1 ) ≥ Ω(
√
T ) for both. This implies that Multiplicative Weights/ε-Greedy

will suffer infinite number of mistakes as T goes to infinity in the strategic realizable setting.

Proof. Consider a manipulation graph G shown in Fig 5, where there are three nodes and a hypothesis class H =
{1x=xL

,1x=xR
}.

xB

xL xR

Figure 5.

For any time horizon T , in the first T/2 rounds, the adversary always picks agent (xt, yt) = (xB , 1), which is consistent
with either hypothesis inH. After the first T/2 rounds, we compare hT/2(xL) and hT/2(xR). We pick the target function
to be h⋆ = 1x=xR

if hT/2(xL) ≥ hT/2(xR), and h⋆ = 1x=xL
otherwise. W.l.o.g., assume that hT/2(xL) ≥ hT/2(xR) and

h⋆ = 1x=xR
. Then at round t = T/2 + 1, . . . , T , we have (t− 1) · (hT/2(xR)− hT/2(xL)) ≤ t− 1− T/2.

Then at round t = T/2 + 1, . . . , T , we consider the following cases:

• ht(xB) > ht(xL) and ht(xB) = 1. In this case, the adversary will pick (xt, yt) = (xL, 0), then with probability at
least ct, the agent will manipulate to the empirically best neighbor xB and the learner makes a mistake.

• ht(xB) > ht(xL) and ht(xB) = 0. In this case, ht(xR) − ht(xB) < ht(xR) − ht(xL) ≤ t−1−T/2
t−1 . Then the

adversary will pick (xt, yt) = (xR, 1), then with probability at least σA
t ( t−1−T/2

t−1 ), the agent will manipulate to the
empirically second best neighbor xB and the learner makes a mistake.

• ht(xB) ≤ ht(xL) and ht(xL) = 0. In this case, the adversary will pick (xt, yt) = (xB , 1), then with probability at
least σA

t ( t−1−T/2
t−1 ), the agent will manipulate to xL and the learner makes a mistake.
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• ht(xB) ≤ ht(xL) and ht(xL) = 1. In this case, the adversary will pick (xt, yt) = (xL, 0), then with probability at
least ct, the agent will manipulate to xL and the learner makes a mistake.

As a result, in all cases, the learner makes a mistake in each round t > T
2 with probability Ω(min{σA

t ( t−1−T/2
t−1 ), ct}).

Summing over t ∈ [T2 + 1, T ] completes the proof.
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