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Abstract

Transfer learning aims to leverage knowledge from pre-trained models to benefit
the target task. Prior transfer learning work mainly transfers from a single model.
However, with the emergence of deep models pre-trained from different resources,
model hubs consisting of diverse models with various architectures, pre-trained
datasets and learning paradigms are available. Directly applying single-model
transfer learning methods to each model wastes the abundant knowledge of the
model hub and suffers from high computational cost. In this paper, we propose
a Hub-Pathway framework to enable knowledge transfer from a model hub. The
framework generates data-dependent pathway weights, based on which we assign
the pathway routes at the input level to decide which pre-trained models are ac-
tivated and passed through, and then set the pathway aggregation at the output
level to aggregate the knowledge from different models to make predictions. The
proposed framework can be trained end-to-end with the target task-specific loss,
where it learns to explore better pathway configurations and exploit the knowledge
in pre-trained models for each target datum. We utilize a noisy pathway generator
and design an exploration loss to further explore different pathways throughout
the model hub. To fully exploit the knowledge in pre-trained models, each model
is further trained by specific data that activate it, which ensures its performance
and enhances knowledge transfer. Experiment results on computer vision and rein-
forcement learning tasks demonstrate that the proposed Hub-Pathway framework
achieves the state-of-the-art performance for model hub transfer learning.

1 Introduction

With the emergence of large-scale datasets, various large-scale deep models are developed in wide
range of areas such as computer vision [18, 65, 72] and natural language processing [16, 6]. These
models not only show state-of-the-art performance in the tasks that they are designed for, but also
achieve high performance when fine-tuned on various downstream tasks with different distributions.
On the other hand, due to the requirement of large-scale annotated data, deep learning is still difficult
to apply in specific domains without sufficient data [34]. Therefore, transfer learning, which aims to
transfer knowledge from existing models and datasets to the target task, has attracted more and more
attention recently [75, 6].

Current deep learning paradigm tends to increase the scale of the pre-trained model to embed more
knowledge into the model, which can be transferred to more diverse tasks [25, 6]. However, infinitely
increasing the model scale requires machines with larger storage and stronger GPUs, which are
expensive and cost much energy. Instead, many pre-trained models from different resources are
already available, including pre-trained on diverse datasets or tasks, e.g. ImageNet for classifica-
tion [55], or BERT for language modelling [16], pre-trained with diverse learning paradigms, e.g.
supervised learning [29], self-supervised learning [19] or unsupervised learning [9] and with various
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architectures, e.g. single-stage [42] or two-stage models [28] for object detection. These diverse
models contain abundant knowledge and introduce low costs in both training and inference. Thus,
there is a high motivation to enable knowledge transfer from all of these models. We define the
problem as model hub transfer learning, where a model hub consists of pre-trained models from
different resources.

Human beings also face the same problem of transfer learning from a model hub, where the different
pre-trained models are similar to different regions of our brains specializing in different tasks. When
solving a new task, human beings only call on the most relevant region of the brain to address it.
Recently, Dean et al. [15] also proposed the outlook that the next-generation AI architecture should
activate different parts of the model to solve different tasks. Motivated by these, we design pathways
to activate different pre-trained models for prediction depending on the input data. However, there
exist two challenges in designing such pathways. Firstly, how to explore and find the optimal pathway
configuration to activate the most relevant models for each target datum? Secondly, even knowing
which pre-trained models to use, how to aggregate and exploit the knowledge in them?

We propose a new Hub-Pathway framework to address the above challenges, which enables effective
knowledge transfer from a model hub. We design an architecture with the pathway route at the
input level to select which pre-trained models to activate, and the pathway aggregation at the output
level to aggregate the prediction from different pre-trained models. Both the pathway route and
the pathway aggregation are based on pathway weights generated data-dependently by a network.
We only activate the pathways with top k weights to avoid negative transfer of irrelevant models
and improve the efficiency of the framework. The framework is optimized by a task-specific loss
to ensure that the pathways introduce high transfer performance. To promote the exploration of the
pathways, we employ a noisy pathway generator and design an exploration loss to encourage the
framework to explore and compare different pathways and find better pathway configurations. To
promote the exploitation of the knowledge in the activated models, we further fine-tune the models
with the specific data activating them. In all, our contribution can be summarized as:

• We investigate the important problem of transfer learning from a model hub and propose a
general Hub-Pathway framework that can address different situations where models may be
trained from different datasets and learning paradigms and with diverse architectures. We
design data-dependent pathways to route different data to different models at the input level
and aggregate the transferred knowledge at the output level to make predictions.

• We promote the exploration and exploitation of the framework to enhance more effective
transfer learning from a model hub. We design a noisy pathway generator and an exploration
loss to encourage exploring more models and pathway configurations. We further propose to
fine-tune the activated models with specific data to fully utilize the transferred knowledge.

2 Related Work

Transfer Learning. Transfer learning is a learning paradigm to improve the performance of the
target task by transferring knowledge from source domains [49]. Early works transfer knowledge
by directly reusing features extracted by the pre-trained model [48, 17] and later works find that
fine-tuning the pre-trained model introduces higher transfer performance [2, 23]. As an easy and
effective transfer learning method, many empirical studies investigate the effectiveness of fine-tuning
on various downstream tasks and scenarios, such as classification [37, 73], few-shot learning [53],
medical imaging [52], object detection and instance segmentation [27]. Recently, several works have
explored the limitations of the vanilla fine-tuning method and developed new techniques to improve
the performance. To enable efficient transfer learning, residual adaptors [54] are introduced to tune
only a few parameters for the target tasks. Parameters of fine-tuned models can be averaged, which
promotes the performance while keeping the inference efficiency [64]. Various fine-tuning methods
have also been proposed, including regularizing the parameters [67] or features [40, 10] and exploring
category relationships [70] or category intrinsic structures [74] by auxiliary tasks. Several works
study the process of transfer learning, such as transferability of each layer in a pre-trained model [69]
and the effect of intrinsic dimensions [1]. However, these studies focus on fine-tuning from a single
model, and it remains unclear how to extend single-model transfer learning techniques to multiple
pre-trained models, where simply assembling every single model is inefficient.
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Transfer Learning with Multiple Models. In the presence of multiple pre-trained models, recent
works estimate the transferability of each pre-trained model and select the best one without the need
of fully fine-tuning each of them [62, 3, 47, 71, 5, 33]. But subject to the inaccurate measurement
of model transferability, which is a hard problem itself, such model-level selection may degrade the
performance and lose the rich knowledge in all the models since only a single best model is utilized.
To address this problem, several works propose to aggregate the features [56, 41] or parameters [59]
of all the pre-trained models. However, all of these methods assume that the pre-trained models form
a model zoo where all models have layer-to-layer correspondence or even share the same architecture,
which is unrealistic for the most general case of transfer learning with arbitrary models. We instead
propose model hub transfer learning to remove all these constraints on the pre-trained models and
realize the most general case of transfer learning.

Conditional Computation. Our method is also related to conditional computation or dynamic neural
networks [24], where parts of the network are active on a per-example basis. A type of conditional
computation method employs conditionally parameterized networks, which produce an adaptive
ensemble of the model parameters [68, 11]. A series of works [35, 14, 20, 13] introduce the idea of
multiple mixture-of-experts (MoE) [46] activated by data-adaptive gating networks. This idea has
been extended to foundation models, which employ mixture-of-experts layers to form outrageously
large neural networks [58, 21]. Different from these methods which create mixture-of-experts from
homogeneous networks with random initializations, our hub-pathway method simultaneously explores
the pathways through different pre-trained models with diverse knowledge and exploits the relevant
part of knowledge to enhance transfer learning performance on the downstream tasks.

3 Hub-Pathway

We first define the problem of model hub transfer learning. Then we introduce the Hub-Pathway frame-
work with delicate designs to boost its exploration and exploitation of the model hub, simultaneously
improving positive transfer of relevant knowledge and avoiding negative transfer.

The most common transfer learning scenario considers only one single pre-trained model Θ at hand to
serve the target task D = {(x,y)}. In model hub transfer learning, we consider a situation where we
have a hub of pre-trained models {Θ1,Θ2, · · · ,Θm}, where all models can differ in all the aspects
including the pre-training datasets, pretext tasks, learning paradigms and the network architectures.
This problem setting can be generally applied in various realistic problems even if the pre-trained
models are obtained from quite different resources.

Motivated by cognitive science and the pathway idea in deep networks, we propose a Hub-Pathway
framework to address the problem. We illustrate the architecture of our framework in Figure 1. We
modify pre-trained models by replacing their output head layers with target-task-specific output
layers, which form the models we will transfer from. As our motivation stated above, different data
have different relations with the pre-trained models and should activate and transfer knowledge from
different models. To realize this idea, we employ a pathway generator network G, which outputs
data-dependent pathway weights G(x) based on the input data x, with each dimension indicating
the weight of one specific model in the hub. The dense pathway weights in G(x) still activate all the
pathways to all the pre-trained models. To utilize the most suitable pre-trained models for the target
data, we only keep the top k pathway weights and set the rest pathway weights as 0:

Ḡ(x) = ftopk (G(x), k) ,where ftopk (G(x), k)i =

{
G(x)i G(x)i in the top k entries of G(x)

0 otherwise.
(1)

Such a design has two benefits: (1) the models with useful knowledge to each target datum are
transferred but those of negative influence will be eliminated; (2) there are only data forwarding and
back-propagation through the activated models, which makes both training and testing more efficient.

Based on the pathway weight G(x), we assign the pathway route at the input level as I
[
Ḡ(x) > 0

]
,

which only passes the input data through the pre-trained models with a pathway weight large than
0. The pathways with a 0 pathway weight are blocked and the corresponding models are not used
for the current data. Then at the output level, an aggregator network A composes the outputs from
different models with the pathway weights and outputs the final prediction of the model hub as
A
([
Ḡ(x)i ·Θi(x)

]m
i=1

)
, where the function [·] concatenates all the m vectors. To train the framework,
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Figure 1: The architecture of our Hub-Pathway framework. We showcase using four pre-trained
models Θ1, Θ2, Θ3, and Θ4, which are not changed in architecture but only fine-tuned in parameters.
We generate the pathway weights by a generator network G and only keep the top k pathway weights
while setting others as 0. We set a pathway route at the input level and a pathway aggregation at
the output level based on the pathway weights. The pathway route only makes the data pass the
pathway with the weight large than 0, while the pathway aggregation combines the predictions from
different pre-trained models. A final aggregation network A generates the final prediction based on
the transferred knowledge. The different colors are to highlight that for different input data, our
framework introduces different pathways to make the best use of pre-trained knowledge.

we then adopt a target-task-specific loss on the final prediction:

Ltask = E(x,y)∼Dℓ
(
A
([
Ḡ(x)i ·Θi(x)

]m
i=1

)
,y

)
, (2)

where ℓ is the target-task loss, e.g. cross-entropy loss for the classification task. Ltask ensures that the
derived pathway configuration and model parameters contribute to the high performance on the target
task, leading the framework to explore better pathways and exploit deeper the activated knowledge.

3.1 Enhancing Exploration on Hub Pathways

When optimized with only the task-specific loss, the pathway framework has the risk of over-fitting
and falling to a local optimum by trivially activating and repeatedly updating with a few specific
models, which ignores other potentially more useful models and wastes the rich knowledge in the hub.
Such a phenomenon is called hub collapse in this paper. With the aim of encouraging the exploration
of models with high transferability throughout the model hub, we design from the architecture level
and the loss level by employing a noisy pathway generator and introducing an exploration loss.

In order to implement a noisy pathway generator, G(x) is designed to embody a standard subnetwork
Gp and a randomized subnetwork Gn with ϵ drawn from a standard Gaussian distribution:

G(x) = Softmax
(
Gp(x) + ϵ · Softplus(Gn(x))

)
, ϵ ∼ N (0, 1), (3)

where Softmax(z) = exp(z)∑
z∈z exp(z) and Softplus(z) = log(1 + exp(z)). The standard part Gp(x)

reflects which models are preferred and the noise term Gn(x) adds some randomness to the pathway
weights, which encourages the framework to explore other models or configurations during training.

Taking the key idea of maximum-entropy reinforcement learning that maximizes the exploration
ability of the agent through the maximum entropy of the policy, we define the exploration loss Lexplore
by directly imposing a maximum-entropy regularization on the output of the pathway generator:

Lexplore = −H
(
E(x,y)∼DG(x)

)
, (4)

where H(z) = −
∑

i zi · log(zi) is the entropy function. The loss Lexplore maximizes the entropy of
the average pathway weights of all the target data. It enforces that from the viewpoint of the whole
dataset, all models have the chance to be activated and different pathways over the pre-trained models
are fully explored if they truly promote the target performance, thereby avoiding the hub collapse.
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3.2 Enhancing Exploitation in Activated Models

With the above pathway designs and losses, we can learn better data-dependent pathways for each
piece of target data. With the derived pathways, we know which pre-trained models to transfer
knowledge from, and there remains the question of how to fully exploit such knowledge. The task-
specific loss Ltask utilizes and updates the knowledge in activated models, but each model contributes
only a fraction to such prediction and optimization process. To further enhance the transfer of
knowledge and ensure the performance of the activated models, we further tune the pre-trained
models Θi|mi=1 with the task-specific loss on the specific data that activate them:

Lexploit =
∑m

i=1E(x,y)∼DI
(
Ḡ(x)i > 0

)
ℓ (Θi(x),y) . (5)

The above mechanism of further exploiting more useful models in the hub for each datum shares
similar spirit with reinforcement learning in exploiting the more rewarded states in the environments.

Empowering Hub-Pathway with exploration and exploitation, the final optimization problem becomes

argminG,A Ltask + λ · Lexplore

argminΘi|mi=1
Ltask + Lexploit,

(6)

where we use a trade-off λ between the target-task-specific loss and the exploration-encouraging loss
since they have different scales. Ltask and Lexploit are both derived from the target-task-specific loss
with the same scale, and thus no trade-off is needed. Our Hub-Pathway framework simultaneously
explores data-dependent pathway configurations throughout the model hub and exploits the activated
models by aggregating their useful knowledge and enhancing knowledge transfer to downstream
tasks. The framework can be trained in an end-to-end way. The computation cost at both the training
and testing time is at most k times of the single model fine-tuning, which is much more efficient than
a naive ensemble of multiple models with the computation cost linearly increasing with the hub size.

4 Experiments

To verify that Hub-Pathway framework can address the general model hub transfer learning problem,
we conduct experiments on tasks including image classification, facial landmark detection and rein-
forcement learning, which are proposed in [59]. In addition to the model hub with the homogeneous
architecture evaluated by prior works, we also conduct experiments on different downstream tasks
with the model hub consisting of pre-trained models with heterogeneous architectures, which is a
more general situation that cannot be solved effectively by existing works.

4.1 Transfer Learning in Image Classification

Homogeneous Model Hub. Previous work of Zoo-Tuning [59] explores a hub of models with
the homogeneous architecture. We follow this setting and use 5 ResNet-50 models pre-trained on
5 widely-used computer vision datasets: (1) Supervised pre-trained model and (2) Unsupervised
pre-trained model with MOCO [26] on ImageNet [55], (3) Mask R-CNN [28] model for detection
and instance segmentation, (4) DeepLabV3 [8] model for semantic segmentation, and (5) Keypoint
R-CNN model for keypoint detection, pre-trained on COCO-2017 challenge datasets of each task. All
pre-trained models are drawn from torchvision model hub [50] or from the original implementation.

Heterogeneous Model Hub. To verify that Hub-Pathway could address more general model hub
transfer learning settings, we further conduct experiments on a model hub consisting of models with
heterogeneous architectures. We consider a model hub consisting of some other famous architectures
including MobileNetV3 [32], EfficientNet [61], Swin Transformer [43] and ConvNeXt [44]. For the
MobileNetV3 architecture, we use the MobileNetV3-Large-1.0 pre-trained model, which achieves
the best performance in this model family. For the last three architectures, we use EfficientNet-B3
(EffNet-B3), Swin-Transformer-Tiny (Swin-T) and ConvNeXt-Tiny (ConvNeXt-T), which achieve
comparable performance when pre-trained on ImageNet. We also utilize the Mask R-CNN model
mentioned above to further increase the diversity of the training data and tasks in the hub.

Benchmarks. We verify the efficacy of Hub-Pathway on 7 various classification tasks evaluated
in [59], including: (1) General classification benchmarks with CIFAR-100 [39] and COCO-70 [70];
(2) Fine-grained benchmarks for aircraft (FGVC Aircraft [45]), car (Stanford Cars [38]) and indoor
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Table 1: Results on the classification benchmarks with the homogeneous model hub.

Model General Fine-Grained Specialized Avg.CIFAR COCO Aircraft Cars Indoors DMLab EuroSAT

ImageNet 81.18 81.97 84.63 89.38 73.69 74.57 98.43 83.41
MoCo 75.31 75.66 83.44 85.38 70.98 75.06 98.82 80.66
MaskRCNN 79.12 81.64 84.76 87.12 73.01 74.73 98.65 82.72
DeepLab 78.76 80.70 84.97 88.03 73.09 74.34 98.54 82.63
Keypoint 76.38 76.53 84.43 86.52 71.35 74.58 98.34 81.16

Ensemble 82.26 82.81 87.02 91.06 73.46 76.01 98.88 84.50
Distill 82.32 82.44 85.00 89.47 73.97 74.57 98.95 83.82
K-Flow 81.56 81.91 85.27 89.22 73.37 75.55 97.99 83.55
ModelSoups 81.32 82.94 85.24 90.32 75.61 74.29 98.65 84.05
Zoo-Tuning-L 83.39 83.50 85.51 89.73 75.12 75.22 99.12 84.51
Zoo-Tuning 83.77 84.91 86.54 90.76 75.39 75.64 99.12 85.16

Hub-Pathway 83.31 84.36 87.52 91.72 76.91 76.47 99.12 85.63

scene (MIT-Indoors [51]) classification; (3) Specialized benchmarks collected from the DeepMind
Lab environment (DMLab [4]) and Sentinel-2 satellite (EuroSAT [30]). We follow the common
fine-tuning principle and replace the last layer with a randomly initialized fully connected layer [69].
We conduct each experiment 3 times with different seeds and report the average top-1 accuracy.

Implementation Details. We follow the standard fine-tuning principle in [69]. The source task-
specific heads in the pre-trained models are replaced with newly initialized fully connected layers as
the target task-specific heads. We adopt the SGD optimizer with an initial learning rate of 0.01 and
momentum of 0.9. The models are trained for 15k iterations with a batch size of 48. The learning rate
is decayed by a rate of 0.1 at the 6k-th and 12k-th iterations. We fine-tune the pre-trained models and
train the pathway generator and aggregator simultaneously on the target data. The pathway generator
is implemented as a 9-layer ResNet [29]. We run the experiments 3 times and report the mean results
of top-1 accuracy. For all the datasets, we follow the same dataset split as in [59].

Results on Homogeneous Model Hub. We show the results on all the benchmarks in Table 1.
We compare with fine-tuning from each single pre-trained model, the ensemble by voting of the
predictions of different pre-trained models after fine-tuning (Ensemble), knowledge distillation from
the Ensemble model (Distill) and model zoo transfer learning methods including: Knowledge
Flow [41] (K-Flow), ModelSoups [64], Zoo-Tuning-L and Zoo-Tuning [59]. For our method,
we activate top-2 models for each datum in all our experiments. Hub-Pathway outperforms all
the compared methods. In particular, different pre-trained models also show different transfer
performances on different benchmarks, which demonstrates that different pre-trained models have
different transferability to different target tasks. We can also get the results of a ‘Domain Expert’
baseline which chooses the best single model for each task. We observe that methods using all the
pre-trained models outperform Domain Expert, which demonstrates that the model hub contains
much more abundant knowledge than a single model and proves the practical use of the model hub
transfer learning setting. Hub-Pathway and Zoo-Tuning both outperform Ensemble and Distill, which
demonstrates that a simple ensemble of pre-trained models may not fully utilize the knowledge in
the model hub and also may cause different pre-trained models to influence each other. K-Flow
and Zoo-Tuning-L perform similarly to Ensemble, which shows that a task-level model aggregation
strategy does not maximally utilize the knowledge in the model hub. Finally, our Hub-Pathway
outperforms Zoo-Tuning and Zoo-Tuning-L even though Zoo-Tuning is specially designed to address
the situation that all the pre-trained models have the same architecture. The observation demonstrates
that Hub-Pathway finds more transferable models and better transfer knowledge from them.

Results on Heterogeneous Model Hub. Previous work of Knowledge Flow requires manually
designing the connections of different layers across different models and applying feature transforma-
tion between them. It cannot work in such a model hub with heterogeneous architectures since the
correspondence between layers of different pre-trained models is unknown, and their features have
different shapes and structures. Zoo-Tuning has an even stricter constraint of the same architecture of
the models in the hub, which limits its application in such a more general situation. Therefore, we
only compare our method with single-model transfer learning, Ensemble and Distill. From Table 2,
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Table 2: Results on the classification benchmarks with the heterogeneous model hub.

Model General Fine-Grained Specialized Avg.CIFAR COCO Aircraft Cars Indoors DMLab EuroSAT

MaskRCNN 79.12±0.06 81.64±0.39 84.76±0.30 87.12±0.09 73.01±0.45 74.73±0.46 98.65±0.05 82.72
MobileNetV3 83.14±0.10 83.28±0.05 80.26±0.03 86.37±0.61 75.09±0.19 70.09±0.24 98.95±0.11 82.45
EffNet-B3 87.28±0.21 86.97±0.08 83.99±0.09 89.34±0.13 78.16±0.16 72.69±0.27 99.13±0.01 85.37
Swin-T 84.37±0.12 84.12±0.01 80.82±0.27 89.10±0.09 73.39±0.34 72.22±0.24 98.69±0.05 83.24
ConvNeXt-T 86.96±0.10 87.15±0.09 84.23±0.57 90.67±0.04 81.66±0.07 73.80±0.11 98.65±0.04 86.16

Ensemble 87.72±0.19 88.04±0.07 87.11±0.28 92.68±0.33 82.79±0.26 74.86±0.14 99.23±0.01 87.49
Distill 87.33±0.16 88.09±0.25 85.26±0.32 91.39±0.19 81.51±0.29 74.75±0.20 99.24±0.02 86.80

Hub-Pathway 89.01±0.06 89.14±0.12 88.12±0.14 92.93±0.20 84.40±0.22 74.80±0.23 99.26±0.06 88.24

we observe that Hub-Pathway outperforms all these methods in most of the tasks. Note that, with
the activation of 2 models for each input, the training and inference cost of Hub-Pathway is much
less than the strong Ensemble method. The observation demonstrates that compared with existing
methods, Hub-Pathway is an effective and efficient solution to more general situations.

4.2 Transfer Learning in Facial Landmark Detection

We conduct experiments on the Facial Landmark Detection datasets to further demonstrate that Hub-
Pathway can be applied to a wide range of applications. We use the same model hub as the image
classification setting in Section 4.1 and transfer to three facial landmark detection tasks: 300W [57],
WFLW [66], and COFW [7], which creates a large domain gap between pre-trained models and
the target task. We generally follow the protocol in [60] and the standard training scheme in [66].
In testing, each keypoint location is predicted by transforming the highest heat value location to the
original image space and adjusting it with a quarter offset in the direction from the highest response
to the second highest response [12].

Implementation Details. For the facial landmark detection experiments, we generally follow the
training and testing protocols in [60] and the standard training scheme in [66]. The models are trained
for 60 epochs with a batch size of 16 using the Adam optimizer. The learning rate is set as 0.0001
initially and is decayed by a rate of 0.1 at the 30-th and 50-th epochs. In testing, each keypoint
location is predicted by transforming the highest heat value location to the original image space and
adjusting it with a quarter offset in the direction from the highest response to the second highest
response [12]. We follow the same data split and pre-processing as in [60]. All the faces are cropped
by the provided boxes according to the center location and resized to 256× 256. We augment the
data by ±30 degrees in-plane rotation, 0.75 ∼ 1.25 scaling, and random flipping.

Table 3: NME results on facial landmark detection
tasks. Smaller values mean better performance.

Model 300W WFLW COFW

From Scratch 3.66 5.33 4.20
ImageNet 3.52 4.90 3.66
MoCo 3.45 4.75 3.63
MaskRCNN 3.53 4.87 3.67
DeepLab 3.53 4.89 3.73
Keypoint 3.50 4.90 3.66

Ensemble 3.33 4.64 3.46
Distill 3.45 4.74 3.53
K-Flow 3.71 5.28 4.58
Zoo-Tuning 3.41 4.58 3.51

Hub-Pathway 3.33 4.54 3.51

Results. We use the inter-ocular distance as
normalization and report the normalized mean
error (NME) for evaluation in Table 3, where
smaller values mean better performance. We ob-
serve that fine-tuning from a single pre-trained
model outperforms training from scratch, which
demonstrates that knowledge transfer generally
improves the target performance even though
the pre-trained models are trained from differ-
ent tasks. K-Flow and Zoo-Tuning perform
worse than Ensemble with a non-trivial margin
in most of the tasks, which demonstrates that
they fail to extract and transfer generalizable
knowledge and thus do not perform well under a
large domain gap between the pre-trained mod-
els and the target task. Hub-Pathway instead
outperforms Ensemble on the WFLW task and
achieves a comparable performance to Ensem-
ble on the 300W and COFW. It is worth noting
that Hub-Pathway is much more efficient in com-
putation and memory than Ensemble. The results demonstrate that Hub-Pathway could generalize
across tasks even with large domain gaps.
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Figure 2: Results of model hub transfer learning to three reinforcement learning tasks in Atari games.

4.3 Transfer Learning in Reinforcement Learning

To demonstrate the generalizability of the proposed Hub-Pathway framework to various domains and
tasks, we further conduct experiments on reinforcement learning models.

Benchmarks. Current reinforcement learning algorithms have already achieved human-level perfor-
mance on Atari games, but suffer from the low data efficiency with the requirement of a large amount
of interaction steps. So we measure our method at 100k interaction steps on Atari, which is similar
to the time to train a human learner. We use the Seaquest and Riverraid tasks as source tasks and
construct the model hub consisting of optimal policies for the source tasks. We then transfer to 3
downstream tasks: Alien, Gopher, and JamesBond.

Implementation Details. For the learning algorithm, we follow the implementation of Data-Efficient
Rainbow [63], which modifies hyper-parameters of Rainbow [31] for data efficiency. The model of
Data-Efficient Rainbow consists of 2 convolutional layers: 32 filters of size 5 × 5 with the stride
of 5 and 64 filters of size 5 × 5 with the stride of 5, followed by a flatten layer and 2 noisy linear
layers [22] with the hidden size of 256. We use Adam optimizer [36] with a learning rate of 1× 10−4.
Other hyper-parameters are kept the same as those in [63]. We repeat each experiment 5 times with
different seeds and report the mean and variance of the results.

Results. We show the transfer learning performance to the three downstream tasks in Figure 2. We
compare with several methods, including training from scratch, fine-tuning every single model, and
two multi-model transfer learning methods: Knowledge Flow [41] and Zoo-Tuning [59]. Compared
with Zoo-Tuning, which is a method tailored for this setup, Hub-Pathway slightly outperforms it on
Gopher and achieves comparable performance on Alien and JamesBond. Note that our method is
generally applied to various architectures of pre-trained models but still works well in the homoge-
neous architecture setting. In particular, fine-tuning from a single model converges to the same or
even worse reward than training from scratch, which demonstrates that brutely fine-tuning does not
improve the performance in reinforcement learning. Our Hub-Pathway framework fully utilizes the
transferred knowledge from the pre-trained policies and thus improves the target task performance.

4.4 Analysis

Analysis on Pathway Weights. We visualize the average pathway weight of each pre-trained model
on all the target data in different datasets in Figure 3(a). We observe that for different datasets, the
distribution of average pathway weight across all the pre-trained models are different. The observation
demonstrates the challenge that different pre-trained models have different transferability to the target
task, and the proposed Hub-Pathway could assign different pathway weights to different models.

The above results demonstrate that Hub-Pathway assigns diverse weights to different pre-trained
models. To further verify the quality of weights, we fine-tune all the pre-trained models on the target
dataset and select the samples that can be classified correctly by at least one of the models in the
model hub from each dataset. Then an accurate pathway weight should assign the highest pathway
weight to at least one of the models with the correct prediction. For each sample, we make the
prediction in two ways: one is to use the model with the highest pathway weight and the other is to
use a randomly selected model from the model hub. We report the prediction accuracy of these two
ways on the selected samples in different datasets in Figure 3(b). The results show that the selected
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Figure 3: (a) The average pathway weights of different models for different datasets; (b) The quality
of the learned pathway weights; (c) The target performance with respect to different choices of k.

model with the highest pathway weight performs much better than a uniformly sampled model, which
indicates that the learned pathway can find which pre-trained models are more transferable.

Visualization of Pathway Weights. We visualize some images from the COCO-70, Aircraft, Stanford
Cars and MIT-Indoors datasets along with their pathway weights assigned by the trained Hub-Pathway
in Figure 4. We observe that the proposed Hub-Pathway can truly learn some data-dependent pathway
weights. Overall, different data can be assigned with diverse pathway weights to use the most
transferable knowledge in the model hub. Each model has the chance to play their roles in prediction,
which enables fully using the rich knowledge in the hub. Besides, some similar samples (such as
the left two images on the first row) may have similar pathway weights. We also observe that the
ImageNet pre-trained model generally contributes more to these samples from object recognition
tasks, which is also consistent with our understanding of the relationship between pre-training and
downstream tasks.

Variants of Hub-Pathway. We conduct experiments on the variants of Hub-Pathway to verify
the efficacy of each component in our framework: (1) Hub-Pathway w/ random path replaces
the learned data-dependent pathway with a random pathway, which aims to verify the learned
pathway actually finds the more transferable models; (2) Hub-Pathway w/o explore removes the
loss Lexplore, which may learn pathways discarding some pre-trained models; (3) Hub-Pathway
w/o exploit removes the loss Lexploit, which does not fine-tune the activated models with the ex-
ploit loss. We conduct experiments by transferring to the tasks of COCO and Cars. The results
are shown in Table 4. We observe that Hub-Pathway outperforms Hub-Pathway w/o explore,

Table 4: Ablation study on Hub-Pathway.
Method COCO Cars

Pathway w/ random path 80.97 90.61
Pathway w/o explore 81.34 89.75
Pathway w/o exploit 80.10 90.59
Hub-Pathway 84.36 91.72

demonstrating that it is important to explore
more pathway configurations. Hub-Pathway
outperforms Hub-Pathway w/o exploit, show-
ing that fine-tuning the activated models en-
courages knowledge transfer to the target task.
Hub-Pathway outperforms Hub-Pathway w/
random path, which demonstrates that the pro-
posed framework learns a non-trivial pathway
to select the most transferable pre-trained mod-
els for the target data prediction.

Choice of k in ftopk. Our framework only activates the models within the highest top k pathway
weights. We investigate the influence of the value k on the final target performance in Fig 3(c). We
observe that the performance does not change rapidly with respect to k except for k = 1, which
means that aggregating the knowledge from different pre-trained models is important. It indicates
that we can use the Hub-Pathway framework for efficient transfer learning from the model hub.

The Need of Data-Dependent Pathways. Switching models in the dataset or task level cannot
fully use the knowledge in the model hub since different target data may have different relations
to pre-trained models even in the same dataset. As shown in Table 5, we report the prediction
performance of the best model for each dataset (Best Single), the ensemble of the best k models for
each task (Ensemble Top-k, k=2), and using the best model for each data point (Oracle). Note that
here both Best Single and Ensemble Top-k choose models at the task level, and we use the same
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Figure 4: Visualization of test samples along with their pathway weights.

Table 5: Ablation results on the classification benchmarks with the homogeneous model hub.

Model General Fine-Grained Specialized Avg.CIFAR COCO Aircraft Cars Indoors DMLab EuroSAT

Best Single 81.18 81.97 84.97 89.38 73.69 75.06 98.82 83.58
Ensemble Top-k 82.85 83.24 85.55 90.05 74.16 75.48 98.83 84.31
Hub-Pathway 83.31 84.36 87.52 91.72 76.91 76.47 99.12 85.63
Oracle 88.52 89.17 92.84 94.86 83.91 84.71 99.37 90.48

model(s) to predict all the test data in the task. While for Oracle, we predict each test data point with
the oracle model performing the best on this data point (the oracle model is chosen by comparing the
model outputs with the true label of each test data point), which is a more fine-grained instance-level
selection. We observe that Oracle outperforms both Ensemble Top-k and Best Single with a large
margin, which indicates that the instance-level model selection is important and the data-dependent
pathway is necessary. Also, we observe that Hub-Pathway outperforms Ensemble Top-k, which
shows that Hub-Pathway is a good attempt to explore data-dependent pathways.

5 Conclusion

In this paper, we propose a Hub-Pathway framework to enable knowledge transfer from a hub of
diverse pre-trained models. We design an architecture with data-dependent pathways to control which
pre-trained models are used for the current data at the input level and aggregate the outputs from
activated pre-trained models at the output level. The framework is optimized by a task-specific loss to
ensure that the pathways introduce high transfer performance. We employ a noisy pathway generator
and design an exploration loss to encourage the framework to explore and compare different pathways.
To promote the exploitation of the knowledge in the activated models, we further fine-tune the models
with the specific data activating them. Experimental results on model hubs with homogeneous and
heterogeneous architectures demonstrate that the proposed framework achieves the state-of-the-art
performance for model hub transfer learning.
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