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ABSTRACT

We study the learnability of languages in the Next Symbol Prediction (NSP) set-
ting, where a learner receives only positive examples from a language together
with, for every prefix, (i) whether the prefix itself is in the language and (ii) which
next symbols can lead to an accepting string. This setting has been used in prior
work to empirically analyze neural sequence models, and additionally, we observe
that efficient algorithms for the NSP setting can be used to learn the (truncated)
support of language models. We first show that the class of DFAs with at most
n states is identifiable from positive examples augmented with these NSP labels.
Nevertheless, even with this richer supervision, we show that PAC-learning DFAs
remains computationally hard, and exact identification using only membership
queries cannot be achieved in polynomial time. We then present L, an exten-
sion of Angluin’s L* algorithm, and show that DFAs can be PAC-learned effi-
ciently using a language-model-based teacher that answers membership queries
and generates valid strings conditioned on prefix prompts. Finally, we conduct a
comprehensive experimental evaluation on 11 regular languages of varying com-
plexity. Using L7, we extract DFAs from Transformer-based language models
trained on regular languages to evaluate the algorithm’s effectiveness and identify
erroneous examples.

1 INTRODUCTION

Language models (LMs) are now deployed across text, vision, and bioinformatics; yet their internal
computation and potential outputs they generate remain difficult to interpret. This motivates a basic
question: given black-box access to a model, can we extract a compact, interpretable formal object,
such as a deterministic finite automaton (DFA), that accepts (approximately) the same strings as
those that lie in the model’s generative support? We develop a formal framework for this problem
and study its learnability in a setting that closely mirrors how LMs are typically used in practice.

We formalize and study the problem of learnability of languages in the Next Symbol Prediction
(NSP) setting. Here a learner receives only positive strings from a target language, together with
rich supervision for every prefix: a membership bit indicating whether the prefix itself is in the
language and a vector of “continuation” bits indicating which next symbols admit some accepting
continuation. A prediction is correct only if the hypothesis matches all membership and continuation
labels at every prefix of the example.

This setup has a natural interpretation in the context of generative models: when decoding with top-
p (Holtzman et al., 2019)), top-k, or min-p (Minh et al., |2025) sampling, the per-prefix continuation
set is precisely the set of admissible next tokens, and termination corresponds to allowing the end-
of-sequence token. In particular, positive-only NSP supervision is natural to obtain from black-box
models and avoids inventing an artificial distribution over negative strings; at the same time, the
requirement for correct predictions at every prefix makes the task challenging. Fig. [I] illustrates
NSP labels on a Dyck example and how admissible-next-token sets can be read from an LM.

Additionally, while NSP has been widely used to evaluate sequence models on formal-language
benchmarks (see e.g. |Gers & Schmidhuber (2001); [Suzgun et al.| (2019); [Ebrahimi et al.| (2020);
Bhattamishra et al.|(2020a) and references therein), the learnability of languages under NSP and its
relationship to conventional binary classification has not been established.
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Our contributions. We investigate the question of learnability in the NSP setting within the com-
putational learning theory framework by studying computational complexity and oracle require-
ments. We also conduct a systematic empirical evaluation with several regular languages, using
Transformer-based language models as teachers.

(i) Identifiability and hardness. We give a PAC-style formulation of learning using NSP labels and
show that positive examples augmented with NSP labels are information-theoretically sufficient to
identify minimal DFAs. Concretely, distinct minimal DFAs always disagree on the NSP labeling of
some positive string, yielding finite teaching sets and a well-defined equivalence oracle in the NSP
model. At the same time, we prove that NSP supervision does not remove the key computational
barriers for learning regular languages. The key technical argument is a construction that renders
all but one continuation label uninformative, allowing a reduction to well-known hardness results
(Kearns & Valiant, [1994). Thus, even with the richer labels, efficient (improper) learning remains
computationally intractable (under standard cryptographic assumptions). We further show that iden-
tification with membership queries alone cannot be achieved in polynomial time for certain natural
DFA families, even when each query returns all NSP labels. Together, these results suggest that
while NSP labels offer some benefit, they do not, in general, circumvent computational hardness.

(ii) Learning with a language-model teacher. Motivated by the hardness results, we study a more
powerful, though still practically motivated, learning framework based on prefix-conditional gen-
eration queries. These can easily be simulated using black-box access to an LM. In addition to
membership queries, the learner can issue generative queries that return positively labeled NSP
strings conditioned on a prefix prompt. We extend Angluin’s L* algorithm (Angluinl [1987)) to de-
sign a new algorithm we denote L7 that uses membership and generative queries to construct a
DFA consistent with the observed NSP labels. The guarantee is distribution-specific: Ly, PAC-
learns with respect to the distribution induced by the teacher language model. This perspective is
aligned with our goal of identifying the model’s (truncated) support and is particularly appealing in
the context of generative models, where the target distribution over negative strings is either unde-
fined or arbitrary. Conditional generation is both a natural capability of modern LMs and turns out
to be a powerful query primitive for efficient learning in the NSP framework.

(iii) Empirical evaluation and analysis. We apply the L, algorithm to extract DFAs from Trans-
former teachers trained on eleven regular languages of varying complexity, including the Tomita
grammars, Parity, and bounded Dyck languages. We study how NSP accuracy, the number of ex-
tracted states, and runtime scale with the number of positive training strings. Across tasks, a modest
amount of positive data with NSP labels typically suffices to recover the target automata or their
teacher-support counterparts. When the teacher is imperfect (e.g., for Parity, Tomita-5), the ex-
tracted DFA reveals systematic errors by identifying strings in the symmetric difference between the
target and the teacher’s support. Ablations further indicate that the continuation labels are heavily
used on languages with transitions to dead states (e.g., bounded Dyck), leading to improved sample
complexity over binary labels alone. These experiments underscore a practical point: while NSP la-
bels cannot break worst-case computational barriers, they are easy to obtain from modern sequence
models and can be leveraged effectively in practice.

1.1 RELATED WORK

Learnability of DFAs. Classical results show that inferring DFAs from labeled examples is compu-
tationally hard— finding the minimum consistent DFA is NP-hard (Gold, 1978} |Angluin, |1978; [Pitt
& Warmuth, [1993)), and even (improper) PAC learning is intractable under cryptographic assump-
tions (Kearns & Valiant, |1994). With queries and counterexamples, |Angluin| (1987) showed that
regular languages are learnable in polynomial time. Under structural assumptions, several works
have studied PAC learnability for probabilistic DFAs (Clark & Thollard, [2004; [Palmer & Goldberg,
2007). The area remains active with recent theory on counterexample handling and lower bounds
in the MAT framework (Vaandrager et al., [2022; |Kruger et al.| [2023)). We build on this line of re-
search by characterizing the learnability of DFAs in a new setting relevant to learning the support of
language models, and by situating prior empirical analyses of neural nets in the appropriate context.

Automata extraction from neural models was introduced by |Giles et al.| (1992); |Omlin & Giles
(1996)) and has been an active field (Wang et al., 2018; Muskardin et al.,[2022). Notably, Weiss et al.
(2018) developed a method for white-box extraction based on L*, and several subsequent works
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Figure 1: Left: An example of a string with NSP labels from the Dyck-2 language. The language

consists of well-balanced parentheses with two types of brackets. Right: An illustration of how NSP
labels can be obtained from a language model. See Section |Z| for details.

©
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have focused on weighted automata/PDFAs (Weiss et al., 2019 Wei et al.,[2024; [Eyraud & Ayache,
2024)). Recent work (Zhang et al.| 2024) has also explored L*-like methods for Transformer-based
classifiers. [Mayr et al.| (2023) learn a PDFA abstraction of an LM via a distributional congruence.
Our focus is on support identification, where we characterize learnability and conduct empirical
analysis based on a new provable extension of the L* algorithm.

2 PROBLEM DEFINITION

Notation. A deterministic finite automaton (DFA) is a tuple A = (Q, X, d, qo, F'a) with finite state
set @, alphabet 3, transition function § : @ x X — (), start state gy, and a subset of accepting
states 4 C . The language of Ais L4 C X*; write A(z) = La(z) € {0,1}. Fix an order ¥ =
{o1,...,0y5}. For x = wy - - -wy;, let the length-n prefix be ., := wy - - -w, for0 <n < N. We
USE (gead for a dead state with (qgead, 0) = Gdeaq for all ¢ € 3 (unique, if present, in a minimal
DFA). We use DFA,, to denote DFAs with at most n states.

2.1 NEXT SYMBOL PREDICTION (NSP) SETTING

For alanguage L C ¥* and any x € X%, 0 € %, define the continuation bit
or(x,0) == I[Is€eX*st.x-0-s€L].

If L is regular with minimal DFA A, then with ¢ = §(qo, ) we have p4(x,0) = 0 if and only if
6(¢,0) = qdcad. The continuation vector at ¢ is defined as v 4(q) = [pa(q,01),...,pa(q,01x))] €

{0, 1}®1. For strings = € X*, write 0 (z) := ©A(0(qo, x)) and p4(z, ) := p(6(qo, ), o).

A positive NSP-labeled example is a string z = wy - - - wy € L together with, for every prefix z.,
(0 <n < N), its membership L(x.,) and all continuation bits (¢ (2., 0))scx. We collect these as

ful@) = (el o), L))

€ {0, VISHD(NF1)
{01

We will use the term NSP labels to refer to such labels (See Fig. [T} left for an illustration). We in-
stantiate predictors via automata. For a DFA A define fa(z) := ((¢(@m,07)) I La(x.,) )lm‘

=1 n=0"
Let fa- denote the target NSP labeling function. The per-example loss is the 0/1 sup-norm
mismatch err(fa(z), fa-(x)) = ||fa(x) — fa+(2)]co, 1-€., it equals 1 iff any membership/-
continuation label for any prefix is wrong; the NSP loss on D (supported on strings in L%) is
Lnsp(fa; far, D) := Egplerr(fa(z), fas(z))]. Because all (|X| 4+ 1)(]x| + 1) labels must be
simultaneously correct, NSP is stringent in the sense that a naive random guesser has a near-zero
chance of zero error on a typical example (contrast with ~50% in binary classification).

2.2 LEARNING THE TRUNCATED SUPPORT OF LANGUAGE MODELS

Let ¥ = V U {[EOS]} and let a language model LM define next-token probabilities pry (- | y) on
3 for each prefix y € %*. A sampling/truncation rule 7 (e.g., top-p, top-k, per-step min-p) maps y
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to the admissible next-symbol set Cr(y) C %, with [EOS] € Cr(y) exactly when y may terminate
(see Fig.[1] right for an illustration). The T -truncated support of LM is the set of all strings that can
be generated by running LM under 7. Formally,

Ly = {xzwl---wN: V0<n<N, wyy1 € Cy(wy---w,) and [EOS] GCT(m)}.

The NSP labelling oracle induced by the language model LM and truncation strategy 7 is then,

L) :=TI[[E0S| € Cr(v)], ¢ (y.0):=1Tloc €Cr(y)] (c €Y),
o]

and we set f7;(2) := (97 (€in, )17, L{y(2:n)), _,- If generation under T terminates almost

surely, then for any admissible step there exists a finite accepting continuation, so ¢/ coincides with
the global NSP semantics above.

From NSP learning to learning support. Let D{M be the distribution of strings generated by LM
under 7. Any PAC learner that, from NSP-labeled positive examples (z, f*(x)), outputs f with
Lnsp( f ; f*, D) < e immediately yields, by instantiating f* = fITM and D = DZ—M, a procedure
that learns the 7 -truncated support of LM with NSP error at most €.

Oracle simulation. With black-box access to LM and rule 7, one can simulate the typical example
oracle EX(f/y;; D) by sampling = ~ D/}, and returning (z, f/,;(2)). Membership queries can
be computed by checking if a string takes an admissible path based on the truncation strategy 7 and
if [EOS] is permissible at the last step.

3 IDENTIFIABILITY AND EQUIVALENCE IN THE NSP SETTING

Before studying efficient learnability, it is first necessary to establish whether NSP labels are nec-
essary and sufficient, in an information-theoretic sense, to identify a target language from positive
examples alone. By unique identification from positive NSP data for a target DFA A* with L 4~ # (),
we mean that there exists a finite set S C L 4+ such that

VA € DFA,, (vxes, fA(x):fA*(:z:)) — A= A" )

Any such S will be called a (positive) NSP teaching set for A*.

Note that positive strings alone without additional labels are not sufficient for such identifiability:
over ¥ = {0,1}, let Ly = ¥* and L4« = 1*. Every positive example € 1* is accepted
by both, so no positive counterexample exists. The same obstruction persists even if, in addition,
the oracle reveals the membership of each prefix: for any x € 1* and any prefix y of x we have
La(y) = La«(y) = 1, so positive examples with prefix-membership labels still cannot distinguish
A from A*. The key property of the NSP labels is that the continuation bits convey information
about strings not in the language: ¢(y, o) = 0 certifies that no extension of yo is accepted. This
additional information suffices to separate distinct minimal DFAs using positive examples only.

Proposition 3.1. Let A # A* be minimal DFAs with L 5+ # (). Then there exists x € L o+ such that

fa(z) # fa~(z). Equivalently, the oracle EQ(A; A*) is well-defined: it either returns “equivalent”
or a positive counterexample (x, f o+ (x)).

The proof is in Appendix [F}

Consequences. Proposition has two immediate consequences. First, finite teaching sets exist:
for each A € DFA,, \ {A*}, choose a witness x4 € La+ with fa(za) # fas(x4) guaranteed
by the proposition, and set S := {x4 : A € DFA,, \ {4*}} C L4-. Then S is a positive NSP
teaching set for A* in the sense of (I). Second, since it also implies that equivalence query oracle
(cf. App.[F) is well-defined in the NSP setting, which is crucial for exact learning to be feasible.

4 HARDNESS OF LEARNING

We study efficient PAC learnability in the NSP setting. An algorithm A is an efficient PAC learner
for a class F if for every f € F and every distribution D supported on positive examples, .A runs
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in polynomial time on NSP-labeled inputs and outputs f such that, with probability at least 1 — 4,
Lnsp(f; f. D) <e.

Note that the continuation labels can be highly informative for certain classes. Consider Conjunc-
tions: Boolean monomials f : {0,1}¥ — {0,1}, e.g., f(2) = 22 A Zs. In the conventional clas-
sification model, learning Conjunctions is known to require © (V) labeled examples. In the NSP
model, one positive example x € f~1(1) suffices. For each prefix .1, the label (.1, 0) equals 0
if and only if the literal zj1 appears in the target; likewise, @ (z.x, 1) = 0 if and only if the literal
Zr+1 appears. Thus, by reading the continuation labels across the N prefixes, the learner recovers
exactly which literals are present and hence identifies the target monomial from a single positive
NSP example. While the NSP labels may provide a statistical advantage for some classes, we show
that in the general case, they are not enough to remove the computational barriers for learning DFAs.

Main hardness result. Let ADFA;’,\E )y denote the class of Boolean Acyclic DFAs (ADFAs) which

contains DFAs with at most p(IV) states, whose language is contained in {0, 1}*. |[Kearns & Valiant
(1994) show that, for a suitable polynomial p, weak PAC learning of ADFAI,(.) in the conventional
binary-classification model is as hard as inverting basic cryptographic primitives. We prove that an
efficient NSP learner for ADFAﬁ ~) would immediately yield an efficient learner in the standard
model and thus the problem remains hard under the same cryptographic assumptions.

Theorem 4.1. Fix N and a polynomial p(-). IfADFAIJ,\?N) is efficiently PAC-learnable in the NSP

setting from positive examples, then ADFA[]X Ny is efficiently PAC-learnable in the conventional
classification (binary-label) setting.

The proof is in Appendix [D] The main technical idea is a construction for ADFAs along with a
reduction to the result of Kearns & Valiant| (1994). We show that for any Boolean Acyclic DFA in
ADFAZ])\E NY there exists another ADFA with at most /N 4 1 additional states such that all but one
continuation bit becomes uninformative. Accurately predicting the only informative continuation
bit is as hard as learning ADFAs in the conventional classification setting.

Discussion. The theorem shows that richer supervision via NSP does not circumvent the computa-
tional barrier for learning regular languages: under standard assumptions, there is no polynomial-
time weak learner for ADFA .y and hence for DFAs even in the NSP setting. This remains true
when the learner receives both positive and negative examples with NSP labels, showing that such
additional supervision does not mitigate these barriers. The hardness is improper: it rules out ef-
ficient learning even when the hypothesis need not be a DFA, and thus applies to neural models
trained to match NSP labels.

Learning with Membership Queries. In addition to passive examples, we also study active access
in the NSP model. A conventional membership-query oracle MQ : ¥* — {0, 1} takes an input
string and returns whether it belongs to the target language. In the NSP setting, the oracle MQyp (2)
returns the full vector of (|X| + 1)(Jz| + 1) labels for any € ¥*. We show that certain simple
classes known to be not identifiable in polynomial time with conventional queries become efficiently
identifiable with MQ),s, with the help of additional labels. However, more generally, we show that
some classes of DFAs and Boolean functions remain non-identifiable in polynomial time even with
NSP labels from MQ,sp. See App. [E] for details.

5 LEARNING WITH A LANGUAGE MODEL TEACHER

Given the hardness of learning with random examples or membership queries alone, we now study
the learnability of DFAs in a relatively more powerful model based on the information one can
conveniently obtain via blackbox access to language models such as neural sequence models or
PDFAs.

Problem and Assumptions. Let LM be a language model which induces a distribution over strings
Dr (correspondingly DY, for a sampling strategy 7). Assume that the support of the distribution
Drm is a regular language and let A* be the DFA that recognizes the support L 4+. Given blackbox
access to such a language model, we would like to find A such that Eyp, ,, [|f4(2) = fa(2) Hoo} <
e with high probability. In this setting, a learner has access to two types of queries: (i) Membership
queries MQ(z) € {0, 1} which returns A*(x), and (ii) Generative queries Genp,,, (-) which takes
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an input string or prompt x and generates a string s along with NSP labels based on the distribution
Drm conditioned on the prompt x. Note that both these queries can be simulated with blackbox
access to the language model (cf. App.[G.3).

Approach. Broadly, we first sample a set X of size m NSP labeled examples from the distribution
Drm using Generative queries Genp, ,,(A). We will then use an extension of the L* algorithm

to make use of the membership queries and generative queries to obtain a hypothesis DFA A in

polynomial time such that |A| < |A*| and A is consistent with the NSP labels of all m examples. A
standard Occam-style generalization bound then yields a PAC-guarantee for the learning problem.

Preliminaries from L*. We briefly recall the notions from L* (Angluin, |1987) based on modern
treatments (Kearns & Vazirani, |[1994) that we use in L;Sp (cf. App. for a more detailed de-
scription). The algorithm maintains finite sets Q C X* of access words and T' C ¥* of test words,
both containing the empty string A. Intuitively, () represents states and 7" represents distinguishing

strings. With respect to a target language L4~ and any ordering t1,...,¢7| € T, we can define a
row vector of T-labels for any string z: row(z) = [La«(z - t1),...,La-(z - tj7))] € {0,1}/7]. The
pair (Q,T) is defined to be separable with respect to language L 4~ if every row vector is unique:
row(q) # row(q') for ¢,¢' € Q. The pair (Q,T) is closed if for every ¢ € @ and o € ¥, there
exists ¢’ € @ such that row(q - o) = row(q’). When (Q, T) is closed and separable, one can con-
struct a DFA hypothesis with state set () and transitions based on 7-labels (see App. for the
construction). A crucial fact about this L* framework is that (Lemma when (Q,T) is closed
and separable with respect to language L -, then |@Q| < | A*| for the minimal DFA A*.

Given a set of labeled examples, L* starts from @@ = T = {\} and iteratively adds states and
distinguishing strings based on label disagreements, maintaining a key invariant that (@, T') remains
separable. The procedure has two steps: (i) Closure (Lemma : if (Q,T) is not closed, use
membership queries to update (@), T') to achieve closure in polynomial time. (ii) Counterexample
processing (Lemma : once closed, construct a hypothesis DFA A and find a counterexample
x in the training set with A(x) # A*(z). Then, using at most || membership queries, one can
identify ¢’ ¢ Q and t’ ¢ T so that (Q U {¢'}, T U {t'}) is separable. This step is the backbone of
L*: membership disagreements can be used to obtain new access and test words to refine (Q, 7).

In the NSP setting, counterexamples may arise from continuation-labels rather than membership
disagreements, so Lemma @ does not apply as is. This is where L. departs from L*: we use a
different method to process counterexamples x € L 4+ using continuation-label disagreements. The
next lemma formalizes this update rule for L7 .

Lemma 5.1. Let (Q,T) be closed and separable, and let A be the minimal DFA induced by (Q, T).
Suppose there exists a string x with f ;(x) # fa«(x). Then one can find ¢ ¢ Q and t' ¢ T such
that (QU{q'}, T U{t'}) is separable, using membership queries and at most one generative query
in polynomial time. If a generative query is used, let y denote its output; otherwise set y = .
The total number of membership queries is at most |x| + |y|, and the running time is polynomial in

|z + [yl + Q.

Proof. The proof for this Lemma is relatively straightforward. The idea is to convert any NSP-label
mismatch into an ordinary membership mismatch, and then use the same approach as the classical
L* update (Lemma |G.3). Take x with f;(x) # fa~(z) and let ., be the first prefix where labels

disagree. If the mismatch is the membership label, we simply use 2’ = x.,, on which A and A*
disagree so the first case is trivial. If the mismatch is a continuation label at some symbol o, then
there are two complementary situations. Case (i) The target says o can never lead to acceptance
from z.,, but the hypothesis says it can ¢ A(x;m o) = 1. In this case, we can find a suffix s from
T.,0 to an accepting state in the hypothesis automaton and the strings ' = ., - s is an ordinary
membership mismatch. Case (ii) The target says o is permissible, but is forbidden according to the
hypothesis ¢ 4 (2.,,0) = 0. In this case, we can use a single generative query conditioned on z.,,0

returns a valid continuation y; then ' = x.,,0y is accepted by the target and rejected by A. Thus, in
both cases, we have a string 2’ such that A(2’) # A*(z’) and we can use Lemma G.3|to find desired
q¢ ¢ Qandt’ ¢ T. A more detailed version of the proof is in App.

Algorithm. Given a set of m NSP-labeled example, the Ly, algorithm works as follows. It starts
with @ = T = {A} and iteratively updates the pair (@), T) such that they are always separable.
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Bounded Dyck Family: Key metrics vs Sample size
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Parity, Tomita 5 & 7: Key metrics vs Sample size
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Figure 2: Key metrics for Ly, across training-set sizes using a Transformer-LM teacher. Each

point shows the mean over 10 trials; shaded regions denote standard deviation (see Sec. @)

For a hypothesis A associated with (Q,T), it finds the first disagreement in the NSP labels with
the examples in the training set X. Using membership queries and generative queries based on
Lemma it updates the pair (@), T") and adds at least one state whenever there is a disagreement
with the training examples. The closure step remains the same as in the original L* algorithm. The
algorithm terminates when A induced by (Q,T) is consistent with all the training examples. Since
|Q| is guaranteed to be at most | A*|, the algorithm must terminate after at most |A*| disagreements
with the training examples. A pseudocode of the L7 is given in Algorithm

Theorem 5.2. Let A* € DFA,, be any minimal DFA with at most n states, and let Dy be a
distribution over strings whose support is L o~. There exists an algorithm with access to the mem-
bership query oracle MQ and generative query oracle Genp, ,, producing NSP labeled examples
in L+, that runs in time polynomial in n,1/e,1/6 and the length of the largest string produced by

the generative query oracle, and with probability at least 1 — 6, outputs a DFA A such that,

E [Ifi(z) — fa(z)]lo] < e

z~DLm

Discussion. A key benefit of this model of learning is that the guarantee we get is with respect
to a desired distribution. For example, if one uses the L* algorithm to learn DFAs using positive
and negative examples, the target distribution (on negative examples) is often unclear and can be
artificial. In practice, for generative models, we often do not have access to the target distribution on
negative examples. For the purpose of identifying the support of language models, arguably the most
relevant distribution is the one induced by the model itself, e.g. if one intends to predict whether the
language model will generate erroneous strings.

6 EMPIRICAL ANALYSIS
We evaluate the Ly, algorithm as a tool for extracting DFAs from Transformer language models
trained on regular languages. Given NSP-labeled strings from the model, we study how the NSP
error Lnsp, the number of identified states, and the running time vary with the size of the training
set. When the extracted automaton is not equivalent to the target DFA, we also find strings in the
symmetric difference to identify erroneous examples. Further, we conduct ablations to analyze the
effectiveness and usage of the continuation labels in the NSP setting.

Tasks. We consider 11 regular languages spanning 2—86 states: the 6 Tomita grammars (Tomita,
1982)), Parity, and 4 bounded Dyck languages. Tomita grammars comprise small DFAs (2-5 states)
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and is commonly used as a benchmark for automata extraction (Wang et al.| |2018; Weiss et al., 2018;
Zhang et al | [2024). Parity is the two-state language over ¥ = {0, 1} which contains all strings with
an odd number of 1s. Bounded Dyck languages contain well-balanced parentheses up to a fixed
depth and are regular. We denote by DYCK-(n, k) the Dyck language with n bracket types and
depth at most k. The depth of a Dyck string is the maximum number of unclosed brackets in any

prefix of the string. These languages have relatively larger number of states: Zf:o n' + 1. We use
four Dyck instances: DYCK-(2,2), DYCK-(2,4), DYCK-(3, 3), and DYCK-(4, 3). Further details of
the tasks are in App.

Setup. For each target language we convert its canonical DFA to a PDFA to generate training strings.
At non-final states, probability mass is split uniformly among transitions that avoid the dead state;
at final states, generation terminates with probability ¢ (otherwise, the next symbol is sampled as
above). For each language, we choose ¢ so that the empirical expected length is below 40.

Model training. We train Transformers as next-token predictors on sequences of the form
[BOS] s; [EOS] 52 [EOS] - - - with context window 250. Models use 8 layers and width 512, opti-
mized with AdamW for up to 40k steps with early stopping. Our evaluation focuses on the support
of the first string produced after [BOS]; the concatenated format matches standard training and
provides additional learning signal.

DFA extraction. We use the trained Transformers to generate training sets of various sizes to
evaluate the L, algorithm. We create training sets with strings of length up to 80 that are generated
and labeled using min-p sampling with threshold p = 0.05 as described in Sec.[2.2] The Transformer
model serves as both membership and generative query oracle for Li . We evaluate sample sizes
{1,5,10,100,1000}; for each size we run 10 independent trials and report means and standard

deviations. For very small targets (e.g., Tomita), even a single positive example can be informative.

Results. Figure 2] summarizes NSP accuracy, running time, and the number of extracted states for
representative tasks. On Tomita, when teacher models are well trained, Ly, recovers the target
DFA quickly (often within a second; bottom row). For models that are not perfectly trained, such as
for Parity, the algorithm extracts a much larger DFA and takes longer, depending on the number of
target states. Note that since Ly, adds a state only after finding a distinguishing string, the number
of extracted states is always at most the number of states in the target DFA that recognizes the
language model’s support. Thus, even when we recover more states than the target DFA, the result

is faithful to the language teacher’s support.

Bounded Dyck languages have relatively much larger number of states (8—86 states). As shown in
the top row of Figure 2} Dyck tasks naturally require more samples than Tomita, yet L, converges
to the target DFA and achieves near-perfect NSP accuracy within 100 examples. Our ablation
experiments in App.[H.4]indicate that the continuation labels are heavily used and play a crucial role
in identifying the states of the target (see Table[3).

Identifying erroneous examples. When the learned DFA A is not equivalent to the target DFA A*,
we construct the product DFA B which recognizes the strings in the symmetric difference of the

two languages L(B) = L(A)AL(A*). We use a BFS-like approach to identify several erroneous
examples for the language model. Table 2]illustrates some erroneous examples for Bounded Dycks,
Parity, and Tomita-5 language. Fig. [6] and [7] depict the extracted automaton for Parity and Tomita-
5; the ones for DYCK-(2,2) and DYCK-(3, 3) are too large to be visually informative. Note that
these models were not intentionally trained to fail, and all the examples generated by the language
models were in their respective target languages. The DFAs extracted by Ly, were based on a few
disagreements in the NSP labels of the generated strings. Training the language models for longer
avoids such errors for synthetic languages of this scale. Note that the Transformer models used for
Tomita-5 and Dyck languages in Figure [2| (well-trained) and Table |2 (imperfect) are different. See
App. [H.2|for further details.

NSP Label vs Binary Label Ablations. To assess the value of NSP labels, we compare binary
labels (classical L*) with NSP labels (Lysp extension) on six languages. We sample strings from the
model’s untruncated distribution (actual next-token probabilities) and label each as positive if it lies
in the min-p truncated support DZ—M used elsewhere, negative otherwise. Naturally, most (= 99.5%)
of samples are positive; nevertheless, even positive strings serve as counterexamples for L* and

using any natural variant of the Dy variant will have few negative examples.
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Dyck-(2,2): L-star vs L-star-NSP Dyck-(2,4): L-star vs L-star-NSP Dyck-(4,3): L-star vs L-star-NSP
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Figure 3: Comparison between binary labels (L*) and NSP labels (L7,) by including negative
examples by sampling from the untruncated distribution of the LM. Each point in the plots is the
mean value over 10 trials; shaded regions show standard deviation. See Sec. @for details.

Results. Figure [3] plots the number of extracted states versus sample size (means over 10 runs).
On bounded Dyck languages, Ly, reaches the target DFA with ~ 10 examples for DYCK-(2,2)
and ~ 100 for DYCK-(2, 4) and DYCK-(4, 3), whereas L* fails to recover the target even with 103
samples. For small Tomita DFAs, a single counterexample suffices, so both approaches perform
similarly. For Parity, although the target DFA has 2 states, the teacher’s support DFA is larger; with
NSP labels, Ly, identifies this larger support (enabling the discovery of erroneous strings), while
binary labels yield no disagreements and thus no additional states. Because almost all samples are
positive, classification accuracy is uninformative; predicting 1 leads to near perfect accuracy and
thus the extracted state count is the meaningful signal. Note that the claim here isn’t that Ly, is
superior (it is a direct extension of L* itself). The primary goal is to assess whether the additional
labels are informative and the results indicate that leveraging NSP labels can be sample efficient for

problems where the natural distribution primarily has positive examples.

7 FUTURE WORK AND LIMITATIONS

A natural question that remains open is the efficient learnability of DFAs with membership (MQ) and
equivalence queries (EQ) in the NSP setting. We show that with membership queries and two types
of equivalence queries, DFAs are exactly learnable and discuss barriers behind obtaining a standard
MQ+EQ algorithm in App.[G.4] Prop. 3.1 shows that NSP labels are sufficient and a teaching (or
characteristic) set exists. However, the size of such a set obtained from Prop. is likely to be quite
loose and could possibly be improved.

Limitations. Even though the L7, algorithm is polynomial-time, since it is built upon the L*
framework, some of the same limitations apply, which make it difficult to scale the approach to
practical language models. In particular, when the target DFA (language model support) has a large
number of states, the algorithm is quite slow. We observe that when models are poorly trained, the
underlying DFA typically has thousands of states. The Ly, algorithm identifies about 1k states and
the closure step is slow due to the |Q||T’||2| time complexity (discussed in more detail in App. [H.3).
Further, the factor of |X| may not play a significant role for synthetic languages but has immediate
consequences for language models trained on text which have a large vocabulary. An interesting
future work would be to develop more efficient system-level improvements to speed up the algorithm

to make it applicable to relatively more practical language models.
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A USAGE OF LARGE LANGUAGE MODELS

We used publicly available Al tools (LLMs) to improve the flow and clarity of the text in various
places. LLMs were used to rephrase certain text to polish it and/or make it more concise. Al tools
have also aided in writing the code for the experiments in the paper.

B FAQs

(D) If L. is an efficient polynomial time algorithm, why shouldn’t we directly apply it to large

language %wdels (LLMs) to obtain a DFA that captures their support?

There are a few nontrivial obstacles in applying the algorithm to LLMs. Firstly, the target language
for an LLM could have a huge number of states, and currently, it is difficult to use the algorithm for
targets beyond the order of a few thousand states. Secondly, while the complexity of the algorithm
is polynomial, it still scales linearly with the size of the vocabulary, and LLMs have vocabularies
that are in the order of tens of thousands. Lastly, the support of LLMs may not be regular, which
could violate the main assumption, and the guarantees need not apply. We believe this work makes
progress towards the larger goal of capturing the support of language models, but it is practically
limited, similar to other existing methods for automata extraction.

(2) To identify erroneous examples, can we not sample from a language model several times and
then check if any of them are incorrect?

In theory, one can sample repeatedly to identify erroneous strings in the support. We argue that better
algorithms for this problem can make the identification of erroneous strings much more efficient. For
instance, for the parity language, sampling 1k strings from a seemingly well-trained model does not
seem to produce any erroneous examples. However, the DFA extracted by leveraging NSP labels
provides us with numerous erroneous examples. We found that L _ could extract a DFA within 10
seconds using 1k generations from the language model, which could then be used to produce about
1k erroneous strings within 16 seconds (see App for details). While the current approach isn’t
scalable beyond such synthetic problems, further improvements could help make progress in more
efficient identification of DFAs and, consequently, identification of erroneous examples.

*
nsp

(3) On what kind of problems is it more beneficial to use L as opposed to directly using 1L*?

L7sp 1s a direct extension of L* that exploits NSP labels when available. It can be more sample-
efficient in positive-only or highly imbalanced settings typical of generative models. Empirically, on
bounded Dyck languages, Ly, recovered the target DFA with ~10-100 examples, whereas without
NSP labels, L* did not with 10 samples (Fig. ; ablations also show the algorithm heavily uses

continuation labels on Dyck tasks (see Table[3]and Sec.[H.4).
(4) Does the hardness result imply that learning with random examples alone will likely fail?

One should take note that the hardness results are generally for the worst-case setting. It is helpful
to gain a formal understanding of the strengths and weaknesses of a problem but they do not imme-
diately imply that learning will fail most of the times. The result indicates that efficient distribution-
independent PAC-learning algorithms are not feasible under standard cryptographic assumptions.
However, in practice, using scalable heuristic-based methods is often effective. Our goal was to
characterize the learnability in the NSP setting to understand the power of the additional supervi-
sion available in the NSP setting and it implies that they are not powerful enough to mitigate certain
computational barriers.

C PRELIMINARIES

We define Probabilistic DFAs (PDFAs) formally here. Our result on learning with membership and
generative queries (Theorem[5.2)) has direct implications on learning the support of PDFAs. We also
use PDFAs to generate strings for training Transformer language models.

13
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Probabilistic DFAs (PDFAs). A probabilistic DFA is a DFA equipped with a stochastic emission
rule. Formally, a PDFA is a tuple

P = (Q7Z755q07Fa7T)a

where (Q, X, 6, qo, F') is a DFA and, for each ¢ € @, w(- | ¢) is a probability distribution on
Y U {[EOS]}. At state g, the generator samples w € ¥ U {[EOS]} according to 7 (- | q); if
w € X the next state is §(g, w), and if w = [EOS] the sequence terminates. We say a string
T =w;---wy € X* is in the support of P if

m(w1 | qo) - (w2 [ 6(go, w1)) - - m(wn [ 6(go, z:n—1))7([EOS] | (g0, x)) > 0.
The DFA that accepts exactly this support is the support DFA of P.

NSP labels from PDFAs. In a PDFA P, the NSP labels coincide with positivity of the local emis-
sion probabilities:

o(y,0) =l (o] d(q0,y)) >0},  L(y) = {nx([EOS] | 5(q0,¥)) > O}

Thus, the NSP labelling oracle exposes exactly the admissible next symbols and termination at each
prefix; for a PDFA this recovers the (untruncated) support of P.

The following is an elementary but fundamental fact about minimal DFAs due to the Myhill-Nerode
Theorem that is at the heart of many of our proofs and constructions.

Lemma C.1 (DFA basic fact). Let A be a minimal DFA recognizing L 4. For any two distinct strings
x,y € X¥, if there exists a suffix s € X* such that La(x - s) # La(y - s) then the strings x and
y lead to two distinct states in the DFA A, i.e., §4(qo,x) # 94(qo,y). If no such suffix exists, then
they lead to the same state § o(qo, ) = d4(qo, y)-

In a minimal DFA, distinct states are pairwise distinguishable by some continuation; conversely,
strings with indistinguishable residual languages must reach the same state. This is the My-
hill-Nerode characterization of minimality.

Lemma C.2. Let the dead state qqeaq be a state such that qaeaq ¢ F and §(qdaead, 0) = (dead for
all o € X. Then, a minimal DFA has at most one dead state.

Assume there are two dead states. Since every suffix from a dead state is rejected, there cannot be a
suffix that is accepted by one state and rejected by another. Further, by definition, both of them are
non-final. Hence, they are Myhill-Nerode equivalent and must be merged in a minimal DFA.

Lemma C.3. Let DFA,, be the class of DFAs over a fixed alphabet X with at most n states. Then
log |DFA,,| = O(nlogn).

This is a well-known result (De la Higuera, 2010) and can be proved in the following way. The proof
follows from the fact that for a DFA with at most n states, there are nl/=I'" and each state can either
be an accept or reject state adds a factor of 27, and one of the states can be an initial state. Hence,
the total number of possible DFAs is 2" - n/*I""*1, Thus, log |DFA,,| = O(nlogn).

D HARDNESS OF NSP LEARNING
We relate learnability in the NSP setting to standard PAC learning for acyclic DFAs that accept only
strings of a fixed length. Throughout this section, we work over the binary alphabet ¥ = {0, 1}.
Notation for classes. For N € N and a polynomial p(+), define

ADFA)\y) = {A: AisaDFA with at most p(N) states and L4 C {0,1}"},
and write ADFA () == Upys, ADFA;;E ~)- As in the context, DFA,, denotes all DFAs with at most
n states.

Background. [Kearns & Valiant| (1994) show that, for a suitable polynomial p, weak PAC learning
of ADFAP(,) in the conventional classification (binary-label) model is as hard as inverting certain
cryptographic functions.

14



Under review as a conference paper at ICLR 2026

N 1 O 0,1 Y/—) 1 :: 0,1 :: N l
0

(a) DFA for 21 A 23, x € {0, 1} (b) Transformed DFA (21 A 23) V 25, « € {0,1}°.

Figure 4: Transformation from Section In (b), green states are from the original DFA; blue
states ¢, . . . , ¢4 ensure every prefix of length < L has continuation labels [1, 1, 0], and ¢} routes to
accept on input 1 (to the dead state on 0).

Theorem D.1 (Kearns & Valiant (1994)). There exists a polynomial p(-) such that the problems of
inverting RSA, factoring Blum integers, etc., are probabilistic polynomial-time reducible to weakly
learning ADFA,,() in the standard PAC setting.

We prove that an efficient PAC algorithm for ADFAZI)\E ) in the NSP setting would yield an effi-

cient PAC algorithm for ADFAII)\{ ) in the conventional classification setting. Together with Theo-
rem [D.1] this implies cryptographic hardness for NSP learning of these Boolean Acyclic DFAs and
consequently the general class of DFAs.

D.1 BOOLEAN AcycLIC DFAs

Fix N > 1 and a target DFA A = (Q, X%, 9, qo, F) with Ly C {0,1}". We first record a basic
structural property of minimal DFAs for fixed-length languages.

Lemma D.2 (Unique depth in minimal ADFA;\? ny)- If A'is minimal and L C {0, 1}V, then
every state ¢ € Q \ {qdcad} is reachable by strings of exactly one length {(q) € {0,1,...,N}.
Consequently, every transition increases depth by one: if §(q,0) = q' and q # qqeaq, then £(q') =
0(q) + 1. Acceptance occurs only at depth N.

Proof. Let ¢ € @ \ {qdead} be reachable both by a string of length ¢ and by a string of length ¢’
with £ < ¢'. The residual language at ¢ is R(q) = {s € ¥* : d(q,s) € F }. If q is reached after ¢
symbols, then every s € R(q) must have length exactly N — ¢; if g is reached after ¢/ symbols, then
every s € R(q) must have length exactly N — ¢'. Since N — £ # N — {, these sets are disjoint;
hence R(q) must be empty, contradicting ¢ # ¢qead in a minimal DFA. Thus, each non-dead state
has a unique depth £(g). Any transition consumes one symbol, so ¢(¢’) < ¢(q) + 1; equality must
hold by uniqueness of depth. Finally, if ¢ € F had ¢(q) # N, then L4 would contain strings of
length other than [V, contrary to the assumption. O

By Lemma|D.2} we may index non-dead states by their unique depth ¢(g) € {0,..., N} (the dead
state has no depth).

Padding by one bit. We construct from A a DFA A® over length-N+1 inputs whose NSP labels
are uninformative before depth /N, while at depth IV the continuation bit for symbol 0 recovers A’s
label.

Lemma D.3 (Padded Construction). From a Boolean Acyclic DFA A we can construct, in time
polynomial in |A| + N, a DFA A® with Ly C {0,1}Y*! and

u-b€Lje <= (Aw)=1)or (b=1), wuwe{0,1}", be{0,1}. (2)
Moreover, for every prefix y with |y| < N,
((,0), ¢(y.1), La=(y)) = (1,1,0),
and for every u € {0,1}%,

(¢(u,0), ¢(u,1), Lae(u)) = (A(u), 1, 0).
The construction adds at most N+1 states.
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Proof. Introduce new states qf, . . ., ¢ and a new accepting state ¢ap,. For 1 < i < N set

6A€B (QQ7 O) = q;+1a 61465 (q;’ 1) = qz/'+17
and at i = N set
514@ (qﬁ\/’ 1) = (fin, 5AEB (QEVa 0) = {dead-
From gg, send both symbols to ggqeaq (SO acceptance occurs only at length N+1).

Now modify A to create A® as follows. For each non-dead state ¢ with £(¢) < N and each
o€ {0,1}:

¢ If 64(q,0) = Qdeaq in A, set 040 (q,0) = qé(q)_H (redirect the dead transition into the
chain).

¢ Otherwise set g0 (q,0) = 04(q, 0).

For each state ¢q at depth N set

¢fn, g € Fa,
dp0 qal = {fin, dp0 an =
A ( ) A ( ) Gdead, 4 ¢ Fy.

See Figure]for a simple example construction for a Boolean Acyclic DFA computing a conjunction.

All transitions out of ggeaq point to ¢gead, 1-€., 046 (dead, 0) = (dead for both symbols. (If A
recognizes the empty language, then ) = {¢deaq }; in this case we additionally introduce a fresh
start state go of depth 0 with 640 (go,0) = d40(Go,1) = ¢} and take §o as the start state; the
conclusions below still hold.)

By construction, acceptance can occur only at gg, after exactly N+1 symbols, so L e C
{0,1}N+1. The rule at depth N yields . For |y| < N, any next symbol either follows
an original transition that still admits an accepting continuation or is redirected into the chain
qZ(y)+1 — -+ = ¢y — qan (choosing the final symbol 1), hence both ¢(y,0) = ¢(y,1) = 1

and L 4o (y) = 0. At depth N, the displayed identity follows from the last rule.

By construction, acceptance can occur only at gg, after exactly N+1 symbols, so L e C
{0,1}¥+1. The rule at depth N gives . For any prefix y with |y| < N, either an origi-
nal transition still has an accepting continuation, or a dead transition is redirected to the chain
q"lerl — -+ = ¢y — gnn (taking the last symbol 1). Hence ¢(y,0) = ¢(y,1) = 1 and

Ls(y) = 0 for any y with |y| < N. At depth N, for every u € {0,1}" our construction en-
forces

¢an,  0a(qo,u) € Fa,
dae( 6 1) = ggn d d4e(d ,u),0) =
A®( a0 (90 1), ) om0 A@( a0 (a0, ) ) {Qdead, 04(qo,u) ¢ Fa,

so p(u,1) =1, p(u,0) = A(u), and L 4e (u) = 0, which is exactly

(@(U,O), (P(ua 1)7 L ye (u)) = (A(u), L, 0)'
O

Reduction from NSP learning to standard learning. Let D be any distribution on {0, 1} V. Define
the padded distribution D® on {0,1}V+! by sampling u ~ D and returning 2 := u - 1. By (2),
x € Lye for every u, so D? is supported on positive examples as required by the NSP setting.
Moreover, given a labeled standard example (u, y) with y = A(u), the full NSP label vector f4e (z)
for x = u - 1 is computable from (u, y):

for0 << N: (p(2:,0), (1), L(z:)) = (1,1,0),

for{ =N : (go(a::N,O),ga(x;N,1),L(:E;N)) = (y,1,0),

for{ = N+1: (p(z:n41,0), 0(@:n41,1), L(z:n41)) = (0,0,1).
Here x., denotes the length-¢ prefix of the padded string x.
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Theorem 4.1. Fix N and a polynomial p(-). IfADFAfD\EN) is efficiently PAC-learnable in the NSP

setting from positive examples, then ADFAQE Ny is efficiently PAC-learnable in the conventional
classification (binary-label) setting.

Proof. Let Ansp be an efficient NSP learner for ADFAZJ)\E Ny~ From i.i.d. labeled samples (u®, y@)
with y = A(u), form positive NSP examples (z(), fae (2())) where 2(Y) = u(¥). 1 using the

rule above, and feed them to Angp. Let f be the returned predictor so that, with probability at least
1-9,

Lnsp (f; fae, D) = E Mﬂu 1) — fae (u: 1)“00} < e
Define a standard classifier h : {0, 1} — {0, 1} by
h(u) := the bit predicted by f for (x.x,0) on z = u- 1.
Whenever Hf(x) — fae (m)”oo =0, Lemmagives h(u) = A(u). Therefore

Pr[h(w) # Aw)] < Pr[[|[f(u1) = fao(w D], =1] < ¢

yielding an efficient PAC learner in the standard setting. The state complexity of A® is at most
p(N) 4+ N + 1, preserving polynomial time complexity. O

Corollary D.3.1 (Cryptographic hardness for NSP learning of fixed-length acyclic DFAs). Under
the assumptions of Theorem there is no polynomial-time weak learner for ADFA,, .y in the
NSP setting. Otherwise, Theorem|.1|would yield a polynomial-time weak learner in the standard
setting, contradicting Theorem|[D.1]

D.2 BOOLEAN FORMULAS

Exactly the same padding idea applies to Boolean formulas. Let F' be any class of formulas f :
{0,1}¥ — {0,1} and define

f(z1,- o 2ne1) = f(z1,..,20) V 2N41-

Given a labeled standard example (u,y) with y = f(u), set 2 := u - 1. The NSP labels for the
positive string  under f” are then computable from (u, y):

for{ < N: (1,1,0), for{ =N: (y,1,0), for{ = N+1: (0,0,1),

with the same ordering (continuations first, then membership) as in Thus an efficient NSP
learner for F' := {f’ : f € F} yields, by reading the depth-N continuation bit for symbol 0, an
efficient PAC learner for F' in the standard setting. In particular, cryptographic hardness results for
learning formulas (e.g., via NC') carry over to the NSP setting by this reduction.

E HARDNESS OF LEARNING WITH MEMBERSHIP QUERIES ONLY

Definition. A conventional membership query oracle MQ : ¥* — {0, 1} takes an input string
and returns whether it belongs to the target language or not. In the NSP setting, the membership
query oracle MQugp, + 3% — {0, 1} (=D U241 returns all the NSP labels for an input string z.
Since it contains that membership label of the input in its label, it is strictly more powerful than the
conventional MQ oracle.

To understand how additional labels could provide more information, consider the following. If for
any pair of prefixes or strings z, y, the || continuation labels ¢ (z), ¢(y) differ, then it implies that
they lead to two distinct states in the target DFA. This is because disagreement in the continuation
label implies that there exists a suffix s such that L(x - s) # L(y - s) and by Lemma|C.1] they must
lead to two different states.

There are some classes of functions that can be efficiently identified by MQ,, but not by conven-
tional MQ. For instance, consider the class of singleton Boolean functions F; over {0, 1}* which
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contains 2%V functions that accept exactly ‘one’ Boolean input of length N. Such functions cannot
be identified by conventional membership queries in polynomial time (see /Angluin|(1988) for a gen-
eral characterization). The main idea is that no matter which input in {0, 1}"' a learner queries, an
adversary can decide to always return 0 as the label until the learner queries 2" — 1 inputs.

Learning Singletons with MQ,,s;,. The membership query oracle in the NSP setting is more pow-
erful in the sense that such singleton Boolean functions can be identified easily in polynomial time.
To see how, consider the following procedure: Let 2* € {0, 1} be the only string accepted by the
target f* : {0,1}" — {0,1}. A learner first queries MQ,sp () any x € {0, 1}V and checks the ||
continuation labels for the first index corresponding to empty prefix A. That indicates the first bit in
the string accepted by the target function. Let z] be the first bit of the target string, the learner then
queries any string starting with z] and obtains the second bits. Similarly, it can iteratively query
MQusp and obtain the string 2* with at most N + 1 MQyp queries.

While the membership query oracle in the NSP setting MQyp, is strictly more powerful than the
one in the conventional classification setting, we show that there are DFAs in the class DFA,, that
cannot be efficiently identified with membership queries only in the NSP setting. Similar to the
case of hardness of learning with DFAs, we will construction functions where the NSP labels are
uninformative and the problem becomes as hard as learning with the conventional membership query
oracle.

Suffix Language family. Consider the following family of languages. Let ¥ = {0, 1} (the argument
applies to any X with |%| > 2). Let S = {0, 1}"/2 be the set of Boolean strings of length exactly

N/2. The suffix language family Lg contains 2"/2 languages, where for each s € {0,1}"/2, the
language Ls € Lg only accepts strings which end with the suffix s.

Each of the language L € Lg can be represented by a DFA of size at most N/2 + 1. For any suffix
or string s, create a state corresponding to each prefix of s = sq - 51 - - - s)y/2 including the empty
prefix s = A which serves as the start state. Define transitions 0(s.x, Sx+1) = S:x+1. For every
other transition, if the symbol is s1, then they go to the state s.; or else they go to sg. From the first
state, the shortest string that leads to the accept state is of length N/2. For every other state ¢; in
q1,- - -, qgny2- the shortest accepting suffix is of length % — 1.

Proposition E.1. The class of Suffix languages Ls cannot be identified in polynomial time with
membership queries MQysp, in the NSP setting.

Proof. A key characteristic of any of suffix language L is that, an accepting string exists for any
prefix z. For any string z, the string x - s is in the language Lg. Thus, the continuation label for any
prefix of any string will always be (¢(x,0), ¢(z,1)) = (1,1). Hence, the continuation labels are
not informative. The only informative signals are the membership labels.

In the NSP setting, the oracle MQy,s;, will provide the membership labels of every prefix. Suppose a
learner makes m MQyg, queries where the maximum length of the queried input strings is k. Then
each query eliminates at most (k + 1) — % < k suffixes out of 2/V/2 possible suffixes if all the
membership labels are 0. Thus, in the worst case, the learner can eliminate at most O(mk) suffixes
or functions from the class. If both the number of queries m and input length &k are polynomial in
N, then they cannot identify the target s. Hence, either the number of queries must be exponential
or the learner must use exponential computational steps. O

Since the suffix language with suffixes of size n/2 can be represented with DFAs with at most n
states, Prop. immediately implies that the class DFA,, cannot be identified in polynomial time
with membership queries alone in the NSP setting even with the richer set of labels.

Boolean functions and Acyclic DFAs. A similar argument applies to the class of Boolean functions
as well. Consider the class of functions F,~_; over {0, 1} which accept all bit strings of length
N except one. It is straightforward to see that every function in that class can also be represented by
Boolean Acyclic DFAs with exactly N + 2 states.

For such a class, the continuation labels will be unhelpful for all but one prefix of length N — 1. The
same line of argument as earlier shows that each membership query can eliminate at most 1 function
from the class. An adversary can decide to return membership labels 0 for every input query and
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choose the function based on the inputs queried by the learner, and hence in the worst case, the
learner must make 2V ~! — 1 queries before it can identify the target functions.

This implies that certain classes of Boolean functions as well as the class ADFA,, cannot be identi-
fied with polynomial number of MQ,¢, queries in the NSP setting.

F EQUIVALENCE QUERIES AND IDENTIFIABILITY

Let Aand A* be a hypothesis and target DFA, respectively. In the NSP setting, a valid Equivalence
Query oracle EQITSP(A; A*) with respect to target A* should take a hypothesis A as input and
output ‘equivalent’ if L ; = L4+ or else it should return a counterexample x € L% such that
fi(x) # fa(z). In other words, the counterexample is a string that is accepted by the target DFA

A* but disagrees with A on at least one of the NSP labels.

Since the Equivalence query oracle can only produce strings accepted by A*, it is not immediately
clear whether a counterexample will always exist when L ; # L 4-. We show that positive examples

with NSP labels are sufficient in the sense that for any pair of DFAs A, A* such that L 4 # (), there
is always a counterexample if L ; # L 4~. The following result is crucial for exact learning of DFAs
with membership and equivalence queries to be feasible.

Proposition 3.1. Let A # A* be minimal DFAs with L 5+ # (). Then there exists x € L o+ such that
fa(x) # fax(x). Equivalently, the oracle EQ(A; A*) is well-defined: it either returns “equivalent”
or a positive counterexample (x, f 4+ (x)).

Proof. Since A # A’ there exists a string z € X* with A(z) # A'(z). If A'(z) = 1, we may
take x = z; the NSP vectors then disagree in the membership coordinate for the full prefix z, so
fa(x) # far(x) and we are done. Thus assume

A(z)=1 and A'(z) =0,
and let ¢ = d4/(qo, 2) be the state that the DFA A’ reaches after traversing the string z. We
distinguish two possibilities for ¢'.

Case (i): ¢’ # qaeaq. Because A’ is minimal, any non-accepting state distinct from the dead state
has an accepting continuation (otherwise it would be equivalent to g4eaq and hence identified with it
by minimality). Hence there exists a suffix s € 3* such that A’(z - s) = 1.

Let x := z - s. In the NSP label sequence for z, the membership coordinate at the prefix z is
Ls(z)=1 and La/(z)=0,
s0 fa(z) # fas(x). The oracle may therefore return this positive example x together with f 4 (z).

Case (ii): ¢’ = deaq. Write z = w; - wy with w; € ¥ and set z,; := wy---w; for0 < i < N
(with 2,0 = A). There exists an index ¢ € {0, ..., N — 1} such that

04/(q0, 2:i) # Qdeaa and  9as(qo, 2:i4+1) = Gdead- 3)
A’(z) = 0 and the DFA A’ ends at ggeaq after traversing z, so select the first position at which

(dead 18 entered. By minimality (as in Case (i)), the non-dead state ¢ 4/ (qo, 2:;) admits an accepting
continuation; hence there exists a suffix s € ©* with A’(z.; - s) = 1.

For the continuation bit at the prefix z.; and the next symbol w; 1, (3 implies

par(zi, wit1) = 0.
On the other hand, since A(z) = 1 and z = z,; w;t1 (W42 - - wy ), there exists a suffix (namely
W;tg - - - W) Witnessing that

oA(zi,wip1) = L.
Now set x := z.;-s. This x is accepted by A’, and the two NSP labelings disagree at the continuation
coordinate (z.;, w;y1):

[ fa(z) = far@) || o = 1.

Thus z is a valid counterexample for the oracle.

In either case, there exists a positive example z (accepted by A") with f4(z) # fa () and if no
such counterexample exists, then A = A’. O
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G LEARNING WITH MEMBERSHIP AND GENERATIVE QUERIES

In this section, we will show that the class of DFAs is PAC-learnable in the NSP setting with mem-
bership queries and generative queries which provide NSP labelled positive examples conditioned
on input strings. The setting is inspired by the information one can obtain via blackbox access to the
next token probabilities of any language model. When the language model is a formal device such
as a Probabilistic DFA (See App.[C), then we will (approximately) learn the support of the language
model. For practical neural language models, our algorithm will learn the truncated support of the
language model as defined in Section[2.2]

We will restate certain definitions and preliminaries in more detail here for clarity.

Problem and Assumptions. Let LM be a language model which induces a distribution over strings
Dinm- The support of the distribution Dy is a regular language L 4~ which is recognized by the
DFA A*. We will assume that the expected length of strings generated by the language model
is finite. Given blackbox access to such a language model, we would like to find A such that
Eonpo || £4(2) = fas(2)|| ] < € with high probability.

Recall that, in this setting, a learner has access to two types of queries: (i) Membership queries
MQ(z) € {0, 1} which returns A*(z), and (ii) Generative queries Genp, ,, (-) which takes an input
string or prompt x and generates a string s along with NSP labels based on the distribution Dy,
conditioned on the prompt z. We describe how these queries can be simulated by practical language

models in Section

The next statement is the main result, which formalizes that with an extension of L*, we can obtain
an algorithm that, with high probability, outputs an automaton A using membership and generative
queries such that Lxsp(f 45 fax, DLm) < €.

Theorem 5.2. Let A* € DFA,, be any minimal DFA with at most n states, and let Dy be a
distribution over strings whose support is L o-. There exists an algorithm with access to the mem-
bership query oracle MQ and generative query oracle Genp, ,, producing NSP labeled examples
in L o+, that runs in time polynomial in n,1/e,1/6 and the length of the largest string produced by

the generative query oracle, and with probability at least 1 — 0, outputs a DFA A such that,

E [fi(z) = fa(z)]lo] < e

wNDLM

To prove Theorem [5.2] we will show that there exists a consistent learner which takes m NSP
labelled examples from Dy and, by using the generative and membership query oracle, always
returns a hypothesis A that is consistent with all the m examples in terms of NSP labels. Our
learning algorithm will be based on Angluin’s L* algorithm (Angluin, |1987). We will first discuss
the preliminaries of the L* framework based on modern and minimal treatments (Mohri et al., 2018},
Kearns & Vazirani, |[1994; /Colcombet et al., 2021)).

G.1 L-STAR PRELIMINARIES

Let Abea hypothesis DFA constructed by a learner and let A* be the target DFA. We will refer to a

string 2 such that A(z) # A*(z) as a counterexample (typically provided by an Equivalence query
oracle).

Access and Test words. In this setup, we will have a pair of sets (Q,7") where Q C ¥* is a set of
access words,and T C ¥* is a set of test words. Both (Q and T are always nonempty. Intuitively, the
set () will play the role of states, where it will have a string corresponding to every state of our DFA.
The test words T" act as distinguishing strings for the access words ). Both the sets (), T contain
the empty string A. We will now define the notion of 7T-equivalence.

Definition G.1 (T-Equivalence). For a non-empty set 7' C ¥* and a language L, two strings u, v
are T-equivalent: w =r v, if for every string s € T, the string w - s € Lifandonly if v - s € L.

Closed and Separable. A pair (Q,T) is closed if for every access word g € () and every symbol
o € X, there exists an access word ¢’ € @ such that ¢ - 0 =7 ¢'. A pair (Q,T) is defined to be
separable if every two distinct access words ¢, ¢’ € Q are not T-equivalent: q Zr ¢'.
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Constructing a DFA. Given a closed and separable pair (Q,7") and access to membership queries
MQ), one can construct a DFA as follows.

* Setthe gqp = X € Q.
* For every g € (), add them to the set of final states F' if MQ(q) = 1.
* For any access word ¢ and symbol o € X, let ¢’ be the word such that ¢ - ¢ =1 ¢’. Then

set the transition 0(¢q, o) = ¢'. Since (@, T) is closed, such a state or access word ¢’ must
exist, and separability implies uniqueness of such a word.

To prove the correctness of our algorithm, we use the following technical lemmas from L* without
proof.

Lemma G.1 (L* Fact (Angluin, [1987). Let (Q,T) be a closed and separable pair of sets which
is consistent with some language L. Let A* be the minimal automaton that decides L. Then,

Q| < 47|,

The above Lemma follows directly from Lemma|[C.I]and the fact that we have distinguishing string
in T for each pair of strings in Q).

Lemma G.2 (L* Fact (Angluin, |1987)). Let (Q,T) be a pair that is separable but not closed. Then,
using at most |Q||T|(|X| + 1) membership queries, and in time polynomial in (|Q|, |T,|X]|), we can
identify ¢ € Q, such that (Q U {¢'}, T is separable.

The following lemma is the crux of the original L* algorithm in terms of how it updates the pair
(Q,T) based on disagreement between the hypothesis DFA and a labelled example.

Lemma G.3 (L* Fact (Angluin, |1987)). Let (Q,T) be a closed and separable pair, and A be the

associated DFA. Suppose x € * be a string such that A(x) # A*(z). Then using at most |x|

membership queries and in time polynomial in |x|, we can identify ¢ ¢ Q and t' ¢ T such that
(QU{d}, TU{t'}) is separable.

G.2 PROCESSING COUNTEREXAMPLES IN THE NSP SETTING
Similar to L*, our Ly, algorithm will maintain a pair (Q),T’) and iteratively expand the sets by
finding new states and distinguishing strings based on disagreements with the training examples.
However, in the NSP setting, the disagreements in labels need not always be based on the differences
in the memberships of strings, but can be based on the continuation labels. Hence, Lemma@]does
not directly yield us our desired algorithm. The key difference between L* and L} is in how they

obtain and process disagreements between predicted labels and true NSP labels. v

Let A be the hypothesis DFA constructed by a learner based on a closed and separable (Q,T) and
A* be the target DFA. In the following lemma, we will show that when presented with an NSP
labelled « such that f4(x) # fa~(x) (either from training set or an Equivalence query oracle), the
learner can find at least one new pair of access word ¢’ ¢ @ and test word ¢’ ¢ T using membership
and generative queries.

Lemma 5.1. Let (Q,T) be closed and separable, and let A be the minimal DFA induced by (Q, T).
Suppose there exists a string x with f ;(x) # fa~(x). Then one can find ¢’ ¢ Q andt' ¢ T such
that (QU {q'}, T U{t'}) is separable, using membership queries and at most one generative query
in polynomial time. If a generative query is used, let y denote its output; otherwise set y = .
The total number of membership queries is at most |z| + |y|, and the running time is polynomial in

|z + [y + Q-

Proof. By definition, we have a string such that A*(z) = 1 and f;(x) # fa~(x). Thus, there is a
prefix x.,, of x at which the NSP labels disagree; the disagreement is either (a) in the membership
label for z.,, or (b) in one of the continuation labels for some symbol o € ¥. We treat these two
cases separately. For all cases, our goal will be to construct a string =’ such that we can invoke
Lemma|G.3|to obtain ¢’ and ¢'.

Case A: Membership-label disagreement. There exists a prefix ., of = such that A*(x.,) #
A(z.,,). In this case we may simply take 2’ = x.,, and apply Lemma That lemma produces
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an access word ¢’ ¢ @ and a test word ' ¢ T in time polynomial in |2’| (and using at most |z’|
membership queries), and it guarantees that (Q U {¢'}, T'U {¢'}) is separable.

Case B: Continuation-label disagreement. There exists a prefix x.,, of x and a symbol o € ¥ such
that

@A(minv U) 7£ PAx (xina U)'
We distinguish two subcases according to the value of the target continuation label.

Subcase Bl: p ax(x.,0) = 0and ¢ ;(x.,,0) = 1. By the semantics of the continuation labels for
the target, 4+ (2., 0) = 0 means that for every suffix s € ¥* we have A*(z., - 0 - s) = 0. On the
other hand, ¢ 4 (2.,,0) = 1 means that the state § := 0 4(qo, ., - 0) that A reaches after traversing
., - 0 1s not the dead state.

Therefore, we can search within A from q to see whether there is some accepting continuation. Run
a breadth—first search in A starting at ¢; if the search reaches a final state ¢ € F';, let s’ be a shortest
suffix labeling such a path. Then by construction, the length |s'| < |Q] and

A*(x:n-0~sl) :O and A(xno-s/) :1’

so ' := x., - 0 - s’ is a standard membership counterexample. Applying Lemmato x' yields
¢ ¢ Qandt ¢ T in polynomial time.

Subcase B2: ¢ p+(x.p,0) = 1 and ¢ ;(x.,,0) = 0. The target label @ 4+ (2.,,0) = 1 asserts that
there exists a suffix s’ € X* with A*(x., - 0 - s’) = 1. In contrast, ¢ 4(.n,0) = 0 means that

0;(04(q0,%:n),0) = qdead, hence A(z.p, - 0 - 5) = 0 for every suffix s.

As a consequence of Prop. we also have that such a suffix cannot be found in polynomial time
using membership queries only. Thus, to find an accepting suffix, we call the generative query
oracle with input z.,, - 0. Since @4+ (2., 0) = 1, such a suffix is guaranteed to exist. Let s’ =
Genp, , (., - 0) and we have 2/ = z.,, - o - s’ which is rejected by A (since it reaches a dead state
after reading x.,, - o). Thus, invoking Lemmaon z’ produces the desired ¢’ and ¢’ in polynomial
time.

In all cases we obtain ¢’ ¢ @ and ¢’ ¢ T such that (QU{q’}, TU{t'}) is separable. This completes
the proof. O

Theorem G.4. Let A* be the minimal DFA that recognizes the support language L o+ C X% of the
distribution Dy\p. Given m NSP labelled examples X = (x(V), f 4. (x(i))ﬂil, with access to mem-
bership query oracle MQ and generative query oracle Genp,,, with respect to Dy, AlgorithmI]
outputs a DFA A such that fA(x(i)) = fas (@) foralli = 1,...,m. The running time is polyno-
mial in |A*|, |2|, max; ||, and the length of the longest string returned by the generative query
oracle.

Proof. 1f the target language is L 4~ = (), then the initial hypothesis DFA A at Line EI will also be
such that /1(3;) = 0 for all x € ¥*. Whenever a disagreement with any training example is found,
by Lemma [5.1] the algorithm will add at least string to ) and effectively identify at least one new
state from A*. By Lemma|G.1] we have that |Q| < |A*| and thus after at most | A*| iterations of the
main loop (Line[7) or equivalently, at most | A*| calls to Lemmal|G.3] we have that |Q| = |A*|. Each
state in () is uniquely identified with a set of distinguishing strings that are consistent with A*. Since
(Q,T) is closed and the transitions are defined using membership queries to check T-equivalence,
the final DFA is isomorphic to the target DFA A*. Hence, in such a case A = A* and the hypothesis
must be consistent with all training examples. Thus, it will terminate. The algorithm can of course
terminate with |Q| < |A*| if the hypothesis DFA is consistent with all the training examples.

O

As a consequence of the above theorem and the fact that log |[DFA,,| = O(nlogn) (Lemma |C.3),
Theorem [5.2] follows from standard Occam’s razor arguments.

22



Under review as a conference paper at ICLR 2026

Algorithm 1 L7 algorithm

nsp
Q<+ {\}, T+ {\
20 X = (x®, fau (D)), > call Genp, ,, (\) m times
3: while (Q, T') not closed do
4:  Use Lemmal|G.2]to obtain ¢'; Q < QU {¢'}
5: end while X
6: Construct hypothesis automaton A from (Q,T)
7. while A not consistent with X do
8:  Choose x € X with f;(x) # fa~(x)
9:  while f;(z) # fa«(z) do > Use Lemmal5.1|
10: Let x.,, be the prefix with first NSP mismatch
11: let o denote the symbol if it is a continuation mismatch
12: if membership mismatch at z.,, then > Case A
13: w < z., A
14: else if continuation mismatch with A* forbids and A admits then > Case Bl
15: s’ « find A-accepting suffix from ., - &
16: w 2., 05
17: else > Case B2
18: W 4 Ty -0 - Genp,, (T - 0)
19: end if
20: Use Lemma|G.3|on w’ to obtain ¢’ and ¢/
21: Q+—QU{d}, T+ Tu{t'}
22: while (Q, T') not closed do
23: Use Lemma|G.2Jto obtain ¢’; Q + Q U {¢'}
24: end while
25: Reconstruct A from (Q,T")

26: end while
27: end while

G.3 SIMULATING MEMBERSHIP AND GENERATIVE QUERIES

We describe how membership and generative queries can be conveniently simulated by blackbox
access to the target language model LM. For a neural language model, the empty string corresponds
to [BOS] token.

(i) Membership Queries. Given a query string x = wy - - - wy € X, compute the NSP continuation
labels for every prefix of x using the language model including the empty string A. For a neural lan-
guage model, this is simply done by obtain the next token probabilities for each prefix and applying
the truncation rule 7 (cf. Sec. . If for any prefix the continuation label ©(z.,, wy41) = 0 then
Wp41 18 not a valid continuation so the oracle can return 0. If the path traversed by wy, - - ,wyn 18
valid, then we can check whether ¢ (z, [EOS]) is 1 or 0 and thus MQ(x) = ¢(z, [EOS]).

(ii) Generative Queries. For any string or prefix x, the Generative Query Oracle Genp, ,, () pro-
vides (s,y) where s is a string from the distribution D/}, conditioned z. If no such continuation
exists and z is at a dead state, then it returns ‘None’. To simulate the example oracle or equivalently,
to obtain examples from the target distribution D{M, one can simply query the oracle with empty
string Genp, ,, (A). To obtain a continuation for a particular prefix x, one can provide it as an input
prompt to the language model and first check whether z traverses a valid path based on the NSP
labels as described above. If it does not then return ‘None’. If it does then, then iteratively sample
the next tokens using the truncation rule until the [EOS] is permissible p(z - s,[EOS]) = 1.

G.4 ON EXACT LEARNING WITH MEMBERSHIP AND EQUIVALENCE QUERIES

We show that the class of DFAs can be learned exactly with membership queries and two types of
equivalence queries. (i) EQ:{SP(A; A*) which returns a positive NSP-labelled counterexample with

at least one disagreement in NSP labels or else it returns equivalence; (ii) Eons(A§ A*) which just
returns a string with no additional labels, such that the string is accepted by A* but rejected by A if
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Tomita 2, 3, 4, & 6: Key metrics vs Sample size
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Figure 5: Key metrics for L, on other Tomita grammars. See Sec. @for details.

there exists such a string, otherwise it returns none. The problem of learning with just membership
and NSP equivalence queries remains open.

For the setting where a learner has access to two types of equivalence queries, the algorithm is almost
the same as the one described earlier (Alg. 1)) with a couple of differences. Similar to the previous
algorithm with membership and generative queries, the learner will maintain a pair (Q,T") and
iteratively update them, but with counterexamples from EQ,, instead of a set of labelled examples.
There are only two changes to address, which we describe below.

(i) The first thing to note is that by Proposition the equivalence query oracle EQiqp is well-
defined and always guaranteed to return a counterexample. If the target DFA A* is such that L 4» =
(), then the initial hypothesis DFA in Line 6 of Alg. [I| will be the same as A* and thus, we do not
need any counterexample.

(ii) Secondly, we do not have access to a generative query oracle anymore, so we cannot use it to find
an accepting continuation when the target NSP label says that a suffix exists, but for our hypothesis
DFA, no such suffix exists. The difficulty is that EQITSp against our hypothesis need not return a
counterexample beginning with the particular prefix x.,, - 0. To force such a witness, we will use
EQpos (A, A*). Consider the DFA A, , whose language is

La,, ., = X"\ (x:n -0 E*),
i.e., A.., - accepts exactly the strings that do not begin with the prefix ., -o. Submit the equivalence
query EQuo(Az.,0; A*). Because pa«(z.,,0) = 1, there exists an accepted string with prefix

T.,, - 0; therefore, the oracle must return a positive counterexample of the form

¥ = xp,-0-8 with A*(2) =1.

But 2’ is rejected by A (the run reaches the dead state after reading x.,, - o), so z’ is again a standard

membership counterexample.

It is unclear whether exact learning with just membership and the NSP equivalence queries is fea-
sible and is left as an open problem. When the learner gets a counterexample such that the only
disagreement is of the form that ¢ o« (2.,,0) = 1 and ¢ 4(2.,,0) = 0, then one might wonder if
a continuation can be recovered using the NSP membership query oracle MQys, which provides
additional label. But as a consequence of Prop. [E.T] such an accepting continuation cannot be found
in polynomial time using MQpsp.

H FURTHER EXPERIMENTS AND DETAILS

We discuss additional details of the experimental setup as well as additional results for DFA extrac-
tion from language models.

H.1 ADDITIONAL DETAILS OF THE SETUP

Tasks. We provide additional details about the tasks considered in our experiments.

Tomita grammars. Table [I] provides the description of the 7 Tomita grammars (Tomital [1982) in the
benchmark. We use all of them except the first one since it is trivial (1*), and the results are uninfor-
mative. All the regular languages in the Tomita benchmark have 2-5 states. These benchmarks have
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Table 1: Tomita grammars and descriptions.

Tomita grammar Description

Tomita 1 Strings of only 1s (including the empty string), 1*.

Tomita 2 Repeated “10” pattern, (10)*.

Tomita 3 Any block with an odd number of consecutive 1s is always followed by a
block with an even number of consecutive Os.

Tomita 4 Strings that do not contain 000 as a substring.

Tomita 5 Strings with an even number of Os and an even number of 1s.

Tomita 6 Strings where the difference between the number of Os and the number of
1s is a multiple of 3.

Tomita 7 0*1*0*1* (zero or more Os, then 1s, then Os, then 1s).

Figure 6: DFA with 26 states extracted by Ly, from Transformer trained on Parity. See App.
for more details.

primarily been used to extract DFAs from RNN or Transformer-based classifiers (Wang et al., [2018j
Weiss et al., [2018;|Zhang et al.| [2024).

Parity. The Parity language is a simple two-state DFA recognizing whether the number of 1s in a
string is odd or even. This task has been widely in the context of Transformers and previous works
have shown empirical (Bhattamishra et al., 2020a) and theoretical (Hahn & Rofin| [2024; [Hahn,
2020) evidence to indicate that such functions are difficult for Transformers to model.

Bounded Dycks. DYCK-(n, k) represents the language with well-balanced parentheses with n types
of brackets and depth at most k. These languages have also been widely used in analysis of sequence
models (Hewitt et al.|[2020; Bhattamishra et al.||2020b) since they capture hierarchical dependencies
prevalent in natural languages. These DFAs have a relatively larger number of states than Tomita
grammars and Parity, and hence provide a testbed to evaluate learning algorithms on languages with
increasing state complexity. We use the following languages in our experiments: DYCK-(2,2): 8
states, DYCK-(2,4): 32 states, DYCK-(3, 3): 41 states, and DYCK-(4, 3): 86 states.

Compute. The experiments in the paper are not compute heavy. All our experiments were conducted
using 8 NVIDIA Tesla V100 GPUs each with 16GB memory for training language models. Each
run for up to 40k steps could take 1-6 hours, depending on the task. Some runs are much shorter if
the model achieves high accuracy quite early. The execution of Ly is primarily on CPU, and uses
the GPU to answer Generative and Membership queries with the Transformer language model. The
time taken for each run of L%_ is provided in the main plots (Fig. |Z| and E[)

nsp

H.2 IDENTIFYING ERRONEOUS EXAMPLES

When the Transformer models trained on regular languages are not perfect, the extracted DFA is not
isomorphic to the target DFA used to generate training data for Transformers.
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Figure 7: DFA with 28 states extracted by L, from Transformer trained on Tomita-5. See App.
for more details.

There are two key things to note about this event. (i) When the extracted DFA has more states than
the target DFA (such as for Parity in Fig.[2), then it implies that the support language for Transformer
has at least as many states as the extracted DFA. This is because states are always created after
identifying distinguishing strings (LemmalC.I)) using the teacher model. (ii) The cases where models
are not perfectly trained and our extracted DFA identifies erroneous strings, the models are still well-
trained in the sense that all 1k strings generated using the language model are in the target language.
Thus, the difference comes from disagreement in some NSP label which the Ly, algorithm then
leverages to extract a bigger DFA, which is then used to identify erroneous strings.

Method. When the learned DFA A is not isomorphic to the target DFA A*, we construct the product
automaton B = A x A* where each state of B is a pair (p,q) withp € Q(fl) and ¢ € Q(A*); on
input symbol a, B transitions 63 ((p,q),a) = (§ ;(p,a),04+(q, a)). The state (p, ¢) is accepting if
and only if exactly one of p or ¢ is accepting (XOR). The product DFA accepts the strings in the
symmetric difference of the hypothesis and target DFA L(B) = L(A)AL(A*). We then enumerate
erroneous strings by doing a BFS-like search within B to find accepting strings in nondecreasing

length order.

Table 2: Examples of erroneous strings found via extracted DFAs. The A* column within states
denotes the number of states in the target DFA used to train the language model. The A column
indicates the number of states in the extracted DFA. Ground truth labels are denoted by y,, and
Teacher LM labels by y. Note: The models used as Teacher LM for Tomita-5, DYCK-(2,2) and
DYCK-(3, 3) for these results were imperfect and not the same models used for the experiments in
Figure 2} See Sections [6|and [H.2)for more details.

Language  States Labels Erroneous string
A" Al ye wr

1 0 001 0000O0OOOCOOO
Parity 2 26 0 1 001000O0OO0OOOOCOT1IO
0O 1 001000000OO0ODOCOI1O00
0 1 () L1 () () ()Ll ()cI[1]
Dyck-(22) 8 189 0 1 [ ] ( ) ] [ 1]
0 1 () L1 () () ()yIL1()yr11 ()
o 1 {{(rrrcrrcr1} )y {}
Dyck-33) 41 87 0 1 {{ (1 [] I 1} () {1}
0 1 {{{}yr1r101%} () {1}
0O 1 011001100101 0101101010100°1
Tomita-5 4 28 0 1 011001100101 01011010101010
0O 1 011001100101 0110101010100°1

Results. We observed erroneous strings for languages like Parity, Tomita-5, DYCK-(2,2), and
DYCK-(3,3). Examples of some erroneous strings identified by the hypothesis DFA is provided
in Table 2] Figure[6]and[7]show the DFAs extracted for Parity and Tomita-5, respectively. The DFAs
for DYCK-(2,2) and DYCK-(3, 3) are too large to be visually interpretable. Constructing the prod-
uct DFA is efficient and identifying several erroneous examples takes only a few seconds. There is
no natural distribution over the symmetric difference language and further it can even be finite in
some cases which makes it difficult to systematically compute the accuracy of predicting erroneous
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examples using the extracted DFA. The closest signal we have is the NSP accuracy for the extracted
DFAs which is near perfect.

Fortunately, identifying strings in the symmetric difference language of A and A* is quite efficient
which can allow one to find numerous erroneous examples (if they exist). For instance, with 1k
strings generated from Transformer trained on Parity, the L7, algorithm extracted a DFA with 26
states within 10 seconds, and using the extracted DFA, we identified 1k strings in the symmetric
difference language L(A)AL(A*) in 16 seconds. Out of the 1000 strings identified by A, 987
of them were erroneous: A*(z) # MQ(z) where MQ(z) denotes whether the string was in the
support of the teacher language model and A*(x) indicates whether the string was in the target
regular language. Thus, such an approach can sometimes be far more efficient than finding erroneous
strings by repeatedly sampling from a language model and testing whether they are correct or not.

For all languages except Parity, the language model became more robust when we retrained them
for longer steps. The curves for Tomita-5, and the two Dyck languages in Fig. [2] are with retrained
and more accurate Transformer models. We suspect that for the lengths considered in this paper,
retraining a larger Transformer on Parity for longer might make it more robust, but we keep the
imperfect model to illustrate the differences in Fig.[2]

H.3 PRACTICAL NOTES ON THE ALGORITHM

As mentioned in Sec. [/] if the DFA representing the support of the language model has a large
number of states, then the extraction algorithm can be extremely slow. The key bottleneck for Ly,
is the same as L*, which is the closure step (Line [22]in Alg.[I). Even though it is polynomial, the
time complexity O(|Q||T’||X|) blows up when both |Q| and |T'| are in the order of thousands, since
the process is sequential. We observe that when the models are partially or poorly trained, then the
number of states blows up, and the algorithm slows down significantly, failing to terminate even

after a day.

The other step where the Ly ) algorithm might fail is if the assumptions about the learning problem
are violated in which case the use of generative queries to find accepting suffixes (Line[I§]in Alg.[T)
may not terminate. If the support language is not regular, then even though a continuation is per-
missible according to min-p/top-p sampling, the language model may still not terminate. However,
we did not observe any instance of this problem in all our experiments. We suspect that since the
language models are typically trained to predict [EOS] after a certain steps, they always terminate
(EOS token becomes permissible) after a certain number of inference steps.

Tokenization. Another practical consideration concerns the effect of tokenizers. The algorithm can
be applied to character-level language models and to word-level models with distinct word vocabu-
laries in a natural way, since in both cases the alphabet aligns closely with the underlying notion of
a string. For subword or BPE tokenizers, while the algorithm can be applied as is, one needs to be
more careful about the semantics of the extracted DFA. The algorithm treats the language model as
a black-box sequence model over an alphabet X of discrete symbols, so in all cases the learned DFA
captures the model’s behavior over sequences of elements of 3, and our guarantees apply at this
level. However, with subword tokenizers there is typically no one-to-one correspondence between
token sequences and character strings, since a single surface string may have multiple tokenizations
that the model treats differently. As a consequence, the DFA learned over tokens should be inter-
preted as describing the token-level support induced by the fixed tokenizer and decoding rule, and
cannot, in general, be read directly as an automaton for a specified character-level regular language.

Efficiency improvements. While the algorithm is polynomial-time, it could still be challenging to
run it at scale as described above. To mitigate those, there are few natural ways to avoid redundant
computation and improve efficiency in practice. (i) LRU Cache for MQ. In our implementation, we
use an LRU cache with the membership query (MQ) oracle. The key computational bottleneck in
the algorithm is that it requires many MQ calls in the closure steps where each MQ call is essentially
a forward pass through the teacher language model. To avoid querying the label of the same string
multiple times, we have an LRU cache which stores the last 10° recently used strings which when
queried directly return the label instead of making a pass through the teacher LM. (ii) Parallelization.
Another concrete direction to improve efficiency is to parallelize the calls in the closure steps. The
key observation is that the MQ calls in the closure step need not be in any particular order. Hence,
one could query the labels of multiple strings by processing them as a batch through the teacher LM.
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To do so along with the LRU cache, one could take the following approach: suppose the closure steps
requires K MQ calls and let batch size be B. One could sequentially go through the strings to be
queried and add them to a queue if they are not in the LRU cache and if a string is in the cache, then
directly return its label. If the size of the queue reaches B or there are no more strings to be queried,
then algorithm can pass the items in the queue as a batch through the teacher LM. This could lead
to tangible gains with GPUs which can fit large batches.

Table 3: Usage of different types of NSP labels by the Ly, algorithm on various tasks. Refinement
indicates the number of times states were added through disagreements (number of times loop in
Line 9] is executed or equivalently Lemma [5.1] is invoked. Mem fraction denotes the percentage
of times prefix membership labels were used. B1 and B2 fractions denote how many continuation

labels were used. See Sec. for more details.

Language States Prefix Memberships (%) Cont. Bl (%)  Cont. B2 (%) Refinements

Sample size: 10

Dyck22 8.0+ 0.0 0.0+ 0.0 16.7+ 0.0 83.3 0.0 6.00 £ 0.00

Dyck24 21.0£54 0.0+0.0 5.9+2.6 94.1 + 2.6 19.00 £ 5.35
Dyck33 325+£7.0 0.0+ 0.0 35+1.2 96.5 + 1.2 30.50 + 7.01
Dyck43 374+ 14.1 0.0+ 0.0 3.8+3.2 96.2 + 3.2 3540+ 14.14
Parity 2.0+ 0.0 0.0 £ 0.0 0.0 + 0.0 0.0 +£ 0.0 0.00 4+ 0.00

Tomita 2 3.0+ 0.0 0.0+ 0.0 0.0+£0.0 100.0 £+ 0.0 1.00 + 0.00

Tomita 5 4.0+£0.0 100.0 £+ 0.0 0.0£0.0 0.0+ 0.0 2.00 £ 0.00

Tomita 7 5.0+ 0.0 0.0+ 0.0 100.0 £+ 0.0 0.0+ 0.0 3.00 £ 0.00

Sample size: 100

Dyck22 8.0+ 0.0 0.0+ 0.0 16.7+ 0.0 83.3 £ 0.0 6.00 £ 0.00

Dyck24 32.0+£0.0 0.0+ 0.0 3.3+0.0 96.7 + 0.0 30.00 + 0.00
Dyck33 41.0+0.0 0.0+ 0.0 2.6 +0.0 97.4 + 0.0 38.90 + 0.32
Dyck43 85.6 1.3 0.0+ 0.0 1.24+0.0 98.8 £+ 0.0 83.60 + 1.26
Parity 2.0+ 0.0 0.0 £ 0.0 0.0 £+ 0.0 0.0 + 0.0 0.00 £+ 0.00

Tomita 2 3.0+0.0 0.0+ 0.0 0.0£0.0 100.0 £+ 0.0 1.00 + 0.00

Tomita 5 4.0+£0.0 100.0 £+ 0.0 0.0+ 0.0 0.0+ 0.0 2.00 £+ 0.00

Tomita 7 5.0+ 0.0 0.0+ 0.0 100.0 £+ 0.0 0.0+ 0.0 3.00 £ 0.00

Sample size: 1000

Dyck22 8.0+ 0.0 0.0+ 0.0 16.7+ 0.0 83.3 + 0.0 6.00 4+ 0.00

Dyck24 32.0+£0.0 0.0+ 0.0 3.3+0.0 96.7 £ 0.0 30.00 + 0.00
Dyck33 41.0£0.0 0.0+0.0 2.6 +0.0 97.4 + 0.0 39.00 £ 0.00
Dyck43 86.0 £ 0.0 0.0+ 0.0 1.24+0.0 98.8 + 0.0 84.00 + 0.00
Parity 18.3 £ 15.7 70.0 £ 48.3 0.0£0.0 0.0+ 0.0 11.80 £ 11.72
Tomita 2 3.0+0.0 0.0+ 0.0 0.0+ 0.0 100.0 £+ 0.0 1.00 + 0.00

Tomita 5 4.0+£0.0 100.0 £+ 0.0 0.0+£0.0 0.0+ 0.0 2.00 £ 0.00

Tomita 7 5.0+ 0.0 0.0+0.0 100.0 £+ 0.0 0.0+ 0.0 3.00 £+ 0.00

H.4 ABLATION: USAGE OF CONTINUATION LABELS
When we apply the Ly, algorithm on positive examples, information about refinements or new
states is provided by two types of labels: (i) prefix membership labels, and (ii) continuation labels.
Within continuation labels, there are two cases as described in Lemma Whenever the algorithm
finds one of the three types of disagreements in the NSP labels between the hypothesis DFA and the
examples in its set, it refines the DFA and adds one more state to its hypothesis.

Results. We run the L7, algorithm on 8 representative languages and track the usage of the type
of disagreement used to update its hypothesis. Table [3] depicts the usage of different types of dis-
agreements on three different sample sizes averaged across 10 runs. The prefix membership column
indicates the percentage of times the prefix membership labels were used. The Cont. B1 column
represents the cases where the hypothesis predicted that a certain continuation is permitted, but the
continuation label indicated that such continuation is not allowed in the target DFA. The Cont. B2

column represents the cases where the hypothesis predicts that continuation is forbidden, but the true
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labels indicate otherwise. This is the case where the generative query oracle is invoked to generate
accepting suffixes.

The results indicate that continuation labels are heavily used for all Dyck languages. Such languages
also contain several transitions with dead states, and the results indicate that the algorithm is able
to leverage continuation labels to identify new states. On parity and Tomita-5, the algorithm relies
only on the prefix membership labels. This is natural since the DFAs for those languages do not have
any dead states, and hence the continuation labels are uninformative. From positive examples, the
algorithm can obtain negative information from the prefix membership labels for such languages.
Both Tomita-2 and Tomita-5 have a transition to dead state. Since all these are small DFAs, the
algorithm converges to the target DFA with only a few refinements.

I EXPERIMENTS WITH LLMS

In this section, we explore the application of the Ly, algorithm to extract DFAs from open-source

LLMs. To mitigate the computational challenges associated with large vocabularies we restrict the
vocabulary size during generation and to simplify tokenization, we use byte-level LLMs, which
naturally fit in our setup. For our experiments, we adopt Meta’s Byte-Level Transformer (Pagnoni
et al., [2025), which operates over Unicode characters and is similar to a character-level language
model.

1.1 SETUP

Tasks and Models. For our experiments, we use two LLMs (1B and 7B BLT (Pagnoni et al.,
2025))) and 5 regular languages. The 5 tasks include (i) Tomita-2 (10)*, which contains zero or more
repeated blocks of ‘10°, (ii) Tomita-4, which contains strings that do not have ‘000’ as a substring,
(iii) Tomita-7, which contains strings from 0*1*0*1*, (iv) the Parity language, which contains an
odd number of 1s, and (v) DYCK-(1, 4), which contains balanced parenthesis with 1 type of bracket
and depth at most 4.

These languages were chosen for the following reasons: Tomita-2 is one of the simplest languages
and is useful to include as a sanity test; yet even a 1B model does not perfectly capture this lan-
guage, as we will see later. Tomita-4 is relevant to the general use case for verification, where we
would not want the model to generate something (e.g., ‘000’, passwords, or forbidden words) and
would like the algorithm to detect that. Tomita-7 checks whether the model can generate a certain
alternating pattern. Parity checks modular counting behaviour and is representative of some other
Tomita grammars, which also involve similar modular counting. The language DYCK-(1, 4) checks
bracket-matching ability with one type of bracket. As discussed later, we also tried DYCK-(2,4),
but the LLMs were much poorer at generating well-balanced strings with 2 types of brackets than
with 1.

Experimental Setup. For each task and model, we prompt the LLM to generate strings from the
language. During generation, we restrict the vocabulary to the symbols of interest, which contain
‘C and ‘)’ for Dyck and ‘1’ and ‘0’ for the others. Apart from that, the model is asked to end
each string with the newline character “\n”, which serves as the [EOS] counterpart in this setup.
The approach is quite simple and minimal. We provide a prompt with three parts: (i) first, a general
instruction which tells the LLM that it is supposed to generate a string from the language ending with
anewline, (ii) a description of the language, and (iii) in-context examples. The prompt ends with the
string generate:, after which the model is supposed to generate a string from the language. A
couple of example prompts are provided in Figure[§] To extract DFAs, we sample 100 NSP-labelled
strings from an LLM with top-p sampling with p = 0.9 as a training set and evaluate the extracted
DFAs on 1k freshly sampled NSP-labelled strings.

1.2 RESULTS

Accuracy of extracted DFAs. The first question that we investigate is whether the DFAs extracted
using the Ly, algorithm are accurate with respect to the NSP accuracy or error defined in Sec.
Note that the NSP accuracy on any example is 0 if even one of the predicted membership or continu-

ation labels is incorrect. The NSP accuracy indicates how faithful the extracted DFA is in capturing
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Tomita-2 (10)*

You are a language generator. You will be given a regular language and you will generate
one string that is in the language and end with \n (newline) character.

Language Description: The language consists of binary strings of the form (10)*, i.e.,
repeating “10” zero or more times.

Multiple examples of strings in the language (each string ends with newline \n):
generate: 10\n

generate: 101010\ n

generate:10\n

generate:1010\n

generate:1010101010\n

generate: 101010\ n

generate:

Parity (odd number of 1 symbols)

You are a language generator. You will be given a regular language and you will generate
one string that is in the language and end with \n (newline) character.

Language Description: The language consists of all binary strings (alphabet = {0, 1}) with
an odd number of “1” symbols. The number of zeros does not matter and the number of “1”’s
should be odd.

Multiple examples of strings in the language (each string ends with newline \n):
generate:1\n

generate:1101\n

generate:010\n

generate:010101\n

generate:111\n

generate: 11001\ n

generate:11111\n

generate:

Figure 8: Example prompts provided to the LLM for regular-language generation experiments. Each
prompt consists of a natural language instruction describing the target regular language and multiple
exemplars illustrating valid strings from that language, terminated by a \n newline character. See
Sec. [[] for more details.

the LLM’s (truncated) support. Obtaining a DFA with good accuracy is essential before conducting
further analysis with the extracted DFA.

Table 4] summarizes the overall results and reports the NSP-accuracy for each task for the 1B and
7B LLMs. As can be seen from the table, for all tasks, the NSP-accuracies of the extracted DFAs
are quite high (94%-100%). Note that the accuracy of a random labelling function will be near
zero, and as a baseline, we use the DFA from the target language (e.g., Tomita-2, Parity, etc.). The
NSP-accuracy of the target baseline DFA denotes the accuracy that one would obtain if they used
the target language DFA to predict the NSP labels of the LLMs. To avoid confusion, we emphasize
that the goal of the extraction algorithm is to obtain a DFA that is faithful to the NSP labels induced
by the LLM and not to the labels induced by the target DFA. As can be seen from the table, the
baseline accuracy using the target language DFA is quite low for most languages, more so for the
1B LLM.

We also explored DYCK-(2, 4), but the generation accuracies of the LLMs were quite poor compared
to DYCK-(1,4). While over 90% of the strings that the 7B LLM generates are in DYCK-(1, 4), for
DYCK-(2,4) this fraction was less than 30%. We ran the Ly algorithm for DYCK-(2,4), and the
number of states blew up: the algorithm was not able to find a consistent DFA even after extracting
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Table 4: Results on extracting DFAs from 1B and 7B BLT models using Ly, on 5 regular languages.
The NSP-Acc. column denotes the accuracy of the extracted DFA. The # States column denotes the
number of states in the extracted DFA. The ‘Baseline’ column denotes the accuracy of predicting
the NSP labels of the LLM using the DFA of the target language. The ‘Erron. Acc.” column denotes
the accuracy of the erroneous strings identified using the extracted DFA. See Sec. E]for more details.

1B BLT 7B BLT
Language NSP-Acc. # States Baseline Erron.Acc. NSP-Acc. # States Baseline Erron.Acc.
Tomita-2 100.0 10 0.0 100.0 100.0 3 100.0 NA
Tomita-4 99.5 7 0.0 99.8 99.6 35 0.0 99.2
Tomita-7 99.8 61 72.1 94.2 96.4 128 76.6 96.6
Parity 99.2 31 0.0 91.4 98.1 39 2.7 97.2
Dyck-(1,4) 94.0 53 229 83.2 97.8 99 73.3 85.0

over 1k states. We tested an extracted DFA with about 384 states, which was partially consistent
with the training set, and its NSP-accuracy on the test set was about 64%. This scenario falls into
the regime discussed in Sec.[7]and Sec.[H.3] where the model is far from perfect and the number of
underlying states is too large for our current implementation to handle.

Identifying Erroneous Examples. We also evaluate the effectiveness of the extracted DFAs in
identifying erroneous examples. For each task, we use the extracted DFA A to find strings in the
symmetric difference between the hypothesis A and the target language A*, as described in Sec.
We find the first 500 strings in length-lexicographic order and report the correctness of the identified
examples, which indicates the percentage of times that a string identified using the product DFA is
actually erroneous.

Table [ depicts the accuracy of the erroneous examples identified by the extracted DFA. For Parity
and the Tomita languages, the erroneous strings identified by the extracted DFA are quite accurate.
For DYCK-(1,4), the accuracies are still quite high but seemingly lower than for the other languages.
Upon further analysis, we believe that the difference is due to the following reason: most of the
strings in the training set for Ly, are quite short (length < 20). When we identify erroneous strings
in length-lexicographic order, the number of erroneous strings of length less than 20 is quite low
(unlike Parity and the other languages), and the DFA identifies many strings that are of greater
length than those seen during training. The accuracy of these strings is not as high, since they could
be considered out-of-distribution as well. If we look at the first 100 erroneous strings identified by
the product DFA, then over 90 of them are correctly predicted as erroneous by the extracted DFA.
Additionally, we emphasize that finding strings from the product DFA is quite cheap, and even with
an accuracy of 50%, it is much faster to generate erroneous strings from the product DFA and verify
them using the LLM, compared to sequentially generating many strings from an LLM and checking
whether they are erroneous.

Among the languages we tested, Tomita-2 is the only language where the 7B LLM seems to per-
fectly capture the support. The support of the 1B LLM is also quite close to the target, since the
symmetric difference between the extracted DFA and the target contained only two strings. In all
other languages in Table[d] the NSP-accuracies of the target DFA are relatively far from the support,
and various erroneous examples could be found. We also tested the sensitivity to the top-p parameter
p € {0.8,0.9,0.95}. We found that the 1B LLM was relatively more sensitive to this parameter than
the 7B LLM. For instance, with p = 0.95, the DFA extracted from the 1B BLT model for Tomita-2
had over 500 erroneous strings, as opposed to just 2 for p = 0.9.

Model Comparison. We investigate whether DFAs extracted from the 1B and 7B models can be
used to identify differences in the behaviour of the two LLMSs. In this analysis, we consider Tomita-
7, Parlty, and DYCK-(1,4). For each language, we proceed as follows. We take the two extracted
DFAs, A 18 and A7B, and construct the product DFA AlB X A7B, which represents the symmetric
difference language as described in Sec. @ We then generate 50 strings in length-lexicographic
order from the product DFA for which Ap(z) # 1217]3(1:). We inspect these mismatch strings to
find systematic patterns and then check whether any identified pattern holds more generally using
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Table 5: Examples of mismatch strings found via extracted DFAs. The columns 121113 and A7B
indicate whether the string was in the support of 1B and 7B LLM, respectively. The column A*
indicates whether the string is in the target language. See Sec. E]for more details.

Language Labels Mismatch strings z
Al B A7B A*

1 0 0 101010
Tomita-7 1 0 0 1010110
1 0 1 000O0O0DO
1 0 0 1111110
Parity 1 0 0 00111100
1 0 1 001111001
1 0 0 C )
Dyck-(1, 4) 1 0 0 ( ()
1 0 0 cCcccc)y)y)y )

the extracted DFAs. While this approach is not the most efficient, we adopt it because the extracted
DFAs, as well as the product DFAs, have many states and are largely uninterpretable visually.

Observations. Table [5] shows representative examples from the symmetric difference between the
1B and 7B LLMs for each language. Based on the extracted DFAs and the mismatch strings, we
make the following observations. The 1B model is generally overly permissive, whereas the 7B
model is overly conservative, in the sense that the 1B model includes strings in its support that are
not in the target language. Unsurprisingly, the 7B model is more accurate than the 1B model, but
the cases where the 7B model is incorrect are those where it excludes strings that should be in the
support. Beyond this, we find systematic differences for Tomita-7 and DYCK-(1,4), but are unable
to identify any clear pattern for Parity.

Tomita-7. For Tomita-7 (0*1*0*1*), the language requires the string to alternate between 0 and
1, starting with O, with at most 3 alternations. The 1B model contains many strings with more
alternations (see the first two examples in Table [5). The 1B model also has strings of the form
1*0*1*0* in its support. Upon seeing such mismatch strings, we checked the extracted DFA A
and observed that such strings lead to an accepting state in Ayp. The 7B model correctly excludes
such strings from its support. Out of the 50 strings, the 1B model is incorrect in ~ 60% of the
cases. The strings where the 7B model is incorrect are typically those that have 0 or fewer than 3
alternations, e.g., 00000, which belongs to the language 0*1*0* 1* but is excluded by the 7B model.

Dyck-(1,4). For DYCK-(1, 4), the 7B model is substantially more accurate than the 1B model. All
first 50 mismatch strings correspond to cases where the 1B model makes a mistake. Looking at the
next 50 mismatch strings, the 1B model is incorrect on 49/50 of them. We find two patterns in the
mistakes made by the 1B model. First, it includes strings in its support with unclosed brackets, i.e.,
prefixes of DYCK-(1, 4) that are missing one or two closing brackets (see the first two examples in
the DYCK-(1,4) row in Table . The model does not seem to make mistakes of the form ( ) )
where the number of closing brackets exceeds the number of opening brackets. Second, the 1B LLM
sometimes fails to enforce the depth constraint and includes strings with depth > 4 in its support
(see the last example in Table[3)) while the 7B LLM correctly excludes them.
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