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Distinguished Quantized Guidance for Diffusion-based Sequence
Recommendation

Anonymous Author(s)∗

Abstract
Diffusion models (DMs) have emerged as promising approaches
for sequential recommendation due to their strong ability to model
data distributions and generate high-quality items. Existing work
typically adds noise to the next item and progressively denoises it
guided by the user’s interaction sequence, generating items that
closely align with user interests. However, we identify two key
issues in this paradigm. First, the sequences are often heteroge-
neous in length and content, exhibiting noise due to stochastic user
behaviors. Using such sequences as guidance may hinder DMs from
accurately understanding user interests. Second, DMs are prone to
data bias and tend to generate only the popular items that dominate
the training dataset, thus failing to meet the personalized needs of
different users. To address these issues, we propose Distinguished
Quantized Guidance for Diffusion-based Sequence Recommenda-
tion (DiQDiff), which aims to extract robust guidance to understand
user interests and generate distinguished items for personalized
user interests within DMs. To extract robust guidance, DiQDiff in-
troduces Semantic Vector Quantization (SVQ) to quantize sequences
into semantic vectors (e.g., collaborative signals and category in-
terests) using a codebook, which can enrich the guidance to better
understand user interests. To generate distinguished items, DiQDiff
personalizes the generation through Contrastive Discrepancy Max-
imization (CDM), which maximizes the distance between denoising
trajectories using contrastive loss to prevent biased generation for
different users. Extensive experiments are conducted to compare
DiQDiff with multiple baseline models across four widely-used
datasets. The superior recommendation performance of DiQDiff
against leading approaches demonstrates its effectiveness in se-
quential recommendation tasks.

CCS Concepts
• Information systems→ Recommender systems.
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1 Introduction
Sequential recommendation [15, 36, 41] focuses on capturing user
interests through their historical interaction sequences to predict
the next item with which the user will interact. Unlike traditional
discriminative recommenders such as GRU4Rec [9], LSTM4Rec [47],
and SASRec [15]) that aim to score and rank items, generative rec-
ommenders [18, 27, 33, 34] have emerged as promising alternatives,
which emphasize the importance of item distribution modeling and
generate the next item with generative models, such as GANs [6],
VAEs [30] and, diffusion models [3]. Among these options, diffusion
models (DMs) have recently gained attention in sequential recom-
mendation [18, 22, 24, 44], due to their strong training stability and
generation quality. Specifically, by progressively introducing noise
to the ground-truth next-item representation and then gradually
removing the noise guided by the user’s interaction sequence, DMs
learn to model the next item’s distribution and have shown great
potential in generating items that closely align with user interests.

When adapting diffusion models to sequential recommendation
tasks, especially as item generators, there are two essential ques-
tions to answer: 1) How to extract accurate and robust guidance
information for diffusion? And 2) how to effectively generate per-
sonalized item recommendations with the provided guidance. De-
spite the considerable success, DMs also introduce new challenges
while answering the aforementioned questions:

• Heterogeneous and Noisy Guidance: The guidance aims to
encode user interests based on the given historical interaction
sequences, so that it could serve as a personalized condition [46]
and enhance the accuracy of the subsequent item generation
process. However, user interaction sequences in recommenda-
tion tasks are typically heterogeneous in lengths and contents
[16, 17]. For example, a low-activity user may sparse interaction
history records in recent days (and may only have one inter-
acted item in extreme cases), then the guidance encoding may no
longer provide sufficient information for the diffusion process.
Even for users with longer history sequences, the interaction
of items may contain noisy signals [8] due to stochastic user
behavior (e.g., misclick [19]). As illustrated in Figure 1, with the
existence of noisy and sparse user sequences, the corresponding
sequence encoding is susceptible to ambiguity. This may impede
the model from accurately capturing user interests and conse-
quently hinder the following generation process from exploiting
this information.

• Biased Generation: Given the obtained guidance information,
diffusion models estimate the added noise and remove it gradu-
ally [10]. However, the denoising process that generates items
is prone to mode collapse and similar generation issues [12],
especially when biases occur in input data [26, 31]. For example,
some popular items may appear in a large portion of the data,
which will receive sufficient training and precise generation, but
may potentially overwhelm the learning of underrepresented
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Figure 1: Challenges in adapting DMs to the sequential recommendation: (left) the heterogeneous (e.g., sparse) or noisy (e.g.,
mis-click) sequences as guidance, and (right) the biased generation in the item embedding space.

items and their patterns. In terms of recommendation perfor-
mance, this would result in the generation of unbalanced items
as shown on the right side of Figure 1, which may amplify the
bias [25, 26, 43] and restrict DMs from meeting the personalized
interests of different users. Ideally, different users have their own
personalized interests [35], which requires the generation to ex-
plicitly distinguish these differences. Even in the case where two
users interact with the same item, we believe it is reasonable to
assume that they may reach this item from different perspectives.

To tackle the aforementioned problems, we proposeDistinguished
Quantized Guidance for Diffusion-based Sequence Recommenda-
tion (DiQDiff). Specifically, we introduce a Semantic Vector Quan-
tization (SVQ) module to quantize sequences into semantic vectors
(that encodes collaborative signals and category interests) with a
discrete codebook. As demonstrated in Figure 1, by combining the
quantized vectors with original sequences, the guidance can be
enhanced with underlying semantic patterns. Intuitively, the en-
hanced guidance information can provide recognizable information
even with sparse interaction sequences and provide a smoothed
representation given noisy signals. On the other hand, to distin-
guish personalized views and mitigate biased generation, we design
a Contrastive Discrepancy Maximization (CDM) module, which
pushes away the denoised item representations from different user
interaction sequences with contrastive loss. In practice, the quan-
tization module (i.e., SVQ) may introduce extra risks generating
biased results since the codebook itself may reduce the utilization
of more precise signals. Fortunately, the CDM can prevent DMs
from generating similar items for different users, which forces the
model to learn the different patterns from the enhanced guidance.
We conducted experiments to validate the effectiveness of DiQD-
iff by comparing the recommendation performance with multiple
baseline models, including both traditional recommenders and gen-
erative recommenders. Extensive experimental results demonstrate
that DiQDiff achieves state-of-the-art among multiple leading ap-
proaches across four benchmark datasets.

We summarize the contribution of this paper as follows:

• We identify the challenges of heterogeneous and noisy guidance,
and biased generation in diffusion-based recommender systems,
and propose a novel framework DiQDiff to address them.

• To the best of our knowledge, DiQDiff is the first work to in-
vestigate the combination of guidance vector quantization and
distinguished generation in DMs for sequential recommendation.

• We conducted extensive experiments in four public datasets, and
the results demonstrate the superiority of our method.

2 Related Work
2.1 Sequential Recommendation
Sequential recommendation (SR) formulates a next-item prediction
task which aims to capture user preferences based on the historical
interaction sequence and predict his/her next interaction. Tradi-
tional SR solutions that have been widely adopted in practice are
discriminative models such as GRU4Rec [9], Time-LSTM [47], and
SASRec [15]. They represent items in representation space and
learn to predict the next item based on interaction sequences while
keeping the decision different from sampled negatives. Recently,
researchers have found that the next-item recommendation can also
be formulated as an item generation task, taking advantage of the
superior distribution modeling ability of generative models such as
VAE [30, 34, 42], GANs [6, 33], and Diffusion models [3, 18, 27, 44].
Among these techniques, DM-based recommenders [22, 24, 39, 44]
have recently seen notable advances due to their ability to model
complex distributions and generate high-quality samples. Specifi-
cally, DMs are used to model and generate the next-item represen-
tation by corrupting them with Gaussian noise and denoising them
step by step guided by the historical sequence. In this work, we fo-
cus on the problems within DM-based sequential recommendation,
which emphasize the importance of extracting robust guidance and
personalized item generation.

2.2 Vector Quantization for Generative Models
In generative models, Vector Quantization (VQ) learns a codebook
to discretize input representation (e.g., images or audios) into code

2
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vectors [1, 13, 37, 45] aiming to enhance the model’s semantic ex-
traction ability. During training, the main objective is to improve
the reconstruction or generation accuracy of input from these com-
pressed codebook representations. For instance, VQVAE [37] maps
images into latent features and then quantizes them with the near-
est code vectors in the codebook. Finally, the decoder reconstructs
the original images based on the quantized representation. VQ-
GAN [4] generates images with quantized representation from the
learned codebook, while the discriminator distinguishes between
real and generated images. VQDiffusion [7, 11] quantizes images
based on the pre-trained VQVAE and then reconstructs images with
discrete diffusion models. Unlike these methods which quantize
the input images directly, in the sequential recommender task, we
quantize the guidance that encodes the user’s personal interests
and reconstruct the items to recommend with DMs.

2.3 Vector Quantization for RSs
In recommender systems, vector quantization (VQ) techniques can
identify shared patterns or category information across representa-
tions (i.e., items or users). As one of the most representative solu-
tions, [28] learns a codebook to identify user interest clusters, and
uses this extra semantic information to enhance the click-through
rate prediction performance. In basket recommendation, NPA [23]
learns to encode the common item combination patterns into a
codebook for effectively capturing and identifying users’ shopping
intentions. CAGE [21] further improves this idea to generate user
and item category trees, simultaneously learning the item and user
representations in an end-to-end manner. However, integrating
vector quantization techniques into generative recommenders (
especially DM-based recommenders) remains largely unexplored,
and we propose to quantize the guidance of DMs to understand user
interests better and provide a more robust guidance representation
against heterogeneous and noisy user histories.

2.4 Bias generation in DMs
Diffusion models have gained widespread attention for modeling
complex data distribution. However, they often inherit and amplify
the biases [25, 26, 31] present in the original training data during the
generation process, which leads to a biased generation [12]. Thus
promoting the diversity of generation [12, 20, 25, 31] has become
an important direction in current research.

3 Preliminary
3.1 Task Formulation
Let I be the item set, 𝑠 = [𝑥1, 𝑥2, . . . , 𝑥𝐿−1] be the interaction
sequence for a user, 𝑥𝐿 be the ground-truth next item that the
user will interact with, where 𝑥𝑙 ∈ I is the 𝑙-th interaction in the
chronological sequence. The sequential recommendation aims to
recommend the item that best aligns with user interests as the next
item 𝑥𝐿 based on the historical interaction sequence 𝑠 .

3.2 Denoising Diffusion Probabilistic Models
Denoising Diffusion Probabilistic Models (DDPM) [10] is a gener-
ative model designed with two Markov processes, consisting of a

forward process that diffuses the input into random noise and a
reverse process that recovers the input back from the random noise.

Forward process corrupts the input x0 by adding Gaussian
noise step by step with a Markov Chain. Formally, the forward
transition from x𝑡−1 to x𝑡 can be defined as a Gaussian noise
injection function 𝑞(x𝑡 |x𝑡−1) = N(x𝑡 ;

√︁
1 − 𝛽𝑡x𝑡−1, 𝛽𝑡 I), where

𝑡 ∈ {1, . . . ,𝑇 } denotes the diffusion step, and [𝛽1, 𝛽2, . . . , 𝛽𝑇 ] de-
note the variance schedule. Let 𝛼𝑡 = 1 − 𝛽𝑡 , 𝛼𝑡 =

∏𝑡
𝑡 ′=1 𝛼𝑡 ′ , we can

derive x𝑡 =
√
𝛼𝑡x0 +

√
1 − 𝛼𝑡𝝐 , where 𝝐 ∼ N(0, I) [10]. At the final

step 𝑇 , the 𝑥𝑇 approximates a pure Gaussian noise.
Reverse process eliminates the noise step by step to recover x0

from x𝑇 ∼ N(0, I) with another Markov Chain. Formally, the de-
noising transition from x𝑡 to x𝑡−1 can be defined as 𝑝𝜃 (x𝑡−1 |x𝑡 ) =
𝑁 (x𝑡−1; 𝝁𝜃 (x𝑡 , 𝑡), Σ𝜃 (x𝑡 , 𝑡)), where 𝝁𝜃 (x𝑡 , 𝑡) and Σ𝜃 (x𝑡 , 𝑡) are the
predicted mean and covariance from neural network parameterized
by 𝜃 . When 𝑝𝜃 successfully approximates the real distribution after
training, DDPM can generate x0 step by step from the initial Gauss-
ian noise during inference. According to [10], the optimization
objective for 𝜃 is the variational bound of negative log-likelihood
− log 𝑝𝜃 (x0), which is the KL divergence between 𝑞

(
x𝑡−1 | x𝑡 , x0)

and 𝑝𝜃 (x𝑡−1 |x𝑡 ):

L =𝐷𝐾𝐿

(
𝑞

(
x𝑇 | x0

)
∥𝑝

(
x𝑇

))
︸                             ︷︷                             ︸

L𝑇

− E𝑞 (x1 |x0 )
[
log𝜃

(
x0 | x1

))]
︸                             ︷︷                             ︸

L0

+
𝑇∑︁
𝑡=2

𝐸𝑞 (x𝑡 |x0 )
[
𝐷𝐾𝐿

(
𝑞

(
x𝑡−1 | x𝑡 , x0

)
∥𝑝𝜃

(
x𝑡−1 | x𝑡

)]
︸                                                             ︷︷                                                             ︸

L𝑡−1

,

(1)

where 𝑞
(
x𝑡−1 | x𝑡 , x0) = N (

x𝑡−1; �̃�𝑡
(
x𝑡 , x0) , 𝛽𝑡 I) is the posterior

distribution, and we have:

�̃�𝑡

(
x𝑡 , x0

)
=

√
𝛼𝑡−1𝛽𝑡
1 − 𝛼𝑡

x0 +
√
𝛼𝑡 (1 − 𝛼𝑡−1)

1 − 𝛼𝑡
x𝑡 , (2)

𝛽𝑡 =
1 − 𝛼𝑡−1
1 − 𝛼𝑡

𝛽𝑡 . (3)

According to the parameterization in [10], we have 𝝁𝜃 (x𝑡 , 𝑡) =
1√
𝛼𝑡

(
x𝑡 − 1−𝛼𝑡√

1−𝛼𝑡
𝝐𝜃 (x𝑡 , 𝑡)

)
, and the loss of Equation 1 can be fur-

ther simplified as below:

Lsimple (𝜃 ) := E𝑡,x0,𝝐

[𝝐 − 𝝐𝜃 (√𝛼𝑡x0 +
√

1 − 𝛼𝑡𝝐, 𝑡)
2]

, (4)

where 𝝐 ∼ N(0, I), 𝑡 is uniform between 1 and𝑇 , and 𝝐𝜃
(
x𝑡 , 𝑡

)
is the

predicted noise added in the forward process with neural network
(e.g., U-Net [40] or Transformer [29]). Intuitively, this transforms
the problem into denoising score matching across noise at 𝑡 steps.

4 Method
4.1 Overview of DiQDiff
We follow existing diffusion-based SR approaches [18, 44] which
consists of a personalized guidance extraction and a diffusion-based
item generation phase. As demonstrated in Figure 2, our proposed
DiQDiff introduces two key components: Semantic Vector Quanti-
zation (SVQ) and Contrastive Discrepancy Maximization (CDM).
The SVQ module uses a codebook quantization strategy to provide

3
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Figure 2: The framework of DiQDiff. The Semantic Vector Quantization is applied to quantize sequences with a semantic
codebook, extracting accurate and robust guidance. The Contrastive Discrepancy Maximization is utilized to maximize the
distance between different denoising trajectories, enabling distinguished item generation for different users.

accurate and robust guidance for DMs, consequently addressing
the challenge of heterogeneous and noisy guidance; The CDMmod-
ule distinguishes denoised items from different sequences with
contrastive loss to handle the biased generation challenge. During
training, DiQDiff introduces Gaussian noise to the ground-truth
next items in the forward process. Then, we enhance the guidance
by extracting quantized embeddings from SVQ. Subsequently, the
denoising model is trained to recover the corrupted items condi-
tioned on the enhanced guidance, optimizing both the reconstruc-
tion loss from DMs and the contrastive loss from the CDM. During
inference, pure Gaussian noise serves as the input, allowing the
trained denoising model to generate the next items step by step
based on the guidance from SVQ. We summarize the training and
inference processes of DiQDiff in Algorithm 1 and 2 respectively,
and detail the related technologies in the following sections.

4.2 Guidance Extraction with SVQ
As illustrated in section 1, user behavior sequences can be sparse or
noisy. Merely using the original interaction sequence as guidance
makes it challenging for DMs to understand user interest. To extract
accurate and robust guidance for DMs, we adopt SVQ to extract se-
mantic features (e.g., category interests) from collaborative records
and maintain a corresponding codebook for the semantic vectors.

Specifically, we first transform each item 𝑣 ∈ I into its corre-
sponding embedding x ∈ R𝐷 , where 𝐷 denotes the embedding
dimension. Consequently, the sequence 𝑠 = [𝑥1, 𝑥2, . . . , 𝑥𝐿−1] can
be represented as s = [x1, x2, . . . , x𝐿−1] ∈ R(𝐿−1)×𝐷 , and the next
item is represented as x𝐿 . We then define the semantic codebook as
C = {c𝑚}𝑀𝑚=1, where each code vector c𝑚 ∈ R

(𝐿−1)×𝐷 matches the
size of the sequence embedding, and𝑀 is the number of discrete
code vectors in the codebook.

Given a codebook, one may follow a deterministic quantization
strategy that simply selects the nearest code vector with “arg min”
[37], but this would introduce a nondifferentiable step. Instead, we
employ stochastic quantization [13, 45] to sample from a predicted

MLP

arg max

Gumbel Noise

softmax

Aggregation

Quantize

Update

Back-propagation

Figure 3: Quantization and updating process in SVQ.

vector distribution, which enables end-to-end training. As shown in
Figure 3, we implement a code selection model 𝑓𝜑 (·) with an MLP
to compute the 𝑀-dimensional logits for each sequence s. Then
we utilize the Gumbel-Softmax technique [1, 14, 45] to select the
discrete code vector for the sequence, facilitating back-propagation.
Formally, we have:

o = 𝑓𝜑 (s) , o ∈ R𝑀 , (5)

𝑔𝑚 =
exp((𝑜𝑚 + 𝑛𝑚)/𝜏)∑𝑀

𝑚′=1 exp((𝑜𝑚′ + 𝑛𝑚′ )/𝜏)
, (6)

where 𝜏 is the temperature, 𝑛𝑚 ∼ Gumbel(0, 1), whose density
function is 𝑒−(𝑛+𝑒

−𝑛 ) , and 𝑔𝑚 ∈ [0, 1]. In the forward propagation
of training, we adopt𝑚∗ = arg max𝑚 𝑔𝑚 to select the𝑚∗-th code
vector for quantizing the sequence s, and we have s𝑞 = c𝑚∗ . During
training, we utilize the gradient from the Gumbel-Softmax to further
backpropagate towards the code selection model 𝑓𝜑 (·).

After obtaining the quantized code s𝑞 for the sequence s, we
then combine it with the original sequence:

s̃ = 𝜆𝑞s𝑞 + s, (7)

4
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where 𝜆𝑞 ∈ [0, 1] controls the injection strength of the quantized
vector s𝑞 , and the combined representation s̃ will serve as the en-
hanced guidance for DMs. Intuitively, for sparse sequences with
insufficient interactions, the closest code would provide extra in-
formation that best aligns with the user’s interest; and for noisy
sequences, the extracted code would help amplify recognizable pat-
terns and reduce the influence of irrelevant noises, which improves
the expressiveness of the guidance.

In addition to the quantization in SVQ, we update the semantic
codebook with expectation-maximization which is widely used in
clustering methods. As illustrated in Figure 3, we aggregate the
sequences that extract the same code vector, and use the aggregated
result to update the corresponding code vector:

c′𝑚 =
1
|𝑆𝑚 |

∑︁
s∈𝑆𝑚

s, (8)

where 𝑆𝑚 denotes the set of sequences in the batch samples that
select𝑚-th code. This means that the code vectors maintain the
most representative information about the semantic cluster (e.g.,
collaborative signals and category interests).

4.3 Distinguished Generation with CDM
After extracting the guidance s̃ as detailed in Section 4.2, DiQDiff
adopts a conditional DDPM to train the denoising model, then
denoise step-by-step to generate the next items conditioned on the
guidance during inference. To enable the distinguished generation
of items for personalized interests, we introduce the CDM module
to push away denoised items from different guidance sequences
with contrastive loss.

Specifically, we first add Gaussian noise to the ground truth next
item in the forward process:

x𝑡𝐿 =
√
𝛼𝑡x𝐿 +

√
1 − 𝛼𝑡𝝐, 𝑡 ∈ {1, . . . ,𝑇 }. (9)

Following [18, 39, 44], rather than predicting the noise added in the
forward process, we estimate the target item x̂0

𝐿
under the guidance

s̃ at each time step:

x̂0
𝐿 = 𝑓𝜃 (x𝑡𝐿, s̃, 𝑡), (10)

where the 𝑓𝜃 (·) is implemented by a Transformer following the
prior study [18]. Then, the loss in Equation 4 can be reformulated:

L𝑟 = E𝑡,x0,𝝐

[x𝐿 − 𝑓𝜃 (√𝛼𝑡x𝐿 + √1 − 𝛼𝑡𝝐, s̃, 𝑡)
2]

, (11)

where x𝐿 is the ground-truth, L𝑟 denotes the reconstruction loss.
To prevent DMs from biased item generation, we propose to

maximize the difference between the predicted item representation
x̂0
𝐿
from different sequences with contrastive loss. Formally, given

denoised item representations x̂0
𝐿
and x̂′0

𝐿
from different sequences

in the batch 𝐵𝑥 , the CDM loss can be defined as below:

L𝑐 = Ex̂0L

log
∑︁

x̂′0
𝐿
∈𝐵𝑥

[
exp

(
sim(x̂0

𝐿
, x̂′0
𝐿
)
)] , (12)

where sim(·) denotes the cosine similarity function. Minimizing L𝑐
will push away the denoised items from different sequences, thus
realizing distinguished generations for different users’ personalized

interests. Finally, combining it into the total loss for training the
denoising model 𝑓𝜃 (·), we have:

L = L𝑟 + 𝜆𝑐L𝑐 , (13)

where 𝜆𝑐 denotes the strength coefficient of CDM in the optimizing
objective. Note that the training will simultaneously optimize the
denoising model 𝑓𝜃 (·) and the code selection model 𝑓𝜑 (·) in the
end-to-end design.

During inference, we can generate items x0
𝐿
by denoising the

Gaussian noise step-by-step. According to Equation 2, we have the
transformed stepwise output as:

x𝑡−1
𝐿 =

√
𝛼𝑡−1𝛽𝑡
1 − 𝛼𝑡

𝑓𝜃 (x𝑡𝐿, s̃, 𝑡) +
√
𝛼𝑡 (1 − 𝛼𝑡−1)

1 − 𝛼𝑡
x𝑡𝐿 +

√︃
𝛽𝑡 z, (14)

where x𝑇
𝐿
is a pure Gaussian noise, z ∼ N(0, I). And note that

𝑓𝜃 (·) knows how to generate different denoising trajectories for x𝑇
𝐿

and x0
𝐿
given that they come from different users. Finally, with the

generated item representation x0
𝐿
, we calculate the inner product be-

tween this representation and all item embeddings in the candidate
set, then top-K nearest items are selected as recommendation.

Algorithm 1: Training process of DiQDiff

Input: Sequence s, next item x𝐿 , codebook C, hyperparameters
𝜆𝑞, 𝜆𝑐 ,variance schedule [𝛼𝑡 ]𝑇𝑡=1

Output: Optimal denoising model 𝑓𝜃 (·) and optimal code
selection model 𝑓𝜑 (·).

1: repeat
2: 𝑡 ∼ {1, . . . ,𝑇 }, 𝝐 ∼ N(0, 𝐼 ) ⊲ Sample diffusion step and

Gaussian noise.
3: xtL =

√
𝛼𝑡x𝐿 +

√
1 − 𝛼𝑡𝝐 ⊲ Add Gaussian noise.

4: sq ← quantize s with SVQ.
5: C← Equation 8 ⊲ Update the codebook.
6: s̃ = s + 𝜆𝑞s𝑞 ⊲ Enhance the guidance with sq.
7: L𝑟 ,L𝑐 ← Equantion 11 and 12.
8: L = L𝑟 + 𝜆𝑐L𝑐 .
9: 𝜃 = 𝜃 − 𝜇∇𝜃L, 𝜑 = 𝜑 − 𝜇∇𝜑L.
10: until converged

Algorithm 2: Inference process of DiQDiff

Input: Sequence s, hyperparameters 𝜆𝑞 , codebook C, optimal
denoising model 𝑓𝜃 (·), and code selection model 𝑓𝜑 (·).

Output: Generated item x0
𝐿
.

1: x𝑇
𝐿
∼ N(0, 𝐼 ) ⊲ Sample Gaussian noise.

2: sq ← quantize s with SVQ.
3: C← Equation 8 ⊲ Update the codebook.
4: s̃ = s + 𝜆𝑞s𝑞 ⊲ Enhance the guidance with sq.
5: for 𝑡 = 𝑇, . . . , 1 do
6: x̂0

𝐿
= 𝑓𝜃 (x𝑡𝐿, s̃, 𝑡).

7: x𝑡−1
𝐿

=

√
𝛼𝑡−1𝛽𝑡
1−𝛼𝑡 x̂0

𝐿
+
√
𝛼𝑡 (1−𝛼𝑡−1 )

1−𝛼𝑡 x𝑡
𝐿
+
√︃
𝛽𝑡 z .

8: end for
9: return x0

𝐿
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Table 1: Overall performance of different methods for the sequential recommendation. The highest score in each row is typed
in bold to indicate statistically significant improvements (p < 0.05), while the second-best score is underlined. We use “H” and
“N” to represent HR and NDCG respectively.

Dataset Metric GRU4Rec SASRec BERT4Rec ComiRec TiMiRec STOSA DuoRec CL4SRec ACVAE DreamRec DiffuRec DiQDiff

ML-1M

H@5 5.11 9.38 13.64 6.11 16.21 7.05 13.7 12.61 12.72 16.05 16.02 16.44
H@10 10.17 16.89 20.57 12.04 23.71 14.39 21.41 20.17 19.93 24.63 24.28 24.92
H@20 18.70 28.32 29.95 21.01 33.23 24.99 32.97 31.91 28.97 35.84 35.63 36.10
N@5 3.05 5.32 8.89 3.52 10.88 3.72 7.92 7.58 8.23 10.61 10.41 10.90
N@10 4.68 7.73 11.13 5.41 13.31 6.08 10.59 10.02 10.54 13.36 13.05 13.61
N@20 6.82 10.59 13.48 7.65 15.70 8.72 13.50 12.97 12.82 16.20 15.90 16.43

Beauty

H@5 1.01 3.27 2.13 2.05 1.90 3.55 5.37 5.25 2.47 5.31 5.33 5.64
H@10 1.94 6.26 3.72 4.45 3.34 6.20 7.63 7.29 3.88 7.13 7.21 7.82
H@20 3.85 8.98 5.79 7.70 5.17 9.59 10.72 10.58 6.12 10.62 10.51 10.93
N@5 0.61 2.40 1.32 1.05 1.24 2.56 3.28 3.03 1.69 3.28 3.82 4.04
N@10 0.90 3.23 1.83 1.83 1.70 3.21 4.19 3.99 2.14 4.19 4.43 4.74
N@20 1.38 3.66 2.35 2.65 2.16 3.76 4.99 4.85 2.70 4.99 5.34 5.52

Toys

H@5 1.10 4.53 1.93 2.30 1.16 4.22 5.66 5.48 2.19 5.47 5.58 6.04
H@10 1.85 6.55 2.93 4.29 1.82 6.94 7.16 6.87 3.07 7.25 7.22 7.70
H@20 3.18 9.23 4.59 6.94 2.72 9.51 9.81 10.09 4.41 9.68 9.84 10.28
N@5 0.70 3.01 1.16 1.16 0.71 3.10 3.11 3.34 1.56 4.04 4.18 4.47
N@10 0.94 3.75 1.49 1.80 0.91 3.88 3.92 4.27 1.85 4.62 4.75 5.00
N@20 1.27 4.33 1.90 2.46 1.14 4.38 4.71 5.08 2.18 5.22 5.35 5.65

Steam

H@5 3.01 4.74 4.74 2.29 6.02 4.85 5.69 5.62 5.58 5.96 6.72 7.13
H@10 5.43 8.38 7.94 5.44 9.67 8.59 9.78 9.45 9.28 9.68 10.51 11.41
H@20 9.23 13.61 12.73 10.37 14.89 14.11 15.61 15.06 14.48 15.08 16.09 17.57
N@5 1.83 2.88 2.97 1.10 3.87 2.92 3.36 3.48 3.54 3.84 4.19 4.61
N@10 2.60 4.05 4.00 2.11 5.04 4.12 4.68 4.71 4.73 5.03 5.50 5.98
N@20 3.56 5.36 5.20 3.34 6.36 5.51 6.14 6.12 6.04 6.39 7.11 7.50

5 Experiments
In this section, we conduct extensive experiments to validate the
effectiveness of DiQDiff, answering the following questions:
• RQ1: How does DiQDiff perform compared with multiple base-

line models in the sequential recommendation?
• RQ2: How does the design of SVQ and CDM bring improvements

to DiQDff, respectively?
• RQ3: How sensitive is DiQDiff to different settings (i.e., codebook

size, strength of the SVM, and that of CDM )?

5.1 Experimental Settings
5.1.1 Datasets. We conduct experiments across four widely-used
datasets in sequential recommendation. ML-1M is a movie dataset
that includes one million ratings from 6,000 users across 4,000 films.
The Amazon Beauty and Amazon Toys datasets consist of user re-
views for beauty products and toys collected from the Amazon plat-
form over nearly 20 years. The Steam dataset gathers information
about video games available on the Steam platform, encompassing
users’ playing time, prices, categories, and more. Following previ-
ous studies [15, 18, 36], the user-item interactions are organized
chronologically based on the timestamps, and those with fewer than
five interactions are filtered out. The statistics of these datasets are
listed in Table 2, exhibiting notable differences in sequence lengths
and dataset sizes in real-world scenarios.

5.1.2 Baseline. We compare DiQDiff with a variety of leading
approaches in sequential recommendation, including traditional

Table 2: Stastics of the four datasets.

Dataset Sequence items Avg-len

ML-1M 6,040 3,416 165.50
Beauty 22,363 12,101 8.53
Toys 19,412 11,924 8.63
Steam 281,428 13,044 12.40

recommenders, interest learning methods, contrastive-based meth-
ods, and generative recommenders.
• Traditional recommenders: GRU4Rec [9], SASRec [15], and

Bert4Rec [36] predict the next-item with discriminative models
such as GRU [9] and Transformer [15], which can capture the
preference dependency in sequences.

• Interest learning methods: ComiRec [2] and TiMiRec [38]
aim to capture users’ multiple interests through modules like
dynamic routing. STOSA [5] focuses on users’ dynamic interests
by employing stochastic embeddings.

• Contrastive-based methods: DuoRec [32] and CL4SRec [41]
propose different augmentation techniques and adopt contrastive
learning to alleviate the representation degeneration or data
sparsity problem in SR;

• Generative recommenders: ACVAE [42] introduces an Ad-
versarial and Contrastive Variational Autoencoder to generate
high-quality latent representations for SR. DreamRec [44] and
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Table 3: Results of ablation experiments. The best results are highlighted in bold, while the second-best are underlined. “Base”
refers to the DiQDiff variant without both SVQ and CDM, while “w/o SVQ” and “w/o CDM” indicate the variants of DiQDiff that
exclude SVQ or CDM, respectively. We use “H” and “N” to represent HR and NDCG respectively.

Dataset Ablation H@5 H@10 H@20 N@5 N@10 N@20

Beauty

Base 5.41 7.62 10.66 3.90 4.61 5.38
w/o SVQ 5.46 ↑ 7.62 ↑ 10.65 ↑ 3.99 ↑ 4.67 ↑ 5.44 ↑
w/o CDM 5.46 ↑ 7.69 ↑ 10.77 ↑ 3.95 ↑ 4.67 ↑ 5.44 ↑
DiQDiff 5.64 ↑ 7.82 ↑ 10.93 ↑ 4.04 ↑ 4.74 ↑ 5.52 ↑

Toys

Base 5.65 7.41 9.85 4.17 4.74 5.35
w/o SVQ 5.81 ↑ 7.60 ↑ 10.17 ↑ 4.36 ↑ 4.94 ↑ 5.59 ↑
w/o CDM 5.79 ↑ 7.61 ↑ 10.03 ↑ 4.34 ↑ 4.92 ↑ 5.53 ↑
DiQDiff 6.04 ↑ 7.72 ↑ 10.28 ↑ 4.47 ↑ 5.00 ↑ 5.65 ↑

ML-1M

Base 15.45 24.15 35.68 10.21 13.00 15.90
w/o SVQ 15.62 ↑ 23.80 ↑ 34.81 ↑ 10.52 ↑ 13.15 ↑ 15.95 ↑
w/o CDM 16.43 ↑ 24.70 ↑ 36.12 ↑ 10.91 ↑ 13.53 ↑ 16.40 ↑
DiQDiff 16.44 ↑ 24.92 ↑ 36.10 ↑ 10.90 ↑ 13.61 ↑ 16.43 ↑

Steam

Base 6.70 10.90 16.75 4.30 5.65 7.12
w/o SVQ 6.70 ↑ 10.91 ↑ 16.79 ↑ 4.33 ↑ 5.67 ↑ 7.19 ↑
w/o CDM 6.99 ↑ 11.29 ↑ 17.43 ↑ 4.53 ↑ 5.91 ↑ 7.46 ↑
DiQDiff 7.13 ↑ 11.41 ↑ 17.57 ↑ 4.61 ↑ 5.98 ↑ 7.53 ↑

DiffuRec [18] utilize Denoising Diffusion Probabilistic Models
(DDPM) to model item distribution, generating the next item
through a denoising process guided by interaction sequences.

5.1.3 ImplementationDetails. Following the setting of previous
works [15, 18], we employ the Adam optimizer, where the initial
learning rate is 0.001. The embedding dimension is set to 128, and
the batch size is 512. The dropout rates for the denoising model and
item embeddings are set to 0.1 and 0.3 respectively. The number of
time steps𝑇 of DDPM is 32, and we utilize a truncated linear sched-
ule for the noise schedule. Each method is evaluated over five trials,
and the averaged results are reported. The maximum sequence
length of ML-1M is set to 200 and that of the other three datasets
is set to 50. Sequences with fewer interactions than the maximum
length are padded with a padding token. The strengths 𝜆𝑞, 𝜆𝑐 of the
SVM and CDM are varied within the range {0.2, 0.4, 0.6, 0.8, 1.0},
while the codebook size 𝑀 is selected from {4, 8, 16, 32, 64}. To
evaluate the recommendation performance, we evaluate all mod-
els using Hit Rate (H@K) and Normalized Discounted Cumulative
Gain (N@K), where 𝐾 = {5, 10, 20}. Additionally, to ensure a fair
comparison and efficient implementation, we evaluate diffusion-
based recommenders (i.e., DreamRec, DiffuRec, and DiQDiff) every
two epochs and employ early stopping if the highest results remain
unchanged over 10 evaluations.

5.2 Overall Performance (RQ1)
To answer Q1, we conducted experiments in all four datasets to
compare the recommendation performance between DiQDiff and
multiple baselines. We conducted each experiment for five times
with different random seeds, and the averaged results are reported
in Table 1. In general, diffusion-based recommenders (i.e.,DreamRec
[44], DiffuRec [18], and DiQDiff) perform better than traditional
recommenders (e.g., GRU4Rec and SASRec) almost in all datasets
and metrics, highlighting the effectiveness of DMs in modeling

item distributions and generating recommendations for the next
step. Notably, DiQDiff consistently outperforms all benchmarks,
achieving the highest Hit Rate and Normalized Discounted Cumu-
lative Gain across four datasets. Especially on the largest steam
dataset, DiQDiff significantly improves HR@20 and NDCG@20
by 9.2% and 5.5% respectively, compared to the best-performing
baseline DiffuRec. The superiority of DiQDiff demonstrates the sub-
stantial effectiveness of our quantized guidance and distinguished
generation in DMs for sequential recommendation.

5.3 Ablation Study (RQ2)
To answer Q2, we conduct an ablation study to validate the impor-
tance of SVQ and CDM respectively. The experimental results are
presented in Table 3, where “Base” refers to the variant of DiQDiff
without either SVQ or CDM,while “w/o SVQ” and “w/o CDM” repre-
sent the variants of DiQDiff that exclude SVQ or CDM, respectively.
We observe that variants “w/o SVQ” and “w/o CDM” consistently
outperform “Base” in all four datasets, indicating the feasibility
of each individual design. Furthermore, DiQDiff demonstrates the
highest performance among the three variants in most cases ex-
cept a miner decrease of H@20 and N@5 in ML-1M. This suggests
that the combination of the two components further improves the
overall performance, indicating a superposable configuration.

To further illustrate the effectiveness of the components in the
representation space, we plot the T-SNE of generated items’ embed-
dings from different samples in Figure 4. We can see that the items
generated from “Base” are unbalanced, indicating that DMs may
inherit and amplify the biases presented in the data. In compari-
son, the items generated by variant “w/o SVQ’ present the most
balanced distribution, which means that CDM can effectively dis-
tinguish different item patterns during generation. Note that the
“w/o CDM’ variant only uses the SVQ component which does not
necessarily mitigate the biased generation, it may potentially am-
plify the cluster-wise bias. In comparison, the combined solution
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Figure 4: The T-SNE visualization of the generated item em-
beddings on the Toys dataset.

Figure 5: The T-SNE visualization displays the discrete code
vectors in a codebook with𝑀 = 32 on the Toys dataset.

DiQDiff still exhibits a certain degree of clustered structure in the
distribution, but items are more distinguished with the existence
of CDM. To further investigate the interaction between the two
components, we visualize the codebook embedding learned by the
variant “w/o CDM” and our DiQDiff, as shown in Figure 5. The code
vectors from DiQDiff are more distinguished than those from vari-
ant “w/o CDM”, validating that CDM can not only distinguish item
representations, but can also back-propagate this discrepancy to
the enhanced guidance and the semantic patterns in the codebook.
We believe that this characteristic potentially helps in learning a
more comprehensive and expressive codebook.

5.4 Sensitivity Analysis (RQ3)
To answer Q3, we further evaluate the sensitivity of DiQDiff hyper-
parameters𝑀 (i.e., the codebook size), 𝜆𝑞 (i.e., the injection strength
of quantized vectors from SVQ in the guidance), and 𝜆𝑐 (i.e., the
strength coefficient of CDM in the optimizing objective). As shown
in Figure 6, the recommendation performance NDCG@20 of DiQD-
iff outperforms the variant “Base” stably, but the best point of 𝑀
varies across different datasets. We then present the curves of 𝜆𝑞

Figure 6: The sensitivity of DiQDiff to the hyperparameter
𝑀 , which represents the codebook size.

Figure 7: The sensitivity of DiQDiff to the hyperparameter
𝜆𝑞 and 𝜆𝑐 .

and 𝜆𝑐 analysis in Figure 7. Intuitively, increasing 𝜆𝑞 would intro-
duce semantically profound information to the sequence encoding,
but over-injection may also dominate the guidance and suppress
the information in the original user sequence. This is reflected in
the increase-and-drop curve in Figure 7 across all datasets. Addi-
tionally, we also observe a similar pattern for 𝜆𝑐 , which indicates
a potential optimal balancing point between a more distinguished
item generation strategy and a more data-aligned strategy.

5.5 Conclusion
In this paper, we identify the challenge of heterogeneous and noisy
guidance, as well as the biased generation challenge in diffusion-
based recommender systems. To mitigate the problem, we propose
a novel framework DiQDiff that first introduces a semantic vector
quantization (SVQ) to enhance sparse and noisy sequences, then
includes contrastive discrepancy maximization (CDM) to distin-
guish item generation and codebook representations. While we
have provided evidence of DiQDiff’s effectiveness in sequential
recommendation tasks, the combination of SVQ and CDM may
potentially benefit other tasks that encounter similar challenges.
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