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ABSTRACT

We present a framework to derive bounds on the test loss of randomized learning
algorithms for the case of bounded loss functions. This framework leads to bounds
that depend on the conditional information density between the the output hypothe-
sis and the choice of the training set, given a larger set of data samples from which
the training set is formed. Furthermore, the bounds pertain to the average test loss
as well as to its tail probability, both for the PAC-Bayesian and the single-draw
settings. If the conditional information density is bounded uniformly in the size n
of the training set, our bounds decay as 1/n, which is referred to as a fast rate. This
is in contrast with the tail bounds involving conditional information measures avail-
able in the literature, which have a less benign 1/

√
n dependence. We demonstrate

the usefulness of our tail bounds by showing that they lead to estimates of the test
loss achievable with several neural network architectures trained on MNIST and
Fashion-MNIST that match the state-of-the-art bounds available in the literature.

1 INTRODUCTION

In recent years, there has been a surge of interest in the use of information-theoretic techniques
for bounding the loss of learning algorithms. While the first results of this flavor can be traced
to the probably approximately correct (PAC)-Bayesian approach (McAllester, 1998; Catoni, 2007)
(see also (Guedj, 2019) for a recent review), the connection between loss bounds and classical
information-theoretic measures was made explicit in the works of Russo & Zou (2016) and Xu &
Raginsky (2017), where bounds on the average population loss were derived in terms of the mutual
information between the training data and the output hypothesis. Since then, these average loss
bounds have been tightened (Bu et al., 2019; Asadi et al., 2018; Negrea et al., 2019). Furthermore, the
information-theoretic framework has also been successfully applied to derive tail probability bounds
on the population loss (Bassily et al., 2018; Esposito et al., 2019; Hellström & Durisi, 2020a).

Of particular relevance to the present paper is the random-subset setting, introduced by Steinke &
Zakynthinou (2020) and further studied in (Hellström & Durisi, 2020b; Haghifam et al., 2020). In
this setting, a random vector S is used to select n training samples Z(S) from a larger set Z̃ of 2n
samples. Then, bounds on the average population loss are derived in terms of the conditional mutual
information (CMI) I(W ;S|Z̃) between the chosen hypothesis W and the random vector S given the
set Z̃. The bounds obtained by Xu & Raginsky (2017) depend on the mutual information I(W ;Z),
a quantity that can be unbounded if W reveals too much about the training set Z. In contrast, bounds
for the random-subset setting are always finite, since I(W ;S|Z̃) is never larger than n bits.

Most information-theoretic population loss bounds mentioned thus far are given by the training loss
plus a term with a

√
IM(PWZ)/n-dependence, where IM(PWZ) denotes an information measure,

such as mutual information or maximal leakage (Issa et al., 2020). Assuming that the information
measure grows at most polylogarithmically with n, the convergence rate of the population loss to the
training loss is Õ(1/

√
n), where the Õ-notation hides logarithmic factors. This is sometimes referred

to as a slow rate. In the context of bounds on the excess risk, defined as the difference between the
achieved population loss for a chosen hypothesis w and its infimum over the hypothesis class, it is
known that slow rates are optimal for worst-case distributions and hypothesis classes (Talagrand,
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1994). However, it is also known that under the assumption of realizability (i.e., the existence of a w
in the hypothesis class such that the population loss LPZ

(w) = 0) and when the hypothesis class
is finite, the dependence on the sample size can be improved to Õ(1/n) (Vapnik, 1998, Chapter 4).
This is referred to as a fast rate. Excess risk bounds with fast rates for randomized classifiers have
also been derived, under certain additional conditions, for both bounded losses (Van Erven et al.,
2015) and unbounded losses (Grünwald & Mehta, 2020).

Notably, Steinke & Zakynthinou (2020, Thm. 2(3)) derive a population loss bound whose dependence
on n is I(W ;S|Z̃)/n. The price for this improved dependence is that the training loss that is added to
the n-dependent term is multiplied by a constant larger than 1. Furthermore, (Steinke & Zakynthinou,
2020, Thm. 8) shows that if the Vapnik-Chervonenkis (VC) dimension of the hypothesis class is
finite, there exists an empirical risk minimizer (ERM) whose CMI grows at most logarithmically
with n. This implies that the CMI approach leads to fast-rate bounds in certain scenarios. However,
the result in (Steinke & Zakynthinou, 2020, Thm. 2(3)) pertains only to the average population loss:
no tail bounds on the population loss are provided. Throughout the paper, we will, with an abuse
of terminology, refer to bounds with an n-dependence of the form IM(PWZ)/n as fast-rate bounds.
Such bounds are also known as linear bounds (Dziugaite et al., 2020). Note that the n-dependence
of the information measure IM(PWZ) has to be at most polylogarithmic for such bounds to actually
achieve a fast rate in the usual sense.

An intriguing open problem in statistical learning is to find a theoretical justification for the capability
of overparameterized neural networks (NNs) to achieve good generalization performance despite
being able to memorize randomly labeled training data sets (Zhang et al., 2017). As a consequence
of this behavior, classical population loss bounds that hold uniformly over a given hypothesis class,
such as VC bounds, are vacuous when applied to overparameterized NNs. This has stimulated
recent efforts aimed at obtaining tighter population loss bounds that are algorithm-dependent or
data-dependent.

In the past few years, several studies have shown that promising bounds are attainable by using
techniques from the PAC-Bayesian literature (Dziugaite & Roy, 2017; Zhou et al., 2019; Dziugaite
et al., 2020). The PAC-Bayesian approach entails using the Kullback-Leibler (KL) divergence to
compare the distribution on the weights of the NN induced by training to some reference distribution.
These distributions are referred to as the posterior and the prior, respectively. Recently, Dziugaite et al.
(2020) used data-dependent priors to obtain state-of-the-art bounds for LeNet-5 trained on MNIST
and Fashion-MNIST. In their approach, the available data is used both for training the network and for
choosing the prior. This leads to a bound that is tighter than previously available bounds. Furthermore,
the bound can be further improved by minimizing the KL divergence between the posterior and the
chosen prior during training. One drawback of the PAC-Bayesian approach is that it applies only
to stochastic NNs, whose weights are randomly chosen each time the network is used, and not to
deterministic NNs with fixed weights.

Information-theoretic bounds have also been derived for iterative, noisy training algorithms such as
stochastic gradient Langevin dynamics (SGLD) (Bu et al., 2019). These bounds lead to nonvacuous
estimates of the population loss of overparameterized NNs that are trained using SGLD through
the use of data-dependent priors (Negrea et al., 2019). However, these bounds do not apply to
deterministic NNs, nor to standard stochastic gradient descent (SGD) training. Furthermore, the
bounds pertain to the average population loss, and not to its tails. Although the techniques yielding
these estimates can be adapted to the PAC-Bayesian setting, as discussed by Negrea et al. (2019,
App. I), the resulting bounds are generally loose.

1.1 CONTRIBUTIONS

In this paper, we extend the fast-rate average loss bound by Steinke & Zakynthinou (2020) to the
PAC-Bayesian and the single-draw settings. We then use the resulting PAC-Bayesian and single-draw
bounds to characterize the test loss of NNs used to classify images from the MNIST and Fashion-
MNIST data sets. The single-draw bounds can be applied to deterministic NNs trained through SGD
but with Gaussian noise added to the final weights, whereas the PAC-Bayesian bounds apply only to
randomized neural networks, whose weights are drawn from a Gaussian distribution each time the
network is used. For the same setup, we also evaluate the slow-rate PAC-Bayesian and single-draw
bounds from (Hellström & Durisi, 2020b). Our numerical experiments reveal that both the slow-rate
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bounds from (Hellström & Durisi, 2020b) and the newly derived fast-rate bounds are nonvacuous.
Furthermore, for some settings, the fast-rate bounds presented in this paper are quantitatively stronger
than the corresponding slow-rate ones from (Hellström & Durisi, 2020b), and essentially match the
best bounds available in the literature for SGD-trained NNs (Dziugaite et al., 2020).

1.2 PRELIMINARIES

We now detail some notation and describe the random-subset setting introduced in (Steinke &
Zakynthinou, 2020). Let Z be the instance space,W be the hypothesis space, and ` :W ×Z → R+

be the loss function. Throughout the paper, we will assume that the range of `(w, z) is restricted
to [0, 1] for all w ∈ W and all z ∈ Z . A typical example of such a loss function is the classification
error. In this setting, the sample Z consists of an example X ∈ X and a corresponding label Y ∈ Y .
Then, the loss is given by `(W,Z) = 1{fW (X) 6= Y }, where fW (·) is the map from X to Y induced
by the hypothesis W . We note that, when applying our bounds to NNs, the function `(·, ·) used
to characterize the performance of the network does not necessarily need to coincide with the loss
function used when training the NN. For instance, one could use the (unbounded) cross-entropy loss
when training the NN, and apply the bounds for the scenario in which `(·, ·) is the classification error.

In the random-subset setting, 2n training samples Z̃ = (Z̃1, . . . , Z̃2n) are available, with all entries
of Z̃ being drawn independently from some distribution PZ onZ . However, only a randomly selected
subset of cardinality n is actually used for training. Following (Steinke & Zakynthinou, 2020), we
assume that the training dataZ(S) is selected as follows. Let S = (S1, . . . , Sn) be an n-dimensional
random vector, the elements of which are drawn independently from a Bern(1/2) distribution and
are independent of Z̃. Then, for i = 1, . . . , n, the ith training sample in Z(S) is Zi(Si) = Z̃i+Sin.
Thus, the binary variable Si determines whether the training set Z(S) will contain the sample Z̃i
or the sample Z̃i+n. The selected training procedure, including the loss function used for training,
will determine the conditional distribution PW |Z(S) on the hypothesis class given the training data.
For a given W ∼ PW |Z(S), we let LZ(S)(W ) = 1

n

∑n
i=1 `(W,Zi(Si)) denote the training loss.

Furthermore, we let S̄ denote the modulo-2 complement ofS. ThenLZ(S̄)(W ) can be interpreted as a
test loss, sinceW is conditionally independent ofZ(S̄) givenZ(S). Finally, we note that the average
over (Z̃,S) of the test loss is the population loss LPZ

(W ) = EPZ̃S
[LZ(S̄)(W )] = EPZ

[`(W,Z)].

Our bounds will depend on several different information-theoretic quantities, which we shall intro-
duce next. The information density ı(W,Z) between W and Z is defined as ı(W,Z) = log dPWZ

dPWPZ
,

where dPWZ

dPWPZ
is the Radon-Nikodym derivative of PWZ with respect to PWPZ . The informa-

tion density is well-defined if PWZ is absolutely continuous with respect to PWPZ , denoted
by PWZ � PWPZ . The conditional information density ı(W,S|Z̃) between W and S given Z̃
is defined as ı(W,S|Z̃) = log

dPWZ̃S

dPW |Z̃PZ̃S
, provided that PWZ̃S � PW |Z̃PZ̃S . The mutual infor-

mation can be obtained as I(W ;Z) = EPWZ
[ı(W,Z)] and the conditional mutual information

as I(W ;S|Z̃) = EPWZ̃S

[
ı(W,S|Z̃)

]
. We will also need the KL divergences D(PW |Z ||PW ) =

EPW |Z [ı(W,Z)] and D(PW |Z̃S ||PW |Z̃) = EPW |Z̃S

[
ı(W,S|Z̃)

]
. In practical applications, the

marginal distribution PW is not available, since PZ is unknown. Furthermore, PW |Z̃ is also difficult
to compute, since marginalizing PSPW |Z̃S over S involves performing training 2n times. Hence,

bounds depending on ı(W,Z) or on ı(W,S|Z̃) cannot typically be evaluated. Therefore, it will be
convenient to replace the information density ı(W,Z) with the proxy log dPWZ

dQWPZ
and ı(W,S|Z̃)

with log
dPWZ̃S

dQW |Z̃PZ̃S
. Here, QW and QW |Z̃ are suitably chosen auxiliary distributions (priors) that

are used in place of the intractable, true marginals.

2 BACKGROUND

We next review the bounds available in the literature that are relevant for this paper. Then, in Section 3,
we will present novel fast-rate bounds. The canonical PAC-Bayesian population-loss bound for a
given posterior PW |Z and loss functions bounded between 0 and 1 states that the following holds
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with probability at least 1− δ under PZ (Guedj & Pujol, 2019, Prop. 3):

EPW |Z [LPZ
(W )] ≤ EPW |Z [LZ(W )] +

√
D(PW |Z ||QW ) + log 1

δ

2n
. (1)

Here, QW is the prior on the hypothesis spaceW , which has to be independent of Z. The version
of the bound given in (1) slightly improves the dependence on the sample size n as compared to
the bound reported in (McAllester, 2003, Thm. 1), at the cost of not holding uniformly for all
posteriors. We note that, due to the square root, this is a slow-rate bound. By adapting a proof
technique introduced by Catoni (2007, Thm. 1.2.6), McAllester (2013, Eq. (21)) derived the following
alternative bound: for all γ ∈ R, and with probability at least 1− δ under PZ ,

dγ(EPW |Z [LZ(W )] || EPW |Z [LPZ
(W )]) ≤ 1

n

(
D(PW |Z ||QW ) + log

1

δ

)
. (2)

Here, dγ(q || p) = γq − log(1− p+ peγ), and one can show that supγ dγ(q || p) = d(q || p), where
d(q || p) indicates the KL divergence between two Bernoulli distributions with parameters q and p
respectively. This bound, with dγ(q || p) replaced by d(q || p), slightly improves the dependence on
the sample size n as compared to an earlier bound reported in (Seeger, 2002, Thm. 1), but again at the
cost of losing uniformity over posteriors. Let q = EPW |Z [LZ(W )] and let c denote the right-hand
side of (2). To use the result in (2) to bound the population loss, we need to find

p∗(q, c) = sup{p : p ∈ [0, 1], d(q || p) ≤ c}. (3)

This is the largest population loss that satisfies the inequality (2). For small q and c, we have p∗(q, c) ≈
c, which gives us a fast-rate bound. More generally, for any permissible values of q and c, the bound
in (2) can be weakened to obtain the following fast-rate bound (McAllester, 2013, Thm. 2): for all
λ ∈ (0, 1), and with probability at least 1− δ under PZ ,

EPW |Z [LPZ
(W )] ≤ 1

λ

[
EPW |Z [LZ(W )] +

D(PW |Z ||QW ) + log 1
δ

2(1− λ)n

]
. (4)

Note that the faster decay in n of this bound comes at the price of a multiplication of the training loss
and the KL term by a constant that is larger than 1. As a consequence, if the training loss or the KL
term are large, this multiplicative constant may make the fast-rate bound in (4) quantitatively worse
than the slow-rate bound in (1) for a fixed n. In the so called interpolating setting, where the training
loss is 0, we can set λ = 1/2 in (4) and conclude that it is enough for the square-root term in (1) to
be smaller than 1/4 for the fast-rate bound (4) to be tighter than the slow-rate bound (1). Additional
insights on the tightness of these bounds are provided in (Letarte et al., 2019, Thm. 3).

We now turn to the random-subset setting introduced by Steinke & Zakynthinou (2020), and described
in Section 1.2. In (Steinke & Zakynthinou, 2020, Thm. 2), several bounds on the average population
loss are derived for loss functions bounded between 0 and 1, including the following slow-rate and
fast-rate bounds:

EPWZ̃S
[LPZ

(W )] ≤ EPWZ̃S

[
LZ(S)(W )

]
+

√
2I(W ;S|Z̃)

n
(5)

EPWZ̃S
[LPZ

(W )] ≤ 2EPWZ̃S

[
LZ(S)(W )

]
+

3I(W ;S|Z̃)

n
. (6)

Similar to the bound in (4), the price for a fast rate is a multiplicative constant in front of the training
loss and the mutual information term. The slow-rate bound in (5) was improved in (Haghifam et al.,
2020, Thm. 3.4) by combining the samplewise approach from (Bu et al., 2019) with the disintegration
approach in (Negrea et al., 2019), whereby the expectation over Z̃, which is implicit in the definition
of CMI, is pulled outside of the square root. As we detail in the following proposition, the bound
in (Haghifam et al., 2020, Thm. 3.4) can be further tightened by also pulling out the expectation with
respect to the conditional distribution PW |Z̃ from the square root. The proof of the resulting bound,
which is novel, is deferred to Appendix A.1.
Proposition 1. Consider the random-subset setting described in Section 1.2. Then,

EPWZ̃S
[LPZ

(W )] ≤ EPWZ̃S

[
LZ(S)(W )

]
+

1

n

n∑
i=1

EPWZ̃

[√
2D(PSi|WZ̃ ||PSi

)
]
. (7)
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We recover (Haghifam et al., 2020, Thm. 3.4) by applying Jensen’s inequality to move the expectation
with respect to PW |Z̃ inside the square root. Furthermore, we recover (5) by applying Jensen’s
inequality once more to move the remaining expectation over PZ̃ and the the empirical average over i
inside the square root and by upper-bounding the resulting sum of samplewise CMIs by I(W ;S|Z̃).

In (Hellström & Durisi, 2020b), the slow-rate average loss bound (5) was extended to the PAC-
Bayesian setting and the single-draw setting through the use of an exponential inequality. Specifically,
the following bounds on the test loss LZ(S̄)(W ) are derived: with probability at least 1−δ under PZ̃S ,

EPW |Z̃S

[
LZ(S̄)(W )

]
≤ EPW |Z̃S

[
LZ(S)(W )

]
+

√
2

n

(
D(PW |Z̃S ||PW |Z̃) + log

1

δ

)
. (8)

Furthermore, with probability at least 1− δ under PWZ̃S ,

LZ(S̄)(W ) ≤ LZ(S)(W ) +

√
2

n

(
ı(W,S|Z̃) + log

1

δ

)
. (9)

While the bounds in (8) and (9) pertain to the test loss instead of the population loss, one can obtain
population loss bounds by adding a penalty term to (8) and (9), as discussed in (Hellström & Durisi,
2020b, Thm. 2). However, when comparing the bounds to the empirical performance of learning
algorithms, the population loss is unknown. Thus, in practice, one has to resort to evaluating a test
loss. In Section 3 below, we will derive fast-rate analogues of the tail bounds (8) and (9), again at the
price of multiplicative constants.

3 FAST-RATE RANDOM-SUBSET BOUNDS

We now present an exponential inequality from which several test loss bounds can be derived, in a
similar manner as was done in (Hellström & Durisi, 2020b). The derivation, which echos part of the
proof of (Steinke & Zakynthinou, 2020, Thm. 2.(3)), is provided in Appendix A.2. This result and
its proof illustrate how to combine the exponential-inequality approach from (Hellström & Durisi,
2020b) with fast-rate derivations, like those presented in (Steinke & Zakynthinou, 2020, Thm. 2.(3))
and (McAllester, 2013, Thm. 2).
Theorem 1. Consider the random-subset setting introduced in Section 1.2. LetW ∈ W be distributed
according to PW |Z(S) = PW |Z̃S . Also, assume that the joint distribution PWZ̃S = PW |Z̃SPZ̃PS

is absolutely continuous with respect to QW |Z̃PZ̃PS for some conditional prior QW |Z̃ . Then, the
following holds:

EPWZ̃S

[
exp

(
n

3
LZ(S̄)(W )− 2n

3
LZ(S)(W )− log

dPWZ̃S

dQW |Z̃PZ̃S

)]
≤ 1. (10)

Note that the exponential function in (10) depends linearly on the population loss. In contrast,
the exponential inequality derived in (Hellström & Durisi, 2020b, Thm. 4) to establish slow-rate
generalization bounds for the random-subset setting depends quadratically on the population loss
(after the parameter λ therein is suitably optimized). This difference explains why Theorem 1 allows
for the derivation of fast-rate bounds, whereas (Hellström & Durisi, 2020b, Thm. 4) unavoidably
leads to slow-rate bounds. Also note that, since in the random-subset setting W and Z̃ are dependent
both before and after any change of measure argument, the proof technique used in (McAllester, 2013,
App. A) and, previously in (Seeger, 2002, Thm. 1), to derive (2) cannot be used in the random-subset
setting.

By simple applications of Jensen’s inequality and Markov’s inequality, the exponential inequality (10)
can be used to derive bounds on the population loss or test loss. In particular, as detailed in the proof
of Corollary 1 below (see Appendix A.3), it can be used to recover (6), but also to establish novel
PAC-Bayesian and single-draw versions of (6).
Corollary 1. Consider the setting of Theorem 1. Then, the average population loss is bounded by

EPWZ̃S
[LPZ

(W )] ≤ 2EPWZ̃S

[
LZ(S)(W )

]
+

3EPZ̃S

[
D(PW |Z̃S ||QW |Z̃)

]
n

. (11)
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Furthermore, with probability at least 1− δ over PZ̃S , the PAC-Bayesian test loss is bounded by

EPW |Z̃S

[
LZ(S̄)(W )

]
≤ 2EPW |Z̃S

[
LZ(S)(W )

]
+

3
(
D(PW |Z̃S ||QW |Z̃) + log 1

δ

)
n

. (12)

Finally, with probability at least 1− δ over PWZ̃S , the single-draw test loss is bounded by

LZ(S̄)(W ) ≤ 2LZ(S)(W ) +
3
(

log
dPWZ̃S

dQW |Z̃PZ̃S
+ log 1

δ

)
n

. (13)

Setting QW |Z̃ = PW |Z̃ in (11), we recover the CMI bound in (Steinke & Zakynthinou, 2020)

since EPZ̃S

[
D(PW |Z̃S ||PW |Z̃)

]
= I(W ;S|Z̃). As illustrated in Corollary 2 below, the bound on

the average population loss in (11) can be tightened by replacing the CMI with a sum of samplewise
CMIs. The proof of this result, which involves the same argument used to establish Proposition 1, is
presented in Appendix A.4.

Corollary 2. Consider the setting of Theorem 1. Then, the average population loss is bounded by

EPWZ̃S
[LPZ

(W )] ≤ 2EPWZ̃S

[
LZ(S)(W )

]
+

n∑
i=1

3I(W ;Si|Z̃)

n
. (14)

The bounds in (12) and (13) are data-dependent, i.e., they depend on the specific instances of Z̃ and S.
They can be turned into data-independent bounds that are functions of the average of the information
measures appearing in (12) and (13), at the cost of a less benign polynomial dependence on the
confidence parameter δ. Alternatively, one can obtain bounds that have a more benign dependence
on δ if one allows the bounds to depend on sufficiently high moments of the information measures
appearing in (12) and (13), or if one replaces these measures by quantities such as conditional maximal
leakage or conditional α-divergence. See (Hellström & Durisi, 2020b) for further discussion.

We conclude by noting that for the interpolating case where LZ(S)(W ) = 0, and under the additional
assumption that QW |Z̃ = PW |Z̃ , one can obtain a different exponential inequality than the one re-
ported in Theorem 1, which leads to tighter bounds than the ones reported in Corollary 1. Specifically,
in these alternative bounds, the factor 3 is replaced with a factor of 1/ log(2) ≈ 1.44. These bounds
are presented in Appendix B.

4 EXPERIMENTS

To assess the ability of the bounds just discussed to predict the performance of overparameterized
NNs, we next present the result of several numerical experiments for different NN architectures.
Specifically, we consider fully connected NNs (FCNNs) and convolutional NNs (CNNs). The
performance of the networks is evaluated on the MNIST and Fashion-MNIST data sets. The bounds
that we will consider are (8), (9), (12) and (13), where we set the loss function to be the classification
error defined in Section 1.2.

The following procedure is used to evaluate the bounds: from the 2n available training samples
Z̃ (from MNIST or Fashion-MNIST), the training set Z(S) is constructed by selecting n training
samples uniformly at random. A network is then trained on this data set using a standard SGD
procedure, which is described in more detail in Appendix C.2. Let µ1 be the the vector containing
the weights of the network after training. The posterior distribution PW |Z̃S is then chosen to be a
Gaussian distribution with mean µ1 and covariance matrix equal to σ2

1Id, where d is the number of
parameters in the network. The standard deviation σ1 is chosen as the largest real number, determined
to some finite precision (see Appendix C.2), for which the absolute value of the difference between the
training loss of the network with weights µ1 and the empirical average of the training loss achieved
by 5 NNs with weights randomly drawn fromN (W | µ1, σ

2
1Id) is less than some specified threshold.

Unless otherwise specified, we use a threshold of 0.05 for MNIST and 0.10 for Fashion-MNIST.
Note that this procedure is performed for a fixed Z(S). Consequently, σ1 depends on Z̃ and S.
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To select the prior QW |Z̃ , we proceed as follows. We form 10 subsets of Z̃, each of size n. The first

subset contains the first n samples in Z̃, the last contains the last n samples in Z̃, and the remaining
subsets contain the linearly spaced sequences in between. We then train one NN on each subset
and denote the average of the final weights of these networks by µ2. Finally, we choose QW |Z̃ as a
Gaussian distribution with mean µ2 and covariance matrix σ2

2Id. To select σ2, we proceed as follows.
First, we determine the largest real number σ̃2, again to some finite precision, for which the absolute
value of the difference between the training loss of a NN with weights µ2 and the empirical average
of the training loss of 5 NNs with weights drawn from N (W | µ2, σ̃

2
2Id) is below the selected

threshold. Note that this time the training loss is evaluated over the entire data set Z̃, so that there is
no dependence on S. We then use σ̃2 to form a set of 27 candidate values for σ2, from which we pick
the one that results in the tightest bound on the test loss. This procedure, the details of which are
given in Appendix C.2, typically results in σ2 = σ1. Note that the prior and the posterior distribution
satisfy the assumptions needed for the bounds (8), (9), (12) and (13) to hold. Indeed, (µ1, σ1) depend
on Z̃ only through Z(S), while (µ2, σ2) are independent of S but depend on Z̃.

Equipped with these Gaussian distributions, we evaluate the bounds by noting that, for the chosen
prior and posterior, the Radon-Nikodym derivatives in (9) and (13) reduce to likelihood ratios, and
the KL divergences in (8) and (12) can be evaluated as

D(PW |Z̃S ||QW |Z̃) =
‖µ1 − µ2‖22

σ2
2

+ d

(
σ2

1

σ2
2

+ log
σ2

2

σ2
1

− 1

)
. (15)

Since the MNIST and Fashion-MNIST data sets are fixed and we are unable to draw several data sets
from some underlying data distribution, we evaluate our bounds for these particular instances of Z̃.
We do however have control over S, so we run experiments for 10 instances of S and present the
resulting mean as well as standard deviation. Note that since we pick the training set uniformly at
random from Z̃, we implicitly randomize over the ordering of the elements of Z̃.

Our results are obtained by setting δ ≈ 0.001 as the confidence parameter. However, since the bounds
are optimized over the choice of σ2, we need to use a union bound argument (Dziugaite & Roy,
2017; Dziugaite et al., 2020) to guarantee that the final slow-rate and fast-rate bounds hold for all
of these candidates simultaneously. As a consequence, the bounds depicted in the figure hold with
probability at least 95%. The test loss and training loss are computed empirically by averaging the
performance of 5 NNs whose weights are sampled from N (W | µ1, σ

2
1Id). For the FCNNs, we use

the notation WL to denote an architecture consisting of L hidden layers with width W . For the case
of CNNs, we consider the modified LeNet-5 architecture used in (Zhou et al., 2019) and (Dziugaite
et al., 2020). Detailed descriptions of these architectures are provided in Appendix C.1.

In Figure 1, we study the dependence of the bounds on the number of training epochs. The shaded
areas around the curves correspond to two standard deviations. The differences between the PAC-
Bayesian and the single-draw bounds turn out to be negligible, so we include only the PAC-Bayesian
bounds in the figure. The networks are optimized using SGD either with or without momentum.
Specifically, in Figures 1a–d, we use SGD without momentum, while in Figures 1e–f, we use SGD
with momentum. In Figures 1a–d, we look at the early training epochs, while in Figures 1e–f, we
train the networks until a small training loss (on the order of 0.001) is achieved. More details about
the training procedures are given in Appendix C.2.

As seen in Figures 1a–d, where SGD without momentum is used, the bounds on the test loss are
fairly accurate for both architectures, and both MNIST and Fashion-MNIST. As previously discussed,
the relative ordering of the slow-rate bounds and the fast-rate bounds from a quantitative standpoint
depends on the details of the learning setup. In particular, higher values for the training loss and
information measures tend to make the slow-rate bounds tighter due to their smaller constant factors.
As a consequence, the fast-rate bounds are superior for the MNIST data set, for which low training
loss and information measures are achieved, while the slow-rate bounds are tighter for the more
challenging Fashion-MNIST data set. Note that, due to the training procedure used, the underlying
deterministic NNs upon which Figures 1a–d are based never reach training errors below a few percent.

To shed light on the relationship between the results presented in Fig. 1a–d and previously obtained
bounds, we compare our bounds on the test loss with those reported in (Dziugaite et al., 2020), which
established the best available PAC-Bayesian bounds for the settings we consider. The approach used

7
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(a) LeNet-5, MNIST, no momentum
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(b) 6002 FCNN for MNIST, no momentum
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(c) LeNet-5, Fashion-MNIST, no momentum
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(d) 6002 FCNN, Fashion-MNIST, no momentum
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(e) LeNet-5, MNIST, momentum, low threshold
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(f) LeNet-5, MNIST, momentum, high threshold

Figure 1: The estimated training losses and test losses as well as the slow-rate (8) and fast-rate (12)
PAC-Bayesian bounds on the test loss for two NNs trained on MNIST or Fashion-MNIST. The
shaded regions correspond to two standard deviations. In (a)–(d), we perform training using SGD
without momentum with a decaying learning rate. In (e)–(f), we use SGD with momentum and a
fixed learning rate. Further details on the experimental setup are given in Appendix C.

therein is similar to the random-subset setting considered in this paper, in that the authors make use
of a data-dependent prior. The key differences with respect to the framework considered in this paper
is that the posterior in Dziugaite et al. (2020) is allowed to depend on the entire data set Z̃, whereas
the training loss and prior depend on randomly selected disjoint subsets of Z̃. In contrast, in the
random-subset setting considered in this paper, the prior is allowed to depend on the entire data set
Z̃, whereas the training loss and posterior depend only on a randomly selected portion Z(S) of Z̃.

8
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For the case in which training is performed using SGD, the minimum test loss bounds (averaged
over 50 runs) for MNIST reported in (Dziugaite et al., 2020, Fig. 4) are approximately 0.13 for
LeNet-5 and 0.18 for the 6002 FCNN. These values are similar to our best bounds, which are 0.15 for
LeNet-5 and 0.19 for the 6002 FCNN. For LeNet-5 trained on Fashion-MNIST, our tightest bound on
the test loss is 0.35, whereas the corresponding one in (Dziugaite et al., 2020, Fig. 4) is approximately
0.36. Taking error bars into account, our bounds are not clearly distinguishable from those reported
in (Dziugaite et al., 2020, Fig. 4). It is important to mention that significantly tighter bounds are
reported in (Dziugaite et al., 2020, Fig. 5) for the case in which the PAC-Bayesian bound considered
therein is used as a regularizer during the training process. Such a direct optimization of the bound
does not appear to be feasible for the random-subset setting considered in this paper.

Next, we discuss the results presented in Figures 1e–f. As shown in the figure, while our bounds
become tighter in the initial phase of training, they lose tightness as training progresses when
momentum is used and smaller training errors (on the order of 0.001) are reached for the deterministic
NNs. This is similar to what is noted by Dziugaite et al. (2020, p. 12). Specifically, when the
underlying deterministic NN therein is trained to achieve very low errors (or equivalently, is trained
for many epochs), the PAC-Bayesian bound they consider becomes loose, and the corresponding
stochastic NN has a significantly higher test error than the underlying deterministic NN.

Finally, the difference in behavior of our bounds in Figure 1e and Figure 1f illustrates the role played
by the variances σ1 and σ2. In Figure 1e, we set the threshold used to determine σ1 and σ2 to 0.05,
which leads to small values for σ1 and σ2. In Figure 1f, we use a threshold of 0.15 instead, which
allows for larger variances. The results illustrate the intuitive fact that larger variances yield better
generalization bounds at the cost of a higher true test error.

Further numerical experiments, in which we study how the bounds evolve as a function of the size of
the training set, and how they are affected by randomized labels, are reported in Appendix D.

5 CONCLUSION

We have studied information-theoretic bounds on the test loss in the random-subset setting, in which
the posterior and the training loss depend on a randomly selected subset of the available data set, and
the prior is allowed to depend on the entire data set. In particular, we derived new fast-rate bounds
for the PAC-Bayesian and single-draw settings. Provided that the information measures appearing in
the bounds scale sublinearly with n, these fast-rate bounds have a better asymptotic dependence on n
than the slow-rate PAC-Bayesian and single-draw bounds previously reported in (Hellström & Durisi,
2020b), at the price of larger multiplicative constants. We also presented improvements on previously
presented bounds on the average loss by using samplewise information measures and disintegration.

Through numerical experiments, we show that our novel fast-rate PAC-Bayesian bound, as well
as its slow-rate counterpart, result in test-loss bounds for some overparameterized NNs trained
through SGD that essentially match the best available bounds in the literature (Dziugaite et al., 2020).
Furthermore, the single-draw counterparts of these bounds, which are as tight as the PAC-Bayesian
bounds, are applicable also to deterministic NNs trained through SGD and with Gaussian noise
added to the final weights. On the negative side, as illustrated in Fig. 1e, the bounds turn out to be
loose when applied to NNs trained to achieve very small training errors. Moreover, the additional
experiments described in Appendix D reveal that the bounds overestimate the number of training
samples needed to guarantee generalization, and that they become vacuous when randomized labels
are introduced.

Still, the results demonstrate the value of the random-subset approach in studying the generalization
capabilities of NNs, and show that fast-rate versions of the available information-theoretic bounds
can be beneficial in this setting. In particular, the random-subset setting provides a natural way
to select data-dependent priors, namely by marginalizing the learning algorithm PW |Z̃S over S,
either exactly or approximately. Such data-dependent priors are a key element in obtaining tight
information-theoretic generalization bounds (Dziugaite et al., 2020).
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A PROOFS

A.1 PROOF OF PROPOSITION 1

Consider a fixed hypothesis w ∈ W and a supersample z̃ ∈ Z2n. Due to the boundedness of `(·, ·),
the random variable ĝeni(w, z̃, Si) = `(w,Zi(S̄i)) − `(w,Zi(Si)) is bounded to [−1, 1] for i =
1, . . . , n, and it has zero mean. Subgaussianity then implies that the following holds for all λ > 0:

EPSi
[exp(λĝeni(w, z̃, Si))] ≤ exp

(
λ2

2

)
. (16)

Now, let E(w, z̃) ≡ supp(PSi|wz̃) denote the support of PSi|wz̃ , where PSi|wz̃ is shorthand for the
distribution PSi|W=w,Z̃=z̃ . Then, with 1E(w,z̃) denoting the indicator function of E(w, z̃),

EPSi

[
1E(w,z̃) · exp(λĝeni(w, z̃, Si))

]
≤ exp

(
λ2

2

)
. (17)

Through a change of measure from PSi
to PSi|wz̃ (Polyanskiy & Wu, 2019, Prop. 17.1), we get (after

reorganizing terms)

EPSi|wz̃

[
exp

(
λĝeni(w, z̃, Si)−

λ2

2
− log

dPSi|wz̃

PSi

)]
≤ 1. (18)

We now have a disintegrated, samplewise exponential inequality. Next, we use Jensen’s inequality
and then minimize over λ to find that

EPSi|wz̃
[ĝeni(w, z̃, Si)] ≤ min

λ>0

λ2

2 + EPSi|wz̃

[
log

dPSi|wz̃

PSi

]
λ

=

√
2EPSi|wz̃

[
log

dPSi|wz̃

PSi

]
. (19)

We now use that EPSi|wz̃

[
log

dPSi|wz̃

PSi

]
= D(PSi|wz̃ ||PSi

) and then take the expectation with respect
to PWZ̃ to find that

EPWZ̃Si

[
ĝeni(W, Z̃, Si)

]
≤ EPWZ̃

[√
2D(PSi|WZ̃ ||PSi)

]
. (20)
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The desired bound then follows because

EPWZ̃S

[
LPZ

(W )− LZ(S)(W )
]

=
1

n

n∑
i=1

EPWZ̃Si

[
ĝeni(W, Z̃, Si)

]
(21)

≤ 1

n

n∑
i=1

EPWZ̃

[√
2D(PSi|WZ̃ ||PSi)

]
. (22)

A.2 PROOF OF THEOREM 1

The proof essentially mimics parts of the derivation of (Steinke & Zakynthinou, 2020, Thm. 2.(3)).
For convenience, we begin by proving an exponential inequality for a binary random variable X
satisfying P (X = a) = P (X = b) = 1/2 where a, b ∈ [0, 1]. Also, let X̄ = b if X = a and X̄ = a
if X = b. Finally, let λ, γ > 0 and c = eλ − 1− λ. Then,

E
[
eλ(X−γX̄)

]
≤ E

[
1 + λ

(
X − γX̄

)
+ c

(
X − γX̄

)2]
(23)

= 1 +
λ(1− γ)

2
(a+ b) +

c

2
(a− γb)2

+
c

2
(b− γa)

2
. (24)

Here, the first inequality follows because ey ≤ 1 + y + cy2/λ2 for all y ≤ λ. Expanding the squares
and removing negative terms, we find that

E
[
eλ(X−γX̄)

]
≤ 1 +

λ(1− γ)

2
(a+ b) +

c(1 + γ2)

2

(
a2 + b2

)
(25)

≤ 1 + λ(1− γ) + (eλ − 1− λ)(1 + γ2). (26)

In view of (10), we are interested in values of λ and γ such that λ(1−γ)+(eλ−1−λ) ·(1+γ2) ≤ 0,
so that the left-hand side of (26) is no larger than 1. Furthermore, it will turn out convenient to
select pairs (λ, γ) so that λ is as large as possible and γ is as small as possible. A possible choice
is λ = 1/3 and γ = 2.1 Thus, we conclude that

E
[
e

1
3 (X−2X̄)

]
≤ 1. (27)

Next, we will apply (27) with X = `(w,Zi(S̄i)) and X̄ = `(w,Zi(Si)) for fixed w and z̃. Note
that these random variables satisfy the required assumptions on X and X̄ , since the loss function is
supported on [0, 1] and the random variables Si are Bernoulli distributed. Let QWZ̃ = QW |Z̃PZ̃ . It
then follows that

EQWZ̃PS

[
e

n
3

(
LZ(S̄)(W )−2LZ(S)(W )

)]
= EQWZ̃

[
n∏
i=1

EPSi

[
e

1
3

(
`(W,Zi(S̄i))−2`(W,Zi(Si))

)]]
≤ 1.

(28)
Now let E = supp(PWZ̃S). Then,

EQWZ̃PS

[
1E · e

n
3

(
LZ(S̄)(W )−2LZ(S)(W )

)]
≤ 1. (29)

The desired result follows after a change of measure to PWZ̃S (Polyanskiy & Wu, 2019, Prop. 17.1).

A.3 PROOF OF COROLLARY 1

We begin by applying Jensen’s inequality to (10) to move the expectation inside the exponential. We
then obtain (11) by simply taking the logarithm of both sides and reorganizing terms.

To derive (12), we first apply Jensen’s inequality in (10), this time only with respect only PW |Z̃S , to
get

EPZ̃S

[
exp

(
EPW |Z̃S

[
n

3
LZ(S̄)(W )− 2n

3
LZ(S)(W )

]
−D(PW |Z̃S ||QW |Z̃)

)]
≤ 1. (30)

1Another permissible choice is λ = 1/2.98 and γ = 1.795. It turns out that this choice leads to tighter
bounds for the setup considered in Section 4. Hence, it will be used in that section.
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We now use Markov’s inequality in the following form. Let U ∼ PU be a nonnegative random
variable satisfying E[U ] ≤ 1. Then,

PU [U ≤ 1/δ] ≥ 1− E[U ] δ ≥ 1− δ. (31)

Applying (31) to (30) we find that, with probability at least 1− δ under PZ̃S ,

exp

(
EPW |Z̃S

[
n

3
LZ(S̄)(W )− 2n

3
LZ(S)(W )

]
−D(PW |Z̃S ||QW |Z̃)

)
≤ 1

δ
. (32)

Taking the logarithm and reorganizing terms, we obtain (12).

Finally, to derive (13), we apply (31) to (10) immediately to conclude that, with probability at
least 1− δ under PWZ̃S ,

exp

(
n

3
LZ(S̄)(W )− 2n

3
LZ(S)(W )− log

dPWZ̃S

dQW |Z̃PZ̃S

)
≤ 1

δ
. (33)

The desired bound (13) follows after taking the logarithm and reorganizing terms.

A.4 PROOF OF COROLLARY 2

Consider a fixed w ∈ W and z̃ ∈ Z2n. As shown in Appendix A.2,

EPSi

[
e

1
3 (`(w,Zi(S̄i))−2`(w,Zi(Si)))

]
≤ 1. (34)

Let E = supp(PSi|wz̃), where PSi|wz̃ is short for PSi|W=w,Z̃=z̃ . By changing measure we get

EPSi

[
1E · e

1
3 (`(w,Zi(S̄i))−2`(w,Zi(Si)))

]
= EPSi|wz̃

[
e

1
3 (`(w,Zi(S̄i))−2`(w,Zi(Si)))−log

dPSi|wz̃

dPSi

]
≤ 1.

(35)
Moving the expectation inside the exponential through the use of Jensen’s inequality and taking the
logarithm, we get

EPSi|wz̃

[
`(w,Zi(S̄i))

]
≤ 2EPSi|wz̃

[`(w,Zi(Si))] + 3EPSi|wz̃

[
log

dPSi|wz̃

dPSi

]
. (36)

= 2EPSi|wz̃
[`(w,Zi(Si))] + 3I(W ;Si|Z̃). (37)

The desired result now follows by noting that

EPWZ̃S
[LPZ

(W )] = EPWZ̃

[
1

n

n∑
i=1

EPSi|wz̃

[
`(w,Zi(S̄i))

]]
(38)

and applying (37) to each term in the sum in (38).

B FAST-RATE BOUNDS FOR THE INTERPOLATING CASE

In this section, we discuss how to tighten the bound in Corollary 1 under the additional assumption
that the training loss LZ(S)(W ) is 0 for all W ∼ PW |Z(S) (interpolating assumption), and for the
special case QW |Z̃ = PW |Z̃ .

We begin by proving the following exponential inequality, the derivation of which is similar to part of
the proof of the realizable fast-rate bound from (Steinke & Zakynthinou, 2020).

Proposition 2. Consider the setting of Theorem 1, with the additional assumption that LZ(S)(W ) =
0 for all W ∼ PW |Z(S) and that QW |Z̃ = PW |Z̃ . Then,

EPWZ̃S

[
exp
(
n log 2 · LZ(S̄)(W )− ı(W,S|Z̃)

)]
≤ 1. (39)

13



Under review as a conference paper at ICLR 2021

Proof. Let λ, γ > 0. Furthermore, let S′ be independent of W , Z̃, and S, and distributed as S.
Then,

EPWZ̃S

[
n∏
i=1

(
1

2
eλ`(W,Zi(S̄i))−γ`(W,Zi(Si)) +

1

2
eλ`(W,Zi(Si))−γ`(W,Zi(S̄i))

)]
(40)

=EPWZ̃SPS′

[
n∏
i=1

eλ`(W,Zi(S̄
′
i))−γ`(W,Zi(S

′
i))

]
= EPWZ̃PS

[
n∏
i=1

eλ`(W,Zi(S̄i))−γ`(W,Zi(Si))

]
. (41)

Let E = supp(PWZ̃S). It now follows from (41) that

EPWZ̃PS

[
1E · en(λLZ(S̄)(W )−γLZ(S)(W ))

]
≤ EPWZ̃PS

[
n∏
i=1

eλ`(W,Zi(S̄i))−γ`(W,Zi(Si))

]
(42)

=EPWZ̃S

[
n∏
i=1

(
1

2
eλ`(W,Zi(S̄i))−γ`(W,Zi(Si)) +

1

2
eλ`(W,Zi(Si))−γ`(W,Zi(S̄i))

)]
. (43)

We now change measure to PWZ̃S to conclude that

EPWZ̃S

[
en(λLZ(S̄)(W )−γLZ(S)(W ))−ı(W,S|Z̃)

]
≤EPWZ̃S

[
n∏
i=1

(
1

2
eλ`(W,Zi(S̄i))−γ`(W,Zi(Si)) +

1

2
eλ`(W,Zi(Si))−γ`(W,Zi(S̄i))

)]
.

(44)

We now use the interpolating assumption, set λ = log 2, and let γ →∞. These steps, together with
the assumption that `(W,Zi(S̄i)) ∈ [0, 1], imply that the right-hand side of (44) is no larger than 1.
From this, the desired result follows.

Using Proposition 2, we can derive bounds that are analogous to those of Corollary 1. We present
these bounds below without proof, since they can be established following steps similar to the ones
used to prove Corollary 1.
Corollary 3. Consider the setting of Proposition 2. Then, the average population loss is bounded by

EPWZ̃S
[LPZ

(W )] ≤ I(W ;S|Z̃)

n log 2
. (45)

Furthermore, with probability at least 1− δ over PZ̃S , the PAC-Bayesian population loss is bounded
by

EPW |Z̃S

[
LZ(S̄)(W )

]
≤
D(PW |Z̃S ||PW |Z̃) + log 1

δ

n log 2
. (46)

Finally, with probability at least 1− δ over PWZ̃S , the single-draw population loss is bounded by

LZ(S̄)(W ) ≤
ı(W,S|Z̃) + log 1

δ

n log 2
. (47)

Finally, we present a samplewise bound that tightens Corollary 2 under the interpolating assumption.
Its derivation is inspired by the techniques used to establish Proposition 1 and Proposition 2.
Corollary 4. Consider the setting of Proposition 2. Then, the average population loss is bounded by

EPWZ̃S
[LPZ

(W )] ≤
n∑
i=1

I(W ;Si|Z̃)

n log 2
. (48)

Proof. Let λ, γ > 0 and let S′i be independent of W , Z̃, and Si, and distributed as Si. Then, for all i,

EPWZ̃S

[(
1

2
eλ`(W,Zi(S̄i))−γ`(W,Zi(Si)) +

1

2
eλ`(W,Zi(Si))−γ`(W,Zi(S̄i))

)]
(49)

=EPWZ̃Si
PS′

i

[
eλ`(W,Zi(S̄

′
i))−γ`(W,Zi(S

′
i))
]

= EPWZ̃PSi

[
eλ`(W,Zi(S̄i))−γ`(W,Zi(Si))

]
. (50)
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We now let E = supp(PWZ̃Si
). It follows from (49)–(50) that

EPWZ̃PSi

[
1E · eλ`(W,Zi(S̄i))−γ`(W,Zi(Si))

]
≤EPWZ̃S

[(
1

2
eλ`(W,Zi(S̄i))−γ`(W,Zi(Si)) +

1

2
eλ`(W,Zi(Si))−γ`(W,Zi(S̄i))

)]
.

(51)

By performing a change of measure from PWZ̃PSi to PWZ̃Si
we conclude that

EPWZ̃Si

[
eλ`(W,Zi(S̄i))−γ`(W,Zi(Si))−ı(W,Si|Z̃)

]
≤EPWZ̃S

[(
1

2
eλ`(W,Zi(S̄i))−γ`(W,Zi(Si)) +

1

2
eλ`(W,Zi(Si))−γ`(W,Zi(S̄i))

)]
.

(52)

Here, ı(W,Si|Z̃) = log
dPWZ̃Si

dPWZ̃PSi
. We now use the interpolating assumption, set λ = log 2, and

let γ →∞. These steps, together with the assumption that `(·, ·) ∈ [0, 1], imply that the right-hand
side of (52) is no larger than 1. Thus,

EPWZ̃Si

[
elog 2·`(W,Zi(S̄i))−ı(W,Si|Z̃)

]
≤ 1. (53)

Next, we use Jensen’s inequality to move the expectation in (53) inside the exponential. Taking the
logarithm and reorganizing terms, we get

EPWZ̃Si

[
`(W,Zi(S̄i))

]
≤ EPWZ̃Si

[
ı(W,Si|Z̃)

log 2

]
=
I(W ;Si|Z̃)

log 2
. (54)

The result now follows because

EPWZ̃S
[LPZ

(W )] = EPWZ̃S

[
1

n

n∑
i=1

`(W,Zi(S̄i))

]
≤

n∑
i=1

I(W ;Si|Z̃)

n log 2
. (55)

C EXPERIMENT DETAILS

Here, we provide a detailed description of the network architectures and training procedures con-
sidered in this paper. We also note that, when evaluating the fast-rate bounds (12) and (13), we use
the constants 1.975 and 2.98 in place of 2 and 3, respectively. This choice leads to valid bounds, as
pointed out in Appendix A.2.

C.1 NETWORK ARCHITECTURES

The LeNet-5 architecture used in the numerical results is described in Table 1. This is different from
most standard implementations of LeNet-5, but coincides with the architecture used by Zhou et al.
(2019) and Dziugaite et al. (2020). It has 431 080 parameters. The fully connected neural network
denoted by 6002 consists of an input layer with 784 units, 2 fully connected layers with 600 units and
ReLU activations, followed by an output layer with 10 units and softmax activations. It has 837 610
parameters.

C.2 TRAINING PROCEDURES

We now provide additional details on the training procedures described in Section 4. The initial
weights of all the networks used for each instance of Z(S) were set to the same randomly selected
values drawn from a zero-mean normal distribution with standard deviation 0.01. All networks
were trained using the cross-entropy loss, optimized using either SGD with momentum and a fixed
learning rate or SGD without momentum and a decaying learning rate. First, we describe the details
of SGD with momentum. For MNIST, we used a learning rate of 0.001, and for Fashion-MNIST, we
used 0.003. In all experiments, the momentum parameter is set to 0.9. We used a batch size of 512.
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Table 1: The LeNet-5 architecture used in Section 4.

Convolutional layer, 20 units, 5× 5 size, linear activation, 1× 1 stride, valid padding
Max pooling layer, 2× 2 size, 2× 2 stride
Convolutional layer, 50 units, 5× 5 size, linear activation, 1× 1 stride, valid padding
Max pooling layer, 2× 2 size, 2× 2 stride
Flattening layer
Fully connected layer, 500 units, ReLU activation
Fully connected layer, 10 units, softmax activation

For SGD without momentum, we used a decaying learning rate schedule, where the learning rate α
for a given epoch E is given by

α(E) =
α0

1 + γ · bE/E0c
. (56)

Here, α0 is the initial learning rate, γ is the decay rate, and E0 is the number of epochs between each
decay. In all experiments, we used α0 = 0.01, γ = 2, and E0 = 20. Again, we used a batch size of
512.

To choose σ1, we pick the largest value with one significant digit (i.e., of the form a · 10−b with a ∈
[1 : 9] and b ∈ Z) such that the absolute value of the difference between the training loss on Z(S) of
the deterministic network with weights µ1 and empirical average of the training loss of 5 NNs with
weights drawn independently from N (W | µ1, σ

2
1Id) was no larger than some specified threshold.

When producing the results reported in Figure 2 and Figures 1a–d, we used a threshold of 0.05
for MNIST, while for Fashion-MNIST, we used a threshold of 0.10. In Appendix D, we perform
additional experiments with other thresholds. Specifically, for Figure 1e, we use a threshold of 0.05,
while we use a threshold of 0.15 for Figure 1f. For the randomized label experiment in Table 2, we
use a threshold of 0.10.

To find σ2, we use as starting point the same procedure as for determining σ1, but with µ2 in place
of µ1 and the training loss evaluated on all of Z̃. Let us call the value found by this procedure σ′2 =

a′ · 10−b
′
. Then, among the values of the form a · 10−b with a ∈ [1 : 9] and b ∈ {b′ − 1, b′, b′ + 1},

we choose σ2 to be the one that minimizes the bound on the test loss. In all our experiments, this
procedure resulted in σ2 = σ1. To guarantee that the final bound holds with a given confidence level,
all 27 bounds resulting from all possible choices of a and b need to hold with the same confidence
level. Since we consider both slow-rate and fast-rate bounds, a total of 54 bounds need to hold
simultaneously. We ensure that this is the case via the union bound. Thus, if each individual bound
holds with probability at least 1− δ, the optimized bounds hold with probability at least 1− 54δ. We
compute the bounds with δ = 0.05/54, so the optimized bounds hold with 95% confidence.

D ADDITIONAL EXPERIMENTS

D.1 DEPENDENCE ON THE SIZE OF THE TRAINING SET

In this section, we study the dependence of the bounds on the size n of the training set. We perform
experiments for different values of n by restricting Z̃ to be a 2n-dimensional randomly chosen subset
of the set of 6 · 104 training samples available in MNIST and Fashion-MNIST. The training set Z(S)
is then formed by selecting n of these samples at random. We then train a network, either LeNet-5
or the 6002 FCNN, on this restricted training set, until the training error is lower than some target
error. For MNIST, we use a target training error of 0.05, while we use 0.15 for Fashion-MNIST. The
results are shown in Figure 2.

As seen in Figure 2, the bounds on the test loss for large values of n are fairly accurate for both of
these architectures, especially so for MNIST. However, they are loose for smaller values of n. As
previously discussed, the relative ordering of the slow-rate bounds and the fast-rate bounds from a
quantitative standpoint depends on the details of the learning setup. In particular, higher values for
the training loss and information measures tend to make the slow-rate bounds tighter due to their
smaller constant factors.
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(a) LeNet-5, MNIST
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(b) 6002 FCNN, MNIST
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(c) LeNet-5, Fashion-MNIST
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(d) 6002 FCNN, Fashion-MNIST

Figure 2: The estimated training losses and test losses as well as the slow-rate (8) and fast-rate (12)
PAC-Bayesian bounds on the test loss for two NNs trained on MNIST or Fashion-MNIST. These
slow-rate and fast-rate PAC-Bayesian bounds essentially coincide with the the single-draw bounds
in (9) and (13) respectively. The shaded regions correspond to two standard deviations.

Table 2: The estimated training errors, test errors, and the corresponding slow-rate (8) and fast-
rate (12) PAC-Bayesian generalization bounds for LeNet-5 trained on binarized MNIST with partially
corrupted labels.

Randomized labels 25% 50% 75% 100%

Training error 0.106 0.088 0.090 0.081
Test error 0.216 0.364 0.461 0.494
Slow-rate bound 5.561 9.811 10.45 11.67
Fast-rate bound 44.52 141.0 160.1 200.4

D.2 RANDOMIZED LABELS

In order to examine the behavior of our bounds in an overfitting scenario, we consider data sets with
partially randomized labels. Specifically, we set the labels of a fixed proportion of both the training
and test sets of MNIST uniformly at random, and then perform training using SGD with momentum
as described in Appendix C. In order to simplify training with randomized labels, we consider a
binarized version of MNIST where the digits 0, . . . , 4 are merged into one class and 5, . . . , 9 into
another. The results are shown in Table 2. The slow-rate bound is computed using (8), while the
fast-rate bound is based on (12). As usual, the quantitative difference between these bounds and the
corresponding single-draw bounds in (9) and (13) is negligible.
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As shown in Table 2, our bounds become vacuous when randomized labels are used. The fast-rate
bound is significantly worse than its slow-rate counterpart, which is to be expected: when the prior
and posterior are selected using randomized labels, a larger discrepancy between them arises. This
increases the value of the KL divergence in (8) and (12), which, as previously discussed, penalizes
the fast-rate bound more. We note, though, that the qualitative behavior of the bounds is in agreement
with the empirically evaluated test error: an increased proportion of randomized labels, and thus an
increased test error, is accompanied by an increase in the values of our bounds. Furthermore, the
slow-rate bound consistently overestimates the test error by a factor of approximately 25.

To the best of our knowledge, all bounds available in the literature for overfitting situations such as
the one considered in this section are vacuous. The best result can be found in (Dziugaite & Roy,
2017, Tab. 1), where an FCNN with one hidden layer is trained on a binarized version of MNIST
with fully randomized labels. Despite directly optimizing the evaluated PAC-Bayesian bound as part
of the training procedure, the obtained test error bound of 1.365 is vacuous.
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