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Abstract

We develop a Mean-Field (MF) view of the learning dynamics of overparametrized
Artificial Neural Networks (NN) under distributional symmetries of the data w.r.t.
the action of a general compact group G. We consider for this a class of generalized
shallow NNs given by an ensemble of N multi-layer units, jointly trained using
stochastic gradient descent (SGD) and possibly symmetry-leveraging (SL) tech-
niques, such as Data Augmentation (DA), Feature Averaging (FA) or Equivariant
Architectures (EA). We introduce the notions of weakly and strongly invariant laws
(WI and SI) on the parameter space of each single unit, corresponding, respectively,
to G-invariant distributions, and to distributions supported on parameters fixed by
the group action (which encode EA). This allows us to define symmetric models
compatible with taking N → ∞ and give an interpretation of the asymptotic dy-
namics of DA, FA and EA in terms of Wasserstein Gradient Flows describing their
MF limits. When activations respect the group action, we show that, for symmetric
data, DA, FA and freely-trained models obey the exact same MF dynamic, which
stays in the space of WI parameter laws and attains therein the population risk’s
minimizer. We also provide a counterexample to the general attainability of such an
optimum over SI laws. Despite this, and quite remarkably, we show that the space
of SI laws is also preserved by these MF distributional dynamics even when freely
trained. This sharply contrasts the finite-N setting, in which EAs are generally
not preserved by unconstrained SGD. We illustrate the validity of our findings as
N gets larger, in a teacher-student experimental setting, training a student NN to
learn from a WI, SI or arbitrary teacher model through various SL schemes. We
lastly deduce a data-driven heuristic to discover the largest subspace of parameters
supporting SI distributions for a problem, that could be used for designing EA with
minimal generalization error.

1 Introduction

Learning in complex tasks, employing ever larger datasets, has strongly benefited from the implemen-
tation and training of Artificial Neural Networks (NN) with a huge number of parameters; as well as
from training schemes or architectures that can leverage underlying symmetries of the data in order
to reduce the problem’s complexity (see [33, 34] for general reference). This raises questions, on one
hand, of understanding the puzzling generalizability in overparametrized NN; and on the other, of
when and how symmetry-leveraging (SL) techniques (such as Data Augmentation, Feature Averaging
or Equivariant Architectures), can induce useful biases towards learning with symmetries, without
hindering approximation and generalization properties. The recent Mean-Field (MF) theory of NN
(see [16] and further references below) provides a partial, yet promissory, viewpoint to address the
first question for shallow NN: in the Mean-Field Limit (MFL) of an infinitely wide hidden layer,
stochastic gradient descent (SGD) training dynamics approximates the Wasserstein Gradient Flow
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(WGF) of certain convex population risk on the space of distributions on parameters. Confluently, the
incorporation of combined algebraic and probabilistic viewpoints have yielded a more complete view
of the benefits of SL techniques under symmetry (see e.g. [13, 27, 59] and further references below);
however, it is not clear if and how those findings can scale to overparametrized NN and their MFL.

In this work we develop a systematic MF analysis of the limiting learning dynamics of a class of
generalized shallow NNs, under distributional symmetries of the data w.r.t. the action of a compact
group, and including the possible effects of employing some of the most popular SL techniques.
The effect of symmetries on the WGF dynamics was already studied in [35], in the particular
case of two-layer ReLU networks, under data generated by a function symmetric w.r.t. a single
orthogonal transformation. We consider our (independent 1) work to largely broaden the scope and
applicability of such initial contributions, as it provides a unified MF interpretation for both the use
of SL techniques under general distributional invariances, and the interplay of such symmetries at the
levels of data, architectures and training dynamics. The paper unfolds as follows:

In Section 2 we introduce a class of generalized shallow models with multi-layer units on which
we will focus, we recall WGFs and their role in the MFL of NN training dynamics, and review the
SL techniques to be studied. Section 3 contains the bulk of our contributions, as we study how SL
techniques applied on these models can be interpreted in terms of their limiting WGFs, how they
relate to each other in terms of the optima of their corresponding population risks, and how their
limiting MF training dynamics behave with or without symmetric data. Finally, Section 4 presents
the empirical validation of our main theoretical results through some numerical simulations; it also
suggests a potential heuristic for discovering data-driven parameter-sharing schemes that lead to
optimal equivariant architectures in ML problems. Proofs and complements to our results can be
found in the Supplementary Material (henceforth SuppMat for short), together with a discussion of
the scope and limitations of our results, as well as a summary of the notation and abbreviations used.

2 Preliminaries

2.1 Supervised learning with generalized shallow neural networks

Let X , Y and Z be separable Hilbert Spaces, termed as the feature, label and parameter spaces
respectively. Typically, these are finite-dimensional, e.g. X = Rd and Y = Rc (for c, d ∈ N∗) with
Z the space of affine transformations between hidden layers. We write P(·) for the space of Borel
probability measure on a metric space (·). Let π ∈ P(X × Y) denote the data distribution from
which i.i.d. samples (X,Y ) ∈ X × Y will be drawn, and ℓ : Y × Y → R be a convex loss function.
Consider also an activation function σ∗ : X × Z → Y . We introduce a general class of shallow NN:
Definition 1. A shallow neural network model of parameter θ := (θi)

N
i=1 ∈ ZN is the function

ΦN
θ : X → Y given by ΦN

θ (x) := 1
N

∑N
i=1 σ∗(x; θi), ∀x ∈ X . Equivalently, if νNθ := 1

N

∑N
i=1 δθi

is the empirical measure associated with θ ∈ ZN , we can write ∀x ∈ X , ΦN
θ (x) = ⟨σ∗(x; ·), νNθ ⟩

or, abusing notation, simply ΦN
θ = ⟨σ∗, ν

N
θ ⟩.

In the setting where X = Rd, Y = Rc and Z = Rc×b × Rd×b × Rb (for b ∈ N∗), if we consider, for
z = (W,A,B) ∈ Z and σ : Rb → Rb, σ∗(x, z) := Wσ(ATx+B); then ΦN

θ (with N ∈ N, θ ∈ ZN )
corresponds exactly to a single-hidden-layer neural network with N hidden units. Depending on σ∗,
however, these shallow NN models can represent settings that go far beyond this first example. In
fact, σ∗ can be taken to be an entire Multi-Layer NN model, in which case ΦN

θ will represent an
ensemble of N such units trained simultaneously (see SuppMat-C.1). As we will also shortly see, for
suitable subspaces of Z , this modelling extends to renowned equivariant architectures such as CNNs,
DeepSets and GNNs. Beyond NNs, this setting can also model the deconvolution of sparse spikes,
RBF networks, density estimation via MMD minimization, among many others (see [16, 62, 69]).

This class thus allows for non-trivial internal units, while enabling the width N → ∞ consistently,
and regardless of the possible underlying structure of the (fixed size) units represented by σ∗. Inspired
by this possibility, and by our writing of shallow NN models, we define a more general notion:
Definition 2 (Shallow Model). A shallow model is any function of the form Φµ(x) := ⟨σ∗(x; ·), µ⟩
for some µ ∈ P(Z) (whenever the integral makes sense for all x ∈ X ). We write Φµ := ⟨σ∗, µ⟩ and
denote the space of such models as Fσ∗(P(Z)).

1We became aware of the work [35] after a first version of this paper was posted.
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Classically, we want to find a NN model that performs well with respect to π and ℓ. More precisely,
having fixed an architecture (given here by N and σ∗), we consider the generalization error or
population risk given by R(θ) = Eπ

[
ℓ(ΦN

θ (X), Y )
]
, and look for a vector of parameters θ ∈ ZN

attaining minθ∈ZN R(θ). However, not only is this function highly non-convex and hard to optimize;
but in practice we generally don’t have access to π (and thus R) and we have to solve this problem
only with a set of i.i.d. data samples {(Xk, Yk)}k∈N drawn from π. Thus, the usual approach to
minimizing this population risk is to train a NN model ΦN

θ , through an SGD scheme (see e.g. [7]):

• First, initialize θ0i , ∀i ∈ {1, . . . , N}, i.i.d. from a fixed distribution µ0 ∈ P(Z).

• Iterate, for k ∈ N, defining ∀i ∈ {1, . . . , N}:

θk+1
i = θki − sNk

(
∇zσ∗(Xk, θ

k
i ) · ∇1ℓ(Φ

N
θk(Xk), Yk) + τ∇r(θki )

)
+
√
2βsNk ξki . (1)

Here, sNk = εN ς(kεN ) is the step-size (or learning rate), parametrized in terms of ς : R+ → R+

a regular function and εN > 0 . Also, we have a penalization function r : Z → R, regularizing
Gaussian noise ξki

i.i.d.∼ N (0, IdZ) independent from the initialization and data, and τ, β ≥ 0. When
τ, β > 0, the method is called stochastic gradient Langevin dynamics, noted SGLD ([74]), or simply
noisy SGD. An infinite i.i.d. sample from π will be needed when letting later N → ∞. When π is the
empirical measure of a finite dataset, we are performing empirical-risk minimization (which of course
is not the same as minimizing generalization error, but follows the same mathematical formulation).

In principle, there are no guarantees that this training procedure will be truly optimizing R(θ) let alone
approaching its minimum. However, by extending the definition of the generalization error to models
in Fσ∗(P(Z)), one gets the convex functional R : P(Z) → R given by R(µ) := Eπ

[
ℓ(Φµ(X), Y )

]
.

The problem on ZN is thus lifted to the convex optimization problem on P(Z):

min
µ∈P(Z)

R(µ). (2)

Accordingly, this motivates looking at the evolution of empirical measures (νNk )k∈N := (νNθk)k∈N ⊆
P(Z) instead of that of the specific parameters (θk)k∈N ⊆ ZN . The MF approach to NNs (see
[16, 53, 62, 67]) aims at providing theoretical guarantees for problem (2), justifying that a global
optimum of the population risk can be approximated by training a NN with SGD for large N . We
next provide some necessary background on WGFs and on the MF theory of shallow NN models.

2.2 Wasserstein gradient flow and mean-field limit of shallow models

We briefly recall some elements of Optimal Transport and Wasserstein Gradient Flows, referring to
[1, 63, 71] for further background. Let Z be a Hilbert space with norm ∥ · ∥ and, for p ∈ [1,∞),
let Pp(Z) := {µ ∈ P(Z) :

∫
Z ∥θ∥pµ(dθ) < +∞} be the space of probability measures on

Z with finite p-th moment. We endow this space with the p-th Wasserstein distance, defined as:

Wp(µ, ν) :=
[
infγ∈Π(µ,ν) Eγ [∥X − Y ∥p]

] 1
p , ∀µ, ν ∈ Pp(Z) with Π(µ, ν) being the set of couplings

between µ and ν (the infimum is always attained). The metric space (Pp(Z),Wp) is Polish and
called the p-th Wasserstein Space. In the remainder of this section we consider p = 2 and Z = RD.

We recall central objects for the sequel, including Lions’ derivative [9, 47], popularized in mean-field
games (see e.g. [10, 12, 15, 38]) and shown (in [32]) to coincide with the Wasserstein gradient ([1]):

Definition 3 (Linear Functional Derivative and Intrinsic Derivative). Given F : P2(Z) → R, its
linear functional derivative is the function (if it exists) ∂F

∂µ : Dom(F )×Z → R such that ∀µ, ν ∈
Dom(F ), limh→0

F ((1−h)µ+hν)−F (µ)
h =

∫
Z

∂F
∂µ (µ, z)d(ν−µ)(z) and

∫
Z

∂F
∂µ (µ, z)dµ(z) = 0. The

function F ′ : µ ∈ P2(Z) 7→ ∂F
∂µ (µ, ·) is known as the first variation of F at µ. Moreover, if ∂F

∂µ

exists and is differentiable in its second argument, we define the intrinsic derivative of F at µ to
be: DµF (µ, z) = ∇z

(
∂F
∂µ (µ, z)

)
. Abusing notation, we will write ∂F

∂µ : P2(Z) × Z → R and

DµF : P2(Z)×Z → Z , even if they are only partially defined.

This allows us to define next a Wasserstein Gradient Flow (following e.g. [1, 16]):
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Definition 4 (Wasserstein Gradient Flow). Let ς : R+ → R+ be a regular scalar function and
F : P2(Z) → R be a convex functional for which the intrinsic derivative DµF is defined. We define
a Wasserstein Gradient Flow (WGF) for F (shortened WGF(F )) as any absolutely continuous
trajectory (µt)t≥0 in P2(Z) that satisfies, distributionally on [0,∞ )×Z :

∂tµt = ς(t) div (DµF (µt, ·)µt) . (3)

Several authors ([1, 16, 63, 71], among others) have proven under various sets of assumptions that,
given an initial condition µ0 ∈ P2(Z), the WGF(F ) admits a unique (weak) solution, (µt)t≥0. In a
sense, WGF(F ) ‘follows the negative gradient’ of F . Unfortunately, even for convex F , stationary
points of WGF(F ) need not be global minima, see [16].

We are interested in the case where F is the following convex, entropy-regularized population
risk: Rτ, β(µ) := R(µ) + τ

∫
rdµ + βHλ(µ), where τ, β ≥ 0, λ is the Lebesgue Measure on Z ,

r : Z → R+ is a penalization, and Hλ defined as Hλ(µ) :=
∫
log(dµdλ (z))dµ(z) if µ ≪ λ or +∞

otherwise, is the Boltzmann entropy of µ. In this case, WGF(Rτ, β) reads as the PDE:

∂tµt = ς(t) [div ((DµR(µt, ·) + τ∇θr)µt) + β∆µt] , (4)

known as McKean-Vlasov equation in the probability and PDE communities (see the classic references
[54, 70], and the recent review [11]) and popularized as ‘distributional dynamics’ in NN literature
(e.g. [53]). When β > 0, a solution to (4) has a density w.r.t. λ and is actually strong. Under rather
simple technical assumptions (see SuppMat-D.3, or [12, 15, 38, 57, 69]), when τ, β > 0 it is known
that the WGF(Rτ,β) W2-converges to a (unique) minimizer. When τ, β = 0 a sort of converse holds
(see [16]): if WGF(R) converges in W2, then the limit minimizes R.

Proven by [16, 53, 62, 67] and later refined e.g. by [14, 22, 23, 51, 66, 69], the main result in the MF
Theory of overparametrized shallow NNs states that SGD training for a shallow NN, in the right
scaling limit as N → ∞, approximates a WGF :
Theorem 1 (Mean-Field limit, sketch). For each T > 0, under relevant technical assumptions
including regularity of σ∗ and a proper asymptotic behaviour of εN → 0 as N → ∞, the rescaled
empirical process given by µN := (νN⌊t/εN⌋)t∈[0,T ] converges in law (in the Skorokhod space
DP(Z)([0, T ])) to µ := (µt)t∈[0,T ] given by the unique WGF(Rτ,β) starting at µ0.

Despite the MF limit of NNs being a theoretical approximation, the behavior it predicts can effectively
be observed in practice, even for finite, not too large N (see the numerical experiments in many of the
aforementioned works and below). Moreover, it is the asymptotic regime that most closely describes
the actual feature-learning behavior observed in large, overparametrized NNs during training (as
compared e.g. to the lazy-training regime described by the Neural Tangent Kernel approximation
[17, 41]). Note that, for β > 0, the entropy term Hλ in WGF(Rτ,β) (as well as the Laplace operator
in equation (4)) is approximated, in practice, by the Gaussian noise term in the SGLD (1), as N → ∞.

2.3 Symmetry-leveraging techniques

We next discuss mathematical formulations of the main techniques to leverage posited distributional
symmetries of the data at the training or architecture levels. We henceforth fix a compact group G of
normalized Haar measure λG, acting on X and Y , which we denote G

⟳

ρ X , G

⟳

ρ̂ Y . 2 A function
f : X → Y is termed equivariant if ∀g ∈ G, ρ̂g−1 .f(ρg.x) = f(x) dπX (x)-a.s. We further say that
the data (X,Y ) ∼ π is equivariant, and write π ∈ PG(X ×Y), if ∀g ∈ G, (ρg.X, ρ̂g.Y ) ∼ π (this is
not enforced unless stated). The space of functions f : X → Y square-integrable (in Bochner sense)
w.r.t πX = Law(X) is called L2(X ,Y;πX ). Further relevant concepts are introduced as needed.

Data Augmentation (DA): This training scheme considers {gk}k∈N
i.i.d.∼ λG independent from the

{(Xk, Yk)}k∈N in (1), and carries out SGD on samples {(ρgk .Xk, ρ̂gk .Yk)}k∈N. DA and the vanilla
training scheme would thus be equivalent if π ∈ PG(X × Y). One can show (see [13, 48]) that,
performing SGD with DA, results in an optimization scheme for the symmetrized population risk,
RDA(θ) := Eπ

[∫
G
ℓ
(
ΦN

θ (ρg.X), ρ̂g.Y
)
dλG(g)

]
. Despite being effective in practice, DA gives no

guarantee that the resulting model will be equivariant. For deeper insights, see [13, 21, 39, 46, 48, 52].

2w.l.o.g. by compactness, all G−actions are assumed to be via orthogonal representations
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Feature Averaging (FA): Instead of focusing on the data, FA works with symmetrized versions of
the vanilla NN models ΦN

θ at hand, averaging model copies over all possible translations through
the group action. This amounts to constructing (or approximating) the symmetrization operator over
L2(X ,Y;πX ) defined as (QG.f)(x) :=

∫
G
ρ̂g−1 .f(ρg.x)dλG(g) (see [27]), and trying to minimize

RFA(θ) := Eπ

[
ℓ
(
(QG.Φ

N
θ )(X), Y

)]
(see [13, 21, 46, 48]). The resulting model will be equivariant,

however, FA is inefficient, as ≈ |G| times more evaluations are needed for training and inference.

Equivariant Architectures (EA): Following [8], EA in multilayer NNs are configurations yielding
models equivariant between each of the hidden layers (where G is assumed to act). As stated in
[29, 30, 61, 64, 65, 75] and [2, 18, 44, 45, 73], once the (equivariant) activation functions between
the different layers have been fixed, EAs are plainly parameter-sharing schemes (determined by the
space of intertwiners/group convolutions between layers). In our context, assuming that G

⟳

M Z
is some group action, we require that σ∗ : X × Z → Y is jointly equivariant, namely, ∀(g, x, z) ∈
G×X ×Z, σ∗(ρg.x,Mg.z) = ρ̂gσ∗(x, z); to ensure G-actions over different spaces are properly
related. Introducing the set of fixed points for G

⟳

M Z , EG := {z ∈ Z : ∀g ∈ G, Mg.z = z},
a shallow NN model ΦN

θ thus has an EA if θ ∈ (EG)N . Under the right choices of σ∗ and M ,
the obtained EAs can encode interesting and widely applied architectures, such as CNNs [19] and
DeepSets [77] (see SuppMat-C.1 for further discussion). We call EG the subspace of invariant
parameters, which is a closed linear subspace of Z , with unique orthogonal projection PEG : Z →
EG, explicitly given by PEG .z :=

∫
G
Mg.z dλG(g) for z ∈ Z (see [30]). We are thus led to solve:

minθ∈(EG)N R(θ) or, equivalently, to find the best projected model ΦN,EA
θ := ⟨σ∗, PEG#νNθ ⟩, by

minimizing REA(θ) := Eπ

[
ℓ
(
ΦN,EA

θ (X), Y
)]

. This can considerably reduce the parameter space
dimension; however EA might generally yield a decreased expressivity or approximation capacity.

3 Symmetries in overparametrized neural networks: main results

3.1 Two notions of symmetries for parameter distributions

The following notions regarding distributions from P(Z) are central to our work:
Definition 5. Given µ ∈ P(Z), we respectively define its symmetrized and projected versions as
µG :=

∫
G
(Mg#µ)dλG and µEG

:= PEG#µ. Moreover, we introduce two subspaces of P(Z):
PG(Z) := {µ ∈ P(Z) : ∀g ∈ G, Mg#µ = µ} and P(EG) := {µ ∈ P(Z) : µ(EG) = 1}.

Example. For G = {±1} acting multiplicatively on Z = R, one has EG = {0}, hence P(EG) =
{δ0}, while PG(Z) = { 1

2 (ν+ν(−·)) : ν ∈ P(R+)}. In particular, for z ∈ Z , (δz)G = 1
2 (δz+δ−z).

Definition 6 (Invariant Probability Measures). We say that µ ∈ P(Z) is:

Weakly-Invariant (WI) if µ = µG and Strongly-Invariant (SI) if µ = µEG

.

We notice that: P(EG) ⊆ PG(Z), µG ∈ PG(Z) and µEG ∈ P(EG). Thus, SI implies WI. Next
result relates the symmetrization operation on P(Z) with the one on shallow models Fσ∗(P(Z)):
Proposition 1. Let Φµ ∈ Fσ∗(P(Z)) with σ∗ : X × Z → Y jointly equivariant. Then:

(QGΦµ) = ΦµG .

That is to say, the closest equivariant function (in L2(X ,Y;πX )) to Φµ is given by the shallow
model associated to the symmetrized version of µ.
Remark. In particular, Φµ is equivariant as soon as µ is WI only. Conversely, if Φµ : X → Y is an
equivariant function, then Φµ = ΦµG , i.e. it can be expressed in terms of a WI distribution. This
highlights a priority role of WI distributions on Z in representing invariant shallow models.

The alternative, ‘projected model’ Φ
µEG , in turn, is never the closest equivariant shallow model, to

Φµ in L2(X ,Y, πX ), unless equal to ΦµG . The latter rarely is the case (unlike commonly implied
in the literature). In fact, the symmetrized version QGΦ

N
θ of a shallow NN model ΦN

θ involves
(νNθ )G = 1

N

∑N
i=1 φθi , where ∀z ∈ Z, φz is the orbit measure of the action,3 and has N · |G|

3defined as: φz = Tz#λG, where Tz := [g ∈ G 7→ Mg.z ∈ Z]
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Z-valued parameters (possibly with |G| = ∞). This sharply contrasts (νNθ )E
G

= 1
N

∑N
i=1 δPEG .θi ,

which has ≤ N distinct parameters, all living in EG. So, in general, depending on σ∗ and G, one
might have ⟨σ∗, (ν

N
θ )E

G⟩ ≠ QGΦ
N
θ . A notable case in which the equality holds is the class of linear

models, which is discussed in SuppMat-E.1.
Example. In the previous example, for µ = δz and σ∗ jointly equivariant, we have Φµ = σ∗(·, z),
ΦµG = QGΦµ = 1

2 (σ∗(·, z)+σ∗(·,−z)) and Φ
µEG = σ∗(·, 0) which are generally distinct if z ̸= 0.

Notice that ΦµG is an equivariant function without any of its ‘parameters’ living in EG.

3.2 Invariant functionals on P(Z) and their optima

In the same spirit as when defining the population risk R : P(Z) → R in (2), the risk functions
associated with SL-techniques from Section 2.3 can be lifted to functionals over P(Z), namely
to: RDA(µ) := Eπ

[∫
G
ℓ
(
Φµ(ρg.X), ρ̂g.Y

)
dλG(g)

]
, RFA(µ) := Eπ

[
ℓ
(
QG(Φµ)(X), Y

)]
and

REA(µ) := Eπ

[
ℓ
(
Φ

µEG (X), Y
)]

, respectively. This will allow us to study these SL-techniques, in
the overparametrized regime, under a common MF framework. We need the following assumption:
Assumption 1. π ∈ P2(X × Y); ℓ : Y × Y → R is convex, jointly invariant and differentiable with
∇1ℓ linearly growing; and σ∗ : X × Z → Y is bounded, jointly equivariant and differentiable.

The quadratic loss ℓ(y, ŷ) = 1
2 ||y−ŷ||2 is an example of such ℓ. Having σ∗ bounded and differentiable

is a simplifying assumption, usually made in the MF literature, when establishing key results such as
global convergence of NN (see e.g. [12, 38, 53]); relaxing this condition to include further commonly-
used functions σ∗ seems feasible, up to some additional technicalities (see SuppMat-A.2 for further
discussion). Finally, having σ∗ be jointly equivariant (as defined in section 2.3) isn’t a truly restrictive
assumption: under the right choice of σ∗ and M , any usual single-hidden-layer NN architecture can
be made to satisfy it (see SuppMat-C.1 for a deeper discussion). We also need:
Definition 7. A functional F : P(Z) → R is invariant if F (Mg#µ) = F (µ) ∀(g, µ) ∈ G× P(Z);
equivalently, if it equals its symmetrized version FG(µ) :=

∫
G
F (Mg#µ)dλG(g).

Proposition 2. Under Assumption 1, RDA, RFA and REA are invariant (and convex) and we have:

RDA(µ) = RG(µ), RFA(µ) = R(µG) and REA(µ) = R(µEG

).

In particular, R = RDA if R is invariant. Moreover, ∀µ ∈ PG(Z), R(µ) = RDA(µ) = RFA(µ).
Last, if π ∈ PG(X × Y) (the data distribution is equivariant), then R is invariant.

The proof relies on Proposition 1 and calculations as in [30], see SuppMat-E.2. Next result is a
general property of functionals over P(Z), which is key for the forthcoming analysis:

Proposition 3 (Optimality for Invariant Functionals). Let F : P(Z) → R be convex, C1 and
invariant. Then: ∀µ ∈ P(Z), F (µG) ≤ F (µ); and so, infµ∈PG(Z) F (µ) = infµ∈P(Z) F (µ). In
particular, if F has a unique minimizer over P(Z), it must be WI.

The proof relies on an ad-hoc version of Jensen’s inequality. Next, we state that optimizing under DA
and FA is essentially equivalent, and corresponds to optimizing R exclusively over WI measures:
Theorem 2 (Equivalence of DA and FA). Under assumption 1, we have:

inf
µ∈P(Z)

RDA(µ) = inf
µ∈PG(Z)

RDA(µ) = inf
µ∈PG(Z)

R(µ) = inf
µ∈PG(Z)

RFA(µ) = inf
µ∈P(Z)

RFA(µ).

Note that, on the other hand, REA only satisfies: infµ∈P(Z) R
EA(µ) = infµ∈P(EG) R(µ). In the

case of the quadratic loss, Theorem 2 can be made more explicit:
Corollary 1. Under Assumption 1, when the loss is quadratic and πX is invariant, we have:

inf
µ∈PG(Z)

R(µ) = R∗+ inf
µ∈PG(Z)

∥Φµ−f∗∥2L2(X ,Y;πX ) = R̃∗+ inf
µ∈PG(Z)

∥Φµ−QG.f∗∥2L2(X ,Y;πX ).

where f∗ = Eπ[Y |X = ·], and R∗, R̃∗ are constants only depending on π and f∗. That is, optimizing
under DA and FA corresponds to approximating the symmetrized version of f∗.
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Under equivariance of the data distribution π, the following general result also holds:
Corollary 2. Let Assumption 1 hold and suppose π ∈ PG(X × Y). Then, R is invariant and
therefore: infµ∈P(Z) R(µ) = infµ∈PG(Z) R(µ) = infµ∈P(Z) R

DA(µ) = infµ∈P(Z) R
FA(µ).

Remark. Consequently, equivariant data allow us to globally optimize the population risk by only
considering WI measures. It also shows that DA and FA provide no advantage for this optimization.

The same unfortunately is not true for SI measures (answering a question in [27]), as shown by the
following result, which constructs a simple example in which EG is trivial:

Proposition 4. Even with a finite group G acting orthogonally on X = Rd, Y = R and Z = R(d+2);
with π being compactly-supported and equivariant; with ℓ being quadratic; and with σ∗ being C∞,
bounded and jointly equivariant; we can have: infµ∈P(Z) R(µ) < infν∈P(EG) R(ν).

In fact, even if R is invariant, when EG is too restrictive, it might become impossible to globally
optimize R over SI measures (which amounts to using REA as a proxy for R). This subtlety has to
be considered when deciding to use EAs on problems where symmetries exist. Nevertheless, if EG

has good universality properties, a true SI solution to the learning problem can be sought for:
Proposition 5. Let Assumption 1 hold, ℓ be quadratic and π ∈ PG

2 (X ×Y). If Fσ∗(P(EG)) is dense
in L2

G(X ,Y;πX ) := QG(L
2(X ,Y;πX )), then: infµ∈P(Z) R(µ) = infν∈P(EG) R(ν) = R∗.

Remark. See e.g. [50, 60, 76, 77] for conditions on EG and σ∗ guaranteeing this ‘restricted’
universality on L2

G(X ,Y;πX ). These allow for effectively solving the problem in fewer dimensions,
which is key in successful EA like CNNs and DeepSets. See SuppMat-E.2.5 for a deeper discussion.

3.3 Symmetries and SL training dynamics in the overparametrized regime

We now study the MFL of the various training dynamics when Z = RD. We begin with the general:

Theorem 3. Let F : P(Z) → R be an invariant functional such that WGF(F ) is well defined and
has a unique (weak) solution (µt)t≥0. If µ0 ∈ PG

2 (Z), then, for dt-a.e. t ≥ 0 we have µt ∈ PG
2 (Z).

The proof of Theorem 3 relies on DµF being equivariant (in a suitable sense) and (Mgµt)t≥0

satisfying also, as a consequence, WGF(F ) (See SuppMat-E.3 for the details). Note that µ0 ∈ PG
2 (Z)

is simply verified, e.g. by a standard Gaussian in Z . Specializing this result, we get:
Corollary 3. Let Assumption 1 and technical assumptions (as in [16]) hold. Then, if R and r are
invariant, WGF(Rτ,β) starting from µ0 ∈ PG

2 (Z) satisfies: for dt-a.e. t ≥ 0, µt ∈ PG
2 (Z). If

moreover β > 0, each µt has a density function invariant with respect to G

⟳

M Z .
Remark. If π is equivariant, R is invariant, and this result is valid for a freely-trained NN, without
employing SL-techniques. In a way, MFL incorporates these symmetries from infinite SGD iterations.

Theorem 3 and Corollary 3 can thus be seen as significant generalizations of Proposition 2.1 from
[35], which addresses the case of wide 2-layer ReLU networks with a target function that’s symmetric
w.r.t. a single orthogonal transformation. The fact that strong solutions to WGF(Rτ,β) can be sought
among invariant functions to reduce the complexity when π is equivariant, was also first hinted in
[53]. The natural domain of invariant functions is in fact the quotient space of G

⟳

M Z (and not EG,
which is strictly embedded in it).

Comparing the different training dynamics at the MF level and applying Proposition 2, we also get:
Theorem 4. Under assumptions of Corollary 3, if µ0 ∈ PG

2 (Z), WGF(RDA) and WGF(RFA)
solutions are equal. If further R is invariant, the WGF(R) solution coincides with them too.
Remark. In particular, with equivariant data (i.e. invariant R), training with DA or FA is essentially
the same, at least at the MF level, as using no SL-technique whatsoever. Hence, a relevant, practical
open question, is: how do the convergence rates to the MFL compare in all three cases, as N → ∞?

We will now see that similar results hold for P(EG) instead of PG(Z). Notice that the entropy-
regularized risk forces each µt to have a density w.r.t. λ in Z if β > 0. Therefore, if G

⟳

M Z is
non-trivial (thus EG is a strict subspace), we always have µt ̸∈ P(EG). It thus seems natural to
restrain the noise in equation (1) to stay in EG; namely, to consider the projected noisy SGD dynamic:

θk+1
i = θki − sNk

(
∇zσ∗(Xk, θ

k
i ) · ∇1ℓ(Φ

N
θk(Xk), Yk) + τ∇r(θki )

)
+
√
2βsNk PEGξki . (5)
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Note that projecting only the noise in (5) doesn’t force θk+1
i to be in EG, even if θki was. Introducing

the related projected-regularized functional: Rτ, β
EG (µ) := R(µ) + τ

∫
rdµ+ βHλEG

(µEG

), with
λEG the Lebesgue Measure over EG, we get the following analogue of Corollary 3:
Theorem 5. Let Assumption 1 and technical assumptions on R hold. Suppose that R and r are
invariant. Then, if µ0 ∈ P2(EG), (µt)t≥0 solution of WGF(Rτ,β

EG ) satisfies ∀t ≥ 0, µt ∈ P2(EG).

The result holds for β ≥ 0. Its proof is based on pathwise properties of the McKean-Vlasov stochastic
differential equation (studied e.g. in [22]) associated with the WGF(Rτ,β

EG ), see SuppMat-D.2.
Remark. Theorem 5 is significantly stronger than Corollary 3: it implies that, for equivariant π,
the flow will remain in the set of SI distributions all throughout its evolution, despite there being
no explicit constraint on the network parameters during training (they can all be freely updated),
nor any SL-technique being used. This is a highly non-intuitive fact, and a large N exclusive
phenomenon, as our numerical experiments will show. See SuppMat-D.2 for a deeper discussion.
Remark. Notice that, despite the computation of EG being generally hard (see [29]), µ0 ∈ P2(EG)
can be achieved by simply setting µ0 = δ0⃗. Moreover, since one can also take β = 0, ‘having
access’ to the noise projection PEG is never explicitly required, allowing for a broader applicability
of the result. In particular, as we’ll show in our experiments, usual shallow NNs with all parameters
initialized at {0}, freely trained with ‘noiseless’ SGD, will satisfy Theorem 5 in the MFL.
Remark. Theorem 5 holds too for the invariant functionals RDA, RFA and REA in the role of
R, even if π is not equivariant. Notably, DA, FA and EA procedures starting on a SI distribution,
despite being free to involve all parameters, will keep the distribution SI all throughout training.

Last, we also have:
Theorem 6. Let the conditions for Theorem 5 hold. If µ0 ∈ P2(EG), the WGF(RFA), WGF(RDA)
and WGF(REA) solutions coincide. If R is invariant, WGF(R) solution coincides with them too.

4 Numerical experiments and architecture-discovery heuristic

To empirically illustrate some of our results from the previous section, we consider synthetic data
produced in a teacher-student setting (see e.g. [14, 16]). Code necessary for replicating the obtained
results, as well as a detailed description of our experimental setting, can be sought in the SuppMat.

We study a simple setting with: X = Y = R2, Z = R2×2 ∼= R4, and G = C2 acting on X and Y by
permuting the coordinates; and on Z via the natural intertwining action (for which EG is explicit).
We take the jointly equivariant activation σ∗(x, z) = σ(z · x), ∀(x, z) ∈ X × Z with σ : R → R a
sigmoidal function applied pointwise; and consider normally distributed features, and labels produced
from a teacher model f∗. This teacher is given by a shallow NN model, either f∗ = ΦN∗

θ∗ with
N∗ = 5 arbitrary particles θ∗ ∈ ZN∗ , or its symmetrized version f∗ = QG.Φ

N∗
θ∗ (referred to as

WI), with 10 particles. 4 Notice that the data distribution π will be equivariant only if the teacher is.
We try to mimic such teacher with a student model, ΦN

θ , with the same σ∗, but different particles
θ ∈ ZN that will be trained to minimize the regularized population risk Rτ,β (with quadratic loss and
penalization). For this we employ the SGD dynamic given by Equation (1) (or projected, if required,
as in Equation (5)), possibly involving DA, FA or EA techniques. We refer to free training, with no
SL-techniques involved, as vanilla training. Each experiment was repeated Nr = 10 times to ensure
consistency. Explicit values of the fixed training parameters are found in SuppMat-F.

4.1 Study for varying N

We demonstrate how properties of WGF(Rτ,β) stated in Section 3.3 become apparent as N grows.
We consider a teacher with νN∗

θ∗ either arbitrary or WI, and different training schemes performed
over Ne epochs, all initialized with the same particles drawn from given µ0 ∈ P2(Z) that is either
SI or WI. Figure 1 displays the behavior of the student’s particle distribution, νNNe

, after training, in
terms of certain ‘normalized version’ of the W2-distance, which we call simply Relative Measure
Distance, or RMD for short. 5 We refer to SuppMat-F for further insights and, additionally: a deeper

4An additional variant, with f∗ = ΦN∗
θ∗ having SI particles, is given in SuppMat-F.

5It is roughly equivalent to W2 when far from the δ0 measure, see SuppMat-F for details
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Figure 1: RMDs, at the end of training, for N = 5, 10, 50, 100, 500, 1000, 5000 and the vanilla (V),
DA, FA and EA schemes. The first plot of each position displays either RMD2(νNNe

, (νNNe
)E

G

) or
RMD2(νNNe

, (νNNe
)G) depending on initialization (either SI or WI); and the second shows the RMD

between DA, FA and vanilla schemes.

analysis of the case of νN∗
θ∗ being SI, comparisons between different techniques and EA, and L2

comparisons between ΦN
θ and both f∗ and QG.f∗ (to illustrate Corollary 1).

We first look at the SI-initialized training. Though from [30] we know that (exact) DA or FA during
training will respect EG without needing to pass to the MFL. This is certainly not true in general
for the vanilla scheme, where the symmetry is never explicit for the model. We notice in Figure 1,
however, that, as N grows big, the SI-initialized vanilla training scheme, under only a WI teacher,
does remain SI throughout training, as predicted in Theorem 5. This is absolutely remarkable, since
there is no intuitive reason why the vanilla scheme (were parameters can be updated freely) shouldn’t
escape EG to better approximate f∗. For instance, for an arbitrary teacher (with the same particles,
but un-symmetrized) vanilla training readily leaves EG to better approximate f∗. Though this isn’t a
predicted behaviour from our theory, it motivates a heuristic we present in the upcoming section. On
the other hand, and as expected, both DA and FA consistently remain within EG almost independently
of N , and even if f∗ isn’t equivariant. Finally, as N grows bigger, the end-of-training distribution of
the vanilla scheme approaches that of DA and FA (as expected from Theorem 4).

Regarding the WI-initialized training, unlike the SI case, particles sampled i.i.d. from a WI distribu-
tion don’t necessarily yield a WI empirical distribution νN0 . On the one hand, this means we require
large N to see νNNe

being (approx.) WI; and on the other hand, it means we have no guarantee that
DA and FA will be close unless we look at larger N (where Theorem 4 applies). The second column
of Figure 1 precisely shows these behaviours as N grows: both a trend of νNNe

towards becoming WI,
and a clear coincidence between the DA, FA and vanilla schemes (the latter only for equivariant f∗).

4.2 Heuristic algorithm for discovering EA parameter spaces

From these experiments, for non-equivariant f∗, the SI-initialized WGF is seen to eventually escape
EG. In turn, for equivariant f∗, Figure 2 shows that a training scheme initialized at E ⊊ EG (i.e.
νNθ0 ∈ P(E)), eventually leaves E, but stays within EG (as expected from Theorem 5). These
empirical observations hint to an heuristic for discovering the ‘good’ EAs for the task at hand.

Assume indeed π equivariant w.r.t. G. We want to find the unknown, largest (i.e. most expressive)
subspace of Z supporting SI measures. We hence consider some (large) N , a shallow NN model
with e.g. σ∗(x, z) = σ(z.x), and numerical thresholds (δj)j∈N ⊆ R+ . We define E0 = {0} ≤ EG

as an initial subspace and initialize νNθ0 = νN
0⃗

∈ P(E0). Then, we iteratively proceed as follows:
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Figure 2: Heuristic method applied on teacher (squares) and student (dots) particles. Row 1: aerial
view of hyperplane EG. Row 2: parallel view, to verify student particles always remain in EG (red
line). Column 1: step j = 0 after training; particles leave E0 = {0}. Column 2: initialization of step
j = 1 on E1 = ⟨vE0

⟩. Column 3: step j = 1 after training; particles leave E1 (Row 1), but not EG.

For j = 0, 1, . . . , initialize a model at νNθ0 ∈ P(Ej), train it for Ne epochs, and check whether
RMD2(νNNe

, PEj
#νNNe

) ≤ δj . If that is the case, the training didn’t escape Ej , and one could
suppose EG := Ej . Otherwise, it left Ej (so EG ̸= Ej) and one can set e.g. Ej+1 := Ej ⊕ vEj ,
with vEj := 1

N

∑N
i=1(θ

Ne
i − PEj .θ

Ne
i ). Allegedly, this scheme would eventually leave all strict

subspaces to reach the ‘right’ EG. Figure 2 indeed illustrates this behaviour in our simple teacher-
student example (see SuppMat-F.2 for further details). Notice that we start knowing close to nothing
about data symmetries (E0 = {0}), and end up ‘discovering’ a data-based parameter-sharing scheme
(E∗ = EG) that allows for building SI NNs. This idea might have potential for real world applications,
yet a larger scale experimental analysis and rigorous theoretical guarantees need to be provided.

We refer to [72] for a different approach to this idea of ‘discovering the real symmetries of the data’.
Their work uses relaxed group convolution layers to discover ‘data-driven symmetry-breaking’ in
ML problems. A deeper comparison between both approaches shall be found in SuppMat-F.2.

5 Conclusion

In the light of theoretical guarantees given by the MF theory of overparametrized shallow NN, we
explored their training dynamics when data is possibly equivariant for some group action and/or SL
techniques are employed. We thus described how DA, FA and EA schemes can be understood in
the limit of infinite internal units, and studied in that setting the qualitative advantages that can be
attired from their use. In this MFL, DA and FA are essentially equivalent in terms of the optimization
problem they solve and the trajectory of their associated WGFs. Moreover, for equivariant data,
freely-trained NN, in the MFL, obey the same WGF as DA/FA. They also “respect” symmetries
during training, as WI and SI initializations (corresponding to symmetric parameter distributions and
EA configurations) are preserved throughout, even if potentially all NN parameters can be updated.
We also highlighted the prominent role of WI laws in representing equivariant models. We illustrated
our results with appropriate numerical experiments, which in turn suggested a data-driven heuristic to
find appropriate parameter subspaces for EAs in a given task. Providing theoretical guarantees for
this heuristic is an interesting problem left for future work. A further relevant question to address,
is to quantify and compare the speeds at which all studied training schemes approach the MFL, as
this would a provide a full comparative picture of their performances. Extending the MF analysis of
symmetries to NNs with more complex inner structures is another interesting line of work.
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Table 1: Summary the main abbreviations employed throughout the paper
Abbreviation Meaning

NN / NNs Neural Network / Neural Networks
SL Symmetry-Leveraging
MF Mean Field
MFL Mean Field Limit
WGF Wasserstein Gradient Flow
SGD Stochastic Gradient Descent
DA Data Augmentation
FA Feature Averaging
EA Equivariant Architectures
WI Weakly-Invariant
SI Strongly-Invariant

A General Considerations for the Reader

This section presents a summary of recurrent notation, abbreviations and key concepts used in our
work, as well as a discussion on its limitations, scope and possible extensions. We thank anonymous
Reviewers for suggesting us to add this section to the original manuscript.

A.1 Summary of recurrent notation, abbreviations and key concepts

In this section we summarize the main abbreviations and notation employed throughout the body of
the paper, as well as simple definitions of fundamental concepts from probability theory and algebra
that might be useful for understanding our work

Table 1 serves as a glossary for the most used abbreviations in the body of the paper. Table 2 contains
a summary of the notation that we recurrently use in our definitions, statements and proofs. It also
provides some simple references to mathematical concepts that are key in our work.

For clarity, beyond the contents of both tables, we here also explain a few relevant concepts to the
unfamiliar reader:

• Bochner Integrals: These correspond to the right generalization of Lebesgue integrals for
vector-valued functions (see [24] for further reference).
Say we have a function f : X → Y between Hilbert spaces, and such that πX is
some measure on X , then we say f is square-integrable (in Bochner sense) if it satisfies:∫
X ∥f(x)∥2YdπX (x) < ∞.

This integral also respects closed linear operators, as shown by Hille’s theorem (see Theorem
II.2.6 in [24]). Namely, if L : Y → Y is a closed linear operator over Y , we have:∫
X L.fdπX = L.

∫
X fdπX . In particular, this also holds for bounded linear operators.

In general, most of the basic and most intuitive properties of traditional integrals can also be
expressed for Bochner integrals.

• Compact Groups, Group Actions and the Haar measure: We recurrently talk about
group actions via orthogonal representations throughout our work, so a due clarification
may be required. We assume G to be a compact group. Namely, G has a topology that
makes it compact, and so that the multiplication and inversion operations are continuous.
We say that G acts on Z , which we denote G

⟳ Z , whenever there exists a map:

T : G×Z → Z
(g, z) 7→ T (g, z)

that satisfies T (eG, z) = z and T (g1, T (g2, z)) = T (g1.g2, z), ∀g1, g2 ∈ G, ∀z ∈ Z . We
always assume the actions to be continuous; namely, T is continuous with respect to the
product topology. Alternatively, by denoting Tg := T (g, ·), T· : g ∈ G 7→ Tg ∈ Sym(Z) is
a group homomorphism and, if the action is continuous, Tg is an homeomorphism ∀g ∈ G.
If we further assume that ∀g ∈ G, Tg is linear, we call T· a group representation. Further,
if {Tg}g∈G are orthogonal transformations, we call T· an orthogonal group representation

16



Table 2: Summary the notation employed throughout the paper
Notation Represented Object

X , Y , Z Respectively, feature, label, and parameter spaces (separable and Hilbert). Usually
just X = Rd, Y = Rc and Z = RD for c, d,D ∈ N∗.

P(⋆) Space of Borel probability measures on the metric space (⋆)
π, πX Data distribution in P(X × Y) and its marginal on X .
ℓ Convex loss function ℓ : Y × Y → R
σ∗ Activation function or unit, σ∗ : X × Z → Y . Not necessarily corresponds to the

usual activation function from traditional NN implementations.
ΦN

θ Shallow neural network model with N units and parameter θ ∈ ZN

δ· Dirac measure on point ·. Recall that, for a function φ, integrating gives ⟨φ, δ·⟩ = φ(·).
νNθ Empirical measure of θ in P(Z). i.e. νNθ = 1

N

∑N
i=1 δθi

Φµ Shallow model with associated measure µ ∈ P(Z). Also denoted as ⟨σ∗, µ⟩
R(θ), R(µ) Generalization error or Population Risk. Abusing notation, it either represents

Eπ

[
ℓ(ΦN

θ (X), Y )
]

for θ ∈ ZN or Eπ

[
ℓ(Φµ(X), Y )

]
for µ ∈ P(Z)

Fσ∗(P(Z)) Space of shallow models with unit σ∗ and measures in P(Z)
Pp(Z) Probability measures µ ∈ P(Z) with finite p-th moment:

∫
Z ∥θ∥pµ(dθ) < +∞.

Wp p-th Wasserstein distance, defined as Wp(µ, ν) :=
[
infγ∈Π(µ,ν) Eγ [∥X − Y ∥p]

] 1
p ,

∀µ, ν ∈ Pp(Z), where Π(µ, ν) is the set of couplings between µ and ν.
∂F
∂µ Linear Functional Derivative of F : P2(Z) → R as in Definition 3
DµF Intrinsic Derivative of F : P2(Z) → R, as in Definition 3
WGF(F ) Wasserstein Gradient Flow for F : P2(Z) → R, as in Definition 4
r Some penalization function r : Z → R+

λ Lebesgue Measure on Z
µ ≪ λ µ ∈ P(Z) is absolutely continuous w.r.t. λ.
Hλ Boltzmann entropy of µ; Hλ(µ) :=

∫
log(dµdλ (z))dµ(z) if µ ≪ λ or +∞ otherwise.

Rτ, β Penalized population risk, given by Rτ, β(µ) = R(µ) + τ
∫
rdµ + βHλ(µ), with

τ, β ≥ 0 the regularization parameters.
L2(X ,Y;πX ) Space of functions f : X → Y square-integrable (in Bochner sense) w.r.t πX
sNk Step-size (or learning rate) used during training. Parametrized as sNk = εN ς(kεN ),

with a regular function ς : R+ → R+ and some εN > 0; with k,N ∈ N.
G, λG Compact group and its normalized Haar measure, which is the unique right and left

invariant measure w.r.t. the group multiplication, see [43].
ρ, ρ̂,M Orthogonal representations of the action of G over X , Y and Z respectively. We also

denote these actions as G

⟳

ρ X , G

⟳

ρ̂ Y and G

⟳

M Z respectively.
QG Symmetrization operator over L2(X ,Y;πX ); (QG.f)(x) :=

∫
G
ρ̂g−1 .f(ρg.x)dλG(g)

for any f ∈ L2(X ,Y;πX ).
EG Space of fixed points for G

⟳

M Z (i.e. z ∈ Z s.t. ∀g ∈ GMg.z = z)
PEG Orthogonal projection from Z onto EG; PEG .z :=

∫
G
Mg.z dλG(g) for all z ∈ Z .

f#µ Pushforward of measure µ ∈ P(Z) via f : Z → Z̃ , given by f#µ(·) = µ(f−1(·))
µG, µEG

Symmetrized and projected versions of µ ∈ P(Z): µG :=
∫
G
(Mg#µ)dλG and

µEG

:= PEG#µ.
PG(⋆) Space of G-invariant measures over space ⋆. e.g. for G

⟳

M Z , the space of all
µ ∈ P(Z) s.t. Mg#µ = µ for all g ∈ G.

P(EG) Space of measures concentrated on EG, i.e. µ ∈ P(Z) s.t. µ(EG) = 1.
RDA, RFA,
REA

Population risks that are optimized when applying different SL techniques; DA, FA
and EA respectively.

L2
G(X ,Y;πX ) Space of functions f : X → Y square-integrable (in Bochner sense) w.r.t πX that are

also G-equivariant. In other words, shorthand for QG(L
2(X ,Y;π|X ))

dt-a.e. Almost everywhere w.r.t. the Lebesgue measure dt on R+

λEG Shorthand for the Lebesgue Measure over EG.
Rτ, β

EG Projected-regularized functional given by Rτ, β
EG (µ) := R(µ)+τ

∫
rdµ+βHλEG

(µEG

)

RMD Relative-Measure-Distance; RMD2(µ, ν) =
W 2

2 (µ,ν)
M2

µ+M2
ν

where M2
µ = 2

∫
Z ∥z∥2dµ(z).

DP(Z)([0, T ]) Skorokhod space of càdlàg functions from [0, T ] to P(Z).
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and denote the group action by G

⟳

T Z . This is the case for all of the G-actions considered
throughout this work.
Working only with group representations is common-practice in the context of symmetries
for NNs (see e.g. [13, 48]). Beyond NNs, a whole field of mathematics is of course
dedicated to the study of group representations (see e.g. [36] for reference). In this work we
borrow some of this theory’s terminology, as we refer to equivariant linear maps also as
intertwining maps or intertwiners. This is also why we refer to the layer-by-layer action in
EAs for shallow NNs as an intertwining action (see e.g. SuppMat-C.1).
Finally, it is well known that a compact group G admits a unique normalized Haar measure
λG ∈ P(G) (see [25]), which is left and right invariant, finite on every compact set, outer
regular on Borel sets and inner regular on open sets. It can be interpreted as the uniform
distribution on G, and it is extensively used throughout this work.
For further references in the topic, the curious reader might be interested in [25, 42, 43],
among many others.

• Weak convergence of measures: We also recall one of the most used notions of convergence
in a space of probability measures. Given a sequence (µn)n∈N ⊆ P(Z), we say it weakly
converges to some point µ ∈ P(Z) if, for any continuous and bounded function f : Z → R,
we have ⟨f, µn⟩ −−−−→

n→∞
⟨f, µ⟩. Notice that this type of convergence is weaker than Wp

convergence for p ≥ 1 (which additionally also requires the convergence of p-th order
moments of the involved measures).
Notice how we write ⟨f, µ⟩ to denote

∫
Z fdµ. This notation is heavily used (and abused)

throughout the core of our work.

A.2 Limitations, scope and possible extensions of our work

For convenience of the reader we here present a discussion of some limitations and of the scope of
application of the present work. This subsection does not provide any mathematical results required
for the sequel.

Some of these limitations are of technical nature, and regard specific assumptions made in order
for the specific proofs of our theoretical results to hold. In absence of these conditions, or under
less restrictive ones, some of our results (or weaker forms of them) might still hold true, but further
research is needed in order to properly establish their validity. Other limitations are the object of
more general research questions in this area.

• On the infinite i.i.d. data sample: The MF theory of NN makes the assumption that it is
possible to take an infinite i.i.d. sample from the data distribution π. This may appear as a
limitation of our results, since real-world datasets are naturally finite. We acknowledge that
this is in fact an abstraction, but it can nevertheless be a potentially good approximation of
the behavior of the SGD algorithm when large datasets are available. Indeed, Theorem 1,
which holds for εN = o(1/N), ensures that a sample size of the order of tN is required
in order to approximate the WGF up to a (‘macroscopic’) time t. When the long-time
convergence of the WGF can be effectively quantified (an active research question today,
see e.g. [57] and references therein), we can estimate how large a data sample will be
required in order to attain a predetermined generalization error level. On the other hand,
even for π with finite support, the MF approximation will end up minimizing the empirical-
risk. This, as pointed out in Section 2.1, is not the same as minimizing generalization error
w.r.t. some underlying data distribution, but it is widely interpreted (in the application of
most NN-based machine learning algorithms) as a proxy of doing so. Once again, this
approximation can be reasonably good when the data sample size is large enough.

• On the infinite width of NN models: Despite the MFL being a theoretical tool (which
requires that the width N goes to +∞), it is still the asymptotic regime that most closely
describes the feature-learning behavior of large NNs during training (see the discussion at
the end of Section 2.2). We believe that truly useful insights can be obtained from it for real,
moderately wide NNs. For instance, our experiments show that, in quite reasonable practical
settings of shallow NNs (with standard pointwise sigmoid activation and objax’ default SGD
training), the predicted MF behavior is seen to emerge in practice, already for finite, not
too large N (1000 was generally enough). Actually, most of the insights obtained from the
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MF analysis of NN are, in fact, unaccessible from a fixed N standpoint (as is the case for
Theorem 5). Further non-asymptotic and quantitative answers to practical questions (e.g.
how many neurons are needed in order to attain a given level of generalization/population
error at given computational cost?) could also be obtained from MF theory, via quantitative
propagation of chaos results (see e.g. [12]).

• On Assumption 1: This is the main assumption underlying many of our core results.
Although it is generally simple and not excessively hard to satisfy in practice, it might seem
constraining in the context of neural networks. In particular, the technical condition on
the gradient of ℓ, as well as the boundedness of σ∗, could seem to limit the applicability
of our results. However, these conditions can be replaced by alternative properties of the
data distribution (e.g. that π has compact support, or finite moments up to a given degree).
Similarly, lifting some of the rest of the technical assumptions required for establishing
the MFL, is part of the ongoing research work in the field (see e.g. [12] or [38] for some
alternative conditions).
Regarding the assumption that ℓ is G-invariant, it is known that traditional loss functions
naturally satisfy this condition. The joint-equivariance of σ∗, on the other hand, is much
less constraining than it may initially seem. In practice, depending on the choice of σ∗
and M , it might even end up being a trivial constraint. A deeper discussion on this very
assumption shall be found in SuppMat-C.1.

• On the generality of shallow models Φµ ∈ Fσ∗(P(Z)): These allow for modeling a wide
range of situations (including some variants of multi-layer models). In fact, σ∗ can by itself
encode a complex deep architecture (see SuppMat-C.1) and the resulting shallow model can
represent way more interesting structures than single-hidden-layer NNs (e.g. ensembles of
such multilayer “units” trained in parallel). Nevertheless, these shallow models are still far
from including all possibilities in the context of NNs. In fact, a fully unified, satisfactory MF
theory for general deep NNs is still an open, actively tackled question (for advancements on
it see e.g. [4, 55, 68]). We believe that some of our key results (e.g. Theorems 3 and 4) can
be extended to some of those settings, which is a question we will leave for future work.

• Universality guarantees for shallow models Φµ ∈ Fσ∗(P(Z)): In this work, we have only
explored the simple setting of tensor-of-order-1 NNs as modelled through σ∗, see SuppMat-
C.1. In particular, it is known from [49] that the desired universality on equivariant models
is not always possible with these kinds of networks (which is, of course, a limitation to the
applicability of Proposition 5). Exploring other interesting situations that could be modeled
with our current framework, or plainly reformulating it to account for new variants of NNs
(e.g. high-order tensor NNs thay might allow for easier EA universality) is undoubtedly part
of our future work. See SuppMat- E.2.5 for a related discussion.

• On G-equivariant data distributions: The assumption of π being G-equivariant implies
that πX is G-invariant as well [6]. This implication can seem a bit too restrictive in some
settings: e.g. for image classification, it amounts to assuming that ‘images can arrive with
any possible orientation’ at training time, which is not necessarily the case. However, as
extensively discussed in the literature (see [13, 27, 30, 48]), assuming πX to be G-invariant is
usually reasonable when the aim is to ‘exploit symmetries’ of the problem. Not having such
assumption means that there are little to no properties from the data that can be exploited in a
proof. On the other hand, as mentioned in remarks after Theorems 3 and 5, our proofs don’t
explicitly rely on having π ∈ PG(X × Y), but rather on the risk functional R : P(Z) → R
being G-invariant. In consequence, one could simply neglect the G-equivariance of π
altogether, and introduce the implied inductive bias by applying DA (which forces the
marginal on X to be G-invariant), or any other SL technique that achieves the same result.

• On the numerical experiments: The suite of experiments that were presented in Section 4
and SuppMat-F, though quite insightful for our theoretical results, are quite limited in reach.
In particular, finding ways to illustrate our theoretical results on less controlled settings,
such as a real-world equivariant datasets, will be a key part of our future work.
The presented experiments come from a controlled setting, mainly looking to avoid heavy
practical constraints (e.g. visualizing the huge parameter space of a NN trained over an
image dataset can be exceedingly hard), as well as an increased complexity of the involved
objects (e.g. even for finite groups, group actions can get severely more complicated
than what we experienced). Due to our currently limited computational resources, we
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leave these inquiries for future work. Similarly, taking our experiments to a larger scale
(e.g. N = 100.000) is also a challenge left for future inquiries (our current results, with
N ≤ 5000, might still be considered as small N ). A significant problem for scaling our
experimental verifications is the fact that we relied on calculating Wasserstein distances
(which is usually really computationally-expensive) to provide rigorous numerical evidence
of our theoretical findings.
Furthermore, we are yet to experiment with architectures that are compatible with infinite
compact groups G; namely for examples coming from physics and NeuralODEs. Different
variants of the activation function should also be tested out (e.g. a ReLU, tanh, and many
others), as well as variants of the optimization algorithm (e.g. Adam, RMSProp, etc.).
Finally, our heuristic needs to be tested on a larger scale, with more complex datasets and
architectures. Also, theoretical guarantees to sustain it shall be provided in future work. We
believe that similar arguments as in [72] could be developed for our case; and alternative
approaches could be based on understanding the support properties of the McKean-Vlasov
SDE studied in Appendix E.3.2.

• On possible variants of the training dynamic: In this work we focus mostly on the
‘traditional’ WGF learning dynamics, without delving much into other interesting possible
variants of the training process. This might be seen as a possible limitation to the applicability
of our work.
Firstly, the decision to work with the usual WGF follows from the standards set by [16, 53,
62, 67] among many others. Beyond this fact, we believe that results such as Theorems 3
and 4 are somewhat ‘natural’, and that they should hold regardless of small differences in
the training dynamics.
For instance, we know that our proofs for Theorems 3 and 4 work straightforwardly in
the setting of [22], where the MFL is established even with a fixed learning rate that does
not necessarily decrease with N . For large fixed learning rates, this might shed some light
onto the MF behaviour of symmetries under ‘Edge of Stability’ (EoS) dynamics. Similarly,
we believe some of our more ‘natural’ results to be applicable as well for Wasserstein
sub-Gradient Flows [16], Underdamped Dynamics [31], Annealed Dynamics [15], among
many others. In contrast, Theorems 5 and 6, which involve stronger notions of symmetry,
don’t seem immediate to generalize to many other kinds of asymptotic dynamics. Studying
the applicability of our results under different variants of the training process, is surely an
interesting question to be tackled as part of our future work.

B Symmetries in functions, measures, data and shallow models

In this section we state some useful, basic results on the effect of symmetries acting on measures,
functions and data, that will be used in the sequel. We also explain how symmetries of interest can
be incorporated into the generalized shallow NN setting from Definition 1, complementing also the
discussions given in Section 2.1 and Section 2.3 in that regard.

Recall X ,Y and Z are (separable) Hilbert Spaces and G a compact group with Haar measure λG,
such that G

⟳

ρ X , G

⟳

ρ̂ Y and G

⟳

M Z . Also, let EG ⊆ Z be the linear subspace of parameters
that are fixed points of the action of G over Z , and PEG the orthogonal projection onto it.

B.1 Differentials and integrals of equivariant functions

The following lemma characterizes the differential of jointly equivariant functions with respect to the
action of some group G. Here we can assume G be a lcsH group w.l.o.g. and consider representations
that aren’t necessarily orthogonal (we denote them differently to avoid confusion).

Proposition 6. Let G

⟳

χ X , G

⟳

χ̃ Z , G

⟳

χ̌ Y via some representations χ, χ̃ and χ̌ respectively
(not necessarily orthogonal). Let f : X × Z → Y be jointly G-equivariant with respect to these
actions (i.e. ∀g ∈ G, ∀x ∈ X , ∀z ∈ Z, χ̌g.f(x, z) = f(χg.x, χ̃g.z)) and Fréchet-differentiable on
its first argument. Then:

∀g ∈ G, ∀x ∈ X , ∀z ∈ Z, Dxf(χg.x, χ̃g.z) = χ̌g.Dxf(x, z)χ
−1
g
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Proof of Proposition 6. Indeed, we know that ∀z ∈ Z Dxf(·, z) is the unique function that satisfies,
∀x̃ ∈ X :

lim
h→0

∥f(x̃+ h, z)− f(x̃)−Dxf(x̃, z)h∥
∥h∥

= 0

Since we want to prove that ∀x̃ ∈ X ,∀z ∈ Z, ∀g ∈ G : Dxf(χg.x̃, χ̃g.z) = χ̌gDxf(x̃, z)χ
−1
g , it

will be enough to check that:

lim
h→0

∥f(χg.x̃+ h, χ̃gz)− f(χg.x̃, χ̃g.z)− χ̌gDxf(x̃, z)χ
−1
g h∥

∥h∥
= 0

which by uniqueness implies the result. Thanks to the joint equivariance of f , we have ∀h ̸= 0:

∥f(χg.x̃+ h, χ̃gz)− f(χg.x̃, χ̃g.z)− χ̌gDxf(x̃, z)χ
−1
g h∥

∥h∥

=
∥f(χg.(x̃+ χ−1

g .h), χ̃gz)− f(χg.x̃, χ̃g.z)− χ̌gDxf(x̃, z)χ
−1
g h∥

∥h∥

=
∥χ̌g.f(x̃+ χ−1

g .h, z)− χ̌g.f(x̃, z)− χ̌gDxf(x̃, z)χ
−1
g h∥

∥h∥

=
∥χ̌g.

[
f(x̃+ χ−1

g .h, z)− f(x̃, z)−Dxf(x̃, z)(χ
−1
g h)

]
∥

∥χg.χ
−1
g .h∥

Now, recall that for every g ∈ G, the operator χ̌g is bounded, i.e. it has finite operator norm
0 < ∥χ̌g∥ < ∞ (non-zero as χ̌g is invertible). By defining h̃ := χ−1

g .h, we have:

∥χ̌g.
[
f(x̃+ h̃, z)− f(x̃, z)−Dxf(x̃, z)h̃

]
∥

∥χgh̃∥
≤ ∥χ̌g∥∥f(x̃+ h̃, z)− f(x̃, z)−Dxf(x̃, z)h̃∥

∥χg.h̃∥

Multiplying by 1 =
∥χ−1

g χgh̃∥
∥h̃∥ the last term is seen to be bounded by

∥χ̌g∥∥χ−1
g ∥ · ∥f(x̃+ h̃, z)− f(x̃, z)−Dxf(x̃, z)h̃∥

∥h̃∥

Since χg and χ−1
g are bounded operators, we have that: h → 0 ⇐⇒ h̃ = χ−1

g h → 0 . Thus

lim
h→0

∥f(χg.x̃+ h, χ̃gz)− f(χg.x̃, χ̃g.z)− χ̌gDxf(x̃, z)χ
−1
g h∥

∥h∥

≤ lim
h→0

∥χ̌g∥∥χ−1
g ∥ · ∥f(x̃+ h̃, z)− f(x̃, z)−Dxf(x̃, z)h̃∥

∥h̃∥
= 0

This, in particular, allows us to characterize the differential of equivariant functions.
Corollary 4. If G

⟳

χ X , G

⟳

χ̃ Y , and f : X → Y is a G-equivariant and Fréchet-differentiable
function, then:

∀g ∈ G, ∀x ∈ X , Dxf(χg.x) = χ̃gDxf(x)χ
T
g

Proof of Corollary 4. Direct.

We can also get some interesting integral properties of jointly equivariant functions.
Proposition 7. Let X ,Y and Z be (separable) Hilbert Spaces and G be a lcsH group. Let G

⟳

χ X ,
G

⟳

χ̃ Z , G

⟳

χ̌ Y via some representations χ, χ̃ and χ̌ respectively (not necessarily orthogonal).

Let f : X × Z → Y be a jointly G-equivariant function (with respect to these actions). Consider a
measure µ ∈ P(Z) and let f be Bochner integrable on its second argument with respect to µ. Then:

∀x ∈ X , ∀g ∈ G, χ̌g⟨f(x; ·), µ⟩ = ⟨f(χgx; ·), χ̃g#µ⟩
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Proof of Proposition 7. Let µ ∈ P(Z) and f be as stated. Notice that, ∀x ∈ X , ∀g ∈ G, we have:

χ̌g⟨f(x, ·), µ⟩ = χ̌g

∫
Z
f(x, θ)dµ(θ) =

∫
Z
χ̌gf(x, θ)dµ(θ),

where we’ve used the linearity of the Bochner integral under continuous linear operators (as is χ̌g). It
follows, from the joint G-equivariance of f and the definition of the pushforward measure, that:∫

Z
χ̌gf(x, θ)dµ(θ) =

∫
Z
f(χgx, χ̃gθ)dµ(θ) =

∫
Z
f(χgx, θ̃)d(χ̃g#µ)(θ̃)

We conclude the desired result.

B.2 Properties of symmetric measures

Consider again compact G acting orthogonally over the different spaces. Recall that, given µ ∈ P(Z),
we defined µG :=

∫
G
(Mg#µ)dλG as its symmetrized version and µEG

:= PEG#µ as its projected
version. The following two results assumed in the core of the paper are elementary, but we provide
their detailed proofs for completeness:
Lemma 1. We have the following inclusion: P(EG) ⊆ PG(Z). Also, for any µ ∈ P(Z) the
following equalities hold ∀g ∈ G: µEG

= (Mg#µ)E
G

= (µG)E
G

= (µEG

)G and (Mg#µ)G = µG.

Proof of Lemma 1. Let µ ∈ P(EG) (i.e. µ(EG) = 1), g ∈ G and consider any positive measurable
f : Z → R. We can see:∫

Z
f(Mgz)µ(dz) =

∫
EG

f(Mgz)µ(dz) =

∫
EG

f(z)µ(dz) =

∫
Z
f(z)µ(dz).

So, that ∀g ∈ G, µ = Mg#µ, and thus µ ∈ PG(Z). Regarding the equalities, consider µ ∈ P(Z)
and A ∈ BZ some borel set. Since the λG is right-invariant, we have ∀g ∈ G, ∀z ∈ Z :

PEGMgz =

∫
G

Mh(Mgz)dλG(h) =

∫
G

(MhMgz)dλG(h) =

∫
G

Mh̃z)dλG(h̃) = PEGz.

Then, for g ∈ G, M−1
g P−1

EG (A) = (PEGMg)
−1(A) = (PEG)−1(A) and so:

(Mg#µ)E
G

(A) = µ(M−1
g P−1

EG (A)) = µ(P−1
EG (A)) = µEG

(A),

and:

(µG)E
G

(A) =

∫
G

µ(M−1
g P−1

EG (A))dλG(g) =

∫
G

µ(P−1
EG (A))dλG(g) = µ(P−1

EG (A)) = µEG

(A).

On the other hand, since µEG ∈ PEG

(Z) ⊆ PG(Z), (·)G leaves it unchanged: (µEG

)G = µEG

.

For the last equality, let g ∈ G and f : Z → R+ be measurable. We have:

⟨f, (Mg#µ)G⟩ =
∫
G

⟨f,Mh#(Mg#µ)⟩dλG(h) =

∫
G

⟨f, (Mh̃)#µ⟩dλG(h̃) = ⟨f, µG⟩,

once again by the right-invariance of λG. Namely, (Mg#µ)G = µG.

Proposition 8. For µ ∈ P(Z), we have: µG ∈ PG(Z) and µEG ∈ P(EG).

Proof of Proposition 8. Indeed, let h ∈ G and B ∈ BZ (borel set of Z), using the properties of M
and the left-invariance of λG, we get that:

µG(M−1
h (B)) =

∫
G

µ(M−1
g (M−1

h (B)))dλG(g) =

∫
G

µ(M−1
g̃ (B))dλG(g̃) = µG(B)

So, ∀g ∈ G, µG = Mg#µG, implying that µG ∈ PG(Z). On the other hand, by definition we have
(as the projection is surjective) µEG

(EG) = µ(P−1
EG (EG)) = µ(Z) = 1, so that µEG ∈ P(EG).

22



Remark. It’s not hard to notice that, on Z = RD and with λ being the lebesgue measure, if
µ ∈ P(Z) is such that µ ≪ λ and has density u : Z → R+, then: µG ∈ PG(Z) has density
uG :=

∫
G
u ◦MgdλG(g) w.r.t. λ (whereas µEG

doesn’t have a density w.r.t. λ unless the action is
trivial). This follows from the O(D)-invariance of λ and some standard calculations.

Since we will be working on P2(Z) on Section 3.3, it’s useful to also notice that:

Remark. If µ ∈ Pp(Z), then µG, µEG ∈ Pp(Z). Indeed, it follows from the fact that ∥Mg∥ ≤ 1
∀g ∈ G (since the representation is orthogonal) and ∥PEG∥ ≤ 1 (since PEG is a projection).

Also, we have that:

Proposition 9. Pp(EG) := P(EG)∩Pp(Z) and PG
p (Z) := PG(Z)∩Pp(Z) are closed and convex

subspaces of Pp(Z) (under the topology induced by Wp).

Proof of Proposition 9. Convexity is direct by definition of the involved spaces. For closedness under
the Wasserstein topology, recall (see e.g. [1]) that Wp(µn, µ) −−−−→

n→∞
0 is equivalent to: µn −−−−⇀

n→∞
µ

(weak convergence) and
∫
Z ∥θ∥pdµn(θ) −−−−→

n→∞

∫
Z ∥θ∥pdµ(θ). Since for f ∈ Cb(Z), f ◦Mg (for

g ∈ G) is continuous and bounded, (µn)n∈N ⊆ PG(Z) implies ∀g ∈ G, Mg#µ = µ (namely,
µ ∈ PG(Z)). Similarly, f ◦ PEG is continuous and bounded, and so if (µn)n∈N ⊆ P(EG), then
PEG#µ = µ (i.e. µ ∈ P(EG)).

B.3 Properties of equivariant data

We are representing the idea of ‘data being symmetric’ with respect to the action of G, by assuming
the data distribution π to be equivariant. We will next see that this is a natural generalization of more
intuitive, though restrictive, notions of data being symmetric, for instance when X is a r.v. on X
with invariant law πX and Y = f∗(X) + ξ for some equivariant function f∗ : X → Y and some
centered independent noise ξ. Indeed the following results tell us that, assuming π ∈ PG(X × Y),
implies such a structure of the data, but with a more general ξ = ξX , possibly correlated to X but
still ‘conditionally’ centered given X . This result will be required in proving Proposition 5.

Proposition 10. Let π ∈ P(X × Y) be an equivariant data distribution such that Eπ[∥Y ∥2] < ∞.
Then f∗ = Eπ[Y |X = ·] is an equivariant function.

Proof of Proposition 10. Indeed, as E[∥Y ∥2] < ∞, we know the conditional expectation E[Y |X]
is well defined and there exists a measurable f∗ : X → Y s.t. f∗(X) = E[Y |X]. Now, by
properties of the conditional expectation): Given any h : X → R square integrable, we will show
that: Eπ[Y h(X)] = Eπ[

∫
G
ρ̂−1
g .f∗(ρg.X)dλG(g)h(X)]. Indeed, notice that by Fubini’s theorem

(as f∗ ∈ L2(X ,Y;πX ) and h square integrable), linearity of the integral and G-invariance of π:

Eπ [(QG.f
∗)(X)h(X)] = Eπ

[∫
G

ρ̂−1
g .f∗(ρg.X)dλG(g)h(X)

]
=

∫
G

ρ̂−1
g .Eπ[f

∗(X)h(ρg.
−1.X)]dλG(g)

=

∫
G

Eπ[ρ̂
−1
g .Y h(ρg.

−1.X)]dλG(g)

=

∫
G

Eπ[Y h(X)]dλG(g) = Eπ[Y h(X)]

By uniqueness of the conditional expectation, we know therefore that f∗(X)
a.s.
=∫

G
ρ̂−1
g .f∗(ρg.X)λG(g). In particular, πX -a.e. f∗ = QG(f

∗), making f∗ G-equivariant.

As a particular example, if we assumed that the data distribution was given by some function
f : X → Y , i.e. Y = f(X), taking π to be equivariant would be equivalent to assuming that πX is
invariant and f is an equivariant function (which is the setting of the data simulated in our numerical
experiments; see Section 4).
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We notice that Proposition 10 can also be used to recover a celebrated result from [27] (later
generalized by [40]), in the general setting where data symmetry is encoded by the condition that
π ∈ P2(X × Y). Define the symmetrization gap of a learning problem with quadratic loss as:

∆(f,QGf) := Eπ[∥Y − f(X)∥2Y ]− Eπ[∥Y − (QGf)(X)∥2Y ]

The following extension of mentioned statements from [27, 40] is not needed for our results, but we
provide a proof of it in SuppMat-G, in view of its potential, independent interest:
Lemma 2 (Symmetrization Gap Characterization). Consider the quadratic loss and π ∈ P(X × Y)
such that Eπ[∥Y ∥2] < ∞. Also, assume that π|X is G-invariant, but π is only H-invariant with
respect to some H ≤ G (closed). Then, the generalization gap satisfies:

∆(f,QGf) = −2⟨f∗, f⊥
G ⟩L2(X ,Y;πX ) + ∥f⊥

G ∥2L2(X ,Y;πX )

where f∗(x) = Eπ[Y |X = x] is the conditional expectation function, and f⊥
G := f −QGf .

In particular, if π is G-invariant as well, we get ∆(f,QGf) = ∥f⊥
G ∥2L2(X ,Y;πX )

C Concrete realizations of shallow models

The class of models we have introduced in Definition 1 allows for taking an arbitrary, common
parameter space Z for all hidden units, as well as an arbitrary function σ∗ : X × Z → Y . As noted
in the description of EAs in Section 2.3, by requiring only that σ∗ is jointly-equivariant, we moreover
ensure that G

⟳

M Z is, in some sense, properly related to the actions G

⟳

ρ X and G

⟳

ρ̂ Y . This
abstract property of σ∗ allows us, in fact, to encode a wide range of situations and interesting results,
without delving into the specifics of a particular choice of architecture. We next analyze this notion
in the concrete example of the setting of a traditional single-hidden-layer shallow NN.

C.1 Traditional single layer neural networks and large ensembles of multi-layer units

Recall the finite-dimensional setting of single-hidden-layer neural networks. We considered X = Rd,
Y = Rc and Z = Rc×b × Rd×b × Rb, and defined, for z = (W,A,B) ∈ Z and σ : Rb → Rb,
σ∗(x, z) := Wσ(ATx + B). This allows us to express a shallow NN with N hidden units, of
parameters θ = (θi)

N
i=1 ∈ ZN , with θi = (Wi, Ai, Bi), as the function ΦN

θ : X → Y given by:

∀x ∈ X , ΦN
θ (x) :=

1

N

N∑
i=1

Wiσ(A
T
i .x+Bi) =

1

N
W.σ(A

T
.x+B), (6)

where we write the expression by blocks, considering

W = (W1, . . . ,WN ) ∈ Rc×bN , A = (A1, . . . , AN ) ∈ Rd×bN , and B =

B1

...
BN

 ∈ RbN .

This corresponds exactly to the usual single-hidden-layer setting (see e.g. [23, 53, 62, 67]), only
that we allow for the structure to involve the use of block matrices. This allows us to translate many
relevant EAs, such as CNNs (see [19]) or DeepSets (see [77]) into the shallow NN framework that
we propose (see Appendix C.2 for fully developed examples).

We now also consider a G-action on the intermediate layer, G

⟳

η Rb (so that G

⟳

η⊗IdN
(Rb)N ).

This allows us to define the natural intertwinning action6 of G on Z , which is given by:

Mg.z = Mg.(W,A,B) := (ρ̂g.WηTg , ρg.AηTg , ηg.B), (7)

for any g ∈ G and z = (W,A,B) ∈ Z . This is exactly the action under which the fixed points (i.e.
EG) will correspond exactly to EAs in the traditional sense for this architecture (i.e. each layer being
an equivariant function). In particular, we get the following straightforward result:

6The name is inspired from the traditional definition of ‘intertwinning linear maps’ in representation theory,
see SuppMat-A.1 for an explanation.
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Proposition 11 (Joint equivariance of σ∗ for single-hidden-layer NNs). In the setting of single-
hidden-layer NNs described above, if σ : Rb → Rb is G-equivariant (with respect to the action given
by η), then σ∗ is jointly equivariant.

Proof. This fact follows directly from the specific definition of σ∗, the linearity and the orthogonality
of all the relevant group representations. Indeed, for any equivariant σ : Rb → Rb, any g ∈ G and
any z = (W,A,B) ∈ Z , we have:

σ∗(ρg.x,Mg.z) = σ∗(ρg.x, (ρ̂g.W.ηTg , ρg.A.ηTg , ηg.B))

= (ρ̂g.W.ηTg ).σ((ρg.A.ηTg )
T .(ρg.x) + ηg.B)

= ρ̂g.(W.ηTg .σ(ηg.A
T .(ρTg .ρg).x+ ηg.B))

= ρ̂g.(W.ηTg .σ(ηg.(A
T .x+B)))

= ρ̂g.(W.ηTg .ηg.σ(A
T .x+B))

= ρ̂g.(W.σ(AT .x+B))

= ρ̂g.σ∗(x, z)

Thus, in this particular case, in which σ∗ represents the unit of a single hidden layer neural network,
we require only for σ : Rb → Rb to be G-equivariant (with respect to the action given by η on Rb) in
order for the joint equivariance of σ∗ to hold (and, in consequence, most subsequent results from our
work).

In particular, if η is chosen to be trivial (i.e. η ≡ idRb), any single-hidden-layer NN is jointly-
equivariant,7 regardless of σ : Rb → Rb. Namely, all of the results contained in the core of the paper
can be applied to an arbitrary single-hidden-layer NN; most importantly, those relating vanilla, DA
and FA training. The disadvantage of having a trivial η is that the space EG might not encode very
interesting EAs. This might make Theorem 5 lose part of its impressiveness, but it takes no credit off
the rest of our results (such as Corollary 3 and Theorem 4).

Analogously, if η acts via permutations of the coordinates in Rb, it is enough to consider a σ that is the
pointwise application of a scalar function. In practice, this usually isn’t a restrictive condition, since
most commonly used NN architectures are naturally built following this pattern. Therefore, almost
any single-hidden-layer architecture can yield a jointly-equivariant σ∗ for some of the most common
and interesting finite groups (e.g. Sn, Cn, among many others; see [30] for further discussion).

For a more complex (possibly infinite) compact group G acting orthogonally on the data and
parameters (with non-trivial η), for σ∗ to be jointly-equivariant we have to start properly restraining
σ : Rb → Rb. For instance, choosing an O(b)-equivariant σ (e.g. a Norm-ReLU) would grant
Proposition 11 to always hold; but such a restraining choice could potentially harm the model’s
expressiveness and applicability. We leave a deeper exploration of this more challenging case as
future work.

Finally, all of the above discussion (including Proposition 11) readily generalizes to the multilayer
case. Namely, if σ∗ encodes a Multi-Layer Perceptron (MLP) with multiple hidden layers whose
parameters live in some linear space Z , we can define G

⟳

M Z as the intertwining action between
each successive layer (similar to the previous example). σ∗ can be made jointly-equivariant by
making every activation function on each hidden layer equivariant (see [30]). Then, EG corresponds
exactly to the parameters that make the entire MLP an equivariant architecture (in the sense that every
layer is an equivariant function). With this, ΦN

θ is an ensemble of N such MLPs trained in parallel,
to which our results would also apply. Also as before, if the G-action on all of the hidden layers
(but not on input/output) is made trivial, then any σ∗ representing a multilayer architecture can be
jointly-equivariant.

In the upcoming sections we will further develop these ideas, to show that some of the most relevant
and widely applied equivariant architectures can be realized as part of our setting.

7Notice that this fact is explicitly used in the proof of Proposition 4
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C.2 Shallow DeepSet models, shallow GNNs and shallow CNNs

C.2.1 DeepSets

An emblematic example of neural networks with equivariant architecture are the Deep Sets,
introduced by [77]; which correspond, in practice, to NN architectures designed to be invari-
ant/equivariant to the action of the group of permutations G = Sn.

Consider that our NN processes sets of size n, which contain real-valued vectors of dimension
d̃ ∈ N. We can represent this input space simply as X := Rn×d̃. Say we wanted to build a wide
single-hidden-layer network that is invariant/equivariant to the action of Sn, and returns a new set of n
vectors, but now of dimension c̃ ∈ N (i.e. Y := Rn×c̃). For this, let’s consider the same architecture
as in the previous section (replace d = nd̃, c = nc̃), where we’ll let our intermediate layer be simply
another set of n vectors, now of dimension b̃ with b̃ ∈ N (such that b = nb̃ above), and repeated
N ∈ N times (as in the multiple hidden units that we want to achieve). With this, our network flows
as follows: ΦN

θ : Rn×d̃ → R(n×b̃)×N → Rn×c̃. Notice how Sn acts naturally on each hidden space
by simply permuting the vectors of the set (i.e. ρ, ρ̂ and η are defined in this way).

Following the same structure as in the previous section, we will have a parameter space given
by: Z := R(n×c̃)×(n×b̃) × R(n×d̃)×(n×b̃) × Rn×b̃, and a unit that acts on z = (W,A,B) ∈ Z
as σ∗(x, z) := Wσ(ATx + B), with σ : Rn×b̃ → Rn×b̃ some usual activation function applied
pointwise (which, as mentioned above, will be immediately equivariant to the defined action of G
via η). Notice how building this architecture requires no hard a priori knowledge of the underlying
symmetry of the problem (beyond the fact that the inputs and outputs are sets).

Under the natural action from this context (i.e. ρ, ρ̂ and η acting on the sets by permuting their
elements, and M defined as in SuppMat-C.1), EG corresponds exactly to the set of parameters that
yield a Sn-equivariant shallow neural network (which can be interpreted as a DeepSet). For the
interested reader, we will make this connection explicit in the rest of this section.

As shown in [77], the only way to have an Sn-equivariant affine transformation between two spaces
Rn×d1 and Rn×d2 is if the parameters Ã ∈ R(n×d1)×(n×d2) and B̃ ∈ Rn×d2 (from the definition
x 7→ ÃT .x+ B̃) are of the form:

Ã = α⊗ I + β ⊗ J, B̃ = γ ⊗ (1, . . . , 1) (8)

Where α, β ∈ Rd1×d2 , γ ∈ Rd2 are the truly trainable parameters of the layer; I = Idn×n and
J = 1⃗n1⃗

T
n are two n× n matrices; and ⊗ is the usual tensor product. More explicitly, writing the

matrices by blocks, this is:

α⊗ I =


α 0 . . . 0
0 α . . . 0
...

. . . . . . 0
0 0 . . . α

 ∈ R(n×d1)×(n×d2),

β ⊗ J =


β β . . . β
β β . . . β
...

. . . . . . β
β β . . . β

 ∈ R(n×d1)×(n×d2)

γ ⊗ (1, . . . , 1) = (γ, . . . , γ) ∈ R(n×d2)

In particular, Equation (8) gives us an explicit expression for our space EG. Indeed, an element
z = (W,A,B) ∈ Z will live in EG if and only if there exists w1, w2 ∈ Rc̃×b̃, a1, a2 ∈ Rd̃×b̃ and
b1 ∈ Rb̃ such that:

W = w1 ⊗ I + w2 ⊗ J, A = a1 ⊗ I + a2 ⊗ J, and B = b1 ⊗ (1, . . . , 1) (9)

In a sense, we can think of EG simply as being equivalent to R2(c̃×b̃) × R2(d̃×b̃) × Rb̃. In particular,
we went from having D = dim(Z) = n2 · b̃ · (c̃+ d̃) + n · b̃ free parameters on each unit, to simply
D̃ = dim(EG) = 2 · b̃ · (c̃+ d̃) + b̃, which should be easier to manage in general.
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Now, recall our construction from SuppMat-C.1, and consider the matrices W,A and B from
Equation (6). We notice that, in this example, they are of the form:

W ∈ R(n×c̃)×(n×b̃N), A ∈ R(n×d̃)×(n×b̃N), and B ∈ R(n×b̃N).

Namely, sensibly replacing d1 = d̃, d2 = b̃N for A and B; and d1 = c̃, d2 = b̃N for W in
Equation (8); we also get an explicit condition under which W,A and B yield a globally Sn-
equivariant architecture. By properly writing these matrices by blocks (as in SuppMat-C.1), and
separating the action of each of the N units, one shall notice that the condition for W,A and B to
be Sn-equivariant corresponds exactly to every θi = (Wi, Ai, Bi) ∈ Z , i = 1, . . . , N , being of the
form given in Equation (9). That is to say, ΦN

θ has an Sn-equivariant architecture (a DeepSet from
[77]) if and only if ∀i ∈ {1, . . . , N}, θi ∈ EG, which is exactly the condition stated in Section 2.3.
Remark. The reader could notice that our previous construction is not truly involving the complete
richness of DeepSets. Namely, these architectures often involve using some "pooling" mechanisms,
such as a global average pooling (GAP) operation to force invariance into the network (see [8]).
Namely, if A : Rn×b̃ → Rb̃ is the usual linear GAP operation, we might want a NN that flows as
ΦN

θ : Rn×d̃ → R(n×b̃)×N A−→ Rb̃N → Rc̃. This is no trouble within our framework, since we can
simply consider the ‘adequate’ unit: σ∗(x, z) := WA(σ(ATx + B)) for z = (W,A,B) ∈ Z :=

Rc̃×b̃ × R(n×d̃)×(n×b̃) × Rn×b̃, and all of our results would be applicable.

The main disadvantage of doing this is that we are forced to encode some a priori knowledge of the
symmetries of the problem into our choice of architecture. While this isn’t useful for our heuristic
from Section 4.2, all other results relating the DA, FA and EA training dynamics still apply.
Remark. Similar to the last remark, more complex equivariant NN, with multiple layers and various
inner operations involved, can be modeled by choosing σ∗ properly. Namely, set σ∗ to be a whole
multi-layer structure, with parameters in Z , and EG being the subspace of those that make the
architecture equivariant (see e.g. Equation (9)).

In such case, the shallow model ΦN
θ , with θ ∈ ZN , will represent an ensemble of N multi-layer

units, each one given, for every i ∈ {1, . . . , N}, by σ∗(·, θi) : X → Y . The output of the ensemble is
simply the average of the outputs of each one of the units.

C.2.2 GNNs

Generalizing the ideas from DeepSets to GNNs is fairly straightforward. Namely, consider the input
of a layer to be a graph, represented by a set of features, coupled with an adjacency matrix that
also contains relevant edge-features; and the output to be analogous. Namely, let’s say the input
space is X1 = R(n×d1) ×R(n×n)×d2 and the output space is X2 = R(n×d3) ×R(n×n)×d4 . Consider
also the natural Sn action acting on these spaces, i.e. permuting the vertices of the graph, acting
jointly between vertex features and adjacency matrix. With this in place, one can find an analogous
characterization to Equation (8), but for affine layers that are Sn-equivariant between graph spaces
(see e.g. [29, 49] for a more explicit construction). From there, it is not hard to construct, following
the same steps as for DeepSets, an explicit characterization of EG for single-hidden-layer GNNs,
analogous to Equation (9). Also as before, more complex GNN structures (with multiple layers,
pooling operations, etc.) can be encoded in this setting through the unit σ∗ (with the possibly same
drawbacks as in DeepSets). For brevity, we don’t delve into GNNs in their full complexity and leave
that to the curious reader.

C.2.3 CNNs

Finally, following the same logic as before, we can model another one of the most emblematic
traditional equivariant models: CNNs. We here consider only 1D-CNNs for simplicity, but all
arguments can be readily generalized to 2D or 3D CNNs.

In this setting, take an array of n vectors of dimension d̃ ∈ N as input (X := Rn×d̃) and, analogous
to DeepSets, say that the output and hidden layers have the same structure, so that Y := Rn×c̃; and
Z := R(n×c̃)×(n×b̃) × R(n×d̃)×(n×b̃) × Rn×b̃, for b̃, c̃ ∈ N. We consider σ∗ simply as before.

The single main difference with the study of DeepSets is that, in this case, we consider the action of
Cn (i.e. the cyclic group of order n, also denoted Zn) instead of Sn. In particular, the natural action
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of Cn on each space (through ρ, ρ̂ and η) consists simply of shifting the array’s coordinates in a given
direction (modulo n). As before, this makes the set EG correspond exactly to the set of parameters
that yield each layer Cn-equivariant (as in a 1D-CNN).

More specifically, we can characterize (analogous to Equation (8)) how a single Cn-equivariant layer
looks like between two spaces X1 = R(n×d1) and X2 = R(n×d2) under the natural action. It is
well known (see [8]) that a Cn-equivariant affine layer, x 7→ ÃT .x + B̃, between X1 and X2, of
parameters Ã ∈ R(n×d1)×(n×d2) and B̃ ∈ Rn×d2 , must be of the form:

Ã = C(α0, . . . , αn−1) and B̃ = β ⊗ (1, . . . , 1),

with β ∈ Rd2 , αi ∈ Rd2×d1 , ∀i ∈ {0, . . . , n−1}, and the associated circulant matrix being defined
(by blocks, and considering the indices modulo n) as:

C(α0, . . . , αn−1) =


α0 α1 ... ... α−1

α−1 α0 α1 ... ...
...

...
. . .

...
...

... ... α−1 α0 α1

α1 ... ... α−1 α0

 ∈ R(n×d2)×(n×d1).

As a consequence, we get an analog of Equation (9) to explicitly describe EG: we have that z =

(W,A,B) ∈ EG if and only if ∃(wi)
n−1
i=0 ⊆ Rc̃×b̃, (ai)n−1

i=0 ⊆ Rd̃×b̃ and β ∈ Rb̃ such that:

W = C(w0, . . . , wn−1), A = C(a0, . . . , an−1), and B = β ⊗ (1, . . . , 1)

Thus, the parameter space goes from having dim(Z) = n2 · b̃ · (c̃+ d̃) + n · b̃ free parameters on
each unit, to simply dim(EG) = n · b̃ · (c̃+ d̃)+ b̃. One might also notice that the obtained parameter
space ECn contains ESn (from DeepSets), which is expected from the fact that Cn ≤ Sn. In global
terms, the shallow CNNs we have modeled here, correspond to models that will grow asymptotically
in terms of the number of different convolutional filters (encoded by N ) that are being used.

Finally, as it was also mentioned in previous examples, more complex CNN structures (with multiple
layers, pooling operations, etc.) can be encoded in this setting through modifications to the unit σ∗.

D Further elements from the MF theory of shallow neural networks

In this section we study several theoretical notions required in the MF approach to overparametrized
shallow NN. For the purpose of our results, Subsections D.1 and D.2 are the most relevant ones, as we
establish therein some useful properties or formula that will be explicitly required. Subsections D.3
and D.4 review some results and recent literature regarding well-posedness and long-time convergence
of WGFs, which are relevant to the MF interpretation of the training dynamics of shallow models.

D.1 Linear functional derivatives and intrinsic derivatives

Let X ,Y and Z be separable Hilbert spaces. Recall the definitions of the linear functional derivative
and intrinsic derivatives:

Definition 8 (Linear Functional Derivative (First Variation)). For a functional F : P2(Z) → R, its
linear functional derivative (lfd) is a function: ∂F

∂µ : P2(Z)×Z → R such that ∀µ, ν ∈ P2(Z):

lim
h→0

F ((1− h)µ+ hν)− F (µ)

h
=

∫
Z

∂F

∂µ
(µ, z)d(ν − µ)(z), and

∫
Z

∂F

∂µ
(µ, z)dµ(z) = 0

The function F ′ : µ ∈ P2(Z) 7→ ∂F
∂µ (µ, ·) is also known as the first variation of R at µ.

Definition 9 (Intrinsic Derivative). Whenever ∂F
∂µ : P2(Z)×Z → R exists and is differentiable on

its second argument, the intrinsic derivative of F is defined as: DµF (µ, z) = ∇z

(
∂F
∂µ (µ, z)

)
.

Example. To better illustrate the notion of the linear functional derivative and the intrinsic derivative,
consider the following usual examples:
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1. In the important case of the Boltzmann entropy F = Hλ, defined for µ ≪ λ by Hλ :=∫
log(dµdλ (z))dµ(z) (and +∞ otherwise), we have that (modulo an additive constant that

doesn’t depend on z, see [56]):

∂F

∂µ
(µ, z) = log

(
dµ

dλ
(z)

)
+ 1 and DµF (µ, z) =

1
dµ
dλ (z)

∇z
dµ

dλ
(z).

2. Whenever F (µ) :=
∫
Z ϕ(z)dµ(z) for some bounded continuously differentiable function

ϕ : Z → R, it is well known that :

∂F

∂µ
(µ, z) = ϕ(z)−

∫
ϕdµ and DµF (µ, z) = ∇zϕ(z)

The most relevant example, in our case, regards the linear functional and intrinsic derivatives of
the population risk functional, R(µ) = Eπ[ℓ(Φµ(X), Y )]. We can consider the general setting
presented in [16], where some Hilbert Space H is considered, and it is assumed that F : P(Z) → R
can be written as F (µ) = L(⟨Φ, µ⟩), where Φ : Z → H is a parametrization of elements in H;
L : H → R is some loss functional, and the integral ⟨Φ, µ⟩ is a Bochner integral on H. This
generalizes the shallow NN setting, as one might consider H = L2(X ,Y, πX ), L : H → R given
by L(f) = Eπ[ℓ(f(X), Y )] and Φ : Z → H defined as ∀z ∈ Z, Φ(z) = σ∗(·; z); so that
R(µ) = L(⟨Φ, µ⟩). In this setting, we can prove the following result:8

Proposition 12. Let H be a separable Hilbert Space and F (µ) := L(⟨Φ, µ⟩), for some function
that’s Gateaux-differentiable L : H → R on every direction and of continuous differential; and
Φ : Z → H such that ∀µ ∈ P(Z), ∥⟨Φ, µ⟩∥H < ∞.

Then ∀z ∈ Z, ∀µ ∈ P(Z):

∂F

∂µ
(µ, z) = DhL(⟨Φ, µ⟩)(Φ(z)) = ⟨∇hL(⟨Φ, µ⟩),Φ(z)⟩H − CF,µ

DµF (µ, z) = (DhL(⟨Φ, µ⟩)(DzΦ(z)))
∗
= ∇zΦ(z)(∇hL(⟨Φ, µ⟩)).

Here, CF,µ := ⟨∇hL(⟨Φ, µ⟩), ⟨Φ, µ⟩⟩H is exactly the constant needed to avoid ambiguity in the
definition; (·)∗ denotes the adjoint operator and, in particular, ∇zΦ(z) = (DzΦ(z))

∗
: H → Z .

When Z = RD this corresponds to the usual definition of the gradient.

Proof of Proposition 12. We know that, ∀µ, ν ∈ P(Z), h ∈ [0, 1]:

F ((1− h)µ+ hν)− F (µ)

h
=

L(⟨Φ, (1− h)µ+ hν⟩)− L(⟨Φ, µ⟩)
h

=
L(⟨Φ, µ⟩+ h⟨Φ, ν − µ⟩)− L(⟨Φ, µ⟩)

h
.

Let’s denote by qµ := ⟨Φ, µ⟩ (analogously qν−µ := ⟨Φ, ν − µ⟩) and sµ,ν := hqν−µ, so we can write:

F ((1− h)µ+ hν)− F (µ)

h
=

L(qµ + sµ,ν)− L(qµ)

h
.

As L is Gateaux differentiable, we have the following first order Taylor expansion ∀x, s ∈ H, ∀t ∈ R:

L(x+ t s) = L(x) + tDhL(x).s+ o(|t|∥s∥),
which allows us to write:
F ((1− h)µ+ hν)− F (µ)

h
=

L(qµ + h qν−µ)− L(qµ)

h
=

h.DhL(qµ).qν−µ + o(|h|∥qν−µ∥)
h

.

As ∥qν−µ∥ < ∞ by hypothesis, we can say that: o(|h|∥qν−µ∥) = o(h). Therefore, taking the limit
with h → 0, we get that:

lim
h→0

F ((1− h)µ+ hν)− F (µ)

h
= DhL(qµ).qν−µ + lim

h→0

o(h)

h
= DhL(qµ).qν−µ

8Where the gradient ∇xf(x) is the unique vector in H representing the action of Dxf(x) : H → R
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Now, developping this last term (using, for instance, the linearity of the Bochner integral, as we know
DhL(x, ·).(·) to be linear and bounded), we get that:

DhL(qµ).qν−µ = DhL(qµ).⟨Φ, ν − µ⟩ = ⟨DhL(qµ)(Φ), ν − µ⟩,

and so by definition of the gradient of L:

lim
h→0

F ((1− h)µ+ hν)− F (µ)

h
=

∫
Z
⟨∇hL(⟨Φ, µ⟩),Φ(z)⟩H d(ν − µ)(z).

From here we deduce that:
∂F

∂µ
(µ, z) = ⟨∇hL(⟨Φ, µ⟩),Φ(z)⟩H − CF,µ,

where CF,µ is a fixed constant, given by:

CF,µ =

∫
Z

∂F

∂µ
(µ, z)dµ(z) =

∫
Z
⟨∇hL(⟨Φ, µ⟩),Φ(z)⟩H d(µ)(z) = ⟨∇hL(⟨Φ, µ⟩), ⟨Φ, µ⟩⟩H

On the other hand, for the intrinsic derivative, notice that Dz(
∂F
∂µ (µ, z)) : Z → R is a bounded linear

functional over Z , so (by Riesz Representation) ∃DµF (µ, z) := ∇z(
∂F
∂µ (µ, z)) ∈ Z such that:

∀z ∈ Z,

〈
∇z

(
∂F

∂µ
(µ, z)

)
, z

〉
Z
= Dz

(
∂F

∂µ
(µ, z)

)
(z)

However, we can develop the RHS, and as the constant CF,µ doesn’t depend on z, we get that:

Dz

(
∂F

∂µ
(µ, z)

)
(z) = Dz (⟨∇hL(⟨Φ, µ⟩),Φ(z)⟩H) (z)

Now, by the chain rule and the definition of the adjoint operator of DzΦ(z):

Dz

(
∂F

∂µ
(µ, z)

)
(z) = ⟨∇hL(⟨Φ, µ⟩), DzΦ(z)(z)⟩H =

〈
(DzΦ(z))

∗
(∇hL(⟨Φ, µ⟩)) , z

〉
Z

So, as they coincide for every z ∈ Z , we conclude that:

DµF (µ, z) = (DzΦ(z))
∗
(∇hL(⟨Φ, µ⟩))

Proposition 12 applies directly to our population risk functional R(µ) := Eπ

[
ℓ(Φµ(X), Y )

]
, by

considering:

• The Hilbert space: H = L2(X ,Y, πX )

• L : H → R given by L(f) = Eπ[ℓ(f(X), Y )], which is Gateaux-differentiable on every
direction in H if we assume ℓ : Y × Y → R to be continuously differentiable on its
first argument, with ∇1ℓ linearly growing. The differential (which is continuous) can be
explicitly computed to be:

DhL(f)(h) = Eπ

[
⟨∇1ℓ ((f(X), Y ) , h(X)⟩Y

]
• Φ : Z → H defined as ∀z ∈ Z, Φ(z) = σ∗(·; z), which satisfies ∀µ ∈
P(Z), ∥⟨Φ, µ⟩∥H < ∞ under the assumption of σ∗ being bounded and continuous.

Corollary 5. We can explicitly compute the linear functional derivative and the intrinsic derivative
for the learning problem’s population risk:

∂R

∂µ
(µ, z) = Eπ

[
⟨∇1ℓ (⟨σ∗(X; ·), µ⟩, Y ) , σ∗(X; z)⟩Y

]
+ (constant not depending on z)

DµR(µ, z) = Eπ [∇zσ∗(X; z).∇1ℓ(⟨σ∗(X; ·), µ⟩, Y )]

Beyond this particular example, the linear functional derivative and the intrinsic derivative behave
well when the underlying functional is invariant, as shown by the following result:
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Proposition 13. Let F : P(Z) −→ R be invariant and of class C1. Then: ∀z ∈ Z, ∀µ ∈
P(Z), ∀g ∈ G :

∂F

∂µ
(Mg#µ,Mg.z) =

∂F

∂µ
(µ, z) and DµF (Mg#µ,Mg.z) = Mg.DµF (µ, z)

i.e. ∂F
∂µ is jointly invariant and DµF jointly equivariant.

Proof of Proposition 13. To prove this, recall that the linear functional derivative of F is the only
function ∂F

∂µ : P(Z)×Z → R satisfying ∀µ, ν ∈ P(Z):

lim
h→0

F ((1− h)µ+ hν)− F (µ)

h
=

∫
Z

∂F

∂µ
(µ, z)d(ν − µ)(z) and

∫
Z

∂F

∂µ
(µ, z)dµ(z) = 0.

In particular, as F is G-invariant (and Mg linear), we can write ∀µ, ν ∈ P(Z), ∀h ̸= 0 and g ∈ G:
F ((1− h)µ+ hν)− F (µ)

h
=

F ((1− h)(Mg#µ) + h(Mg#ν))− F (Mg#µ)

h
.

Taking the limit as h → 0 on both sides, we get:

lim
h→0

F ((1− h)µ+ hν)− F (µ)

h
=

∫
Z

∂F

∂µ
(Mg#µ, z)d(Mg#ν −Mg#µ)(z)

=

∫
Z

∂F

∂µ
(Mg#µ,Mg.z)d(ν − µ)(z),

and also: ∫
Z

∂F

∂µ
(Mg#µ,Mg.z)dµ(z) =

∫
Z

∂F

∂µ
(Mg#µ, z)dMg#µ(z) = 0.

So, by uniqueness, we get ∀g ∈ G:
∂F

∂µ
(µ, z) =

∂F

∂µ
(Mg#µ,Mg.z),

and, from proposition 6 (since ∂F
∂µ is jointly invariant), we get ∀g ∈ G:

DµF (Mg#µ,Mg.z) = ∇z

(
∂F

∂µ

)
(Mg.µ,Mg.z) = Mg.∇z

(
∂F

∂µ

)
(µ, z) = Mg.DµF (µ, z)

Finally, for convenience, let us denote by HEG

the function defined on P(Z) by HEG

(µ) :=

HλEG
(µEG

) = HλEG
◦ PEG#(µ) (presented in Section 3.3). We can straightforwardly compute its

linear functional derivative and its intrinsic derivative in that space:

Example. (LFD and intrinsic derivative for HEG

) By definition of the linear derivative
∂HλEG

∂η of
HλEG

on P(EG) and the form we know it takes (see the examples from Appendix D.1), we see that,

whenever µEG

, νE
G

≪ λEG , we have:

lim
h→0

HλEG
((1− h)µEG

+ hνE
G

)−HλEG
(µEG

)

h
=

∫
EG

∂HλEG

∂η
(µEG

, x)d(νE
G

− µEG

)(x)

=

∫
EG

(
log

(
dµEG

dλEG

(x)

)
+ C

)
d(νE

G

− µEG

)(x)

=

∫
Z

(
log

(
dµEG

dλEG

(PEG .z)

)
+ C

)
d(ν − µ)(z),

which yields that ∂HEG

∂µ (µ, z) = log

(
dµEG

dλEG
(PEG .z)

)
+C (for C an appropriate constant). A formal

expression for the intrinsic derivative follows, which is given by :

DµH
EG

(µ, z) =
1

dµEG

dλEG
(z)

PT
EG∇z

[
dµEG

dλEG

]
(PEG .z)
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D.2 Expression for the WGF of the regularized population risk

In the case of the regularized population risk functional Rτ,β : P(Z) → R, we can explicitly write
its intrinsic derivative. Consider a slightly more general functional, denoted by Rτ,β

ν , where the
entropy is calculated against a Gibbs measure ν ≪ λ such that ν(dz) = e−U(z)λ(dz) for some
function U : Z → R (as in [38]). We have ∀µ ∈ P(Z) s.t. µ ≪ ν, ∀z ∈ Z:

DµR
τ,β
ν (µ, z) = DµR(µ, z) + τ∇zr(z) + β∇zU(z) + β

(
1

µ(z)
∇zµ(z)

)
,

so that WGF(Rτ,β
ν ) as in definition 4 reads:

∂tµt = ς(t)
[
div
(
DµR

τ,β
ν (µt, ·)µt

)]
= ς(t) [div ((DµR(µt, ·) + τ∇zr + β∇zU)µt) + β∆µt] .

We recover the expression for WGF(Rτ,β) in Equation (4) by considering U ≡ 0:

∂tµt = ς(t) [div ((DµR(µt, ·) + τ∇zr)µt) + β∆µt] . (10)

We can see that Equation (4) corresponds to a Fokker-Planck equation, which can be interpreted in
terms of a non-linear SDE system, representing the behaviour of the type parameter: the McKean-
Vlasov SDE [11, 54, 70] (also known as the Mean Field Langevin Dynamics (MFLD) in the NN
literature). In the case of Rτ,β it reads:

dZt = ς(t)
[
− (DµR(µt, Zt) + τ∇θr(Zt)) dt+

√
2βdBt

]
with µt = Law(Zt), (11)

where (Bt)t≥0 is a D-dimensional standard Brownian Motion. It is indeed standard to check (by
applying Itô’s formula to φ(Zt, t) for φ a smooth function, and taking expectation) that µt = Law(Zt)
is a weak solution to (10). Under mild regularity conditions, both formulations are equivalent. See
[11, 54, 70] for details. The previous correspondence also holds true when β = 0 (in which case
(11) is an ODE). The process (11) or variants of it will prove useful to establish some of the relevant
results of the paper.

D.3 Global convergence in the regularized case

For the example we just presented of the entropy-regularized population risk, multiple authors (see
[12, 15, 38, 57, 69] among many others) have studied the properties of WGF(Rτ,β), particularly, the
global convergence results that can be obtained. For instance, consider the following results from
[38] (where we look at Rτ,β

ν for generality). First, define:

Definition 10. We say that a functional R : Pp(Z) → R is of class C1 if ∂R
∂µ (µ, ·) is well defined and

bounded for every µ ∈ Pp(Z), and the function (µ, z) ∈ Pp(Z)×Z 7→ ∂R
∂µ (µ, z) is continuous.

Now, from [15, 38], we get the following key result. We include the proof for completeness:

Lemma 3 (as in [38, 15]). Assume that R : Pp(Z) → R is convex and of class C1. Then, for any
µ, µ′ ∈ Pp(Z), we have:

R(µ′)−R(µ) ≥
∫
Z

∂R

∂µ
(µ, z)d(µ′ − µ)(z)

Proof of Lemma 3 (from [38]). Define µϵ := (1− ϵ)µ+ ϵµ′. Since R is convex, we have

ϵ (R(µ′)−R(µ)) ≥ R(µϵ)−R(µ) =

∫ ϵ

0

∫
Z

∂R

∂µ
(µs, z)d(µ′ − µ)(dz) ds.

Since the map s ∈ [0, 1] 7→ µs is continuous, it is of compact image (denoted [µ, µ′]). In particular,
as ∂R

∂µ is continuous and bounded on its second argument, we get that, it is bounded on [µ, µ′]×Z . The
dominated convergence and Lebesgue differentiation theorems (as ε → 0) allow us to conclude.

Consider now the following assumption:
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Assumption 2 (As in [38]). U : Z → R is assumed to be C∞, with ∇U Lipschitz continuous, and
such that ∃CU > 0, ∃C ′

U ∈ R such that ∀x ∈ Z : ∇U(x) · x ≥ CU∥x∥2 + C ′
U . When required,

we will also assume that r : Z → R satisfies these conditions.

Notice that these conditions imply that ∃0 ≤ C ′ ≤ C s.t. ∀x ∈ Z , C ′∥x∥2 − C ≤ U(x) ≤
C(1 + ∥x∥2) (i.e. U has quadratic growth) and |∆U(x)| ≤ C

Since Rτ,β
ν includes an entropy term, it guarantees strict convexity, weak lower semicontinuity

and compact sublevel sets (see e.g. [38] or [26]). On the other hand, assumption 2 implies that U
(or r) will have quadratic growth. Namely, we get (see [38] for a detailed proof):
Proposition 14 (Existence and Uniqueness of the minimizer (regularized case)). Let R be convex,
of class C1 and bounded from below. Let ν be the Gibbs measure with potential U . Then, Rτ, β

ν has
a unique minimizer, µ∗, τ, β, ν ∈ P(Z), absolutely continuous with respect to Lebesgue measure λ.
When either U or r satisfies assumption 2, this minimizer also belongs to P2(Z).

For establishing global convergence results further assumptions are requred
Assumption 3 (Assumptions for well definedness (from [12] and [38])). Assume that the intrinsic
derivative DµR : P(Z)×Z → Z of the functional R : P(Z) → R exists and satisfies either one of
the following:

1. (From [38]). Assume:

• DµR is bounded and Lipschitz continuous, i.e. ∃CR > 0 s.t. ∀z, z′ ∈ Z, ∀µ, µ′ ∈
P2(Z),

|DµR(µ, z)−DµR(µ′, z′)| ≤ CR[|z − z′|+W2(µ, µ
′)]

• ∀µ ∈ P(Z), DµR(µ, ·) ∈ C∞(Z).
• ∇DµR : P(Z)×Z → Z ×Z is jointly continuous.

2. (From [12], who relax some differentiability conditions at the cost of boundedness assump-
tions; this allows them to avoid altogether the coercivity condition from assumption 2, which
is used in [38]):

• ∀x ∈ Z,∀m,m′ ∈ P2(Z), |DµR(m,x) − DµR(m′, x)| ≤ MR
mmW1(m,m′) for

some constant MR
mm ≥ 0 (i.e. it is lipschitz on the measure argument).

• Suppose that
sup

µ∈P2(Z)

sup
x∈Z

|∇DµR(µ, x)| ≤ MR
mx

for some constant MR
mx ≥ 0 i.e. ∇DµR(µ, x) is uniformly bounded.

This allows to establish a traditional global convergence result from the MF Theory of NNs:
Theorem 7 (from [12] and [38]). Let µ0 ∈ P2(Z), and let assumption 2 and 3 hold; then:

∀t > 0,
d

dt
(Rτ,β

ν (µt)) = −ς(t)

∫
Z

∣∣∣∣DµR(µt, z) + τ∇r(z) + β
∇ut

ut
(z) + β∇U(z)

∣∣∣∣2 dµt(z)

where ut denotes the density of µt := Law(Xt), the solution to equation (4). i.e. following the
WGF makes the regularized risk decrease at a known rate. This is known as the energy dissipation
equation.
Remark. Notice that this equation can be rewritten using the Fisher divergence (or relative Fisher
Information) between two measures. This quantity is defined as:

I(µ||ν) :=
∫
Z

∥∥∥∥∇ log(
dµ

dν
(z))

∥∥∥∥2 dµ(z)
Then, almost by definition, we get:

d

dt
(Rτ,β

ν (µt)) = −β2ς(t)I(µt||µ̂t)

This allows us to characterize the stationary points of the dynamic explicitly, as done in [12, 38, 57,
69].
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Theorem 7 implies that the WGF converges to the unique global optimizer of the regularized problem:
Theorem 8 (from [38]). Let R be convex, bounded from below and C1; also assume that assumption 2
and 3 hold. Consider µ0 ∈ ∪p>2Pp(Z) and let (µt)t≥0 be the WGF(Rτ,β

ν ) starting from µ0. Then,
the equation has a stationary distribution, µ∞, that satisfies:

µ∞ := arg min
µ∈P(Z)

Rτ, β
ν (µ) and lim

t→∞
W2(µt, µ∞) = 0

Remark. Global Convergence Results such as Theorem 7 or Theorem 8 have been established as
early as in [53] (for the quadratic loss). However, settings such as those of [12, 38, 57, 69, 15]
are of notorious interest to establish essentially the same results under fundamentally more general
assumptions.

Making further technical assumptions on our regularized functionals leads to better convergence
results. Namely, consider the following definition:
Definition 11. We say µ ∈ P(Z) satisfies the Log-Sobolev Inequality with constant ϑ > 0 (in short,
LSI(ϑ)), if for any ν ∈ P(Z) such that ν ≪ µ, we have:

D(ν||µ) :=
∫
Z
log(

dν

dµ
(z))dν(z) ≤ 1

2ϑ

∫
Z

∥∥∥∥∇ log(
dν

dµ
(z))

∥∥∥∥2 dν(z) =:
1

2ϑ
I(ν||µ)

where D(ν||µ) is the KL divergence and I(µ||ν) is the Fisher divergence.

(see [3, 58] for background on functional inequalities and [15, 12, 57, 69] for applications of it to the
NN context). In our setting, as done by most authors in recent years to achieve the desired global
convergence results, the following ‘uniform-LSI’ on the functional R : P(Z) → R is assumed to
hold:
Assumption 4 (Uniform LSI from [15, 12, 57, 69]). There exists ϑ > 0 such that ∀µ ∈ P2(Z), µ̂
satisfies LSI(ϑ). Here µ̂ is the probability measure with density w.r.t. λ given by (slightly abusing
notation, and considering U the potential of a Gibbs measure ν used in the entropy, which is 0 if
ν = λ):

µ̂(z) ∝ exp

(
− 1

β

∂R

∂µ
(µ, z)− τ

β
r(z)− U(z)

)
Remark. This LSI is a recurrent element in the literature of WGF and Optimal Transport in general.
In particular, it implies (see [3]) Poincaré Inequality: ∀ϕ ∈ C1

b (Z), Varµ̂(ϕ) ≤ 1
2ϑEµ̂[|∇ϕ|2], and

([58]) the Talagrand’s T2-transport inequality as well: ∀ν ∈ P2(Z), ϑW 2
2 (ν, µ̂) ≤ D(ν||µ̂)

Beyond the characterization of the decay (from [38]), we have the following guarantee:
Theorem 9 (from [12, 15]). Let R be convex, C1 and bounded from below, and let assumptions 3
and 4 hold. Then, if for some t0 ≥ 0, µt0 has finite entropy and finite second moment; then ∀t ≥ t0,

D(µt||µ∞) ≤ Rτ, β
ν (µt)−Rτ, β

ν (µ∞) ≤ (Rτ, β
ν (µt0)−Rτ, β

ν (µ∞))e
−2βϑ

∫ t
t0

ς(s)ds

where µ∞ = µτ, β, ν = argminµ∈P(Z) R
τ β
ν (µ). That is, the value function following the WGF thus

converges exponentially fast to the optimum value of the problem, and this implies an exponential
convergence in relative entropy.

One thus recovers, under the right technical assumptions, a version of Theorem 4 from [53] and
actually a quantitative improvement of it. By Talagrand’s inequality this also implies exponential W2

convergence of µt to µ∞. We note that the result in [12] is established in the setting with τ = 0, β = 1
and ς ≡ 1; however, one can show that the result holds as stated by using standard arguments.

D.4 Conditions for well-posedness of WGF

Most of the technical conditions that will be here presented are directly taken from both [16] and
[22]. We only adapt them slightly to fit into our notation.

Regarding the existence of weak solutions to the WGF presented in equation (4), [16] are able to
guarantee it under the following assumptions (more general assumptions might be sought in [1, 63],
but these are relatively standard in the MF context):
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Assumption 5 (Assumptions for existence and uniqueness of the WGF solutions (taken from [16])).
Consider a setting as described in proposition 12, with R(µ) := L(⟨Φ, µ⟩) + V (µ), with V (µ) =
τ
∫
Z rdµ.

1. Let Z to be the closure of a convex open set within some finite-dimensional euclidean space.

2. Let L : H → R+ be differentiable, with a differential dL that is Lipschitz on bounded sets
and bounded on sublevel sets.

3. Let Φ : Z → H be differentiable and V : Z → R+ be semiconvex (i.e. ∃λ ∈ R : V +λ| · |2
is convex).

4. There exists a family (Qr)r>0 of nested nonempty closed convex subsets of Z such that:

(a) {u ∈ Ω; dist(u,Qr′) ≤ r} ⊂ Qr+r′ for all r, r′ > 0,
(b) Φ and V are bounded, and dΦ is Lipschitz on each Qr

(c) ∃C1, C2 > 0 such that supu∈Qr
(∥dΦ(u)∥ + ∥∂V (u)∥) ≤ C1 + C2r for all r > 0,

where ∥∂V (u)∥ stands for the maximal norm of an element in ∂V (u).

On the other hand, [22] are able to prove (based on Theorem 1.1. from [70]) the existence of strong
solutions with pathwise uniqueness for McKean-Vlasov SDE given by

dZt = b(t, Zt, µt)dt+Σ(t, Zt, µt)dBt

where b and Σ satisfies the conditions of B2 (presented below) and for all t ≥ 0, µt = Law(Zt) ∈
P2(RD), (Bt)t≥0 is an r-dimensional Brownian motion (with r ∈ N∗ potentially different from
D ∈ N∗), and Z0 has the (fixed) law µ0 ∈ P2(RD). For this, consider the following technical
assumptions (B1 and B2) which have been taken directly from [22]:

Assumption 6 (Assumptions for the existence and uniqueness of solutions in [22]). Consider:

B1. There exist a measurable function g : RD ×W → R, M1 ≥ 0 and µ0 ∈ P2(RD) such that
for any N ∈ N, the following hold.

(a) For any w1, w2 ∈ RD and z ∈ W we have

∥g(w1, z)− g(w2, z)∥ ≤ ζ(z)∥w1 − w2∥, and ∥g(w1, z)∥ ≤ ζ(z)

with
∫
W ζ2(z) dπW(z) < +∞

(b) bN ∈ C(R+ × RD × P2(RD),RD) and ΣN ∈ C(R+ × RD × P2(RD),RD×r).
(c) For any w1, w2 ∈ RD and µ1, µ2 ∈ P2(RD)

sup
t≥0

{
∥bN (t, w1, µ1)− bN (t, w2, µ2)∥+ ∥ΣN (t, w1, µ1)− ΣN (t, w2, µ2)∥

}
≤ M1

(
∥w1 − w2∥+

(∫
W

∫
RD

|⟨g(·, z), µ1⟩ − ⟨g(·, z), µ2⟩|2 dπW(z)

)1/2 })
,

sup
t≥0

{∥bN (t, 0, µ0)∥+ ∥ΣN (t, 0, µ0)∥} ≤ M1.

B2. There exist M2 ≥ 0, κ > 0, b ∈ C(R+ × RD × P2(RD),RD) and Σ ∈ C(R+ × RD ×
P2(RD),RD×r) such that

sup
t≥0,w∈RD,µ∈P2(RD)

{∥bN (t, w, µ)−b(t, w, µ)∥+∥ΣN (t, w, µ)−Σ(t, w, µ)∥} ≤ M2N
−κ.

Proposition 15 (Proposition 11 in [22]). Assuming B1 and B2. Given µ0 ∈ P2(RD) as a fixed
initial condition; then, there exists an (Ft)t≥0-adapted process (Zt)t≥0 that is the unique (pathwise)
strong solution of the McKean-Vlasov SDE:

dZt = b(t, Zt, µt)dt+Σ(t, Zt, µt)dBt

Additionally, it satisfies for each T ≥ 0: supt∈[0,T ] E[∥Zt∥2] < ∞
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E Proofs and discussions of main results

E.1 Proofs of Section 3.1

Proof of Proposition 1. By definition of the symmetrization operator, we know that ∀x ∈ X :

(QGΦµ)(x) =

∫
G

ρ̂g−1Φµ(ρgx)dλG(g)

For g ∈ G, since σ∗ is equivariant and Mg is invertible, we can write:

Φµ(ρgx) = ⟨σ∗(ρgx, ·), µ⟩ = ⟨σ∗(ρgx, ·),Mg#(M−1
g #µ)⟩ = ρ̂g⟨σ∗(x, ·),M−1

g #µ⟩
where we’ve used Proposition 7 in the last equality. In turn, we can write (via the inversion-invariance
of λG):

(QGΦµ)(x) =

∫
G

ρ̂g−1 ρ̂g⟨σ∗(x, ·),M−1
g #µ⟩dλG(g) =

∫
G

⟨σ∗(x, ·),Mg−1#µ⟩dλG(g)

=

∫
G

⟨σ∗(x, ·),Mg#µ⟩dλG(g) = ⟨σ∗(x, ·), µG⟩ = ΦµG(x)

As mentioned in Section 3.1, a simple case where we will have ΦµG = Φ
µEG is when σ∗ is linear:

Proposition 16. If σ∗ : X ×Z → Y is jointly equivariant and πX -a.s.∀x ∈ X , [z 7→ σ∗(x; z)] is a
bounded linear operator, then, for any µ ∈ P(Z): ΦµG = ⟨σ∗, µ

G⟩ = ⟨σ∗, µ
EG⟩ = Φ

µEG .

Proof of Proposition 16. A straightforward computation yields (using Fubini’s theorem and the
linearity of integrals and σ∗), ∀µ ∈ P(Z), ∀x ∈ X (πX -a.s.):

⟨σ∗(x, ·), µG⟩ =
∫
G

∫
Z
σ∗(x,Mg.z)dµ(z)dλG(g) =

∫
Z

∫
G

σ∗(x,Mg.z)dλG(g)dµ(z)

=

∫
Z
σ∗(x,

∫
G

Mg.z dλG(g))dµ(z) =

∫
Z
σ∗(x, PEG .z)dµ(z) = ⟨σ∗(x, ·), µEG

⟩

Example. Any usual linear model written in terms of some feature function ϑ : X → Z (where Z
is possibly an Reproducing Kernel Hilbert Space) enters this framework, by defining: σ∗(x, z) =
⟨z, ϑ(x)⟩. This won’t satisfy Assumption 1, since it is not bounded; but it still serves as an illustration.

E.2 Proofs of results in Section 3.2

E.2.1 Proof of Proposition 2

Now consider, as a shorthand notation, ∀x ∈ X , ∀y ∈ Y the functional Lx,y : P(Z) → R given by
∀µ ∈ P(Z): Lx,y(µ) = ℓ

(
Φµ(x), y

)
. The following lemma that shall be useful for later stages.

Lemma 4. Let σ∗ be jointly equivariant and ℓ be invariant. Then, ∀g ∈ G, ∀x ∈ X , ∀y ∈ Y, ∀µ ∈
P(Z),

Lρg.x,ρ̂g.y(Mg#µ) = Lx,y(µ)

Equivalently, the map L : P(Z) → L2(X × Y, π) given by L(µ) 7→ [(x, y) 7→ Lx,y(µ)] is
equivariant (under the appropiate9 G-actions).

Proof of Lemma 4. Using the joint equivariance of σ∗ (via proposition 7) and the invariance of ℓ, a
straightforward computation yields, for all x ∈ X , y ∈ Y , and g ∈ G:

Lρg.x,ρ̂g.y(Mg#µ) = ℓ (⟨σ∗(ρg.x, ·),Mg#µ⟩, ρ̂g.y)
= ℓ (ρ̂g.⟨σ∗(x, ·), µ⟩, ρ̂g.y)
= ℓ (⟨σ∗(x, ·), µ⟩, y) = Lx,y(µ)

9In this case, ∀g ∈ G, let g.µ = Mg#µ and g.f = fg given by ∀x ∈ X , ∀y ∈ Y, fg(x, y) =
f(ρ−1

g .x, ρ̂−1
g .y)
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With this we can prove Proposition 2. Notice that we will basically utilize the equivariance properties
of σ∗ and ℓ in Assumption 1 (the convexity of the functions comes directly from the convexity of R
when ℓ is convex, together with the linearity of (·)G, (·)EG

and
∫
G
(·)dλG.).

Proof of Proposition 2. We can readily see that: REA(µ) = Eπ

[
ℓ
(
Φ

µEG (X), Y
)]

= R(µEG

).

On the other hand, as σ∗ is jointly equivariant, from Proposition 1, we have:

RFA(µ) = Eπ

[
ℓ
(
QG(Φµ)(X), Y

)]
= Eπ

[
ℓ
(
ΦµG(X), Y

)]
= R(µG)

Next, using Lemma 4, Fubini’s theorem and the inversion-invariance of λG, we get:

RDA(µ) = Eπ

[∫
G

ℓ
(
Φµ(ρg.X), ρ̂g.Y

)
dλG(g)

]
= Eπ

[∫
G

Lρg.X,ρ̂g.Y (µ)dλG(g)

]
=

∫
G

Eπ

[
Lρg.X,ρ̂g.Y (µ)

]
dλG(g) =

∫
G

Eπ

[
Lρg.X,ρ̂g.Y (Mg#M−1

g #µ)
]
dλG(g)

=

∫
G

Eπ

[
LX,Y (Mg−1#µ)

]
dλG(g) =

∫
G

Eπ [LX,Y (Mg#µ)] dλG(g)

=

∫
G

R(Mg#µ)dλG(g) = RG(µ)

From these expressions we can quickly verify that RDA, RFA and REA are invariant. Namely, by
Lemma 1, for g ∈ G and µ ∈ P(Z) we have: RFA(Mg#µ) = R((Mg#µ)G) = R(µG) = RFA(µ),
and: REA(Mg#µ) = R((Mg#µ)E

G

) = R(µEG

) = REA(µ). On the other hand, the right-
invariance of λG implies:

RDA(Mg#µ) =

∫
G

R((Mh#(Mg#µ))dλG(h) =

∫
G

R((Mh̃#µ))dλG(h̃) = RDA(µ).

We can also see that whenever R is invariant, we have that, for µ ∈ P(Z) and g ∈ G,R(Mg#µ) =
R(µ), so that: RDA(µ) = RG(µ) =

∫
G
R(Mg#µ)dλG(g) =

∫
G
R(µ)dλG(g) = R(µ).

Also, if µ ∈ PG(Z), we have, for all g ∈ G, µ = µG = Mg#µ, so that: RDA(µ) =∫
G
R(Mg#µ)dλG(g) =

∫
G
R(µ)dλG(g) = R(µ) = R(µG) = RFA(µ).

Finally, we verify that our population risk R : P(Z) → R is invariant whenever π ∈ PG(X × Y).
Indeed, ∀g ∈ G and ∀µ ∈ P(Z), by the invariance of ℓ and π, together with Proposition 7 from the
equivariance of σ∗, we get:

R(Mg#µ) = Eπ [ℓ(⟨σ∗(X; ·),Mg#µ⟩, Y )] = Eπ

[
ℓ(ρ̂g⟨σ∗(ρ

−1
g X; ·), µ⟩, ρ̂gρ̂−1

g Y )
]

= Eπ

[
ℓ(⟨σ∗(ρ

−1
g X; ·), µ⟩, ρ̂−1

g Y )
]
= Eπ [ℓ(⟨σ∗(X; ·), µ⟩, Y )] = R(µ)

That is, R is invariant.

Notice that the equivariance of the data distribution π can also make the regularized population risk
be invariant, under the right choice of r. Namely:

Corollary 6. If R : P(Z) → R and r : Z → R are invariant (in their respective sense), then Rτ,β

is invariant.

The result can be proven for Rτ,β
ν with ν some G-invariant measure (such as λ for orthogonal

representations). Notice that r(θ) = ∥θ∥2 is an example of invariant function for orthogonal
representations.

Proof of Corollary 6. It is enough to notice that V (µ) =
∫
Z r(θ)dµ(θ) and Hν(µ) =

∫
Z log(dµdν )dµ

(with µ ≪ ν) are invariant when r : Z → R and ν ∈ P(Z) are invariant (in their respective sense):
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1. For V , notice that for g ∈ G:

V (Mg#µ) =

∫
Z
r(θ)d(Mg#µ)(θ) =

∫
Z
r(Mgθ)dµ(θ) =

∫
r(θ)dµ(θ) = V (µ)

thanks to the invariance of r. i.e. V is invariant.

2. For Hν , notice that, for g ∈ G, as ν is invariant, we know that d(Mg#µ)
dν (x) = dµ

dν (M
−1
g x).

Therefore:

Hν(Mg#µ) =

∫
log

(
d(Mg#µ)

dν
(θ)

)
d(Mg#µ)(θ)

=

∫
log

(
dµ

dν
(M−1

g θ)

)
d(Mg#µ)(θ)

=

∫
log

(
dµ

dν
(M−1

g Mgθ)

)
dµ(θ) = Hν(µ)

Which proves that Hν is invariant.

We can readily conclude, since: Rτ,β(µ) = R(µ) + τ
∫
rdµ+ βHλ(µ), for all µ ∈ P(Z).

E.2.2 Proof of Proposition 3

In order to prove Proposition 3, we require a version of Jensen’s inequality that’s suited for our
context. Such a result might exist in the literature, but since we couldn’t find a complete proof under
our assumptions, we provide our own.
Proposition 17 (Jensen’s Inequality). Let F : P(Z) −→ R be such that Lemma 3 holds. Let S
be some measurable space, λ ∈ P(S) and s ∈ S 7→ µs ∈ P(Z) a measurable function. Define
µ̃ ∈ P(Z) as the intensity measure: µ̃ =

∫
S
µs dλ(s) ∈ P(Z). Then, Jensen’s inequality holds:

F (µ̃) ≤
∫
S

F (µs)dλ(s)

Proof of Proposition 17. Since Lemma 3 holds, we have that ∀µ1, µ2 ∈ P(Z):

F (µ1) ≥ F (µ2) +

∫
∂F

∂µ
(µ2, z)d(µ1 − µ2)(z)

Let s̃ ∈ S be arbitrary and consider µ2 = µ̃ :=
∫
µsdλ(s); and µ1 = µs̃. Then:

F (

(∫
µsdλ(s)

)
≤ F (µs̃)−

∫
∂F

∂µ

(∫
µsdλ(s), z

)
d

(
µs̃ −

∫
µsdλ(s)

)
(z)

Integrating the inequality with respect to λ (on s̃):∫
S

F

(∫
µsdλ(s)

)
dλ(s̃)

≤ △ :=

[∫
S

F (µs̃)dλ(s̃)−
∫
S

(∫
Z

∂F

∂µ

(∫
S

µsdλ(s), ·
)
d

(
µs̃ −

∫
S

µsdλ(s)

))
dλ(s̃)

]
We notice that the LHS doesn’t depend on s̃, so that

∫
S
F
(∫

µsdλ(s)
)
dλ(s̃) = F

(∫
µsdλ(s)

)
. On

the other hand, the right-most term in △ can be developed as:

⋆ :=

∫
S

(∫
Z

∂F

∂µ

(∫
S

µsdλ(s), ·
)
d

(
µs̃ −

∫
S

µsdλ(s)

))
dλ(s̃)

=

∫
S

(∫
Z

∂F

∂µ

(∫
S

µsdλ(s), ·
)
dµs̃ −

∫
Z

∂F

∂µ

(∫
S

µsdλ(s), ·
)
d

(∫
S

µsdλ(s)

))
dλ(s̃)

=

∫
S

(∫
Z

∂F

∂µ

(∫
µsdλ(s), ·

)
d(µs̃)

)
dλ(s̃)

−
∫
S

(∫
Z

∂F

∂µ

(∫
S

µsdλ(s), ·
)
d

(∫
S

µsdλ(s)

))
dλ(s̃)
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Notice that the linear functional derivative is chosen in such a way so that it satisfies ∀ν ∈
P(Z),

∫
Z

∂F
∂µ (ν, z)dν(z) = 0. In particular, the second term of the previous expression vanishes.

We get that

⋆ =

∫
S

(∫
Z

∂F

∂µ

(∫
S

µsdλ(s), z

)
dµs̃(z)

)
dλ(s̃)

But, by definition: ∀f : Z → R integrable,

⟨f,
∫
S

µsdλ(s)⟩ =
∫
S

⟨f, µs⟩dλ(s) =
∫
S

(∫
Z
f(z)dµs(z)

)
dλ(s)

So this is, by definition, and applying the same convention on the definition of the linear functional
derivative10:

⋆ =

∫
Z

∂F

∂µ

(∫
µs, z

)
d

(∫
µs̃dλ(s̃)

)
(z) = 0

With this, we conclude that △ =
∫
S
F (µs)dλ(s), and so, we get that:

F (µ̃) = F

(∫
S

µsdλ(s)

)
≤
∫
S

F (µs)dλ(s)

which corresponds to Jensen’s inequality.

Remark. We believe that the C1 hypothesis can be lifted. Understanding what happens when equality
holds should be of interest both in our context and in more general scenarios.

Thanks to this Jensen inequality, we readily get the following result:

Corollary 7. If F : P(Z) −→ R is convex, C1 and invariant, then ∀µ ∈ P(Z): F (µG) ≤ F (µ)

Proof. Direct from the definition of (·)G and Proposition 17.

With these results in place, we are ready to prove Proposition 3:

Proof of Proposition 3. Evidently, since PG(Z) ⊆ P(Z), we have:

inf
µ∈PG(Z)

F (µ) ≥ inf
µ∈P(Z)

F (µ)

For the other inequality, take (µn)n∈N ⊆ P(Z) to be an infimizing sequence for F ; i.e. such
that F (µn) ≥ F (µn+1) and F (µn) −−−−→

n→∞
infµ∈P(Z) F (µ)). Such a sequence always exists. By

Corollary 7, we have ∀n ∈ N, F (µG
n ) ≤ F (µn); thus, ∀n ∈ N:

inf
µ∈PG(Z)

F (µ) ≤ F (µG
n ) ≤ F (µn)

Which allows us to infer, by taking n → ∞, that: infµ∈PG(Z) F (µ) ≤ infµ∈P (Z) F (µ). In turn, we
can conclude that:

inf
µ∈PG(Z)

F (µ) = inf
µ∈P(Z)

F (µ)

Notice that if there was some minimizer µ∗ ∈ argminµ∈P(Z) F (µ), then by Corollary 7 we would
also have µG

∗ ∈ argminµ∈P(Z) R(µ). Namely, if such a minimizer was unique, then it would satisfy:
µ∗ = µG

∗ ∈ PG(Z). That is, the unique solution would be WI.

10Notice that the convention on the linear functional derivative’s definition isn’t truly important for the proof,
since in the end ⋆ simply corresponds to the term

∫
Z

∂F
∂µ

(∫
µs, z

)
d
(∫

µs̃dλ(s̃)
)
(z) being substracted to itself.
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E.2.3 Proof of Theorem 2 and Corollary 1

Notice that, under Assumption 1, from Corollary 5 we know R is of class C1 (as well as convex).
This properties actually transfers to the functionals RDA, RFA and REA, as shown by the following
result:
Proposition 18. If R : P(Z) → R is a convex and C1 functional, then RDA, RFA and REA are
convex and C1 as well, with linear functional derivatives given by:

∂RDA

∂µ
(µ, z) =

∫
G

∂R

∂µ
(Mg#µ,Mg.z)dλG(g),

∂RFA

∂µ
(µ, z) =

∫
G

∂R

∂µ
(µG,Mg.z)dλG(g)

and
∂REA

∂µ
(µ, z) =

∂R

∂µ
(µEG

, PEG .z)

And intrinsic derivatives given by (when well defined):

DµR
DA(µ, z) =

∫
G

MT
g .DµR(Mg#µ,Mg.z)dλG(g)

DµR
FA(µ, z) =

∫
G

MT
g .DµR(µG,Mg.z)dλG(g) and DµR

EA(µ, z) = PT
EG .DµR(µEG

, PEG .z)

In particular, from Proposition 17, we have that: ∀µ ∈ P(Z), RFA(µ) ≤ RDA(µ)

Proof of Proposition 18. We can calculate the linear functional derivatives (l.d.f. for short) as follows.
Let µ, ν ∈ P(Z), and consider:

lim
h→0

RDA((1− h)µ+ hν)−RDA(µ)

h

= lim
h→0

∫
G
R(Mg#((1− h)µ+ hν))dλG(g)−

∫
G
R(Mg#µ)dλG(g)

h

= lim
h→0

∫
G

R((1− h)Mg#µ+ hMg#ν)−R(Mg#µ)

h
dλG(g)

=

∫
G

lim
h→0

R((1− h)Mg#µ+ hMg#ν)−R(Mg#µ)

h
dλG(g)

=

∫
G

∫
Z

∂R

∂µ
(Mg#µ, z)d(Mg#ν −Mg#µ)(z)dλG(g)

=

∫
G

∫
Z

∂R

∂µ
(Mg#µ,Mg.z)d(ν − µ)(z)dλG(g)

=

∫
Z

∫
G

∂R

∂µ
(Mg#µ,Mg.z)dλG(g)d(ν − µ)(z).

We have used Fubini’s theorem, which is applicable11 thanks to the fact that R is of class C1, and
we’ve used the definition of the linear functional derivative for R. Also, we see that (using Fubini’s
theorem once again, as well as the definition of the linear functional derivative of R):∫

Z

∫
G

∂R

∂µ
(Mg#µ,Mg.z)dλG(g)dµ(z) =

∫
G

∫
Z

∂R

∂µ
(Mg#µ, z)d(Mg#µ)(z)dλG(g) = 0.

We can then identify:

∂RDA

∂µ
(µ, z) =

∫
G

∂R

∂µ
(Mg#µ,Mg.z)dλG(g),

and, by taking the gradient:

DµR
DA(µ, z) =

∫
G

MT
g .DµR(Mg#µ,Mg.z)dλG(g).

11In particular, as for any fixed µ ∈ P(Z) the function g ∈ G 7→ Mg#µ is continuous (thus, of compact
image), then the function (g, z) ∈ G×Z 7→ ∂R

∂µ
(Mg#µ,Mg.z) is bounded
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We analogously calculate the expression for the l.f.d. of RFA; let µ, ν ∈ P(Z):

lim
h→0

RFA((1− h)µ+ hν)−RFA(µ)

h
= lim

h→0

R((1− h)µG + hνG)−R(µG)

h

=

∫
Z

∂R

∂µ
(µG, z)d(νG − µG)(z)

=

∫
Z

∫
G

∂R

∂µ
(µG,Mg.z)dλG(g)d(ν − µ)(z),

and also: ∫
Z

∫
G

∂R

∂µ
(µG,Mg.z)dλG(g)dµ(z) =

∫
G

∫
Z

∂R

∂µ
(µG, z)d(Mg#µ)(z)dλG(g)

=

∫
Z

∂R

∂µ
(µG, z)dµG(z) = 0.

So, by the definition of the lineal functional derivative, we identify:

∂RFA

∂µ
(µ, z) =

∫
G

∂R

∂µ
(µG,Mg.z)dλG(g),

and taking the gradient we get:

DµR
FA(µ, z) =

∫
G

MT
g .DµR(µG,Mg.z)dλG(g)

Lastly, the l.f.d. of REA is calculated similarly, noticing that:

lim
h→0

REA((1− h)µ+ hν)−REA(µ)

h
= lim

h→0

R(PEG#((1− h)µ+ hν))−R(PEGµ)

h

=

∫
Z

∂R

∂µ
(µEG

, z)d(PEG#ν − PEG#µ)(z)

=

∫
Z

∂R

∂µ
(µEG

, PEGz)d(ν − µ)(z),

and that: ∫
Z

∂R

∂µ
(µEG

, PEG .z)dµ(z) =

∫
Z

∂R

∂µ
(µEG

, z)d(µPEG )(z) = 0.

We can thus identify:

∂REA

∂µ
(µ, z) =

∂R

∂µ
(µEG

, PEG .z) and DµR
EA(µ, z) = PT

EG .DµR(µEG

, PEG .z)

The last remark is direct from proposition 17.

With all of these different elements in place, we are ready to prove Theorem 2.

Proof of Theorem 2. Under Assumption 1, R is convex and of class C1 from Corollary 5; and so
are RG, RFA and REA, from Proposition 18. Since Proposition 2 ensures that the latter are always
invariant, Proposition 3 implies that RDA, RFA and REA can all be optimized by only considering
weakly equivariant models (explaining the first and last equalities). The two middle equalities
follow directly from Proposition 2, since R, RDA and RFA coincide over PG(Z).

In the case of the quadratic loss, one can employ the properties of QG from [27] to show Corollary 1.

Proof of Corollary 1. Notice that, for µ ∈ PG(Z), Φµ is a G-invariant function (i.e. Φµ ∈
L2
G(X ,Y;πX )). Also, a simple calculation (see e.g. [5, 51]) allows us to write: R(µ) =

Eπ[∥Φµ(X) − Y ∥2Y ] = R∗ + EπX [∥Φµ(X) − f∗(X)∥2Y ] = R∗ + ∥Φµ − f∗∥2L2(X ,Y;πX ) with
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R∗ = Eπ[∥Y − f∗(X)∥2Y ] being independent of µ. We can thus write (simplifying subscripts for
simplicity):

R(µ) = R∗ + ∥Φµ −QG.f∗ +QG.f∗ − f∗∥2L2(X ,Y;πX )

= R∗ + ∥Φµ −QG.f∗∥2L2 + ∥(f∗)⊥G∥2L2 − 2⟨Φµ −QG.f∗, (f∗)
⊥
G⟩L2

where (f∗)
⊥
G := f∗ − QG.f∗. We notice that, since Φµ and QG.f∗ are G-equivariant functions,

we have that ⟨(Φµ − QG.f∗), (f∗)
⊥
G⟩L2 = 0. That is, for any µ ∈ PG(Z), we have R(µ) =

R̃∗ + ∥Φµ −QG.f∗∥2L2 , where R̃∗ := R∗ + ∥(f∗)⊥G∥2L2(X ,Y;πX ) is independent of µ (and doesn’t
intervene in the optimization). Finally, we get:

inf
µ∈PG(Z)

R(µ) = R̃∗ + inf
µ∈PG(Z)

∥Φµ −QG.f∗∥2L2(X ,Y;πX )

E.2.4 Proof of Corollary 2

When π is assumed to be equivariant, we can summon our previous results to prove Corollary 2.

Proof of Corollary 2. From Proposition 2 we know that equivariant data implies R : P(Z) → R is
invariant, and also that this makes R = RDA. We conclude using Theorem 2.

We can readily extend this to the regularized case by recalling Corollary 6:
Corollary 8. When R : P(Z) → R and r : Z → R are G-invariant, a minimum for the regularized
population risk Rτ,β can be found within PG(Z). When β > 0 such WI minimum is unique.

Proof of Corollary 8. Direct from Corollary 6, together with Proposition 3 (as in Corollary 2). The
uniqueness comes from the strict convexity of the entropy term (see proposition 14).

E.2.5 Proof of Proposition 4 and Proposition 5

Proof of Proposition 4. Consider the group G = C4 acting on R2 via 90◦ rotations. Let K =
B(0, 1) ⊆ R2 be a compact set. Consider a random variable X ∼ N (0, Id2)|K (i.e. given by
X = Z1Z∈K for Z ∼ N (0, Id2)) and set Y = ∥X∥2. Notice that π defined this way is compactly
supported.

Clearly G is finite (thus compact) and it can be seen as its ortogonal representation:

ρG =

{(
1 0
0 1

)
,

(
0 −1
1 0

)
,

(
−1 0
0 −1

)
,

(
0 1
−1 0

)}
⊆ O(2) , ρ̂G = {Id1} ⊆ O(1) (trivial repr.)

By the definition of our r.v.s, it is clear that:

• X
(d)
= ρgX ∀g ∈ G because X ∼ N(0, Id2)

• ∀g ∈ G, (X,Y )
(d)
= (ρgX, ρ̂gY ) (since ρ̂ is the trivial representation, it is enough to notice

that ∥ρg.X∥2 = ∥X∥2 for all g ∈ G.

Therefore, π = Law(X,Y ) is G-invariant (and compactly supported). Consider a shallow NN
given by: ΦN

θ : R2 −→ RN×b −→ R (with b ∈ N and some action G

⟳

η Rb) as: ΦN
θ (x) =

1
N

∑N
i=1 Wiσ(A

T
i x+Bi), ∀x ∈ Rd; where θi = (Wi, Ai, Bi) ∈ Z := R1×b ×R2×b ×Rb ∼= RD.

We let G

⟳

M Z as described in appendix C.1:

Mg.θi = (ρ̂gWi η
T
g , ρg Ai η

T
g , ηg.Bi) = (Wi η

T
g , ρg Ai η

T
g , ηg.Bi)

We can assume, for instance, that b = 1 and η is the trivial representation (so that no condition is
required for σ∗ to be jointly G-equivariant) and recall that: θi ∈ EG ⇐⇒ ∀g ∈ G, Mgθi = θi.
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However, if we assume that: ∀g ∈ G, ρgAi = Ai, then, in particular:
(
−1 0
0 −1

)(
A1

i

A2
i

)
=

(
A1

i

A2
i

)
.

This in turn implies, as A1
i = −A1

i and A2
i = −A2

i that A1
i = A2

i = 0. i.e. Ai ≡ 0. Thus, any

θi =

(
wi

Ai

)
∈ EG has Ai = 0. Therefore, if we choose any activation σ (e.g the sigmoid activation

or σ = tanh, both C∞ and bounded) and we choose N ∈ N∗ and θi ∈ EG ∀ i = 1, ..., N ; then:

∀x ∈ R2, ΦN,EG

θ (x) =
1

N

N∑
1=1

Wiσ(0
T · x+Bi) =

1

N

N∑
i=1

Wiσ(Bi),

which is a constant independent of x. i.e. any equivariant architecture in this context is a
constant function (whereas Y = ∥X∥2 is not). Notice, in particular, that any shallow model Φν with
ν ∈ P(EG) will also be a constant function. In particular, notice that we will never do ‘better’ than
minimizing over all posible constants:

inf
θi∈EG

i=1...N
N∈N

R(ΦEG

θ ) ≥ inf
ν∈P(EG)

R(ν) ≥ inf
C∈R

E[|Y − C|2] = inf
C∈R

E[|∥X∥2 − C|2].

The problem on the right has a known answer, which is C∗ = Eπ[∥X∥2] > 0. On the other hand,
consider a fully conected neuronal network. By the universal approximation theorem (which
applies for the chosen σ, as in [37, 20, 5]), as π is compactly supported (in particular, πX (K) = 1);
we consider the parameters that approximate the function f(x) = ∥x∥2 in K = B(0, 1) to precision
ε > 0. i.e. For ε ∈ (0,

√
C∗), we know: =⇒ ∃N ∈ N, ∃a1, ..., aN ∈ R2, ∃w1, ..., wN ∈ R1 such

that:
∥ΦN

θ − f∥∞,K = sup
x∈K

|ΦN
θ (x)− f(x)| < ε <

√
C∗

Then:
E[|Y − ΦN

θ (x)|2] ≤ E[(sup
x∈K

|ΦN
θ (x)− f(x)|)2] < E[C∗] = C∗

But, in particular, ∃νNθ ∈ P(Z) such that:

E[|Y − ΦN
θ (x)|2] < C∗

and so:
inf

µ∈P(Z)
R(µ) ≤ inf

θ∈ZN
E[|Y − ΦN

θ (x)|2] < C∗ ≤ inf
ν∈P(EG)

R(ν)

In particular, we can’t expect an optimum of the learning problem to be achieved within P(EG).

To overcome situations as in Proposition 4, the usual setting is to assume some universality condition.
This leads to Proposition 5, which we will now prove:

Proof of Proposition 5. A standard calculation from the quadratic loss case (see the proof of Corol-
lary 1 for details) yields that, for any µ ∈ P(Z):

R(µ) = Eπ[∥Y − Φµ(X)∥2Y ] = R∗ + Eπ[∥f∗(X)− Φµ(X)∥2Y ]

where f∗(x) := Eπ[Y |X = x] and R∗ is the Bayes risk of the problem. From Proposition 10, we
know that f∗ ∈ L2

G(X ,Y;πX ), and so by universality of Fσ∗(P(EG)) onto that space (as well as
that of Fσ∗(P(Z))), we conclude directly that: infν∈P(EG) R(ν) = R∗ = infµ∈P(Z) R(µ).

Remark. Works such as [50, 60, 76, 77] precisely provide conditions under which universality of
Fσ∗(P(EG)) can be guaranteed (modulo some adaptations from their setting to ours).

Particularly, our single-hidden-layer NNs, with the width N → ∞, correspond to what is referred to
as ‘networks of tensor order 1’ in the literature. As noted in [50], such kind of equivariant NNs are
unable to achieve universality for certain types of group actions (see Theorem 2 from [50]). Despite
this, ‘first order universality’ has already been established for some of the most important examples
of equivariant architectures, such as Deep Sets ([76, 77]) and CNNs ([76]).

Adapting our setting, in order to eventually allow for arbitrary order tensors in the MF formulation,
is part of the future challenges to make our work more broadly applicable.
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E.3 Proofs of results in Section 3.3

Having laid out all the different relevant elements for our work, we can now procede with the proofs
of some of our main results.

E.3.1 Proof of Theorem 3, Corollary 3 and Theorem 4

We start by proving Theorem 3 on the general case.

Proof of Theorem 3. We know that a family (µt)t≥0 ⊆ P2(Z) satisfies WGF(F ) in the weak sense
if ∀φ ∈ C∞

c (Z × (0, T )):∫ T

0

∫
Z
(∂tφ(z, t)− ⟨ς(t)DµF (µt, z),∇zφ(z, t)⟩) dµt(z) dt = 0

Now, profiting from the uniqueness of the solutions of this equation, it will be enough to show that,
given a solution (µt)t≥0 ⊆ P2(Z) of WGF(F ), then (µG

t )t≥0 ⊆ PG
2 (Z) is also a solution. Indeed,

consider, for g ∈ G, µ̃t = Mg#µt, and notice that for φ ∈ C∞
c (Z × (0, T )):∫ T

0

∫
Z
(∂tφ(z, t)− ⟨ς(t)DµF (µ̃t, z),∇zφ(z, t)⟩)dµ̃t(z) dt

=

∫ T

0

∫
Z
(∂tφ(Mg.z, t)− ⟨ς(t)DµF (Mg#µt,Mg.z),∇zφ(Mg.z, t)⟩) dµt(z) dt =: ⋆

Now, we can define φg ∈ C∞
c (Z × (0, T )) given by ∀(z, t) ∈ Z × (0, T ) φg(z, t) = φ(Mg.z, t),

which satisfies:

∂tφ
g(z, t) = ∂tφ(Mg.z, t) and ∇zφ

g(z, t) = MT
g ∇zφ(Mg.z, t)

So that, by also using proposition 13 and the orthogonality of the group action, we get:

⋆ =

∫ T

0

∫
Z
(∂tφ

g(z, t)− ⟨Mg.ς(t)DµF (µt, z),Mg∇zφ
g(z, t)⟩) dµt(z) dt

=

∫ T

0

∫
Z
(∂tφ

g(z, t)− ⟨ς(t)DµF (µt, z),∇zφ
g(z, t)⟩) dµt(z) dt = 0

Where the last equality comes from the fact that (µt)t≥0 is a solution to the WGF.

In particular, as we also have that µ̃0 = Mg#µ0 = µ0 (because µ0 ∈ PG(Z)), by uniqueness we
can conclude that this means that ∀g ∈ G,∀t ∈ (0, T ) λ-a.e., µt = Mg#µt.

This may seem weaker that what we want to prove. Nevertheless, as our group is compact and has
a unique normalized Haar measure, we can proceed as follows: let f : [0, T ] × Z → R+ be any
positive and measurable function. Given g ∈ G, take Ωg ⊆ [0, T ] a full measure set where it holds
that µt = Mg#µt. In particular, ft = f(t, ·) : Z → R is positive and measurable, so that:

∀t ∈ Ωg, ⟨ft, µt⟩ = ⟨ft,Mg#µt⟩ = ⟨ft ◦Mg, µt⟩

and we can integrate this equality to get:
∫ T

0
⟨ft, µt⟩dt =

∫ T

0
⟨ft ◦Mg, µt⟩dt Now, by integrating

both sides with respect to the Haar measure, and applying Fubini’s theorem (because everything is
positive) we get:∫ T

0

⟨ft, µt⟩dt =
∫
G

∫ T

0

⟨ft, µt⟩dtdλG(g) =

∫
G

∫ T

0

⟨ft ◦Mg, µt⟩dtdλG(g) =

∫ T

0

⟨ft, µG
t ⟩dt

Implying (by a standard argument) that ∀t ∈ [0, T ] a.e. µt = µG
t , and therefore: ∀t ∈ [0, T ] a.e.

µt ∈ PG(Z).

Proof of Corollary 3. From Corollary 2, Corollary 6 and Corollary 8, we know that Rτ,β is invariant.

On the other hand, from [38] (or [70]) we know that, under our assumptions, a unique weak solution
to the Fokker-Planck equation exists. Furthermore, this solution is known to be strong if β > 0.
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In particular, theorem 3 applies and allows us to conclude that if µ0 ∈ PG
2 (Z), then ∀t ≥ 0 (a.e.)

µt ∈ PG
2 (Z).

When β > 0, since solutions are strong, we conclude that the densities (ut)t≥0 are all G-invariant
functions (λ-a.e.). This follows from the remark about densities of invariant measures provided in
SuppMat-B.2.

Remark. When β > 0, we have a unique weakly-invariant minimizer (from proposition 3 and/or
corollary 8); and also, under mild assumptions, a global convergence result. That is, independently
of the network’s initialization, we will converge to the G-invariant solution. An interesting question
in this setting is then: At which point does the WGF enter the space PG

2 (Z)?

We can also prove Theorem 4:

Proof of Theorem 4. This proof follows from the fact that ∀z ∈ Z , ∀µ ∈ PG(Z):

DµR
DA(µ, z) = DµR

FA(µ, z).

Indeed, notice that, from proposition 18:

DµR
FA(µ, z) =

∫
G

MT
g .DµR(µG,Mg.z)dλG(g) =

∫
G

MT
g .DµR(µ,Mg.z)dλG(g),

while also:

DµR
DA(µ, z) =

∫
G

MT
g .DµR(Mg#µ,Mg.z)dλG(g) =

∫
G

MT
g .DµR(µ,Mg.z)dλG(g)

Now, let (µFA
t )t≥0 and (µDA

t )t≥0 be the WGF solutions starting from µ0 for RFA and RDA

respectively. As RFA is G-invariant, by corollary 3, (a.e.)∀t ≥ 0, µFA
t ∈ PG(Z). Now, let’s

see that this process actually also satisfies WGF(RDA), forcing both processes to coincide by
uniqueness.

Indeed, we know that (µFA
t )t≥0 satisfies: ∀φ ∈ C∞

c (Z × (0, T )):∫ T

0

∫
Z

(
∂tφ(z, t)− ⟨ς(t)DµR

FA(µFA
t , z),∇zφ(z, t)⟩

)
dµFA

t (z) dt = 0

Now, as (a.e.)∀t ≥ 0, µFA
t ∈ PG(Z), we have ∀z ∈ Z: DµR

FA(µFA
t , z) = DµR

DA(µFA
t , z). In

particular, (µFA
t )t≥0 satisfies ∀φ ∈ C∞

c (Z × (0, T )):∫ T

0

∫
Z

(
∂tφ(z, t)− ⟨ς(t)DµR

DA(µFA
t , z),∇zφ(z, t)⟩

)
dµFA

t (z) dt = 0

Implying that (µFA
t )t≥0 solves WGF(RDA) starting from µ0; thus by uniqueness: (µFA

t )t≥0 =
(µDA

t )t≥0.

The last part of the theorem comes from Proposition 2, since if R is invariant, its WGF will exactly
coincide with that of RDA (they are the same functional).

Remark. This results tells us the ultimate bottom line: at the MF level, training with DA or FA results
in the exact same dynamic. Furthermore, whenever data is equivariant, they are both essentially
equivalent to applying no technique whatsoever. Despite this result concerning infinitely wide NNs,
it provides meaningful practical insights (as shown Appendix F) for large enough NNs, that could be
used in applications.

Remark. Since RDA, RFA and R all coincide on PG(Z), one could expect Theorem 4 to hold for
R even without assuming π to be equivariant. However, the invariance of R is crucial for such a
result: if R isn’t invariant, nothing guarantees that its WGF process will stay within PG(Z), whereas
WGF(RDA) and WGF(RFA) always do so.
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E.3.2 Proof of Theorem 5 and Theorem 6

We can now provide the proof for the stronger result, Theorem 5, stating that the WGF of an invariant
functional will respect EG all along training. This proof uses the McKean-Vlasov non-linear SDE
(Equation (11)) presented in Appendix D.2 (see [22] for a reference). Namely, we will consider the
following projected McKean-Vlasov SDE (with (Bt)t≥0 a BM on Z), given by:

dZt = ς(t)[− (DµR(µt, ·) + τ∇θr(Zt)) dt+
√

2βPEGdBt] with Law(Zt) = µt, (12)

which corresponds to the MF limit dynamics arising from performing the projected noisy SGD
scheme from Equation (5). This can be shown by adapting relatively standard arguments from the
MF literature on NN, see e.g. [22, 23, 53].

Proof of Theorem 5. The proof has two steps. The first will consist in showing that the process (12)
satisfies ∀t ≥ 0, µt ∈ P(EG). In the second step we will check that (µt)t≥0 = (Law(Zt))t≥0 is a
solution to the WGF (Rτ,β

EG ) presented in Section 3.3.

Step 1: The (pathwise unique) solution of the projected McKean-Vlasov SDE (12), Z = (Zt)t≥0

satisfies a.s. for all t ≥ 0:

Zt = Z0 −
∫ t

0

ς(s)DµR
τ (µs, Zs)ds+

√
2β

∫ t

0

ς(s)PEGdBs, and Z0 = ξ0 (initial condition)

(13)
Here, ξ0 is such that Law(ξ0) = µ0, and Rτ := R+⟨r, ·⟩ is being used as shorthand notation. We first
let g ∈ G be an arbitrary group element, and we study how the process Z̃ = (Z̃t)t≥0 := (MgZt)t≥0

satisfies this same equation (13).

Denote νs := Mg#µs as the law of Z̃s, we want to show that for all t ≥ 0:

Z̃t
a.s.
= Z̃0 −

∫ t

0

ς(s)DµR
τ (νs, Z̃s)ds+

√
2β

∫ t

0

ς(s)PEGdBs (14)

Indeed, first notice that:

1. Let Ω be the full measure set where ξ0 ∈ EG (which we can do since µ0 ∈ P(EG), or,
equivalently: P(ξ0 ∈ EG) = 1). Then, ∀ω ∈ Ω, Z0(ω) = ξ0(ω) ∈ EG. In particular,
∀ω ∈ Ω, ∀g ∈ G, Z̃0(ω) = MgZ0(ω) = Mgξ0(ω) = ξ0(ω) = Z0(ω). That is, Z̃0

a.s.
= Z0.

2. Now, the equation is satisfied by (Zt)t≥0 and therefore, for t ≥ 0 , we have:

Z̃t = MgZt = MgZ0 −Mg

(∫ t

0

ς(s)DµR
τ (µs, Zs)ds

)
+
√

2βMg

∫ t

0

ς(s)PEGdBs

= Z̃0 −
∫ t

0

ς(s)MgDµR
τ (µs, Zs))ds+

√
2β

∫ t

0

ς(s)Mg.PEGdBs

= Z̃0 −
∫ t

0

ς(s)DµR
τ (Mg#µs,Mg.Zs)ds+

√
2β

∫ t

0

ς(s)PEGdBs

= Z̃0 −
∫ t

0

ς(s)DµR
τ (νs, Z̃s)ds+

√
2β

∫ t

0

ς(s)PEGdBs

Here, we used the linearity of the integral (and the stochastic integral), the fact that ∀g ∈
G, MgPEG = PEG , and Proposition 13, which holds for ∀θ ∈ Z,∀µ ∈ P(Z) (in particular
for θ = Zs(ω), ∀ω ∈ Ω and µs = Law(Zs)). Thus, ∀g ∈ G, (14) holds.

By the pathwise uniqueness of the solution (Zt)t≥0, we have (following, for instance, [28]):

P
(
sup
t≥0

∥Zt − Z̃t∥ = 0

)
= 1

In particular, as g ∈ G was arbitrary, we have that:

∀g ∈ G, sup
t≥0

∥Zt −MgZt∥
a.s.
= 0 (15)
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We now want to be able to interchange the ∀g ∈ G with the probability measure. Fortunately, we
are dealing with a compact group with a normalized Haar measure λG. Indeed, from equation (15)
we deduce that ∀g ∈ G, ∀t ≥ 0, P(∥Zt −MgZt∥ = 0) = 1.

Now, notice that, for any t ≥ 0 and ω ∈ Ω:

∥Zt(ω)− PEGZt(ω)∥ =

∥∥∥∥Zt(ω)−
∫
G

Mg.Zt(ω)dλG(g)

∥∥∥∥ ≤
∫
G

∥Zt(ω)−Mg.Zt(ω)∥ dλG(g)

We can integrate both sides by P to get (using Fubini as functions are positive and measurable):

0 ≤
∫
Ω

∥Zt(ω)− PEGZt(ω)∥dP(ω) ≤
∫
Ω

∫
G

∥Zt(ω)−Mg.Zt(ω)∥ dλG(g)dP(ω)

≤
∫
G

∫
Ω

∥Zt(ω)−Mg.Zt(ω)∥ dP(ω)dλG(g) = 0

where in the last step we have used the fact that ∀g ∈ G, ∀t ≥ 0, P(∥Zt −MgZt∥ = 0) = 1, so
that ∀t ≥ 0, ∀g ∈ G,

∫
Ω
∥Zt(ω)−Mg.Zt(ω)∥ dP(ω) = 0.

This implies that ∀t ≥ 0 P-a.s. Zt = PEGZt, i.e. P(Zt ∈ EG) = µt(EG) = 1, or, in other words,
∀t ≥ 0, µt ∈ P(EG) as required. Note that all arguments work as well in the case that β = 0

Step 2: We now prove that (µt)t≥0, studied in the previous step, is a weak solution to equation (3);
that is, to the WGF(F ), with (using the previously introduced notation Rτ ):

F (µ) = Rτ,β
EG (µ) = Rτ (µ) + βHλEG

(µEG

).

Also recall the notation HEG

(µ) := HλEG
(µEG

) = HλEG
◦ PEG#(µ) presented in the end of

Appendix D.1, as well as the calculations for its intrinsic derivative.

It is standard to check, applying Itô’s formula and taking expectation, that the family (µt)t≥0 =
(Law(Zt))t≥0 satisfies, ∀φ ∈ C∞

c (Z × (0, T )):∫ T

0

∫
Z

(
∂tφ(z, t)− ⟨ς(t)DµR

τ (µt, z),∇zφ(z, t)⟩+ β tr[PEGD2
zφ(z, t)]

)
dµt(z) dt = 0

with tr denoting the trace of a square matrix and D2
z the Hessian matrix acting on the z variable.

Notice that the process PEGB is classically a Brownian motion in EG. Together with the fact that µt

is supported on EG, this implies that, for β > 0, µt has a density w.r.t. λEG .

It is clear from the case β = 0 that the terms involving first order spatial derivatives of φ exactly give
rise to the terms associated with functional Rτ in the definition (3) of the WGF(Rτ,β

EG ). Therefore,
we just need to check that for all t ≥ 0, the distribution defined for every ϕ ∈ C∞

c (Z) by ϕ 7→∫
Z tr[PEGD2

zϕ(z)]dµt(z) and the distribution div
(
DµH

EG

(µt, ·)µt

)
are equal. In fact, for all such

ϕ we have:

−
∫
Z
⟨∇zϕ(z), DµH

EG

(µt, z)⟩ dµt(z)

= −
∫
Z
⟨∇zϕ(z), P

T
EG∇z

[
dµEG

t

dλEG

]
(PEG .z)⟩

(
dµEG

t

dλEG

(PEG .z)

)−1

dµt(z)

Since µt is concentrated in EG, we have PEG#µt = µt. This and the equality P 2
EG = PEG imply the

previous expression is equal to:

−
∫
Z
⟨∇zϕ(PEG .z),PT

EG∇z

[
dµEG

t

dλEG

]
(PEG .z)⟩

(
dµEG

t

dλEG

(PEG .z)

)−1

dµt(z)

= −
∫
EG

⟨∇zϕ(x), P
T
EG∇z

[
dµEG

t

dλEG

]
(x)⟩

(
dµEG

t

dλEG

(x)

)−1

dµt(x)

= −
∫
EG

⟨PT
EG∇zϕ(x), P

T
EG∇z

[
dµEG

t

dλEG

]
(x)⟩dλEG(x)
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Noticing that PT
EG∇z is the gradient calculated on EG, integrating by parts with respect to λEG , and

using again the fact that µt is concentrated in EG, a straightforward calculation yields the desired
expression

∫
Z tr[PEGD2

zϕ(z)]dµt(z). This concludes the proof.

Remark. Notice that, by a.s. continuity of the McKean-Vlasov diffusion (12) and the fact that EG is
closed, Step 1 of the previous proof actually shows that P(Zt ∈ EG,∀t ≥ 0) = 1.

Notice also that Theorem 5 bears some resemblance to Corollary 1 in [30], which states that EG is
stable under the traditional gradient flow of the augmented risk ([θ ∈ ZN 7→ RDA(θ) ∈ R], as in
Section 2.3). Our result shares a similar flavor, but for the MF dynamics of freely-trained NNs with
equivariant data.
Remark. Unlike with WI distributions, initializing a shallow NN with µ0 ∈ P(EG) isn’t as straight-
forward as using a normal distribution. Effectively (and efficiently) computing the space EG is
actually quite challenging (as noted in [29]).

A natural way to ensure that µ0 ∈ P(EG), independently of the form of EG, is to initialize all
parameters to be 0. The question of whether under such initialization the parameters will eventually
exit {0} (or some larger, strict subspace E ⊊ EG) and find values over the entire space EG is
left for future work. Some insights on this behaviour can be sought in our experimental results,
see Section 4. If true, this behavior could point towards some type of underlying hypoellipticity
of the McKean-Vlasov dynamics (12) (or variants) on EG, which would be interesting to analyze,
in particular in view of potential theoretical guarantees for architecture-discovering heuristics as
suggested in Section 4.2.

Note that there is no need for seeing EG as a subspace of an ambient space Z . When training with
EAs, we simply force our parameters to live on EG, since we fix the architechture beforehand. Namely,
our ‘whole space’ is Z̃ = EG (regarded directly as a vector space EG ∼= RD̃) rather than Z . Thus, the
relevant population risk is the restricted version of the original: R̃ := R|P(Z̃) : P(Z̃) → R; and we
can apply the usual results from the MF Theory when the relevant hypothesis are satisfied by Z̃ and
R̃. Notably, we can have global convergence of R̃τ,β to infµ∈P(Z̃) R̃

τ,β(µ) = infµ∈P(EG) R
τ,β
EG (µ)

Remark. As shown in [38] (see Proposition 19 in Appendix G for the details) the regularized versions
of the involved functionals (i.e. Rτ,β and Rτ,β

EG ) Γ-converge to the original R as τ, β → 0; meaning
that, for small values of the regularization parameters, we should expect the achieved optima to
ressemble infµ∈PG(Z) R(µ) and infν∈P(EG) R(ν) respectively (or, under Proposition 5, both to R∗).
We will also leave the exploration of how this approximation behaves as future work.

Finally, we provide a proof for Theorem 6

Proof of Theorem 6. The proof structure is very similar to that of Theorem 4. Namely, it comes from
noticing that for µ ∈ P(EG) and z ∈ EG, we have:

DµR
DA(µ, z) = DµR

FA(µ, z) = DµR
EA(µ, z).

We already know the first equality, as seen in Theorem 4 (since µ ∈ PG(Z) from lemma 1). We only
need to show the last equality. Indeed, notice that:

DµR
FA(µ, z) =

∫
G

MT
g .DµR(µ, z)dλG(g) = PEG .DµR(µ, z),

while also, from Proposition 18:

DµR
EA(µ, z) = PT

EG .DµR(µEG

, PEG .z) = PEG .DµR(µ, z).

Knowing this, the rest of the proof is analogous to that of Theorem 4. Let (µFA
t )t≥0, (µDA

t )t≥0

and (µEA
t )t≥0 be the WGF solutions starting from µ0 for RFA, RDA and REA respectively. Since

µ0 ∈ P(EG) ⊆ PG(Z), from Theorem 4 we know that (µFA
t )t≥0 and (µDA

t )t≥0 coincide. Let’s see
that, w.l.o.g., (µFA

t )t≥0 coincides with (µEA
t )t≥0.

As RFA is G-invariant, by theorem 5, ∀t ≥ 0, µFA
t ∈ P(EG). Now, let’s see that this process also

satisfies WGF(REA), forcing both processes to coincide by uniqueness.
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As before, we know that (µFA
t )t≥0 satisfies: ∀φ ∈ C∞

c (Z × (0, T )):∫ T

0

∫
Z

(
∂tφ(z, t)− ⟨ς(t)DµR

FA(µFA
t , z),∇zφ(z, t)⟩

)
dµFA

t (z) dt = 0

Now, as ∀t ≥ 0, µFA
t ∈ P(EG), we can restrict our integral to EG. Also, we have ∀z ∈ EG:

DµR
FA(µFA

t , z) = DµR
EA(µFA

t , z). With these properties, (µFA
t )t≥0 satisfies ∀φ ∈ C∞

c (Z ×
(0, T )): ∫ T

0

∫
EG

(
∂tφ(z, t)− ⟨ς(t)DµR

EA(µFA
t , z),∇zφ(z, t)⟩

)
dµFA

t (z) dt = 0

Making the integral over Z once again (we can since µFA
t ∈ P(EG) for all t ≥ 0), we get that

(µFA
t )t≥0 solves WGF(REA) starting from µ0; thus by uniqueness: (µFA

t )t≥0 = (µEA
t )t≥0.

The last part of the theorem comes, once again, from Proposition 2, since if R is invariant, its WGF
exactly coincides with that of RDA.

F Experimental setting and further experiments

All the different experiments were run on Python 3.10, on a Google Colab session consisting (by
default) of 2 Intel Xeon virtual CPUs (2.20GHz) and with 13GB of RAM.

In order to obtain results that can be visualized, we consider a simple setting where X = Y = R2

and Z = R2×2 ∼= R4. We let G = C2 acting on X and Y via the coordinate transposition

action (i.e. the group generated by the orthogonal matrix
(
0 1
1 0

)
); and on Z via the natural

intertwining action (i.e. Mg.z = ρ̂g.z.ρ
T
g ). We also consider the jointly equivariant activation given

by σ∗(x, z) = σ(z · x) ∀x ∈ R2, ∀z ∈ R2×2 with σ : R → R a sigmoidal activation function
(which is C∞ and bounded) applied pointwise. Under this setting, EG can be explicitly computed

as EG =

〈(
1√
2

0

0 1√
2

)
,

(
0 1√

2
1√
2

0

)〉
, which is a 2-dimensional subspace of the ambient 4-

dimensional space. It’s projection operator PEG is also explicitly known.

We consider a teacher model f∗ = ΦN∗
θ∗ with N∗ fixed particles, such that νN∗

θ∗ is either arbitrary,
WI or SI. Let ϑ = 0.5 be a scale parameter. The arbitrary particles were chosen to be, for N∗ = 5:

θ∗1 = ϑ.(−1, 0, 0, 0.5)T

θ∗2 = ϑ.(0.5, 1, 0, 1)T

θ∗3 = ϑ.(−0.5, 0.3, 1, 0)T

θ∗4 = ϑ.(0,−1,−0.5, 1)T

θ∗5 = ϑ.(0.7,−0.7, 0.5, 0.7)T .

This was fixed in order to make the task non-trivial and interesting. The WI teacher distribution was
simply chosen to be (νN∗

θ∗ )G, with θ∗ as just described, so that the corresponding teacher function
resulted to be f∗ = QG.Φ

N∗
θ∗ . In other words, the WI distribution has 10 particles, corresponding to

each of those of θ∗, together with their image under the G-action. The SI particles were also fixed, but
their chosen coordinates had to be expressed in terms of the basis vector of EG (i.e. only providing 2
parameters). Particularly, they were fixed to be N∗ = 5 and, denoting them by a∗ = (a∗i )

N∗
i=1 to avoid

confusion, explicitly described as:

a∗1 = ϑ.(1, 0)T , a∗2 = ϑ.(0.5, 1)T , a∗3 = ϑ.(−0.5, 0.3), a∗4 = ϑ.(0,−1), a∗5 = ϑ.(0.7, 0.7).

As seen on Section 3.1, the teacher f∗ : X → Y will be an equivariant function as soon as its
parameter distribution is chosen either WI or SI. Our data distribution π will be such that (X,Y ) ∼ π
will satisfy X ∼ N (0, σ2

π.Id2) (with σπ = 4), and Y = f∗(X). Namely, πX will always be
G-invariant, whereas π will only be G-invariant if f∗ is. This setting allows for testing the different
results provided, without losing the properties of QG as a projection (which require πX to be
G-invariant, as shown in [27]).
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We will try to mimic the teacher network by using student networks, which will be given by ΦN
θ ;

namely, with the same σ∗, but varying values of N and θ ∈ ZN . We will train them to minimize the
regularized population risk Rτ,β given by a quadratic loss, ℓ(y, ŷ) = ∥y − ŷ∥2Y , and a quadratic
penalization, r(z) = ∥z∥2Z . For this purpose, we employ a minibatch variant of the SGD training
scheme provided in Equation (1) (possibly projected, as in Equation (5), when required). We will
also employ the different symmetry-leveraging techniques presented in Section 2.3, such as DA, FA
and EA. We refer to the free training with no SL-techniques whatsoever as the vanilla training.

The training parameters were fixed to be (unless explicitly stated otherwise):

• Step Size: ς ≡ α > 0 (with α = 50 in most experiments), εN = 1
N , so that sNk = α

N . This
was convenient, since it corresponds to the usual implementation of SGD on most common
NN frameworks in Python (namely, pytorch and jax).

• Regularization parameters: τ = 10−4 and β = 10−6.
• Batch Size: It was chosen to be B = 20.
• Number of Training Epochs: In line with the statement of Theorem 1, to observe phe-

nomena at a MF scale, we need an amount of iterations (commonly known as epochs in the
ML literature) that is proportional to the number of particles. For this purpose, we fix an
observation time horizon of T = 20. All training schemes were performed for a total of
Ne = N · T epochs (iterations). An additional ‘granularity’ parameter (usually set to be
gr = 5) is introduced to determine how often in the dynamic we will observe and save the
training losses and particle positions: we do so every ⌊Ne

gr ⌋ steps. Notice that Ne depends
on N , and so models with different values of N were trained for a different amount of
epochs.

• Student Initialization: The student’s particles, θ ∈ ZN , are initialized i.i.d. from some µ0

that is chosen to be either WI or SI. When WI-initialized, they are sampled from a random
gaussian Z ∼ N (0, 1

16 ). When SI-initialized, particles are taken to be PEG .Z with Z as
before.

• Number of Repetitions: Each experiment was repeated a total of Nr = 10 times to
ensure consistency. Each repetition, a different random seed was employed to: initialize the
student’s particles, generate the training data, and generate the noise for the SGD iteration.
In particular, on a fixed repetition, all models were trained with the same data and the same
noise being applied on SGD updates.

Remark. As Ne is chosen to be proportional to the number of particles, N , computational burden
and memory requirements quickly became heavy for the simple machines we employed (which didn’t
even have a dedicated GPU). This is the reason why we don’t scale our experiments beyond the
N = 5000 case. As reference, for N = 5000 a single training (with the above hyperparameters)
of a single model (either of vanilla, DA, FA or EA) took ≈ 15 minutes (which quickly amounts to
large amounts of running time for the Nr = 10 repetitions, the 4 different training schemes and the 6
possible settings with WI or SI initialization and arbitrary, WI or SI teacher). This is a clear point
of improvement and shall be tackled in future work.
Remark. As here mentioned, on every fixed ‘repetition’ of the experiments, the same noise was used
during the SGD training iterations for the vanilla, DA and FA schemes. The EA scheme, despite
using the same seeds for the data and student initializations, didn’t have the same noise applied
during SGD. This was because, despite using the same seed for the noise generator, noise for our
EAs was only 2-dimensional (since EAs are parametrized by EG), while it was 4-dimensional for the
other schemes. This made the resulting training schemes have an additional layer of noise separating
them; and so solving this issue, in order to properly visualize Theorem 6, becomes fundamental.
Remark. Notice that the Nr = 10 performed repetitions were largely enough to allow for plots
with error bars (actually, we do boxplots which encode the variability of the different quantities
more precisely) that allow for significant analysis of the observed phenomena. We do not go
beyond Nr = 10 due to the low computational capabilities of our machines, and the already high
computational cost of running the experiments (for thousands of hidden units and epochs, in many
different settings, and involving the calculation of Wasserstein Distances, as we’ll comment below).

To facilitate the implementation of the ideas behind our EA models, we use the group and represen-
tations tools from the emlp repository provided as part of [29]. This code is openly available and
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has an MIT License for unrestricted access. We employ it to numerically (and efficiently) determine
the space EG (namely, its basis), as well as PEG . We do remark that these calculations were correct
only up to a precision of 10−8, which results in a slight burden for our empirical results. On the other
hand, regarding the implementation of EMLPs provided in the package (EAs in our setting), some
slight modifications to the source code had to be performed in order to correctly represent our setting.

On a similar note, we can numerically compute the squared Wasserstein-2 distance between two
empirical distributions of particles by employing the pyot library. This allows us to evaluate to what
extent our resulting models are close to each other in terms of their particle distribution νNθ (which is
what the MF approach suggests). In order to fix a common scale in which the experiments can be
compared, for different values of N , and mitigate the effects of fluctuating empirical estimates (mainly
for small values of N , and in the low dimensions considered), we consider a natural normalization
of the Wasserstein-2 distance, which we refer to as the RMD (Relative-Measure-Distance). This is
defined as: RMD2(µ, ν) =

W 2
2 (µ,ν)

M2
µ+M2

ν
where M2

µ = 2E[∥Z∥2] for Z ∼ µ (so that 0 ≤ RMD ≤ 1).
The RMD provided a good metric for the experiments here presented. Notice that, as N → ∞, by
the L.L.N. for empirical distribution following from the MFL convergence, the RMD is expected to
stabilize at the corresponding value of the limiting distributions. Therefore, up to a multiplicative
quantity approaching a (finite, non null, in our case) constant, we are observing the behavior of the
Wasserstein-2 distance. A drawback from using the Wasserstein-2 metric, is that calculating them
can be very expensive computationally. This is another one of the reasons why our experiments only
get to N = 5000 particles.

F.1 Study for varying N

Beyond the analyisis already provided in Section 4, we here provide some meaningful insights.
We want to observe to what extent the properties proved in Section 3.3 for the WGF of Rτ,β can
be observed in practice. For this purpose, we observe, for N ∈ {5, 10, 50, 100, 500, 1000, 5000},
different relevant quantities to evaluate the different combinations of teachers and students.

For this set of experiments, WI-initialized students were trained with the usual SGD scheme from
Equation (1); while, SI-initialized students, were trained with the projected SGD dynamics from
Equation (5). Models for the different schemes to be compared, are all initialized with the exact same
(random) particles.

Figure 3 displays some comparisons between particle distributions in terms of RMD at the end of
training, knowing that they were all initialized with the same particles drawn from µ0 ∈ P(EG).
From this, we can visually see that, when the teacher distribution is either WI of SI, the resulting
distribution from vanilla training stays on EG (since RMD2(νNNT , (ν

N
NT )

EG

) is small) increasingly
more as N becomes large. This fact is absolutely remarkable, since, for a WI teacher there should
be no reason why the vanilla training (that’s completely free, in principle) shouldn’t escape EG to
achieve a better approximation of f∗. On the other hand, in every single teacher setting, almost
independently of N , both DA and FA consistently remain within EG (as expected, even if f∗ isn’t
equivariant). For an arbitrary teacher, we see that the vanilla training distribution readily leaves EG

to better approximate f∗, which isn’t a predicted behaviour from our theory (we have no guarantees
of ‘leaving EG when data isn’t equivariant’), but motivates the heuristic defined in Section 4.

Still from Figure 3, we can see that, as N grows bigger, the end-of-training distribution of the
vanilla scheme becomes closer and closer to that of DA and FA (from Theorem 4 we actually expect
them to be equal in the limit). A similar result is obtained relating vanilla, DA and FA to the EA
scheme; the values are however larger than before and less significantly close in general. This is
possibly due to the different noises employed during training (as mentioned in a remark above).
We do however notice that for increasing values of N , the EA, DA, FA and vanilla schemes (the
latter only under equivariant f∗) tend towards coinciding, which serves to illustrate the constatations
from Theorem 6. Finally, notice that the results obtained for WI and SI teachers present almost no
quantitative differences whatsoever between them.

In Figure 4 we present a visualization of the final particle distribution, after an SI-initialized training
under a WI teacher f∗, of the vanilla, DA, FA and EA schemes (on a single realization of the
experiment). At least visually (and macroscopically), it seems like all these regimes followed
(approximately) the same flow, as they end up with an approximately equal particle distribution. This
isn’t a rigorous comparison at all, and providing better quantitative comparisons between the methods
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Figure 3: RMD comparisons between training regimes, for different values of N , at the end of an
SI-initialized training for Ne epochs. Each column corresponds to a teacher with, respectively, an
arbitrary, WI and SI distribution. Row 1 displays RMD2(νNNe

, (νNNe
)E

G

) for the different regimes,
in order to evaluate to what extent the training remained within EG. Row 2 displays the RMD
between DA, FA and vanilla training regimes; and Row 3 does the same for each of them against EA.

is to be considered for future work. As a counterfactual, we provide in Figure 5 the results of an
SI-initialized training that is performed under a non-equivariant f∗. We can see that the vanilla model
readily leaves EG to achieve a better approximation of f∗, while the DA, FA and EA schemes ‘stay
inside’ (roughly coinciding between them as well).

Figure 6 also displays RMD comparisons between particle distributions at the end of training, but
for an (identic) initialization with particles drawn from µ0 ∈ PG(Z). Now, unlike the SI case, with
particles sampled i.i.d. from a WI distribution, nothing ensures that the resulting νN0 will be WI as
well. Namely, in this case the limit as N → ∞ becomes significantly more important to visualize the
theoretical results. Indeed, since νN0 isn’t necessarily WI, we no longer have a guarantee that the
finite-N networks trained with DA, FA or vanilla methods will be close to each other in any sense.
We do however notice on Figure 6 that, for increasing N , the end-of-training distributions of DA,
FA and vanilla schemes (the latter only when f∗ is equivariant) become increasingly closer to their
symmetrized versions (namely, RMD2(νNNT , (ν

N
NT )

G) becomes smaller, though never as small as in
the SI-initialized experiments). Also, as guaranteed by Theorem 4, for large N we see that DA and
FA become indistinguishably close, no matter the teacher’s properties; also, when f∗ is equivariant,
they both ‘coincide’ with the vanilla scheme. A comparison between the EA scheme and the result
from projecting the FA scheme on the last step is also presented. It is used simply to illustrate that,
in principle, directly training on EG isn’t necessarily comparable to performing ‘free-training’ and
projecting the resulting particle distribution only on the last step (even when an SL technique such as
FA is used).
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Figure 4: Visualization of the NN particles after training under the vanilla, DA, FA and EA schemes,
for a single realization of the experiment. Squares represent the teacher particles (which are WI),
dots represent the student particles, and the hyperplane is EG. The bigger plots show an aerial view
of the global particle distribution after training; and the minor plots below them show a viewpoint at
the level of (and parallel to) EG. The student particles were all initialized to be SI (and to coincide at
initialization between the different schemes), and trained with equation (5) correspondingly applying
the proper SL technique.
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Figure 5: Visualization of the NN particles after training under the vanilla, DA, FA and EA schemes
for a single realization of the experiment. Squares represent the teacher particles (which are arbi-
trary), dots represent the student particles, and the hyperplane is EG. The bigger plots show an
aerial view of the global particle distribution after training; and the minor plots below them show
a viewpoint at the level of (and parallel to) EG. The student particles were all initialized to be
SI (and to coincide at initialization between the different schemes), and trained with equation (5)
correspondingly applying the proper SL technique. Notice how the particles for the vanilla scheme
readily leave EG (despite the noise being projected onto it) and seem to approach the teacher particles.
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Figure 6: RMD comparisons between training regimes, for different values of N , at the end of a
WI-initialized training for Ne epochs. Each column corresponds to a teacher with, respectively, an
arbitrary, WI and SI distribution. Row 1 displays RMD2(νNNe

, (νNNe
)G) for the different regimes, to

evaluate to what extent the training remained WI. Row 2 displays the RMD between DA, FA and
vanilla training regimes; as well as a comparison between EA and the projected particles of FA.
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Figure 7: Approximation of L2-distance between each model and its symmetrized version for
increasing values of N . Each column corresponds to a different teacher as before. Row 1 corresponds
to the SI-initialized experiment and Row 2 to the WI-initialized one.
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Figure 8: Approximation of L2-distance between each model and the corresponding teacher network
f∗, for increasing values of N . Each column corresponds to a different teacher as before; Row 1
corresponds to the SI-initialized experiment and Row 2 to the WI-initialized one.
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Figure 9: Approximation of L2-distance between each model and the symmetrized teacher network
QG.f∗, for increasing values of N . Each column corresponds to a different teacher as before; Row 1
corresponds to the SI-initialized experiment and Row 2 to the WI-initialized one.

Now, beyond the analysis of the underlying particle distributions after training, we turn our focus to
comparisons of the resulting models. We measure some distances in L2(X ,Y;πX ), by approximating
∥ · ∥L2(X ,Y;πX ) with a Monte-Carlo sample of 100 random data points drawn from π.

Figure 7 shows that the observed behaviour for the underlying particles, νNθ , of each model, is
consistent with the behaviour of the obtained model ΦN

θ . That is, as particles become close to being
symmetric in some sense, the resulting shallow model also becomes increasingly equivariant as well.

Finally, Figure 8 and Figure 9 illustrate quite well the observations from Corollary 1. When our teacher
isn’t equivariant, models trained using any kind of SL technique end up suffering from the inductive
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bias introduced by the symmetric assumption (something that’s hinted by the symmetrization gap
characterization from Lemma 2 presented in SuppMat-B.3). On the other hand, the vanilla model
thrives in approximating f∗ as it is capable of breaking the assumed symmetry, unlike DA, FA and
EA. The training regimes that use SL techniques are effectively approximating QG.f∗, as shown
in Figure 9 (and proven in Corollary 1). We also notice that, for the WI-initialized experiments,
EAs end up suffering from their constraint of staying within EG, as they can’t approximate f∗ (or
QG.f∗) as well as DA or FA (even when the teacher is SI). This isn’t the case for the SI-initialized
experiments, where the performance of DA, FA and EA (and vanilla only for equivariant f∗) is quite
closely comparable (once again, hinting at Theorem 6). We also notice a general trend showing that,
for bigger N , the approximations of f∗ (or, eventually, QG.f∗) become increasingly better (specially
for the WI-initialization).

F.2 Heuristic algorithm for discovering EA parameter spaces

The proposed heuristic that we infer from the results on the previous experimental setting is quite
thoroughly described in Section 4.2. We only notice that, for this particular setting, the learning rate
was chosen to be α = 20 (to better approximate the MFL conditions). Beyond the description of the
proposed heuristic and the simple example visualized in Figure 2, we also provide Figure 10 here,
illustrating a possible threshold choice in that setting.

Considering Ej for j = 0, 1, . . . as the spaces that are discovered on each step of the heuristic,
Figure 10 displays the values of: RMD2(νNθ , PEj

#νNθ ) and RMD2(νNθ , PEG#νNθ ); both before
and after training on a given heuristic step j. The red line simbolizes a possible value of δ that
could be fixed to detect whenever the obtained particle distribution after training stayed on Ej . In
the case of this example, on steps 0 and 1 we would decide that the training left the original space
Ej , but we wouldn’t do so on step 2, allowing us to fix EG := E2. As shown by the values of
RMD2(νNθ , PEG#νNθ ), we wouldn’t be too far off with our prediction.

Despite this proposed heuristic being potentially interesting for real-world applications, we acknowl-
edge that the setting where it is applied here might be too simple, synthetic and idealized. On one
hand, this provided a clean-enough framework, where the underlying phenoma could be easily
observed. However, in order to properly validate our heuristic approach, experiments with more
complex settings (and with larger and more intricate datasets) need to be performed. These should
also be coupled with sound theoretical guarantees, whose exploration we leave for future work.

Finally, we here provide some further details on the possible connections of our proposed heuristic, to
the ‘symmetry-discovery’ method presented in [72]. In their work, they employ an architecture based
on relaxed group convolution layers, which allows to ‘detect’ breaks of the supposed data symmetry,
by observing the un-alignment of the layer weights.

As in our work, their method starts with the most possibly constrained architecture: the null space in
our case, and the ‘perfectly aligned weights’ in theirs. This ensures that the model will start respecting
symmetry with respect to the largest possible group; only for the training on data to cause these
symmetries to ‘break’ overtime. Their method seemingly works in a single training iteration, while
ours iteratively constructs the invariant linear subspace EG by adding one new ‘symmetry-breaking
dimension’ at a time. Our Theorem 5 guarantees that, in the MF scale, our method won’t leave
EG; but we have yet to establish symmetry-breaking guarantees for our heuristic, comparable to
Proposition 3.1 in [72].

Finally, it’s important to note that neither one of the methods is truly discovering the “underlying
symmetry” of the data. They are both closer to simply “optimizing architectures” which are compat-
ible with data symmetries: either finding the “right” subspace EG, or the “right” weights for each
group convolution filter. Identifying the true underlying structure of data symmetries is a much harder
problem that is yet to be tackled in both cases.

G Further theoretical insights

The following result provides consistency guarantees when the regularization parameters τ and β
are small, and is a slight extension of a result in [38].
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Figure 10: RMD comparison between the empirical student particle distribution, νNθ , to both
PEj#νNθ and (νNθ )E

G

(where j is the heuristic step). These are performed at the beginning and the
end of training on every fixed heuristic step. The red line is placed at the value 10−2 and represents a
possible threshold δ, to be used in the heuristic to determine whether training left Ej or not.

Proposition 19 (Γ-convergence, as in ). Let Z = RD. If R is Wp-continuous, ν is a Gibbs measure
of potential U , and both U and r satisfy assumption 2 (or alternatively, are equal to 0), then Rτ, β

ν

Γ-converges to R when τ, β ↓ 0. Particularly, given µ∗, τ, β, ν the minimizer of Rτ, β
ν , we have

lim
τ,β→0

R(µ∗, τ, β, ν) = inf
µ∈P2(Z)

R(µ).

In particular, every cluster point of (µ∗, τ, β, ν)τ,β is a minimizer of R.

Proof of Proposition 19. We follow the exact same proof structure as [38], employing essentially
their same techniques. However, we do adapt it to the case of taking the simultaneous limit of
τ, β → 0, and so we do include it for completeness.

Let (τn)n∈N and (βn)n∈N be two positive sequences decreasing to 0. On the one hand, since R is
continuous (weakly if p = 0 or in Wp for other p ≥ 1) and Hν(µ) = D(µ||ν) ≥ 0, for all µn → µ
(in the appropiate sense), we have

lim inf
n→+∞

Rτn,βn
ν (µn) ≥ lim

n→+∞
R(µn) = R(µ).

On the other hand, given µ ∈ Pp(Z), consider ρ to be the heat kernel in Z = RD and ρn(x) :=
β−D
n ν(x/βn). In particular, from [1] (as the heat kernel has finite p-th moments) we know that

µn := µ ∗ ρn −−−−→
n→∞

µ in Wp (or weakly if it is the case).

Now, since the function h(x) := x log(x) is convex, from Jensen’s inequality we get that∫
Z
h(µ∗ρn)dx ≤

∫
Z

∫
Z
h (ρn(x− y))µ(dy)dx =

∫
Z
h(ρn(x))dx =

∫
Z
h(ρ(x))dx−D log(

√
2βn),

Besides, we have (denoting here g(x) = e−U(x)):∫
Z
(µ ∗ ρn) log(g)dx = −

∫
Z
µ(dy)

∫
Z
ρn(x)U(x− y)dx ≥ −C

(
1 +

∫
Z
|y|2µ(dy)

)
.

The last inequality is due to the quadratic growth of U ; and by the same argument on r:∫
Z
(µ ∗ ρn)rdx =

∫
Z
µ(dy)

∫
Z
ρn(x)r(x− y)dx ≤ C

(
1 +

∫
Z
|y|2µ(dy)

)
.

Notice that whenever U ≡ 0 or r ≡ 0, despite them not satisfying assumption 2, we still get the same
inequalities (since the leftmost term would be 0).
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Now, as R is Wp-continuous, R(µn) −−−−→
n→∞

R(µ), and:

lim sup
n→+∞

Rτn, βn
ν (µ ∗ νn)

≤ R(µ) + lim sup
n→+∞

τn

(∫
Z
(µ ∗ ρn)rdx

)
+ lim sup

n→+∞
βn

(∫
Z
h(µ ∗ ρn)dx−

∫
Z
(µ ∗ ρn) log(g)dx

)
And, as limn→∞ βn log(

√
2βn) = 0 and the rest of the terms are bounded, we conclude that:

lim sup
n→+∞

Rτn, βn
ν (µ ∗ ρn) ≤ R(µ)

In particular, denoting by µτ,β,ν
∗ the unique minimizer of Rτ,β

ν , then from the previous expressions
we get ∀n ∈ N and ∀µ ∈ Pp(Z):

R(µτn,βn,ν
∗ ) ≤ Rτn,βn

ν (µτn,βn,ν
∗ ) ≤ Rτn,βn

ν (µ ∗ ρn)
So that,

lim sup
n→∞

R(µτn,βn,ν
∗ ) ≤ lim sup

n→+∞
Rτn,βn

ν (µ ∗ ρn) ≤ R(µ), for all µ ∈ P2(Z).

Finally, we provide, for completeness, a proof of Lemma 2 :

Proof of Lemma 2 (based on [27] and [40]). As H ≤ G is a compact group and π is H-invariant,
from proposition 10 we know that f∗ = Eπ[Y |X = ·] lives in f∗ ∈ L2

H(X ,Y;π|X ). Consider
any f ∈ L2(X ,Y;π|X ), by Lemma 1 from [27] (which applies since π|X is G-invariant), we can
decompose f as f = fG + f⊥

G , where fG = QGf is its symmetric part and f⊥
G = f − QGf its

antisymmetric part. A standard calculation of the population risk under the quadratic loss setting (see
the proof of Corollary 1 for further insight) gives: R(f) = R∗ + ∥f − f∗∥2L2(X ,Y;πX ), and so:

∆(f,QG.f) = R(f)−R(QG.f) = E
[
∥f∗(X)− f(X)∥2Y

]
− E

[
∥f∗(X)− fG(X)∥2Y

]
,

which can be written as:

∆(f,QGf) = Eπ

[
∥f∗(X)− fG(X)∥2Y − 2⟨f∗(X)− fG(X), f⊥

G (X)⟩Y + ∥f⊥
G (X)∥2Y

]
− Eπ

[
∥f∗(X)− fG(X)∥2Y

]
= −2⟨f∗ − fG, f

⊥
G ⟩L2(X ,Y;πX ) + ∥f⊥

G ∥2L2(X ,Y;πX )

= −2⟨f∗, f⊥
G ⟩L2(X ,Y;πX ) + ∥f⊥

G ∥2L2(X ,Y;πX )

Where we used that ⟨fG, f
⊥
G ⟩L2(X ,Y;πX ) = 0. The first term on the right hand side,

−2⟨f∗, f⊥
G ⟩L2(X ,Y;πX ), is what [40] call the mismatch between the real underlying model (which is

only H-equivariant) and the symmetrized version of our model (which is made entirely G-equivariant).

Now, when π is G-equivariant, by proposition 10, QGf
∗ = f∗, and so: −2⟨f∗, f⊥

G ⟩L2(X ,Y;πX ) = 0,
giving us the desired result:

∆(f,QGf) = ∥f⊥
G ∥2L2(X ,Y;πX )

Lemma 2 essentially says that if we try to symmetrize a model with respect to a group that has ‘more
symmetries’ than what are actually observable in our data (i.e. π in itself is only H-invariant, but
we symmetrize with respect to G ≥ H); we can either win or lose generalization power according
to the interplay between the two presented terms. In particular, if π is G equivariant, there’s a strict
generalization benefit from choosing a symmetric model to tackle our learning problem (which
gives the name to the paper [27]). In particular, whenever f⊥

G is non-zero (on a strictly positive
π|X -measure set) there’s a strict gain in generalization power from using the symmetrized version of
the model.
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contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We acknowledge and discuss many of the key assumptions required for both our
theoretical and experimental results. The need for these assumption limits the applicability
and practical impact of our work. We explicitly provide relevant insights in this regard, in
a dedicated section, SuppMat-A.2. Also, and without including every single instance, we
also discuss our limitations in: assumption 1, after presenting equation (1), section 4, and in
many remarks in the SuppMat (e.g. in E.2.5,E.3 or F).
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.
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• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All mathematical statements presented are given complete, rigorous mathemat-
ical proofs in the Supplementary Material (mainly in SuppMat-E). We also provide complete
sets of assumptions for each result, either in the statement itself or (for some results where
the precise assumptions are very technical and lengthy to state) previous to the corresponding
proof in the Supplementary Material. Even proofs of some elementary facts or statements
are provided for completeness. Furthermore, nearly every mathematical result stated in the
main paper is given a comment or discussion regarding its context, its interpretation (beyond
the pure mathematical value) and/or an idea of what tools or arguments its proof will rely
upon.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Together with our submission, we include a ZIP file with the necessary code
(and instructions, following the guidelines provided by the conference) for replicating all of
our experimental results. We also provide the necessary details to understand and reproduce
our work both in Section 4 and (more extensively) in SuppMat-F.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
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one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: As mentioned in our previous answer, we include a ZIP file with the necessary
code and instructions to faithfully reproduce the main experimental results. We closely
follow the NeurIPS guidelines for our code submission, providing the exact commands
and environments required to run our experiments. Also both Section 4 and SuppMat-F
provide a thorough landscape of the necessary assumptions and parameters to consider when
replicating our results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
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Answer: [Yes]

Justification: In Section 4 we provide the necessary level of detail for understanding our main
experimental results. We provide a thorough and detailed description of the exact parameters
(and how they were chosen) employed in our different experiments in SuppMat-F.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The numerical experiments considered in this work, involved the application
of a noisy SGD dynamic (as in equation (1), or equation (5)) that relied on various levels
of randomness: the initial parameter configurations, the simulated training data and the
gaussian noise in SGD iterations. These factors are taken into account (see SuppMat-F) and
thus the different experiments were repeated a total of 10 times (under different random
seeds), which was largely enough to include interpretable error bars in our plots, and to
correctly illustrate the true trends of the underlying phenomena (see, again, SuppMat-F).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In SuppMat-F we indicate both the computer resources employed to run the
different experiments (see the first paragraph) as well as an estimate of the total computer
time for the most complex simulation considered (namely, the N = 5000 case). We did not
make related experiments prior to the preparation of this submission.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This paper rigorously conforms to the NeurIPS Code of Ethics. By its
mathematical/theoretical nature, this paper did not require the interaction with humans
(besides the authors), and did not expose any living being to any type of harm. Also, no
direct or indirect social impact is expected from this work in the short-to-mid term. Since
our numerical results come from simulations, there are no major concerns to be had related
to the nature of the employed dataset (in terms of privacy, consent, fair use or representative
evaluation). Also, Intellectual property in all its forms was thoroughly respected. Finally, all
the elements required for reproducibility of our results are disclosed in the material joint to
the submission, including software employed and the data-simulation mechanisms.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: The research object of this paper is mathematical, as it studies abstract
mathematical models of artificial neural networks, and their properties and behaviors in
specific, idealized situations and contexts. Therefore, no direct or indirect social impact
is expected in the short-to-mid term. It is, however, expected that the theoretical results
presented could have a positive impact in the long term, at the levels of development or
practical use of safer, more transparent or interpretable machine learning algorithms; or at
least in enlarging the corpus of conceptual tools available to researchers and practitioners
to better understand the advantages, drawbacks, and potential risks or impacts of their
professional activities. Though it might be useful eventually, our work is mostly theoretical
and its impact remains limited to academia and pure ML practice. By all these reasons, no
potential, positive nor negative, societal impacts of the work performed are addressed in the
paper.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate

64

https://neurips.cc/public/EthicsGuidelines


to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: As previously mentioned, this work is mainly theoretical, and thus poses no
major threats that could require the implementation of such safeguards.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We employ mostly public ML libraries and packages (e.g. objax, pyot, among
others). We do, however, also involve the use of the emlp package provided by [29]. These
assets are all properly credited in our work (see SuppMat-F), and the corresponding use
licenses (particularly for the use of emlp) are properly mentioned and respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Beyond the provided code to reproduce the experiments presented in the paper
(which is accompanied with the details and instructions needed to execute it), no assets are
introduced in this publication, hence, no specific documentation needs to be provided in that
regard.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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