
Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

STATIONARY DEEP REINFORCEMENT LEARNING WITH
QUANTUM K-SPIN HAMILTONIAN REGULARIZATION

Xiao-Yang Liu, Zechu Li, Shixun Wu, Xiaodong Wang
Department of Electrical Engineering, Department of Computer Science
Columbia University, New York, NY, USA
{xl2427, zl2993, sw3511, xw2008}@columbia.edu

ABSTRACT

Instability is a big issue of deep reinforcement learning (DRL) — high variance
over multiple runs. It is mainly due to the existence of many local minima and
worsened by the multiple fixed points issue of Bellman’s equation. As a fix, we
propose a K-spin Ising model and minimize its K-spin Hamiltonian, which searches
for the ground state (a.k.a. lowest energy) of a quantum-mechanical system. First,
we take a novel quantum perspective by modeling the target problem as a K-spin
Ising model and employ a Hamiltonian as the objective function. Then, we derive a
novel Hamiltonian policy gradient and design a generic actor-critic algorithm that
utilizes the K-spin Hamiltonian measure to regularize the policy network, which
guides a policy network to converge towards high-quality local minima. Finally, the
proposed method reduces the variance of cumulative rewards by 65.2% ∼ 85.6%
on six MuJoCo tasks over 20 runs.

1 INTRODUCTION

Instability is a major issue of current deep reinforcement learning (DRL) (Sutton & Barto, 2018) —
agents trained with different random seeds may have dramatically different performances. Existing
works (Agarwal et al., 2021, Duan et al., 2016, Chan et al., 2019, Henderson et al., 2018, Kool et al.,
Zoph & Le, 2016) empirically reported a high variance over multiple runs. Such a high variance
contributes to people questioning RL’s reliability and reproducibility (Dulac-Arnold et al., 2019;
2020), limiting the broader adoption in real life. The instability issue is mainly due to the existence of
many local minima and worsened by the multiple fixed points issue of Bellman’s optimality equation
(Bertsekas, 2019, Piunovskiy, 2013, Gupta et al., 2021, Eysenbach et al., 2019). In Appx. B, we adapt
dynamic programming examples (Bertsekas, 2019, Piunovskiy, 2013) into reinforcement learning
settings and provide detailed explanations on the aforementioned issues.

The instability issue has been partially addressed by ensemble methods (Anschel et al., 2017, Chen
et al., 2021), regularization approaches (Thodoroff et al., 2018, Cheng et al., 2019), and baseline-
correction approaches (Schulman et al., 2016, Wu et al., 2018). In particular, Generalized Advantage
Estimation (GAE) (Schulman et al., 2016) is a widely used one to reduce the variance of an advantage
function. However, existing methods randomly converge to different local minima. We expect a DRL
algorithm to stably converge to a policy independent of initialization and noises for practical usage.

As a fix, we propose a K-spin Hamiltonian formulation, called H-term, which guides a policy network
to converge towards high-quality local minima. We take a novel quantum perspective by using a
K-spin Ising model (Kirkpatrick et al., 1983, Denchev et al., 2016) and employ a Hamiltonian to
measure a policy’s energy. We will demonstrate that a stationary policy would have low energy.

Related Works Different from our quantum perspective, several recent papers utilized a (classical)
Hamiltonian equation to endow RL agents with the capability of inductive biases. (Greydanus et al.,
2019, Toth et al., 2019) used Hamiltonian mechanics to train an agent that learns conservation
laws, (Xu & Fekri, 2021) applied a Hamiltonian Monte Carlo (HMC) simulator to approximate
the posterior action probability, and (Loizou et al., 2020) proposed an unbiased estimator for the
stochastic Hamiltonian gradient methods for min-max optimization problems.

1

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

Table 1: Modeling a task as a K-spin Ising model.
Hamiltonian formulation Quantum K-spin Ising model

Transition µk ∈ S × S , k = 0, ...,K − 1 Spin jk ∈ {1, · · · , N}, k = 0, ...,K − 1
Path prob. π(µ0) · · ·π(µK−1) ∈ {0, 1}K Config. σ∗

j0
× · · · × σ∗

jK−1
∈ {−1,+1}K

Path reward Lµ0...µK−1
= γK−1R(µK−1) Density Lj0···jK−1

Objective Eqn. (2) Energy Eqn. (3)

2 HAMILTONIAN FORMULATION USING K-SPIN ISING MODEL

We take a novel quantum perspective by modeling the target problem as a K-spin Ising model and
employ a Hamiltonian measure as the objective function.

Let S denote the state space and µ = (s, s′) ∈ S × S denote a (possible) transition with associated
reward R(µ) ∈ R, where R(µ) = 0 is the transition µ is not feasible. Let a deep neural network
with parameter θ approximate a policy πθ : S → S. π(s, ·) is a probability distribution over S. For
µ(s, s′) ∈ S ×S , let π(µ) = π(s, s′), where π(s, s′) = 0 is the transition from s to s′ is not feasible.
The conventional objective function J(θ) of reinforcement learning (Sutton & Barto, 2018) is

J(θ) ≜ Eτ∼πθ
[R(τ) · P(τ |πθ)] , (1)

where P(τ |πθ) is the probability of trajectory τ = (S0, · · · , ST) following policy πθ.

We propose to use a Hamiltonian measure as the objective function:

H(θ) =

K−1∑
k=0

S×S∑
µ0

· · ·
S×S∑
µk

Lµ0,...,µk
πθ(µ0) · · ·πθ(µk), Lµ0,...,µk

= γkR(µk), (2)

where Lµ0,...,µk
is the (discounted) reward on a path segment (µ0, · · · , µk).

Remark: 1). There is an implicit action space A; 2). (2) is equal to (1) when K →∞; and 3). K
can be much smaller than T , e.g., K = 5, 10 and T = 100, 1000.

Analogy in Table 1. The Hamiltonian in (2) draws an analogy from a quantum K-spin Ising model
(Kirkpatrick et al., 1983, Denchev et al., 2016) whose Hamiltonian is

H(σ) = −
K−1∑
k=0

N∑
j0=1

· · ·
N∑

jk=1

Lj0···jkσj0 · · ·σjk , (3)

where N is the number of spins, σjk = ±1 are spin variables, and Lj0...jk is an energy density function
for (σj0 , . . . , σjk). A transition µk ∈ S × S corresponds to a spin jk, we map an optimal policy
π∗(µk) ∈ {0, 1} to the optimal spin configuration σ∗

jk
∈ {1,−1}, i.e., π∗(µk) ←→ (1 − σ∗

µk
)/2.

The energy density Lµ0,...,µk
= γkR(µk) is the (discounted) reward on a path segment (µ0, · · · , µk).

3 STATIONARY DEEP REINFORCEMENT LEARNING

3.1 HAMILTONIAN POLICY GRADIENT AND MONTE CARLO-BASED GRADIENT ESTIMATOR

Theorem 1. The Hamiltonian gradient of (2) is

∇θH(θ) = −Eµ0,...,µK−1

[
K−1∑
k=0

γk ·R(µk) · ∇θ log (πθ(µ0) · πθ(µ1) · · ·πθ(µk))

]
. (4)

We obtain the Monte Carlo gradient estimator of∇θH(θ), illustrated in Fig. 1 (right), as follows

∇θĤ(θ) = − 1

N ′

N ′∑
i=1

[
K−1∑
k=0

γk ·R(µi
k) · ∇θ log

[
πθ(µ

i
0) · · ·πθ(µ

i
k)
]]

. (5)

As shown in Fig. 1, REINFORCE’s policy gradient (Sutton et al., 1999) uses discounted rewards
from future steps, while Hamiltonian policy gradient splits a trajectory into segments.

Computational complexity: we measure the computation complexity by the times of computing
one ∇θ log πθ(µ). Assume N = B and N ′ = B′, since most DRL algorithms use mini-batch
stochastic gradient descent methods. REINFORCE’s (Sutton et al., 1999) policy gradient takes
O(BT) computations, while we add O(B′K(K + 1)/2) computations in each gradient update step,
thus a total complexity of O(BT +B′K(K + 1)/2).

2

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

Figure 1: REINFORCE’s policy gradient (left) vs. Hamiltonian’s policy gradient (right).

0 1 2 3 4
#samples 1e6

 1k

 2k

 3k

 4k

 5k

Cu
m

ul
at

iv
e

re
wa

rd
s

HalfCheetah
DDPG
DDPG_H
DDPG_PER

0 1 2 3 4
#samples 1e6

 1k

 2k

 3k

 4k

 5k

Cu
m

ul
at

iv
e

re
wa

rd
s

Ant
DDPG
DDPG_H
DDPG_PER

0.0 0.5 1.0 1.5 2.0
#samples 1e7

 2k

 4k

 6k

 8k

10k

12k

Cu
m

ul
at

iv
e

re
wa

rd
s

Humanoid
DDPG
DDPG_H
DDPG_PER

0.0 0.5 1.0 1.5 2.0 2.5 3.0
#samples 1e6

 1k

 2k

 3k

 4k

 5k

Cu
m

ul
at

iv
e

re
wa

rd
s

Hopper
DDPG
DDPG_H
DDPG_PER

0 2 4 6 8
#samples 1e6

40

80

120

160

200

Cu
m

ul
at

iv
e

re
wa

rd
s

Swimmer
DDPG
DDPG_H
DDPG_PER

0.0 0.5 1.0 1.5 2.0
#samples 1e6

 1k

 2k

 3k

 4k

 5k

Cu
m

ul
at

iv
e

re
wa

rd
s

Walker2D
DDPG
DDPG_H
DDPG_PER

0 1 2 3 4
#samples 1e6

 1k

 2k

 3k

 4k

 5k

Cu
m

ul
at

iv
e

re
wa

rd
s

HalfCheetah
PPO
PPO_H

0 1 2 3 4
#samples 1e6

 1k

 2k

 3k

 4k

 5k

Cu
m

ul
at

iv
e

re
wa

rd
s

Ant
PPO
PPO_H

0.0 0.5 1.0 1.5 2.0
#samples 1e7

 2k

 4k

 6k

 8k

10k

12k

Cu
m

ul
at

iv
e

re
wa

rd
s

Humanoid
PPO
PPO_H

0.0 0.5 1.0 1.5 2.0 2.5 3.0
#samples 1e6

 1k

 2k

 3k

 4k

 5k

Cu
m

ul
at

iv
e

re
wa

rd
s

Hopper
PPO
PPO_H

0 2 4 6 8
#samples 1e6

40

80

120

160

200

Cu
m

ul
at

iv
e

re
wa

rd
s

Swimmer
PPO
PPO_H

0.0 0.5 1.0 1.5 2.0
#samples 1e6

 1k

 2k

 3k

 4k

 5k

Cu
m

ul
at

iv
e

re
wa

rd
s

Walker2D
PPO
PPO_H

Figure 2: Cumulative rewards vs. #samples for compared DRL algorithms on six MuJoCo tasks.

3.2 STATIONARY ACTOR-CRITIC ALGORITHM WITH H-TERM

We use the proposed H-term as an add-on term to help the actor network converge to a stationary
policy. Specifically, the objective functions of actor and critic networks become:

Actor : max

θ
Jπ(θ, ϕ) ≜ (1− γ)ES0∼d0,A0∼πθ(S0,·) [Qϕ (S0, A0)]−λH(θ),

Critic : min
ϕ

JQ(θ, ϕ) ≜
1

2
ES∼dθ(·),A∼πθ(S,·)

[
(Qϕ(S,A)− y(S,A))

2
]
,

(6)

where y(Sk, Ak) = R(Sk, Ak) + γQϕ(Sk+1, Ak+1) and λ > 0 is a temperature parameter.

3

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

4 PERFORMANCE EVALUATION

We consider six MuJoCo tasks (Todorov et al., 2012) with high-dimensional continuous state space
and action space, in which multiple locally optimal policies exist as revealed in Appx. C. To evaluate
both deterministic and stochastic algorithms, we choose Deep Deterministic Policy Gradient (Lillicrap
et al., 2016) with Prioritized Experience Replay (Schaul et al., 2016) (DDPG+PER) and Proximal
Policy Optimization (PPO) (Schulman et al., 2017) with the GAE trick (Schulman et al., 2016). For a
fair comparison, we keep the hyperparameters (listed in Appx. C) the same and make sure that the
obtained results reproduce existing benchmark tests (Duan et al., 2016).

H-term helps converge to a high-quality local minima. In Fig. 2, both DDPG+PER and DDPG+H
achieve a substantial improvement in cumulative reward. In particular, DDPG+H achieves the highest
cumulative rewards in all six tasks, which are comparable to PPO’s performance in Fig. 2. It
is worthwhile to point out the advantage of DDPG+H over DDPG+PER. DDPG+PER utilizes a
prioritized replay strategy to obtain a more accurate critic network, while the H-term in DDPG+H is
performed on the actor network. Our results indicate that an experience replay technique on the actor
network may be more powerful.

H-term helps reduce variance. The PPO algorithm with GAE is regarded as the state-of-the-art
algorithm in MuJoCo environments. However, it still has a very high variance (the shaded area) after
the policies have converged, as shown in Fig. 2. Such a high variance is mainly due to the fact that
the agent may converge to a random one of multiple policies.

In Fig. 2, the shaded areas of PPO+H (K = 16) are dramatically smaller, i.e., a variance of 228.4,
225.4, 683.7, 184.2, 31.6, and 296.8, respectively. The variance has been reduced by 65.2% ∼ 85.6%,
which verifies the effectiveness of the proposed H-term. Therefore, we may conclude that the H-term
guides the agent to search for a stationary policy among multiple feasible ones.

H-term helps drive to physically stationary policy. A key question needs to be answered: does
H-term help guide the agent converge to a physically stationary policy? We perform observational
experiments on MuJoCo tasks and measure the number of convergences to different policies over 20
runs. The vanilla PPO algorithm converges to the physically stationary policy (bold) with 13, 17, 7,
10, 14, and 5 times for the six tasks, while the PPO+H (K = 16) converges to the stationary policy
with 20, 20, 16, 20, 20, and 16 times, respectively. From the empirical observation, we find that the
PPO gets stuck in locally optimal policies, failing to find a consistent one. As expected, PPO+H
converges to the stationary policy with a substantially higher ratio, which verifies the effectiveness of
the proposed H-term in finding a physically stationary policy.

Impact of trajectory length K. We investigate the impact of trajectory length K. From (5), we
know that a large K means a more accurate estimation of ∇θH(θ) but at a price of computations.
Here, we evaluate PPO+H with K = 8, 16 and set the size of replay buffer D2 to 1, 000. In Table 5,
we observe that the cumulative reward increases and the variance decrease as K increases from 8
to 16. However, for the case K = 24, both metrics get worse due to the out-of-memory issue and
we reduce the replay buffer size to 800. The smaller replay buffer size hurts the diversity of the
trajectories and may lead to a performance drop. Appx. C provides results for replay buffer size 800.

4

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

REFERENCES

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. Advances in Neural Information
Processing Systems, 2021.

Oron Anschel, Nir Baram, and Nahum Shimkin. Averaged-DQN: Variance reduction and stabilization
for deep reinforcement learning. In International Conference on Machine Learning, pp. 176–185.
PMLR, 2017.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proceedings of the 26th annual International Conference on Machine Learning, pp. 41–48, 2009.

Una Benlic and Jin-Kao Hao. Breakout local search for the max-cut problem. Engineering Applica-
tions of Artificial Intelligence, 26(3):1162–1173, 2013.

Dimitri Bertsekas. Reinforcement learning and optimal control. Athena Scientific, 2019.

Emil Björnson, Eduard Jorswieck, et al. Optimal resource allocation in coordinated multi-cell systems.
Foundations and Trends® in Communications and Information Theory, 9(2–3):113–381, 2013.

Stephanie CY Chan, Samuel Fishman, Anoop Korattikara, John Canny, and Sergio Guadarrama.
Measuring the reliability of reinforcement learning algorithms. 2019.

Xinyue Chen, Che Wang, Zijian Zhou, and Keith Ross. Randomized ensembled double Q-learning:
Learning fast without a model. ICLR, 2021.

Richard Cheng, Abhinav Verma, Gabor Orosz, Swarat Chaudhuri, Yisong Yue, and Joel Burdick.
Control regularization for reduced variance reinforcement learning. In International Conference
on Machine Learning, pp. 1141–1150. PMLR, 2019.

Changhui Choi and Yinyu Ye. Solving sparse semidefinite programs using the dual scaling algorithm
with an iterative solver. Manuscript, Department of Management Sciences, University of Iowa,
Iowa City, IA, 52242, 2000.

G Daniel, Johnnie Gray, et al. Opt_einsum-a python package for optimizing contraction order for
einsum-like expressions. Journal of Open Source Software, 3(26):753, 2018.

Vasil S Denchev, Sergio Boixo, Sergei V Isakov, Nan Ding, Ryan Babbush, Vadim Smelyanskiy,
John Martinis, and Hartmut Neven. What is the computational value of finite-range tunneling?
Physical Review X, 6(3):031015, 2016.

Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking deep
reinforcement learning for continuous control. In International Conference on Machine Learning,
pp. 1329–1338. PMLR, 2016.

Gabriel Dulac-Arnold, Daniel Mankowitz, and Todd Hester. Challenges of real-world reinforcement
learning. 2019.

Gabriel Dulac-Arnold, Nir Levine, Daniel J Mankowitz, Jerry Li, Cosmin Paduraru, Sven Gowal, and
Todd Hester. An empirical investigation of the challenges of real-world reinforcement learning.
arXiv e-prints, pp. arXiv–2003, 2020.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:
Learning skills without a reward function. ICLR, 2019.

Johnnie Gray and Stefanos Kourtis. Hyper-optimized tensor network contraction. Quantum, 5:410,
2021.

Samuel Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural networks. Advances in
Neural Information Processing Systems, 32, 2019.

Agrim Gupta, Silvio Savarese, Surya Ganguli, and Li Fei-Fei. Embodied intelligence via learning
and evolution. Nature Communications, 12(1):1–12, 2021.

5

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

Gurobi Optimization, LLC. Gurobi optimizer reference manual, 2023. URL https://www.
gurobi.com.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018.

Cupjin Huang, Fang Zhang, Michael Newman, Xiaotong Ni, Dawei Ding, Junjie Cai, Xun Gao,
Tenghui Wang, Feng Wu, Gengyan Zhang, et al. Efficient parallelization of tensor network
contraction for simulating quantum computation. Nature Computational Science, 1(9):578–587,
2021.

Scott Kirkpatrick, C Daniel Gelatt Jr, and Mario P Vecchi. Optimization by simulated annealing.
Science, 220(4598):671–680, 1983.

Gary A Kochenberger, Jin-Kao Hao, Zhipeng Lü, Haibo Wang, and Fred Glover. Solving large scale
max cut problems via tabu search. Journal of Heuristics, 19:565–571, 2013.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In
International Conference on Learning Representations.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. ICLR,
2016.

Nicolas Loizou, Hugo Berard, Alexia Jolicoeur-Martineau, Pascal Vincent, Simon Lacoste-Julien, and
Ioannis Mitliagkas. Stochastic Hamiltonian gradient methods for smooth games. In International
Conference on Machine Learning, pp. 6370–6381. PMLR, 2020.

Eli Meirom, Haggai Maron, Shie Mannor, and Gal Chechik. Optimizing tensor network contraction
using reinforcement learning. In International Conference on Machine Learning, pp. 15278–15292.
PMLR, 2022.

Alexey B Piunovskiy. Examples in markov decision processes, volume 2. World Scientific, 2013.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. ICLR,
2016.

Martin JA Schuetz, J Kyle Brubaker, and Helmut G Katzgraber. Combinatorial optimization with
physics-inspired graph neural networks. Nature Machine Intelligence, 4(4):367–377, 2022.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional
continuous control using generalized advantage estimation. ICLR, 2016.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.org/abs/
1707.06347.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods for
reinforcement learning with function approximation. Advances in Neural Information Processing
Systems, 12, 1999.

Pierre Thodoroff, Audrey Durand, Joelle Pineau, and Doina Precup. Temporal regularization for
markov decision process. Advances in Neural Information Processing Systems, 31, 2018.

Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based control.
In IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033. IEEE,
2012.

Jan Toenshoff, Martin Ritzert, Hinrikus Wolf, and Martin Grohe. Graph neural networks for maximum
constraint satisfaction. Frontiers in Artificial Intelligence, 3:580607, 2021.

6

https://www.gurobi.com
https://www.gurobi.com
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

Peter Toth, Danilo Jimenez Rezende, Andrew Jaegle, Sébastien Racanière, Aleksandar Botev, and
Irina Higgins. Hamiltonian generative networks. ICLR, 2019.

Cathy Wu, Aravind Rajeswaran, Yan Duan, Vikash Kumar, Alexandre M Bayen, Sham Kakade,
Igor Mordatch, and Pieter Abbeel. Variance reduction for policy gradient with action-dependent
factorized baselines. ICLR, 2018.

Duo Xu and Faramarz Fekri. Improving actor-critic reinforcement learning via Hamiltonian Monte
Carlo method. Deep Reinforcement Learning Workshop at NeurIPS, 2021.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. International
Conference on Learning Representations, 2016.

7

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

A BACKGROUND OF REINFORCEMENT LEARNING AND BELLMAN EQUATION

In reinforcement learning (RL) (Sutton & Barto, 2018), an agent learns by interacting with an unknown
environment and obtains a policy by the maximization of cumulative rewards. Mathematically, it can
be formulated as a Markov Decision Process (MDP) with the five-tuple ⟨S,A,P, R, γ⟩. Here S and
A denote the state and action spaces; P : S ×A → ∆(S) denotes a transition probability function,
where ∆ is a probability simplex; R : S × A × S → R denotes a reward function; and γ ∈ (0, 1]
denotes a discount factor. The objective is to find an optimal policy π∗ : S → ∆(A) that maximizes
(discounted) expected reward. Consider a discrete, finite, discounted MDP with infinite horizon, one
can define the Q-value function of a state-action pair (s, a) under policy π as follows

Qπ(s, a) = ESk+1∼P(·|Sk,Ak),Ak+1∼π(Sk+1,·)

[∞∑
k=0

γk ·R(Sk, Ak, Sk+1)|S0 = s,A0 = a

]
, (7)

where R(Sk, Ak, Sk+1) denotes the immediate reward when taking action Ak at state Sk and arriving
at state Sk+1, capital letters denote random variables and lowercase letters denote values.

The Bellman equation (Sutton & Barto, 2018) converts (7) into a recursive form as follows

Qπ(s, a) =
∑
s′∈S

P(s′ | s, a)

[
R(s, a, s′) + γ

∑
a′∈A

π(s′, a′)Qπ(s′, a′)

]
= R(s, a) + γ

∑
s′∈S

P(s′ | s, a)
∑
a′∈A

π(s′, a′)Qπ(s′, a′),

(8)

which expresses the expected reward as a summation of immediate reward R(s, a) and discounted fu-
ture rewards, and the immediate reward R(s, a) is defined as R(s, a) =

∑
s′∈S P(s′ | s, a)R(s, a, s′).

The Bellman’s optimality equation (Sutton & Barto, 2018) is

Q∗(s, a) =
∑
s′∈S

P(s′ | s, a)
[
R(s, a, s′) + γmax

a′
Q∗(s′, a′)

]
.. (9)

The optimal policy π∗ is given by

π∗ = argmax
π

Qπ(s, a). (10)

8

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

(a) Shortest path problem (b) Blackmailer’s problem (c) minimal stopping problem

Figure 3: Examples with γ = 1. Examples with γ < 1 are given in Fig. 4.

B BELLMAN EQUATION HAS AN ISSUE OF MULTIPLE FIXED POINTS

In Fig. 3, we adapt dynamic programming examples (Bertsekas, 2019, Piunovskiy, 2013) into
reinforcement learning settings.

• Shortest path problem (deterministic) in Fig. 3(a): two policies, 1) transiting back to state 1; 2)
driving to terminal state 0.

• Blackmailer’s problem (stochastic) in Fig. 3(b): two policies, 1) demanding a→ 0 to keep the
victim at state 1; 2) demanding a = 1 that drives the victim to terminate state 0.

• Optimal stopping problem (terminating policies) in Fig. 3(c): two polices, 1) continuing inside
the sphere of radius (1− α)c and stopping outside; 2) jumping to point 0 at any point in region C.

B.1 CASE OF γ = 1 IN FIG. 3

Consider MDP examples with an terminal state 0, as shown in Fig. 3 (we adapt dynamic programming
examples (Bertsekas, 2019, Piunovskiy, 2013) into reinforcement learning settings),

• Shortest path problem (deterministic) in Fig. 3(a): At state 1, an agent transits to either state
1 or 0 with reward 0 or b, respectively. Assume the value function for state 0 is V (0) = 0. The
Bellman’s optimality equation for state 1 is V (1) = max{V (1), b}, where any V (1) ≥ b is a
feasible solution. If initialize V0(1) ≥ b, a resulting policy is that an agent at state 1 always transits
back to state 1; otherwise, drives to terminal state 0 (always returns back to itself with reward 0).

• Blackmailer’s problem (stochastic) in Fig. 3(b): At state 1, a profit maximizing blackmailer
demands a cash amount a ∈ (0, 1]; a victim transits to state 1 with probability a or state 0 with
probability 1 − a, respectively. At state 0, a victim always refuses to yield, i.e., V (0) = 0. The
Bellman’s optimality equation for state 1 is V (1) = maxa{a+(1−a)V (1)}, where any V (1) ≥ 1
is a feasible solution. If initialize V0(1) > 1, the blackmailer’s policy is demanding a→ 0 to keep
the victim at state 1; otherwise, demanding a = 1 that drives the victim to terminal state 0.

• Optimal stopping problem (terminating policies) in Fig. 3(c): In a space R2 with terminal
state of point 0, an agent at point x ̸= 0 moves to either point 0 with negative reward −c or
point αx with reward −||x||, respectively, where α ∈ (0, 1). The Bellman’s optimality equation
is V (x) = max{−c,−||x||+ V (αx)} and the optimal policy is to continue inside the sphere of
radius (1− α)c and to stop outside. If add a cone region C within which an agent always receives
a reward −c, a second policy is jumping to point 0 at any point in region C.

We elaborate how adding the energy measured by (2) onto each state can help drive to the terminal
state (a stationary policy), which fixes the foundational issue of multiple fixed points in Fig. 3 where
γ = 1. We have H(0) = 0 for the terminal state 0.

• (a) Shortest path problem (deterministic): H(1) = −
∑∞

k=1 b = −∞. At state 1, the Bellman’s
optimality equation becomes V (1) = max{V (1) + λH(1), b}. Independent of the initial value
V0(1), an agent obtains a policy that always transits back to terminal state 0.

• (b) Blackmailer’s problem (stochastic): H(1) = −∞. The Bellman’s optimality equation
becomes V (1) = maxa{a+(1−a)(V (1)+λH(1))} for state 1. For any V0(1) <∞, the optimal
policy becomes a = 1 that drives to the terminal state 0.

• (c) Optimal stopping problem (terminating policies): any policy that takes infinite steps will
have H(x) = −∞, since at each step number k, there are always trajectories that jump to point 0

9

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

(a) Shortest path problem (b) Blackmailer’s problem (c) Optimal stopping problem

Figure 4: Revisiting Fig. 3 for the discounted cases where γ ∈ (0, 1).

with reward −c; and a direct jumping policy will have H(x) = −c. Therefore, adding H(x) to
each point x ̸= 0 will lead to a policy of jumping back to point 0.

B.2 CASE OF γ ∈ (0, 1) IN FIG. 4

First, we consider the discounted formulations of the three examples (shown in Fig. 3), as shown in
Fig. 3 where γ ∈ (0, 1). The differences are marked in red.

• (a) Shortest path problem (deterministic, discounted case): Given two states 1 and 0, an agent
at state 1 transits to either state 1 or 0 with rewards r = c or r = b, respectively. c > (1− γ) · b.
At state 0, the value function is V (0) = 0. At state 1, the Bellman’s optimality equation is
V (1) = max{c+ γ · V (1), b}, where any V (1) ≥ (b− c)/γ is a solution. If initialize V0(1) ≥ b,
an agent obtains a policy that always transits back to state 1; otherwise, a result policy drives to
terminal state 0.

• (b) Blackmailer’s problem (stochastic, discounted case): Different from (a), a profit maximizing
blackmailer/agent at 1 demands a cash amount a ∈ (0, 1] (an action), while a victim transits to state
1 with probability a or to state 0 with probability 1− a, respectively. At state 0, a victim always
refuses to yield to the blackmailer’s demand, i.e., V (0) = 0. The Bellman’s optimality equation
is V (1) = maxa{a+ γ · (1− a)V (1)} for state 1, where any V (1) ≥ 1 is a feasible solution. If
initialize V0(1) = c > 1, the blackmailer’s policy is demanding a → 0 at the k-th step to keep
the victim stay at state 1, for any k ≤ K0 = −⌊logγ c⌋; and taking a = 1 to transit to terminal
state 0 at the k-th step, for any k ≥ K0 + 1; otherwise initialize V0(1) = c ≤ 1, the result policy is
demanding the maximum a = 1 that drives the victim to a refusal state 0 (a terminal state).

• (c) Optimal stopping problem (terminating policies, discounted case): In a space R2 with
terminating state at point 0, at point x ̸= 0 an agent moves to either point 0 with negative reward−c
or point αx with reward −||x||, respectively, where α ∈ (0, 1). The Bellman’s optimality equation
is V (x) = max{−c,−||x||+ γ · V (αx)} and the optimal policy is to continue inside the sphere of
radius (1− α)c and to stop outside. If add a cone region C within which an agent always receives
a reward −c, a second policy is jumping to point 0 at any point in region C.

Then, we elaborate how the proposed H-term fixes the problems in Fig. 3.

(a) Shortest path problem (deterministic, discounted case)

Assume V0(1) ≥ b and c > (1−γ)b, we have Vk(1) =
∑k−1

i=0 γi ·c+γk ·V0(1) ≥
∑k−1

i=0 γi ·c+γkb >
b and V ∗(1) =

∑∞
i=0 γ

i · c = 1
1−γ c > b. The values of H(0) and H(1) are H(0) = 0 and H(1) =

−b−
∑∞

k=2(
∑k−1

i=1 γi−1 · c+ γkb) = −∞. Adding the above H-values to state 1 and 0, respectively,
we have V ∗(0)+H(0) = b, and V ∗(1)+H(1) = −∞. Therefore, V ∗(1)+H(1) < V ∗(0)+H(0),
independent of the initial value V0(1). That is, an agent always obtains a policy that drives to terminal
state 0 at step 1.

(b) Blackmailer’s problem (stochastic, discounted case)

10

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

If initialize V0(1) = c > 1, the blackmailer’s policy is demanding a→ 0 at the k-th step to keep the
victim stay at state 1, for any k ≤ K0 = −⌊logγ c⌋; and taking a = 1 to transit to terminal state 0 at
the k-th step, for any k ≥ K0 + 1; otherwise initialize V0(1) = c ≤ 1, the result policy is demanding
the maximum a = 1 that drives the victim to a refusal state 0 (a terminal state).

We have H(0) = 0 and H(1) = −
∑∞

k=1

∑k−1
i=1 γi−1 · a = −∞. For arbitrary initial value of V0(1),

V1(1) = a+(1−a) ·γ(V0(1)+H(1)) take maximum V1(1) = 1 when a = 1. Therefore, the policy
always drives to terminal state 0 at step 1.

(c) Optimal stopping problem (terminating policies, discounted case)

We have H(x) = −c −
∑∞

k=2

[∑k−1
i=1 γi · αi · ∥x∥+ γk · (−c)

]
= −∞ for any policy that takes

infinite steps. and H(x) = −c for a direct jumping policy. Therefore, the H-term drives to a
terminating policy.

11

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

Table 2: The state and action spaces of six challenging MuJoCo tasks.
Tasks Agent Action Space State Space

Swimmer-v3 Three-link swimming robot 2 8
Hopper-v3 Two-dimensional one-legged robot 3 11

Walker2d-v3 Two-dimensional bipedal robot 6 17
HalfCheetah-v3 Two-dimensional robot 6 17

Ant-v3 Four-legged creature 8 111
Humanoid-v3 Three-dimensional bipedal robot 17 376

Figure 5: Different policies for MuJoCo tasks (Todorov et al., 2012). The bold ones are physically
stationary policies.

C EXPERIMENTS ON MUJOCO TASKS

We selected six challenging robotic locomotion tasks from MuJoCo, namely, Swimmer-v3, Hopper-
v3, Walker2D-v3, HalfCheetah-v3, Ant-v3, and Humanoid-v3, listed in Table 2.

C.1 MUJOCO TASKS HAVE MULTIPLE POLICIES

Multiple Policies of MuJoCo Tasks: On four MuJoCo tasks (Todorov et al., 2012), namely,
Humanoid, Hopper, HalfCheetah, and Ant, we were able to provide observational experiments. We
render the obtained policies over multiple runs and then identify physically stationary ones. We
observe various types of moving strategies, as shown in Fig. 5, which verifies that multiple policies
are very common. For example, the Humanoid agent learns either jump with a single leg or run
with two legs, as shown in Fig. 5 (top-left); another interesting example is HalfCheetah, in which
an agent can run normally or in a flipped manner, as shown in Fig. 5 (bottom-left). Among the
obtained policies, one can easily identify the physically stationary policies that control the robot
moving forward with a stable gait (defined as gait that does not lead to fall).

In the supplementary files, we include rendered videos of different policies, listed in Table 3. Different
policies are obtained over 20 runs of the PPO algorithm. We rendered these policies and classified
them by physical gaits. The policies in bold texts are physically stationary.

C.2 HYPERPARAMETERS AND RESULTS

Fig. 6 shows the H-value (average over 20 runs) during the training process, which verified that the
trained agents have converged to policies with small H-values. Fig. 6 compares the performance of
K = 8, 16, 24. We run each experiment with 20 random seeds and for each run we test 100 episodes.

To verify the hypothesis that a smaller replay buffer hurts the performance, we rerun the trials of
K = 8, 16 with a replay buffer size 800.

12

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

Table 3: List of video files for different policies.
Task Different Policies Video Name

hopping hopper_hopping.mp4
diving hopper_diving.mp4Hopper

standing hopper_standing.mp4
running ant_running.mp4
standing ant_standing.mp4Ant
flipping ant_flipping.mp4
walking walker_walking.mp4
diving walker_diving.mp4Walker

standing walker_standing.mp4
two-legs humanoid_two_legs.mp4
one-leg humanoid_one_leg.mp4Humanoid

backward humanoid_backward.mp4
running halfcheetah_running.mp4
diving halfcheetah_diving.mp4

flipping halfcheetah_flipping.mp4HalfCheetah

standing halfcheetah_standing.mp4
moving swimmer_moving.mp4Swimmer standing swimmer_standing.mp4

Table 4: Hyperparameters used by PPO / PPO+H and DDPG / DDPG+H in MuJoCo tasks.
Parameters PPO / PPO+H DDPG / DDPG+H
Optimizer Adam Adam
Learning rate 3 · 10−4 5 · 10−4

Discount (γ) 0.99 0.995
GAE parameter 0.95 -
Replay buffer size - 106

Target Update Rate (τ) - 10−3

Number of hidden layers for all networks 3 3
Number of hidden units per layer 256 256
Mini-batch size 32 64
Importance rate of H-term (λ) 2−3 2−3

Truncation step of H-term (K) 16 16

Table 5: Experimental results on six MuJoCo tasks.
Tasks Policies PPO PPO+H (K = 8) PPO+H (K = 16) PPO+H (K = 24)

running 13 19 20 20
flipping 5 0 0 0
diving 1 1 0 0

HalfCheetah

balancing 1

4720.8
±969.2

0

5028.4
±211.3

0

5104.3
±228.4

0

4995.1
±383.3

running 17 20 20 20
Ant jumping 0 0 0 0

flipping 3

4164
±1563.4

0

4505.3
±253.6

0

4645.6
±225.4

0

4662.5
±277.5

two-legs 7 17 16 17
one-leg 12 3 4 3Humanoid

backward 1

9433.4
±2513.5

0

9670.3
±497.2

0

10189.1
±683.7

0

9942.2
±538.4

hopping 10 18 20 20
diving 8 2 0 0Hopper balancing 2

2659.3
±905.3

0

3116.5
±289.4

0

3300.1
±184.2

0

3340.7
±191.5

moving 14 20 20 19Swimmer balancing 6
110.7
±60.7 0

130.6
±33.5 0

132.5
±31.6 1

132.2
±36.2

walking 5 16 16 15
Walker diving 8 2 4 5

balancing 7

5461.7
±1290.1

2

5819.9
±315.6

0

5927.2
±296.8

0

6089.3
±314.7

13

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

0 1 2 3 4

#samples 1e6

4

2

0

H
va

lu
es

HalfCheetah

0.0 0.5 1.0 1.5 2.0

#samples 1e7

6

4

2

0

H
va

lu
es

Ant

0.0 0.5 1.0 1.5 2.0

#samples 1e7

1.0

0.5

0.0

H
va

lu
es

Humanoid

0 1 2 3

#samples 1e6

2

1

0

H
va

lu
es

Hopper

0 2 4 6 8

#samples 1e7

0.3

0.2

0.1

0.0

H
va

lu
es

Swimmer

0.0 0.5 1.0 1.5 2.0

#samples 1e6

4

2

0

H
va

lu
es

Walker2D

PPO PPO + H, K = 8 PPO + H, K = 16 PPO + H, K = 24

Figure 6: H values during the training process.

14

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

D GRAPH MAXCUT

5

2

3

1

4

5

2

3

1

4

5

2

3

1

4

5

2

3

1

4

k k+1 k+1k

Figure 7: Illustration of graph maxcut using K-spin Ising model.

Table 6: Graph maxcut using K-spin Ising model.
Graph maxcut (original) Graph maxcut using K-spin Ising model
Nodes i ∈ V Nodes ik ∈ V , k = 1, ...,K

Solution x ∈ [−1,+1]N Solutions x1, · · · ,xK ∈ [−1,+1]N

Path - Path prob. x1
i1
· · ·xK

iK
∈ [−1,+1]K

Reward Jij = w(i, j) Path reward Ji1···iK =
∑K

k=2 γ
K−kw(i1, i2) · · ·w(ik−1, ik)

We use the K-spin Ising model to solve the graph maxcut problem.

D.1 GRAPH MAXCUT USING K-SPIN ISING MODEL

We study the graph maxcut problem over weighted graphs. Let G = (V,E,w) denote a weighted
graph G with node set V and edge set E, i.e., |V | = N and |E| = M , and edge weight w : E → R+

such that

w(i, j) =

{
1, if (i, j) ∈ E,

0, otherwise.
(11)

Graph maxcut using Ising model: for a solution x ∈ {−1,+1}N , the cut value can be expressed as
the following Hamiltonian

H(x) =
∑

(i,j)∈E

w(i, j)xixj =

N∑
i

N∑
j>i

w(i, j)xixj . (12)

For the left graph of Fig. 7, we have E = {(1, 2), (1, 4), (2, 3), (2, 4), (3, 4), (3, 5)} and w(1, 2) =
w(1, 4) = w(2, 3) = w(2, 4) = w(3, 5) = w(4, 5) = 1. For the left graph in Fig. 7, the solution at
the k-th step is xk ∈ {−1,+1}5 and its Hamiltonian in (12) is

H(xk) = xk
1x

k
2 + xk

1x
k
4 + xk

2x
k
3 + xk

2x
k
4 + xk

3x
k
5 + xk

4x
k
5 . (13)

Graph maxcut using K-spin Ising model: Our solution takes K steps to solve the graph maxcut
problem, i.e., x1 → x2 · · · → xK . These K steps induce a new graph G′ = (V ′, E′, w′), as shown
in the right graph in Fig. 7, with the following rules:

• V ′ consists of K replicas of V , i.e., V 1, V 2, ..., V K . For node i ∈ V , we denote its K replicas as
i1, i2, ..., iK .

• The edge set E is kept for the k-th step, Ek = E. Each step of those K steps is a snapshot of
G = (V,E,w).

• We add new edges between the k-th and (k + 1)-th steps, i.e., w′(ik, jk+1) = w(i, j), therefore{
(ik, jk+1) ∈ E′, if (i, j) ∈ E,

(ik, jk+1) ̸∈ E′, if (i, j) ̸∈ E,
w′(ik, jk+1) =

{
1, if (i, j) ∈ E,

0, otherwise.
(14)

15

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

Table 7: Results for graph maxcut on synthetic instances
Nodes Gurobi RL-Hamiltonian Improvement Speedup
20 67 (5s) 71 (36s) +5.97% 0.139×
30 132 (10s) 135 (93s) +2.27% 0.108×
100 1408 (2000s) 1415 (33s) +0.49% 60.6×
1000 128508 (4400s) 129714 (119s) +0.94% 36.97×
5000 - (> 8h) 3175813 (202s) - −

Table 8: Graph maxcut on the Gset dataset. The compared methods are BLS (Benlic & Hao, 2013),
DSDP (Choi & Ye, 2000), KGLWG (Kochenberger et al., 2013), RUN-CSP (Toenshoff et al., 2021),
PI-GNN (Schuetz et al., 2022).

Graph Nodes Edges BLS DSDP KHLWG RUN-CSP PI-GNN RL-Hamiltonian Improvement
G14 800 4694 3064 - 2922 3061 2943 3003 −1.99%
G15 800 4661 3050 2938 3050 2928 2990 2965 −2.78%
G22 2000 19990 13359 12960 13359 13028 13181 12991 −2.75%
G49 3000 6000 6000 6000 6000 6000 5918 5790 −3.50%
G50 3000 6000 5880 5880 5880 5880 5820 5720 −2.72%
G55 5000 12468 10294 9960 10236 10116 10138 9830 −4.51%
G70 10000 9999 9541 9456 9458 - 9421 9091 −4.72%

For example, as shown in the right graph of Fig. 7, we have (1k, 2k+1) ∈ E′ and (1k, 4k+1) ∈ E′

since (1, 2) ∈ E and (1, 4) ∈ E.

The Hamiltonian measure in (2) becomes:

H(x1, · · · ,xK) =

K∑
k=1

H(xk) +

K∑
k=1

∑
i1∈V 1

· · ·
∑

ik∈V k

Ji1···ikx
1
i1 · · ·x

k
ik
, (15)

where Ji1···ik =
∑K

k=2 γ
K−kw(i1, i2) · · ·w(ik−1, ik).

For the right graph in Fig. 7, the 1st and 2nd steps have

H(x1,x2) =H(x1) +H(x2) + (x1
1x

2
2 + x1

1x
2
4 + x1

2x
2
1 + x1

2x
2
3 + x1

2x
2
4

+ x1
3x

2
2 + x1

3x
2
5 + x1

4x
2
2 + x1

4x
2
5 + x1

5x
2
3 + x1

5x
2
4).

(16)

D.2 EXPERIMENTAL RESULTS

Instead of using simple MLP networks, we use Long Short Term Memory (LSTM) to capture the
dynamics over K iterations. One desirable property of LSTM is that we can leverage the momentum
to overcome the existence of local minima, which is helpful in non-convex optimization. However,
one challenge in solving combinatorial optimization problems is scalability due to the exponential
complexity. To avoid this difficulty, we optimize coordinatewise on the dimensions of the solution
and show that we can significantly scale each problem up, e.g., a graph with 10,000 nodes.

Gurobi Gurobi Optimization, LLC (2023) is a state-of-the-art mathematical programming solver that
can be used to solve optimization problems. It is one of the most popular commercial optimization
solvers used in both academia and industry, known for its speed, efficiency, and reliability. Therefore,
we use it as an important comparison method.

Table 7 shows the result on synthetic data with N = 20, 30, 100, 1000, 5000. For the instance with
5000 nodes, Gurobi cannot return a solution within 8 hours. The RL-Hamiltonian method finds better
(or same) solutions than the Gurobi for all test instances. When N ≥ 100, our RL-Hamiltonian
method has a speedup 36.97× ∼ 60.6×.

Table 8 presents results of RL-Hamiltonian and 6 compared methods for seven instances from
Gset. The compared methods include Gurobi (Gurobi Optimization, LLC, 2023), SDP (DSDP)
(Choi & Ye, 2000), breakout local search (BLS) (Benlic & Hao, 2013), Tabu search (KHLWG)

16

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

(Kochenberger et al., 2013), recurrent GNN (RUN-CSP) (Toenshoff et al., 2021), and physical-
inspired GNN (PI-GNN) (Schuetz et al., 2022). We evaluate the solution via the metric of relative
gap = (H(x)−H(x∗)/H(x∗). Compared to the best-known solution, our RL-Hamiltonian method
has a gap from −1.99% to −4.72%.

17

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

1 3

2

4s

k
i

j

m

1

2

34s

k
ij

12

34

ijs

1234

k+1 k k+1k

order 3

tensor 1

tensor 2

tensor 3

tensor 4

order 2

order 1

order 3

tensor 1

tensor 2

tensor 3

tensor 4

order 2

order 1

order 3

tensor 1

tensor 2

tensor 3

tensor 4

order 2

order 1

order 3

tensor 1

tensor 2

tensor 3

tensor 4

order 2

order 1

Figure 8: Illustration of TNCO using K-spin Ising model.

E TENSOR NETWORK CONTRACTION ORDERING

We use the K-spin Ising model to solve the tensor network contraction ordering (TNCO) problem.

Table 9: TNCO using K-spin Ising model.
TNCO (original) TNCO using K-spin Ising model

Spins xu,j ∈ V Spins xuk,jk ∈ V, k = 1, · · · ,K
Solution x ∈ {0, 1}N2

Solutions x1, · · · ,xK ∈ {0, 1}N2

Path - Path prob. x1
i1
, · · · ,xK

iK
∈ {0, 1}K

Reward Jui,vj = w(ui, vj) Path reward Ji1,··· ,iK =
∑K

k=2 γ
K−kw(i1, i2) · · ·w(ik−1, ik)

E.1 PROBLEM FORMULATION

Given a tensor network, G = (V,E,w), a contraction path P = (e1, . . . , en−1) , et ∈ Et, and a
corresponding sequence of graphs (G1, . . . Gn−1). The goal is to find a path P with minimum cost,

P ∗(G) = argminP c(P)

s.t. P = (e1, . . . , en−1) , et ∈ Et,
(17)

where the cost c(P) is the sum of rewards along the contracted path P

c(P) =

n−1∑
t=1

wt (et) . (18)

E.2 OUR SOLUTION

In the left of Fig. 8, we construct a new graph G = (V,E,w) with G1, G2, · · · , Gn−1 using the
following rules:

• V consist of V1, V2, · · · , Vn−1, node u ∈ Vi are denoted with ui ∈ V in V .
• E consist of E1, E2, · · · , En−1

• {
(ui, vj) ∈ E, if i = j and (u, v) ∈ Ei,

(ui, vj) ̸∈ E, otherwise,
w(ui, vj) =

{
wi(u, v), if i = j and (u, v) ∈ Ei,

0, otherwise.
(19)

18

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

TNCO using Ising model: The Ising model of TNCO problem uses N(N − 1) spins xu,j , where
u denotes the tensor and j denotes its order in the TNCO path. The energy of the original TNCO
problem has three terms. The first term requires each tensor to appear at least once in the TNCO path.
The second term requires there are exactly two tensors selected at order j along a path. The third
term measures the contraction cost at order j. These are encoded in the following Hamiltonian:

H(x) =

N−1∑
i=1

(2−
N−i∑
u=1

xu,i)
2 +

N−1∑
i=1

N∑
u=1

N∑
v=1

Jui,vi
xu,ixv,i. (20)

H(x) = (2 − x1,1 − x2,1 − x3,1 − x4,1)
2 + (2 − x1,2 − x2,2 − x3,2)

2 + (2 − x1,3 − x2,3)
2 +

w1(1, 4)x1,1x4,1 +w1(1, 2)x1,1x2,1 +w1(2, 3)x2,1x3,1 +w1(2, 4)x2,1x4,1 +w1(3, 4)x3,1x4,1 +
w2(1, 3)x1,2x3,2 + w2(1, 2)x1,2x2,2 + w2(2, 3)x2,2x3,2 + w3(1, 2)x1,3x2,3

TNCO using K-spin Ising model: Our solution takes K steps to solve the TNCO problem, i.e.,
x1 → x2 → · · · → xK . These K steps induce a new graph G′ = (V ′, E′, w′), as shown in the right
graph in Fig. 7, with the following rules:

• V ′ consists of K replicas of V , i.e., V 1, V 2, ..., V K . For node ui ∈ V , we denote its K replicas as
u1
i , u

2
i , ..., u

K
i .

• The edge set E is kept for the k-th step, Ek = E. Each step of those K steps is a snapshot of
G = (V,E,w).

• We add new edges between the k-th and (k+ 1)-th steps, i.e., w′(uk
i , v

k+1
j) = w(ui, vj), therefore{

(uk
i , v

k+1
j) ∈ E′, if (ui, vj) ∈ E,

(uk
i , v

k+1
j) ̸∈ E′, if (ui, vj) ̸∈ E,

w′(uk
i , v

k+1
j) =

{
w(uk

i , v
k+1
j), if (ui, vj) ∈ E,

0, otherwise.
(21)

H(x1, · · · ,xK) =

K∑
k=1

H(xk) +

K∑
k=1

∑
i1∈V 1

· · ·
∑

ik∈V k

Ji1···ikx
1
i1 · · ·x

k
ik
, (22)

where Ji1···ik =
∑K

k=2 γ
K−kw(i1, i2)w(i2, i3) · · ·w(ik−1, ik).

E.3 EXPERIMENTAL RESULTS

Table 10: Total flop count in tensor-train network of various sizes. The compared methods are OE
Greedy (Daniel et al., 2018), CTG Greedy (Gray & Kourtis, 2021), and CTG Kahypar (Gray &
Kourtis, 2021).

Size OE Greedy CTG Greedy CTG Kahypar RL-Hamiltionian
N=100 30.927 30.705 30.710 30.404
N=200 61.030 60.808 60.810 60.507
N=400 121.236 121.014 121.010 120.713
N=600 181.442 181.220 181.220 180.919
N=800 241.648 241.426 241.430 241.125

N=1000 301.854 301.632 301.630 301.331
N=1500 - - 452.150 451.846
N=2000 - - 602.660 602.361

Table 11: Total flop count in Sycamore circuit of various cycles. The compared methods are OE
Greedy (Daniel et al., 2018), CTG Greedy (Gray & Kourtis, 2021), CTG Kahypar (Gray & Kourtis,
2021), AC-QDP (Huang et al., 2021), and RL-TNCO (Meirom et al., 2022).

Cycles OE Greedy CTG Greedy CTG Kahypar AC-QDP RL-TNCO RL-Hamiltionian
m=12 17.795 17.065 13.408 13.037 12.869 12.12
m=14 19.679 19.282 14.152 13.85 14.411 14.731
m=16 25.889 23.151 17.012 17.06 - 15.967
m=18 26.793 23.570 17.684 17.41 - 15.777
m=20 26.491 25.623 18.826 18.82 18.544 16.978

19

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

The float counts in Table 10 and Table 11 are measured by taking log10.

Table 10 shows the contraction cost for the tensor-train network with nodes N = 100, 200, ..., 20, 000.
Our RL-Hamiltonian method achieves a reduction of 0.3 order over the state-of-the-art method CTG
Kahypar (Gray & Kourtis, 2021).

Table 11 shows the contraction cost for the Sycamore network with 53 qubits and cycles m =
12, 14, 16, 18, 20. Our RL-Hamiltonian method achieves a reduction of orders 1.045, 1.907, and
1.748 for m = 16, 18, 20, over the state-of-the-art method CTG Kahypar (Gray & Kourtis, 2021).

20

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

F MASSIVE MIMO BEAMFORMING IN WIRELESS COMMUNICATION

We use the K-spin Ising model to solve the multiple input multiple output (MIMO) beamforming
problem.

F.1 PROBLEM FORMULATION

The massive MIMO beamforming problem in 5G/6G wireless communication systems is a nonconvex
optimization problem, which is NP-hard (Björnson et al., 2013).

Consider a base station with N antennas with a power budget P ∈ R and M single-antenna users, the
channel matrix is a Gaussian matrix S = [s1, · · · , sM] ∈ CN×M , where each entry is independent
and identically distributed (i.i.d.), i.e., Sij ∼ CN (0, σ2). The goal is to find an optimal beamformer
matrix W = [w1, · · · ,wM] ∈ CN×M that maximizes the sum of achievable rates as follows:

W ∗ = argmax
W∈CN×M

M∑
m=1

log2 (1 + SINRm) ,

s.t. Tr
(
WWH

)
≤ P,

(23)

where log2 (1 + SINRm) is the achievable rate for user m, and the signal-to-interference-plus-noise
ratio (SINR) is given by

SINRm =

∣∣sHmwm

∣∣2∑M
i=1,i̸=m |sHmwi|2 + σ2

. (24)

F.2 OUR SOLUTION

For a random channel sample S ∈ CN×M , our policy network maps an input (S,W k) to an output
W k+1 ∈ CN×M , for k = 0, 1, 2, · · · ,K, where W 0 ∈ CN×M is a random (complex) matrix. The
input of the k-th iteration is (S,W k), while the output of the k-th iteration is W k+1. K iterations
are (S,W 0)→ (S,W 1)→ (S,W 2)→ · · · → (S,WK). The final output is Ŵ ∗ = WK .

We study the MIMO beamforming problem over weighted graphs. Let G = (V,E,w) denote a
weighted graph G with node set V = {0, 1, · · ·M} and edge set E = {(0, i)|i = 1, 2 · · · ,M}, i.e.,
|V | = M +1 and |E| = M , node 0 denotes the base station, and edge weight w : E → R+ such that

w(i, j) =

{
SINRj , if i = 0, j > 0,

0, otherwise.
(25)

H(x) = −
M∑
i=1

SINRi(S,W)x0xi (26)

H(x1, · · · ,xK) =

K∑
k=1

H(xk)+ (27)

Our objective function (2) for this MIMO beamforming problem becomes

ES∼CN (0,σ2)

[
K∑

k=1

M∑
m=1

log2 (1 + SINRm)

]
. (28)

The Hamiltonian’s deterministic policy gradient of (28) corresponding to (4) becomes:

∇θH
′(θ) = −ES∼CN (0,σ2)

[
K−1∑
k=0

γk ·
M∑

m=1

log2 (1 + SINRm) · ∇θ log (π̃θ,δ(µ0) · π̃θ,δ(µ1) · · · π̃θ,δ(µk))

]
.

(29)

To solve those optimization problems using deep learning, we have three major modifications
compared to the original method.

21

Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

Table 12: Performance comparison at different SNRs.
N K SNR (dB) MMSE BRB Björnson et al. (2013) SLSQP RL-Hamiltonian
4 4 10 8.31 (1.02ms) 9.8 (1000s) 9.76 (1.01s) 9.8 (9.5ms)
4 4 20 17.03 (1.03ms) 19.41 (1000s) 19.23 (1.51s) 19.26 (9.8 ms)
8 8 10 15.45 (1.50ms) 18.2 (2h) 17.95 (2.52s) 18.01 (14ms)
8 8 20 31.13 (1.54) 34.4 (2h) 36.26 (2.58s) 35.3 (15ms)
16 16 10 31.25 (2.01ms) - (>24h) 35.57 (4.72s) 34.91(530ms)
16 16 20 36.54 (2.01ms) - (>24h) 70.97 (4.86s) 69.41 (518ms)
32 32 10 60.58 (3.10ms) - (>24h) 67.79 (58.7s) 66.79 (570ms)
32 32 20 111.71 (3.11ms) - (>24h) 133.96 (61.4Ds) 127.69 (580ms)

State and action space Given that it is nontrivial to formulate combinatorial optimization problems
as an MDP, we directly optimize the K-spin objective rather than relying on existing RL algorithms.
Specifically, we have a neural network that takes the problem state St as input, outputs the solution
W t, and trains it to maximize the objective over K iterations. Note that the state St will include both
the problem observation Ot and the last solution W t−1.

Curriculum learning(Bengio et al., 2009) To overcome the local minima, we further propose to
use curriculum learning as a warm-up. For example, in MIMO, we first train the neural network
by substituting the non-convex objective with a convex one minimum mean square error (MMSE),
which lowers the difficulty. After certain training steps, we substitute back the original objective.

F.3 EXPERIMENTAL RESULTS

Experimental Results: Table 12 shows the sum rate for the MIMO beamforming task with N =
K = 4, 8, and SNR=10 dB, 20 dB. For the first three cases, our RL-Hamiltonian method outperforms
the compared methods. In other cases, our RL-Hamiltonian maintains an ignorable gap with the best
solution while obtaining an 8.9 ∼ 172 times speedup compared to the state-of-the-art solver SLSQP.

22

	Introduction
	Hamiltonian Formulation Using K-spin Ising Model
	Stationary Deep Reinforcement Learning
	Hamiltonian Policy Gradient and Monte Carlo-based Gradient Estimator
	Stationary Actor-Critic Algorithm with H-term

	Performance Evaluation
	Background of Reinforcement Learning and Bellman Equation
	Bellman Equation has an Issue of Multiple Fixed Points
	Case of = 1 in Fig. 3
	Case of (0, 1) in Fig. 4

	Experiments on MuJoCo Tasks
	MuJoCo tasks have multiple policies
	Hyperparameters and Results

	Graph Maxcut
	Graph Maxcut Using K-spin Ising Model
	Experimental Results

	Tensor Network Contraction Ordering
	Problem Formulation
	Our solution
	Experimental Results

	Massive MIMO Beamforming in Wireless Communication
	Problem Formulation
	Our Solution
	Experimental Results

