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ABSTRACT

In this study, we investigate the DIstribution Correction Estimation (DICE) meth-
ods, an important line of work in offline reinforcement learning (RL) and imita-
tion learning (IL). DICE-based methods impose state-action-level behavior con-
straint, which is an ideal choice for offline learning. However, they typically
perform much worse than current state-of-the-art (SOTA) methods that solely
use action-level behavior constraint. After revisiting DICE-based methods, we
find there exist two gradient terms when learning the value function using true-
gradient update: forward gradient (taken on the current state) and backward gra-
dient (taken on the next state). Using forward gradient bears a large similarity
to many offline RL methods, and thus can be regarded as applying action-level
constraint. However, directly adding the backward gradient may degenerate or
cancel out its effect if these two gradients have conflicting directions. To re-
solve this issue, we propose a simple yet effective modification that projects
the backward gradient onto the normal plane of the forward gradient, result-
ing in an orthogonal-gradient update, a new learning rule for DICE-based meth-
ods. We conduct thorough theoretical analyses and find that the projected back-
ward gradient brings state-level behavior regularization, which reveals the mys-
tery of DICE-based methods: the value learning objective does try to impose
state-action-level constraint, but needs to be used in a corrected way. Through
toy examples and extensive experiments on complex offline RL and IL tasks,
we demonstrate that DICE-based methods using orthogonal-gradient updates (O-
DICE) achieve SOTA performance and great robustness. Code is available at
https://github.com/maoliyuan/ODICE-Pytorch.

1 INTRODUCTION

Offline Reinforcement Learning (RL) has attracted lots of attention as it enables learning policies
by utilizing only pre-collected data without any costly or unsafe online interaction. It is a promising
area for bringing RL into real-world domains, such as robotics (Kalashnikov et al., 2021), health-
care (Tang & Wiens, 2021), and industrial control (Zhan et al., 2022). However, offline RL is known
to suffer from the value overestimation issue (Fujimoto et al., 2018): policy improvement entails
querying the value function on values of actions produced by the learning policy, which are of-
ten unseen in the offline dataset. Those (potentially) out-of-distribution (OOD) actions can cause
catastrophic extrapolation errors of the value function. To remedy this issue, current state-of-the-art
(SOTA) offline RL algorithms typically impose different kinds of action-level behavior constraints
into the learning objective, to limit how far the learning policy deviates from the behavior policy.
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Action-level constraint can be incorporated explicitly on the policy improvement step by calculating
some divergence or distance metrics (Kumar et al., 2019; Wu et al., 2019; Nair et al., 2020; Fujimoto
& Gu, 2021; Li et al., 2022a), or implicitly on the policy evaluation step by regularizing the learned
value functions (Kumar et al., 2020; Kostrikov et al., 2021a; Xu et al., 2023; Garg et al., 2023).

However, action-level behavior constraint is not an ideal choice in offline RL. Although OOD states
do not exist during training, they do occur at evaluation time. During evaluation, due to covari-
ate shift and compounding errors, the policy could output undesired actions on encountered unseen
states since it receives no learning signals on those OOD states during training. Hence, it is better
to apply state and action distribution constraint simultaneously, a.k.a., state-action-level behavior
constraint, to force the policy to avoid or recover from both OOD states and actions. To the best
of our knowledge, only a few works explicitly consider state-action-level behavior constraints (Li
et al., 2022b; Zhang et al., 2022). These methods build on top of action-constrained offline RL
algorithms, with additional steps to obtain and regularize OOD states by training dynamics mod-
els for OOD detection (Yang et al., 2021). Instead of manually adding the state-level constraint,
there already exists an important line of work, DIstribution Correction Estimation (DICE) methods
(Nachum & Dai, 2020), that is derived by constraining the joint state-action visitation distribution
between the learning policy and behavior policy. By applying convex duality (Boyd et al., 2004),
DICE-based methods elegantly transform the intractable state-action-level constraint into a tractable
convex optimization objective that can be solved using only the offline dataset.

Although built upon the more ideal state-action-level behavior constraint, DICE-based methods are
known to perform much worse than methods that only enforce action-level constraint (Fujimoto &
Gu, 2021; Xu et al., 2023; Garg et al., 2023) on commonly-used benchmark datasets (Fu et al.,
2020), which seems to be rather counterintuitive. In this work, we aim to resolve this issue and
reveal the mystery of performance deficiencies in existing DICE-based methods. We first note that
the derived value learning objectives of DICE-based methods contain the bellman residual term
(r + γEs′ [V (s′)]− V (s)), i.e., value function should be learned using true-gradient update (Baird,
1995), which means the gradient of value function should be taken twice on two successor states s
and s′. We find that the forward gradient term (i.e., the gradient taken on s) is actually imposing
action-level constraint, which explains why recent work (Sikchi et al., 2023) that modifies DICE-
based methods using semi-gradient update (Sutton et al., 1998) could match the performance of
action-constrained offline RL methods. Furthermore, when diving deep into the backward gradient
term (i.e., the gradient taken on s′), we find that after a small modification, it is endowed with
the ability to enforce state-level constraint. More specifically, we project the backward gradient
onto the normal plane of the forward gradient, making these two gradient terms orthogonal. We
term this method orthogonal-gradient update, by doing so, forward and backward gradients will
not be canceled out by each other. Theoretically, orthogonal-gradient update has several appealing
properties. It offers better convergence properties than semi-gradient update and makes the value
function learn better representations across states, alleviating the feature co-adaptation issue (Kumar
et al., 2022), while being more robust to state distributional shift (i.e., OOD states).

We further propose a practical algorithm, O-DICE (Orthogonal-DICE), that incorporates V-DICE
algorithm (Lee et al., 2021; Sikchi et al., 2023) with orthogonal-gradient update. We verify the
effectiveness of O-DICE in both the offline RL setting and the offline Imitation Learning (IL) setting,
where only one expert trajectory is given (Kostrikov et al., 2020; Zhang et al., 2023b). O-DICE not
only surpasses strong action-constrained offline RL baselines, reaching SOTA performance in D4RL
benchmarks (Fu et al., 2020), but also exhibits lower evaluation variances and stronger robustness
to state distributional shift, especially on offline IL tasks, in which OOD states are more likely to
occur, and being robust to them is crucial for high performance. To aid conceptual understanding
of orthogonal-gradient update, we analyze its learned values in a simple toy setting, highlighting
the advantage of its state-action-level constraint as opposed to true-gradient update or action-level
constraint imposed by semi-gradient update. We also conduct validation experiments and validate
the theoretical superiority of orthogonal-gradient updates.

2 MYSTERY OF DISTRIBUTION CORRECTION ESTIMATION (DICE)

In this section, we give a detailed derivation about how we reveal the mystery of DICE-based meth-
ods by using orthogonal-gradient update. We begin with some background introduction about differ-
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ent types of DICE-based methods. We then dive deep into the gradient flow of DICE-based methods.
We discuss the effect of two different parts in DICE’s gradient flow and find a theory-to-practice gap.
We thus propose the orthogonal-gradient update to fix this gap and instantiate a practical algorithm.

2.1 PRELIMINARIES

We consider the RL problem presented as a Markov decision process (Sutton et al., 1998), which
is specified by a tuple M⟨S,A,P, ρ0, r, γ⟩ consisting of a state space, an action space, a transition
probability function, a reward function, an initial state distribution, and the discount factor. The goal
of RL is to find a policy π(a|s) that maximizes expected return J (π) := E[

∑∞
t=0 γ

t·r(st, at)], while
st, at satisfy at ∼ π(·|st) and st+1 ∼ P(·|st, at). J (π) has an equivalent dual form (Puterman,
2014) that can be written as J (π) = E(s,a)∼dπ [r(s, a)], where dπ(s, a) := (1−γ)

∑∞
t=0 γ

tPr(st =
s, at = a) is the discounted state-action visitation distribution. In this work, we mainly focus on
the offline setting, where learning from a static dataset D = {si, ai, ri, s′i}Ni=1 is called offline RL
and learning from a static dataset without reward labels D = {si, ai, s′i}Ni=1 is called offline IL. The
dataset can be heterogenous and suboptimal, we denote the empirical behavior policy of D as πD,
which represents the conditional distribution p(a|s) observed in the dataset, and denote the empirical
discounted state-action visitation distribution of πD as dD.

DICE algorithms (Nachum & Dai, 2020) are motivated by bypassing unknown on-policy sam-
ples from dπ in the dual form of J (π). They incorporate J (π) with a behavior constraint term
Df (d

π||dD) = E(s,a)∼dD [f( dπ(s,a)
dD(s,a)

)] where f(x) is a convex function, i.e., finding π∗ satisfying:

π∗ = argmax
π

E(s,a)∼dπ [r(s, a)]− αDf (d
π||dD) (1)

This objective is still intractable, however, by adding the Bellman-flow constraint (Manne, 1960),
i.e., d(s, a) = (1 − γ)d0(s)π(a|s) + γ

∑
(s′,a′) d(s

′, a′)p(s|s′, a′)π(a|s) (on state-action space) or∑
a∈A d(s, a) = (1− γ)d0(s) + γ

∑
(s′,a′) d(s

′, a′)p(s|s′, a′) (on state space), we can get two cor-
responding dual forms which are tractable (by applying duality and convex conjugate, see Appendix
D for details).

Q-DICE max
π

min
Q

(1− γ)Es∼d0,a∼π(·|s)[Q(s, a)] + αE(s,a)∼dD [f∗([T πQ(s, a)−Q(s, a)] /α)]

V-DICE min
V

(1− γ)Es∼d0
[V (s)] + αE(s,a)∼dD [f∗([T V (s, a)− V (s)] /α)] (2)

where f∗ is the (variant of) convex conjugate of f . d0 is the distribution of initial state ρ0, to in-
crease the diversity of samples, one often extends it to dD by treating every state in a trajectory as
initial state (Kostrikov et al., 2020). T πQ(s, a) = r(s, a) + γEs′∼p(·|s,a),a′∼π(·|s′)[Q(s′, a′)] and
T V (s, a) = r(s, a) + γEs′∼p(·|s,a)[V (s′)] represent the Bellman operator on Q and V , respec-
tively. In the offline setting, since D typically does not contain all possible transitions (s, a, s′), one
actually uses an empirical Bellman operator that only backs up a single s′ sample, we denote the
corresponding operator as T̂ π and T̂ .

Crucially, these two objectives rely only on access to samples from offline dataset D. Note that in
both cases for Q-DICE and V-DICE, the optimal solution is the same as their primal formulations
due to strong duality. For simplicity, we consider V-DICE as an example for the rest derivation and
discussion in our paper, note that similar derivation can be readily conducted for Q-DICE as well.

2.2 DECOMPOSE GRADIENT FLOW OF DICE

In the learning objective of V-DICE, we consider a parameterized value function V with network
parameters denoted as θ. In objective (2), the effect of the linear term is clear that it pushes down
the V -value of state samples equally. Whereas the effect of the nonlinear term which contains the
Bellman residual term (i.e., T̂ V (s, a) − V (s)) is unclear because both V (s′) and −V (s) would
contribute to the gradient. We thus are interested in decomposing and investigating each part of the
second term, the gradient flow could be formally written as:

∇θf
∗(T̂ V (s, a)− V (s))) = (f∗)′(r + γV (s′)− V (s))(γ ∇θV (s′)︸ ︷︷ ︸

backward gradient

− ∇θV (s)︸ ︷︷ ︸
forward gradient

) (3)
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where we consider α = 1 for simplicity. Here we denote the two parts of the gradient as ”forward
gradient” (on s) and ”backward gradient” (on s′) respectively, as shown in Eq.(3). A keen reader
may note that Eq.(3) looks like algorithms in online RL that use true-gradient update (Baird, 1995).
True-gradient algorithms are known to enjoy convergence guarantees to local minima under off-
policy training with any function approximator. However, in online RL, most famous deep RL
algorithms use semi-gradient update, i.e., applying target network on V (s′) to freeze the backward
gradient, such as DQN (Mnih et al., 2013), TD3 (Fujimoto et al., 2018) and SAC (Haarnoja et al.,
2017). If we modify Eq.(3) to use semi-gradient update, we have

∇θf
∗(Q(s, a)− V (s))) = (f∗)′(Q(s, a)− V (s))(γ

XXXX∇θV (s′)︸ ︷︷ ︸
backward gradient

− ∇θV (s)︸ ︷︷ ︸
forward gradient

) (4)

where Q(s, a) denotes stop-gradient(r + γV (s′)). Perhaps surprisingly, we find the result in
Eq.(4) bears large similarity to the gradient flow of one recent SOTA offline RL algorithm, Exponen-
tial Q-Learning (EQL, Xu et al. (2023)), which imposes an implicit action-level behavior constraint
(Reverse KL between π and πD) with the following learning objective (with α in EQL equals to 1):

min
V

E(s,a)∼D [exp (Q(s, a)− V (s)) + V (s)] (5)

where Q is learned to optimize E(s,a,s′)∼D[(r(s, a) + γV (s′) − Q(s, a))2]. If we take gradient of
objective (5) with respect to V , we can get exactly Eq.(4) (with f(x) = x log x)! This tells us that
using the forward gradient alone is equal to imposing only action-level constraint. Our finding is
consistent with one recent work (Sikchi et al., 2023) that finds V-DICE using semi-gradient update
is doing implicit policy improvement to find the best action in the dataset D.

EQL has shown superior performance on D4RL benchmark tasks, however, OptiDICE (Lee et al.,
2021), whose learning objective is exactly Eq.(2), shows significantly worse performance compared
to EQL. It’s obvious that the only difference between semi-DICE algorithm (EQL) and true-DICE
algorithm (OptiDICE) is the backward gradient. Then one gap between theory and practice occurs:
although the backward gradient term is considered to be necessary from the theoretical derivation,
the practical result reveals that it is harmful and unnecessary.

2.3 FIX THE GAP BY ORTHOGONAL-GRADIENT UPDATE

As said, the forward gradient is crucial for implicit maximization to find the best action. However,
adding the backward gradient will probably interfere with it because a state s and its successor state
s′ are often similar under function approximation. The backward gradient may cancel out the effect
of the forward gradient, leading to a catastrophic unlearning phenomenon. To remedy this, we adopt
a simple idea that projects the backward gradient onto the normal plane of the forward gradient,
making these two gradient terms orthogonal. The projected backward gradient can be written as

∇⊥
θ V (s′) = ∇θV (s′)− ∇θV (s)⊤∇θV (s′)

∥∇θV (s)∥2
∇θV (s)

Intuitively, the projected backward gradient will not interfere with the forward gradient while still
retaining information from the backward gradient. We will further show in the next section that
the projected backward gradient is actually doing state-level constraint. After getting the projected
backward gradient, we add it to the forward gradient term, resulting in a new gradient flow,

∇θf
∗
(
T̂ V (s, a)− V (s))

)
:= (f∗)′(r + γV (s′)− V (s))

(
γ · η∇⊥

θ V (s′)−∇θV (s)
)

where we use one hyperparameter η > 0 to control the strength of the projected backward gradient
against the forward gradient. We call this new update rule as orthogonal-gradient update and give
the illustration of it in Figure 1. We can see that the orthogonal-gradient can be balanced between
true-gradient and semi-gradient by choosing different η.

After adding the gradient of the first linear term in objective (2), we can get the new full gradient flow
of learning (2). We then propose a new offline algorithm, O-DICE (Orthogonal-DICE), that incor-
porates V-DICE algorithm with orthogonal-gradient update. The policy extraction part in O-DICE
is the same as V-DICE by using weighted behavior cloning maxπ E(s,a)∼D[ω

∗(s, a) log π(a|s)],
where ω∗(s, a) := dπ∗

(s,a)
dD(s,a)

= max(0, (f ′)−1(T̂ V ∗(s, a)− V ∗(s))).
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Figure 1: Illustration of orthogonal-gradient update

Algorithm 1 Orthogonal DICE
Require: D, λ, η, learning rate α
1: Initialize Vθ , Vθ , πϕ

2: for t = 1, 2, · · · , N do
3: Sample transitions (s, a, r, s′) ∼ D
4: Calculate forward gradient

g→θ = ∇θf
∗(r + γVθ(s

′)− Vθ(s))
5: Calculate backward gradient

g←θ = ∇θf
∗(r + γVθ(s

′)− Vθ(s))
6: Calculate projected backward gradient

g⊥θ = g←θ −
(g←θ )⊤g→θ
∥g→θ ∥2

g→θ

7: Update θ by
θ ← θ − α

(
(1− λ)∇θVθ(s) + λ(g→θ + ηg⊥θ )

)
8: Calculate BC weight

ω(s, a) = max
(
0, (f ′)−1 (r + γVθ(s

′)− Vθ(s)
))

9: Update πϕ by
maxϕ [ω(s, a) log πϕ(a|s)]

10: Update θ with exponential moving average
θ ← τθ + (1− τ)θ

11: end for

Practical Consideration We now describe
some practical considerations in O-DICE. O-
DICE could be implemented with just a few
adjustments to previous true/semi-DICE algo-
rithms. To compute the forward and backward
gradient, we apply target network to V (s′)
when computing the forward gradient and ap-
ply target network to V (s) when computing the
backward gradient, a.k.a, the bidirectional tar-
get network trick (Zhang et al., 2019b). We also
apply one trick from Sikchi et al. (2023) that
rewrites objective (2) from α to λ as
min
V

E [(1− λ)V (s) + λf∗(T V (s, a)− V (s))]

where λ ∈ (0, 1) trades off linearly between
the first term and the second term. This trick
makes hyperparameter tuning easier as α has
a nonlinear dependence through the function
f . Analogous to to previous DICE algorithms,
we alternate the updates of V and π until con-
vergence although the training of them are de-
coupled. Note that different from almost all
previous offline RL algorithms, we find that
O-DICE does not need to use the double Q-
learning trick (Fujimoto et al., 2018), which
suggests that using orthogonal-gradient update
regularizes the value function better and greatly
enhances training stability. We summarize the
pseudo-code of O-DICE in Algorithm 1.

3 ANALYSIS

Although our method is simple and straightforward, in this section, we give a thorough theoretical
analysis and use a didactic toy example to show several benefits of using orthogonal-gradient update.

3.1 THEORETIC RESULTS

We begin by introducing the notation used in our analysis. We denote the nonlinear loss in O-
DICE, f∗(r + γV (s′) − V (s)) as Lθ(s, s′). We use Lθ

1(s) to denote f∗(r + γV (s′) − V (s)),
whose gradient corresponds to the forward gradient (multiply a value). We use Lθ

2(s
′) to denote

f∗(r + γV (s′) − V (s)), whose gradient corresponds to the backward gradient (multiply a value).
We define the projected part and the remaining parallel part of ∇θL

θ
2(s

′) with respect to ∇θL
θ
1(s)

as ∇⊥
θ L

θ
2(s

′) and ∇∥
θL

θ
2(s

′), respectively. It’s easy to know that we can decompose the orthogonal-
gradient update in O-DICE into two steps, which are

θ′ = θ − α∇θL
θ
1(s)

θ′′ = θ′ − α∇⊥
θ L

θ
2(s

′)

where α is the learning rate. We first introduce two theoretical benefits of using the orthogonal-
gradient update from the optimization perspective.

Theorem 1. In orthogonal-gradient update, Lθ′′

1 (s)−Lθ′

1 (s) = 0 (under first order approximation).

This theorem formally says the interference-free property in orthogonal-gradient update, that is, the
gradient change in loss L2(s

′) won’t affect loss L1(s). This means that orthogonal-gradient update
preserves the benefit of semi-gradient update while still making loss L2(s

′) decrease. Note that
under general setting, Lθ′′

1 (s) − Lθ′

1 (s) = 0 holds only by orthogonal-gradient update, any other
gradient modification techniques (Baird, 1995; Zhang et al., 2019b; Durugkar & Stone, 2018) that
keep part of ∇∥

θL
θ
2(s

′) will make Lθ′′

1 (s)− Lθ′

1 (s) ̸= 0.
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Theorem 2. Define the angle between ∇θV (s) and ∇θV (s′) as ϕ(s, s′). In orthogonal-gradient

update, if ϕ(s, s′) ̸= 0, then for all η > 1
sin2 ϕ(s,s′)

(
cosϕ(s, s′) ∥∇θV (s)∥

γ∥∇θV (s′)∥ − ( ∥∇θV (s)∥
γ∥∇θV (s′)∥ )

2
)

, we

have Lθ′′
(s, s′)− Lθ(s, s′) < 0.

This theorem gives a convergence property that using orthogonal-gradient update could make the
overall loss objective monotonically decrease. Note that similar convergence guarantee occurs only
in true-gradient update, while semi-gradient update is known to suffer from divergence issue (Zhang
et al., 2019b). Actually, to have a convergence guarantee, we only need to keep the gradient within
the same half-plane that ∇θLθ(s, s′) lies in. This means that we can adjust η to make the orthogonal
gradient keep in the same half-plane of the true-gradient while keeping close to the semi-gradient if
needed, as shown in this theorem. Note that s and s′ are often similar, so the value of ∥∇θV (s)∥
and ∥∇θV (s′)∥ are close to each other and the ratio ∥∇θV (s)∥

γ∥∇θV (s′)∥ will probably > 1, which indicates
that the choice of η may be fairly easy to satisfy this theorem (e.g., η > 0).

From Theorem 1 and Theorem 2 we know that orthogonal-gradient update could make loss L(s, s′)
and L1(s) decrease simultaneously, so as to share the best of both worlds: not only does it preserve
the action-level constraint in semi-gradient update, but also owns the convergence guarantee in true-
gradient update. We now further analyze the influence of orthogonal-gradient update, we show in
the following theorem that it has a deep connection with the feature dot product of consecutive states
in value function (Ψθ(s, s

′) = ∇θV (s)⊤∇θV (s′)).

Theorem 3 (Orthogonal-gradient update helps alleviate feature co-adaptation). Assume the norm
of ∇θV (s) is bounded, i.e. ∀s,m ≤ ∥∇θV (s)∥2 ≤ M . Define consecutive value curvature
ξ(θ, s, s′) = ∇⊥

θ V (s′)⊤H(s)∇⊥
θ V (s′), where H(s) is the Hessian matrix of V (s). Assume

ξ(θ, s, s′) ≥ l · ∥∇⊥
θ V (s′)∥2 where l > 0. Then in orthogonal-gradient update, we have

Ψθ′′(s, s′)−Ψθ′(s, s′) ≤ −αηγ · (f∗)′(r + γV (s′)− V (s))[sin2 ϕ(s, s′) · l ·m+ β ·M ] (6)

where β is a constant close to 0 if the condition number of H(s) is small (Cheney & Kincaid, 2012).

Feature co-adaptation, where Ψθ(s, s
′) is large so that features of different states learned by the

value function become very similar, is known to be a severe issue in offline deep RL (Kumar et al.,
2021). While this theorem formally says that after using orthogonal-gradient update, the difference
of Ψθ(s, s

′) could be bounded. In RHS of Eq.(6), β is a constant that captures the difference between
minimal and maximal eigenvalue inH(s). β will be close to 0 if neural network V (s) is numerically
well-behaved (i.e., the condition number of H(s) is small), which can be achieved by using some
practical training tricks such as orthogonal regularization (Brock et al., 2016) or gradient penalty
(Gulrajani et al., 2017) during training V . Also, note that (f∗)′(x) ≥ 0 always holds because f∗
is chosen to be monotonically increasing (see proof in Appendix B for details, we highlight that
this only holds in DICE-based methods, minimizing Bellman equation such that f∗ = x2 won’t let
it hold). Hence, Eq.(6) < 0 will probably hold, this means that using orthogonal-gradient update
could help alleviate feature co-adaptation issue, learning better representations for different states.
We show in the following theorem that better representation brings better state-level robustness of
V (s), akin to imposing the state-level behavior constraint.

Theorem 4 (How feature co-adaptation affects state-level robustness). Under linear setting when
V (s) can be expressed as ∇θV (s)⊤θ, assume ∥∇θV (s)∥2 ≤M , then there exists some small noise
ε ∈ R|S| such that V (s′ + ε) − V (s) will have different sign with V (s′) − V (s), if Ψθ(s, s

′) >
M − C · ∥ε∥2 for some constant C > 0.

This theorem says that if feature co-adaptation happens, i.e., Ψθ(s, s
′) is larger than a threshold, a

small noise adding to V (s′) will largely change its value, or the learning signal for policy. If the
sign (or value) of V (s′)−V (s) can be easily flipped by some noise ε, not only the policy extraction
part during training will be affected (as two similar s′ will have totally different BC weight), but
also the optimal policy induced from V is likely to be misled by OOD states encountered during
evaluation and take wrong actions. As shown in Theorem 3, using orthogonal-gradient update helps
alleviate feature co-adaptation and enables V to learn better representations to distinguish different
states, thus being more robust to OOD states.
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Figure 2: Visualizations of the value function V learned by using different updating rules in a grid world
toycase, the base algorithm is V-DICE. We normalize the value of V to [0, 100] for fair comparison. The
borderline of the offline dataset support is marked by white dashed lines. Orthogonal-gradient update better
distinguishes both different in-distribution actions and in-distribution states vs. OOD states.

3.2 A TOY EXAMPLE

We now use a toy example to validate the above-mentioned benefits of using orthogonal-gradient
update. We consider a 30 × 30 grid world navigation task where the agent starts from the bottom-
left corner (0, 0) and the goal is to reach a given area at the top ((10, 30) to (20, 30)) or right
border ((30, 10) to (30, 20)). The action space contains 4 discrete actions: up, down, left, and right.
Every time the agent chooses an action, it will move towards that direction for one grid, receiving
a −1 reward, unless it reaches the goal area, which will give a different, positive reward, as shown
in Figure 2(a). The offline dataset is collected by running a goal-reaching policy, to add some
stochasticity, with a probability of 0.05 the output action will be shifted to a random action. We use
white dashed lines in Figure 2 to plot the borderlines of the support of the collected dataset.

We run V-DICE with semi-gradient, true-gradient, and orthogonal-gradient, and visualize the
learned V -value (with normalization) in Figure 2(b)-(d). The corresponding policy can be extracted
implicitly by choosing a reachable state (grid) with the highest V -value, at a given state (grid). It
can be shown from the result that orthogonal-gradient update could learn a value function (or policy)
that successfully finds a path from the start to the desired location, indicating the effect of impos-
ing action-level constraint. Meanwhile, it successfully distinguishes between in-distribution states
and OOD states, the values of OOD states are much lower than that of in-distribution states, which
reveals better feature of the value function is learned by imposing state-level constraint. Using semi-
gradient update could learn a good policy to find the best action but lose OOD state robustness (the
color of OOD states and in-distribution states are similar, once the agent gets into OOD states, it
can hardly come back), while true-gradient update could not even learn a good policy because of the
conflicting gradient issue.

From this toycase, we can clearly observe that using orthogonal-gradient update brings state-action-
level constraint, it helps improve the robustness of OOD states while still preserving the ability to
find the best dataset actions.

4 EXPERIMENTS

In this section, we present empirical evaluations of O-DICE. We first evaluate O-DICE against other
baseline algorithms on benchmark offline RL datasets. We then conduct more in-depth investigations
on the policy robustness of O-DICE and other algorithms. Lastly, we evaluate O-DICE on offline IL
tasks to demonstrate its superior performance. Hyperparameters and experimental details are listed
in Appendix D.

4.1 RESULTS ON D4RL BENCHMARKS

We first evaluate O-DICE on the D4RL benchmark (Fu et al., 2020), including MuJoCo locomotion
tasks and AntMaze navigation tasks. We compare O-DICE with previous SOTA baselines that only
enforce action-level constraint, including TD3+BC (Fujimoto & Gu, 2021), CQL (Kumar et al.,
2020), IQL (Kostrikov et al., 2021b), and EQL (Xu et al., 2023). We also compare O-DICE with
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Table 1: Averaged normalized scores of O-DICE against other baselines. The scores are taken over the final
10 evaluations with 5 seeds. O-DICE achieves the highest score in 13 out of 15 tasks, outperforming previous
SOTA offline RL methods and other DICE-based methods.

D4RL Dataset constrain π(a|s) constrain dπ(s, a)

TD3+BC CQL IQL EQL OptiDICE f -DVL S-DICE O-DICE
halfcheetah-m 48.3 44.0 47.4 ±0.2 47.2 ±0.2 45.8 ±0.4 47.7 47.3±0.2 47.4±0.2
hopper-m 59.3 58.5 66.3 ±5.7 74.6 ±3.4 46.4 ±3.9 63.0 61.5±2.3 86.1 ±4.0
walker2d-m 83.7 72.5 72.5 ±8.7 83.2 ±4.6 68.1 ±4.5 80.0 78.6±7.1 84.9 ±2.3
halfcheetah-m-r 44.6 45.5 44.2 ±1.2 44.5 ±0.7 31.7 ±0.8 42.9 40.6±2.6 44.0±0.3
hopper-m-r 60.9 95.0 95.2 ±8.6 98.1 ±3.3 20.0 ±6.6 90.7 64.6±19.4 99.9 ±2.7
walker2d-m-r 81.8 77.2 76.1 ±7.3 76.6 ±3.8 17.9±5.9 52.1 37.3±5.1 83.6 ±4.1
halfcheetah-m-e 90.7 90.7 86.7 ±5.3 90.6 ±0.4 59.7 ±3.0 89.3 92.8±0.7 93.2 ±0.6
hopper-m-e 98.0 105.4 101.5 ±7.3 105.5 ±2.2 51.3 ±3.5 105.8 108.4±1.9 110.8 ±0.6
walker2d-m-e 110.1 109.6 110.6 ±1.0 110.2 ±0.8 104.0 ±5.1 110.1 110.1±0.2 110.8 ±0.2

antmaze-u 78.6 84.8 85.5 ±1.9 93.2 ±1.4 56.0 ±2.8 83.7 88.6±2.5 94.1 ±1.6
antmaze-u-d 71.4 43.4 66.7 ±4.0 65.0 ±2.3 48.6 ±7.4 50.4 69.3±5.0 79.5 ±3.3
antmaze-m-p 10.6 65.2 72.2 ±5.3 77.5 ±3.7 0.0 ±0.0 56.7 50.6±11.1 86.0 ±1.6
antmaze-m-d 3.0 54.0 71.0 ±3.2 70.0 ±4.2 0.0 ±0.0 48.2 66.0±3.6 82.7 ±4.9
antmaze-l-p 0.2 38.4 39.6 ±4.5 45.6 ±4.8 0.0 ±0.0 36.0 34.0±9.0 55.9 ±3.9
antmaze-l-d 0.0 31.6 47.5 ±4.4 42.5 ±5.2 0.0 ±0.0 44.5 32.6±4.1 54.0 ±4.8

other DICE-based algorithms that intend to do state-action-level constraint, including OptiDICE
(Lee et al., 2021), f -DVL (Sikchi et al., 2023) and our implementation of semi-DICE (S-DICE)
which updates V-DICE using semi-gradient update.

The result shows that O-DICE outperforms all previous SOTA algorithms on almost all MuJoCo
and AntMaze tasks. This suggests that O-DICE can effectively learn a strong policy from the
dataset, even in challenging AntMaze tasks that require learning a high-quality value function so
as to ”stitch” good trajectories. The large performance gap between O-DICE (using orthogonal-
gradient update) and OptiDICE (using true-gradient update) demonstrates the necessity of using the
projected backward gradient. Moreover, O-DICE shows consistently better performance over EQL,
f -DVL, and S-DICE (using semi-gradient update) on almost all datasets, especially on sub-optimal
datasets that contain less or few near-optimal trajectories. This indicates the superiority of state-
action-level constraint over only action-level constraint, by learning a value function with better
representation to successfully distinguish good trajectories (actions) from bad ones.

4.2 RESULTS ON POLICY ROBUSTNESS

Figure 3: Left: percent difference of the worst episode
during the 10 evaluation episodes at the last evaluation of
different offline RL algorithms. Right: mean value of
∇θV (s)⊤∇θV (s′) over the dataset of S-DICE and O-DICE.

The aggregated mean score in D4RL can’t
fully reflect the robustness of an algorithm
because, even if the average performance
is reasonable, the agent may still perform
poorly on some episodes. Here we com-
pare O-DICE with S-DICE and EQL on
the percent difference of the worst episode
during the 10 evaluation episodes at the
last evaluation (Fujimoto & Gu, 2021), we
also plot the average value of feature dot
product, ∇θV (s)⊤∇θV (s′), as shown in
Figure 3. It’s obvious that a robust pol-
icy should achieve consistently high per-
formance over multiple evaluations, i.e., having a small percent difference. Moreover, Theorem 4
shows that a low value of ∇θV (s)⊤∇θV (s′) is necessary for robustness. It can be observed that
O-DICE achieves much smaller percent differences than action-constrained offline RL methods like
EQL and S-DICE, which empirically verifies Theorem 4. The significantly decreased feature dot-
product value ∇θV (s)⊤∇θV (s′) after applying orthogonal-gradient also agrees with Theorem 3.
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4.3 RESULTS ON OFFLINE IMITATION LEARNING

Table 2: Normalized return of BC, ValueDICE,
IQLearn and O-DICE on offline IL tasks.

Dataset BC ValueDICE IQLearn O-DICE

Hopper-expert

Traj 1 56.0 33.8 75.1 78.8
Traj 2 36.2 23.5 56.2 47.8
Traj 3 50.5 24.7 47.1 55.1
Traj 4 87.2 90.4 94.2 98.5

Walker2d-expert

Traj 1 64.6 23.6 50.2 75.6
Traj 2 43.3 17.1 40.5 65.8
Traj 3 38.4 60.6 66.7 62.7
Traj 4 33.0 40.5 44.2 61.6

We then evaluate O-DICE in the offline imi-
tation learning setting, where only one expert
trajectory is given (Kostrikov et al., 2020). In
this setting, OOD states are fairly easy to oc-
cur, and being robust to them is crucial for high
performance (Rajaraman et al., 2020). We com-
pare O-DICE with BC (Pomerleau, 1989), Val-
ueDICE (Kostrikov et al., 2020) and IQLearn
Garg et al. (2021). ValueDICE and IQLearn are
two Q-DICE algorithms that use true-gradient
update and semi-gradient update, respectively. As we find performance varies a lot by using dif-
ferent trajectories, we select four trajectories from D4RL expert datasets, each containing 1000
transitions. It can be shown in Table 2 that although all algorithms can’t match the expert perfor-
mance due to extremely limited data, O-DICE consistently performs better than all other baselines.
This justifies the benefits of using orthogonal-gradient update, it enables better state-level robustness
against OOD states by learning better feature representation.

5 RELATED WORK

Offline RL To tackle the distributional shift problem, most model-free offline RL methods aug-
ment existing off-policy RL methods with an action-level behavior regularization term. Action-level
regularization can appear explicitly as divergence penalties (Wu et al., 2019; Kumar et al., 2019;
Xu et al., 2021; Fujimoto & Gu, 2021; Cheng et al., 2023; Li et al., 2023b), implicitly through
weighted behavior cloning (Wang et al., 2020; Nair et al., 2020), or more directly through careful
parameterization of the policy (Fujimoto et al., 2019; Zhou et al., 2020). Another way to apply
action-level regularization is via modification of value learning objective to incorporate some form
of regularization, to encourage staying near the behavioral distribution and being pessimistic about
OOD state-action pairs (Kumar et al., 2020; Kostrikov et al., 2021a; Xu et al., 2022c; 2023; Wang
et al., 2023; Niu et al., 2022). There are also several works incorporating action-level regulariza-
tion through the use of uncertainty (An et al., 2021; Bai et al., 2021) or distance function (Li et al.,
2022a). Another line of methods, on the contrary, imposes action-level regularization by performing
some kind of imitation learning on the dataset. When the dataset is good enough or contains high-
performing trajectories, we can simply clone or filter dataset actions to extract useful transitions (Xu
et al., 2022b; Chen et al., 2020; Zhang et al., 2023a; Zheng et al., 2024), or directly filter individual
transitions based on how advantageous they could be under the behavior policy and then clones them
(Brandfonbrener et al., 2021; Xu et al., 2022a). There are also some attempts to include state-action-
level behavior regularization (Li et al., 2022b; Zhang et al., 2022), however, they typically require
costly extra steps of model-based OOD state detection (Li et al., 2022b; Zhang et al., 2022).

DICE-based Methods DICE-based methods perform stationary distribution estimation, and
many of them have been proposed for off-policy evaluation: DualDICE (Nachum et al., 2019a),
GenDICE (Zhang et al., 2019a), GradientDICE (Zhang et al., 2020). Other lines of works con-
sider reinforcement learning: AlgaeDICE (Nachum et al., 2019b), OptiDICE (Lee et al., 2021),
CoptiDICE (Lee et al., 2022), f -DVL (Sikchi et al., 2023); offline policy selection: (Yang et al.,
2020); offline imitation learning: ValueDICE (Kostrikov et al., 2020), OPOLO (Zhu et al., 2020),
IQlearn (Garg et al., 2021), DemoDICE (Kim et al., 2021), SmoDICE (Ma et al., 2022); reward
learning: RGM (Li et al., 2023a) All of these DICE methods are either using true-gradient update or
semi-gradient update, while our paper provides a new update rule: orthogonal-gradient update.

6 CONCLUSIONS

In this paper, we revisited DICE-based method. We provide a new understanding of DICE-based
method and successfully unravel its mystery: the value learning objective in DICE does try to impose
state-action-level constraint, but needs to be used in a corrected way, that is orthogonal-gradient
update. By doing so, DICE-based methods enjoy not only strong theoretical guarantees, but also
favorable empirical performance. It achieves SOTA results on both offline RL and offline IL tasks.
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A A RECAP OF DISTRIBUTION CORRECTION ESTIMATION

For the sake of completeness, we give a more detailed review of DICE in this section. We won’t
cover all variants of DICE algorithms but only focus on how to derive the final optimization ob-
jective. For a more thorough discussion, please refer to (Nachum & Dai, 2020) and (Sikchi et al.,
2023).

A.1 CONVEX CONJUGATE AND f -DIVERGENCE

Given a convex function f : R → R, it’s convex conjugate is defined by:

f∗(y) = sup{y · x− f(x), x ∈ R} (7)

Sometimes a proper choice of f can make f∗ have a close-form solution. For example, f(x) =
(x− 1)2 can induce f∗(y) = y(y4 + 1).

Moving forward, we’ll introduce f -divergence. Given two probability distributions over Ω: P and
Q, if P is absolutely continuous with respect to Q, the f -divergence from P to Q is defined as:

Df (P ||Q) = Eω∈Q

[
f

(
P (ω)

Q(ω)

)]
(8)

A.2 DISTRIBUTION CORRECTION ESTIMATION

DICE algorithms consider RL problems as convex programming problems with linear constraints
and then apply Fenchel-Rockfeller duality or Lagrangian duality to transform the problem into a
constraint-free formulation (Nachum & Dai, 2020; Lee et al., 2021). More specifically, consider the
following regularized RL problem:

max
π

E(s,a)∼dπ [r(s, a)]− αDf (d
π(s, a)||dD(s, a)) (9)

Here Df (d
π(s, a)||dD(s, a)) is a regularizer who encourages the agent to stay close to data support

from the perspective of (s, a) occupancy measure. Directly solving π∗ is impossible because it’s
intractable to calculate dπ(s, a). However, as shown in (Nachum & Dai, 2020; Lee et al., 2021),
one can consider dπ as another variable d in the optimization problem which satisfies Bellman-flow
constraints. Then we obtain an optimization problem that’s simultaneously about d and π:

max
π,d

E(s,a)∼d[r(s, a)]− αDf (d(s, a)||dD(s, a))

s.t. d(s, a) = (1− γ)d0(s)π(a|s) + γ
∑

(s′,a′)

d(s′, a′)p(s|s′, a′)π(a|s),∀s ∈ S, a ∈ A (10)

As is pointed out in (Nachum & Dai, 2020), the original Bellman-flow over-constrains the problem.
By summing constraints over a, we can eliminate π(a|s) in the constraints and get another problem
solely depend on d:

max
d≥0

E(s,a)∼d[r(s, a)]− αDf (d(s, a)||dD(s, a))

s.t.
∑
a∈A

d(s, a) = (1− γ)d0(s) + γ
∑

(s′,a′)

d(s′, a′)p(s|s′, a′),∀s ∈ S (11)

Note that in this problem we have to set the feasible region to be {d : ∀s ∈ S, a ∈ A, d(s, a) ≥ 0}
because we can’t rely on the non-negativity of π to force d ≥ 0. Applying Lagrangian duality, we
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can get the following optimization target following (Lee et al., 2021):
min
V (s)

max
d≥0

E(s,a)∼d[r(s, a)]− αDf (d(s, a)||dD(s, a))

+
∑
s

V (s)
(
(1− γ)d0(s) + γ

∑
(s′,a′)

d(s′, a′)p(s|s′, a′)−
∑
a

d(s, a)
)

= min
V (s)

max
d≥0

(1− γ)d0(s)
∑
s

V (s) + E(s,a)∼d[r(s, a)]

+
∑
s

V (s)
∑

(s′,a′)

d(s′, a′)p(s|s′, a′)

︸ ︷︷ ︸
(∗)

−
∑
s,a

d(s, a)V (s)− αDf (d(s, a)||dD(s, a))

= min
V (s)

max
ω≥0

(1− γ)Ed0(s)[V (s)]

+ Es,a∼dD

[
ω(s, a)

(
r(s, a) + γ

∑
s′

p(s′|s, a)V (s′)− V (s)
)]

− Es,a∼dD

[
f(ω(s, a))

]
(12)

Where ω(s, a) represents d(s,a)
dD(s,a)

. Here we note that we exchange the summation of s and (s′, a′)

in (∗) to get the final formulation. As is pointed out in (Sikchi et al., 2023), if we neglect the inner
constraint ω ≥ 0, it’s obvious that the above problem could be rewritten as:

min
V (s)

(1− γ)Ed0(s)[V (s)] + Es,a∼dD

[
f∗
(
r(s, a) + γ

∑
s′

p(s′|s, a)V (s′)− V (s)
)]

(13)

Here f∗ represents normal convex conjugate defined in eq (7). Although some previous methods
directly use this formulation as their optimization target(Ma et al., 2022). The proper way to solve
the inner constrained problem is reformulating it as:

max
ω

Es,a∼dD

[
ω(s, a)R(s, a, V )

]
− Es,a∼dD

[
f(ω(s, a))

]
+
∑
s,a

µ(s, a)ω(s, a) (14)

Note that we discard the first term in eq (12) because it doesn’t contain ω, and we denote
R = r(s, a) + γ

∑
s′ p(s

′|s, a)V (s′) − V (s). Since strong duality holds, we can directly solve
KKT conditions and get the following 4 conditions: ω∗(s, a);≥ 0; µ∗(s, a) ≥ 0; f ′(ω∗(s, a)) =
R(s, a, V ) + µ∗(s, a); µ∗(s, a)ω∗(s, a) = 0. Applying these conditions we can derive ω∗(s, a) =
max{0, (f ′)−1(R(s, a, V ))}, which eliminates ω in eq (12) and gives the final optimization target:

V-DICE: min
V (s)

(1− γ)Ed0(s)[V (s)] + Es,a∼dD

[
max{0, (f ′)−1(R)} ·R− f(max{0, (f ′)−1(R)})

]
(15)

Here R is the abbreviation of R(s, a, V ). In this case, f∗ could be interpreted as f∗(y) =
max{0, (f ′)−1(y)} · y − f

(
max{0, (f ′)−1(y)}

)
, which is a variant of convex conjugate. Simi-

larly, we can derive Q-DICE from eq (10) with Lagrangian duality(Nachum & Dai, 2020). It gives
the following optimization target:

Q-DICE: max
π

min
Q

Ed0(s),π(a|s)[Q(s, a)]

+ Es,a∼dD [f∗(r(s, a) + γ
∑
s′,a′

p(s′|s, a)π(a′|s′)Q(s′, a′)−Q(s, a))]
(16)

Extracting policy is convenient for Q-DICE since its bi-level optimization procedure (Nachum et al.,
2019b). For V-DICE, previous methods mainly adopt weighted-BC to extract π∗ (Lee et al., 2021;
Sikchi et al., 2023), which maximizes the following objective with respect to π:

E(s,a)∼dD [ω∗(s, a) log π(a|s)] (17)
Besides that, Lee et al. (2021) proposed to use information projection for training policy, which
minimizes the following objective:

KL(dD(s)π(a|s)||dD(s)π∗(a|s)) = −E s∼dD,
a∼π(·|s)

log d∗(s, a)dD(s, a)︸ ︷︷ ︸
ω∗(s,a)

− log
π(a|s)
πD(a|s)

− log
d∗(s)

dD(s)︸ ︷︷ ︸
constant for π
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As this method utilizes a ∼ π(·|s), it could provide sufficient information even when π deviates
significantly from πD. However, it needs to estimate πD with BC, which will introduce additional
errors.

B PROOFS

Theorem 1. In orthogonal-gradient update, Lθ′′

1 (s)−Lθ′

1 (s) = 0 (under first order approximation).

To give an intuitive explanation of this theorem, we can consider the directions of forward and
backward gradients. If ∇θL

θ
2(s

′) happens to have component that is opposite to ∇θL
θ
1(s), then

the effect of ∇θL
θ
1(s) will be offset by ∇θL

θ
2(s

′) because their component along the direction of
∇θL

θ
1(s) cancels out. Following the analysis before, we clearly don’t want the effect of ∇θL

θ
1(s)

to be weakened because it represents the process of finding optimal actions. It’s worth noting that
although lθ

′′

1 (s) − lθ
′

1 (s) < 0 sometimes, we still don’t want to preserve this effect of ∇θL
θ
2(s

′)
because it may cause over-learn of minimizing lθ1(s).

Proof. For the sake of simplicity in our analysis, we will consider a first-order approximation when
examining lθ

′′

1 (s) − lθ
′

1 (s). As adding lθ1(s) − lθ1(s) will not change the target, we perform the
following equivalent transformation:

lθ
′′

1 (s)− lθ
′

1 (s) = (lθ
′′

1 (s)− lθ1(s))− (lθ
′

1 (s)− lθ1(s))

= ∇θL
θ
1(s)

⊤(θ′′ − θ) +∇θL
θ
1(s)

⊤(θ′ − θ)

+ (θ′′ − θ)⊤
∇2

θl
ξ′′

1 (s)

2
(θ′′ − θ) + (θ′ − θ)⊤

∇2
θl

ξ′

1 (s)

2
(θ′ − θ)

= ∇θL
θ
1(s)

⊤(θ′′ − θ′) +O(α2)

(18)

Note that although two gradient steps are taken from θ to θ′′, their difference is still O(α). This
property consequently renders all remainders as second-order infinitesimal.

Then by definition, we can substitute θ′′ − θ′ with −αη
(
∇θl

θ
2(s

′)− ∇θL
θ
1(s)

⊤∇θL
θ
2(s

′)

∥∇θLθ
1(s)∥2 ∇θL

θ
1(s)

)
and get:

lθ
′′

1 (s)− lθ
′

1 (s) = −αη∇θL
θ
1(s)

⊤
(
∇θl

θ
2(s

′)− ∇θL
θ
1(s)

⊤∇θL
θ
2(s

′)

∥∇θLθ
1(s)∥2

∇θL
θ
1(s)

)
= 0 (19)

One can easily verify that when performing true-gradient, i.e. θ′′ − θ′ = −α∇θL
θ
2(s

′), we have:

lθ
′′

1 (s)− lθ
′

1 (s) ≈ −α∇θL
θ
1(s)

⊤∇θL
θ
2(s

′)

= α(f∗p )
′(r + γV (s′)− V (s)) · ∇θV (s) · (f∗p )′(r + γV (s′)− V (s)) · γ∇θV (s′)⊤

= αγ · [(f∗p )′(r + γV (s′)− V (s))]2∇θV (s)⊤∇θV (s′)

(20)

Due to the fact that s and s′ represent consecutive states, it is likely that ∇θV (s′) and ∇θV (s) fall
within the same half-plane, resulting in ∇θV (s)⊤∇θV (s′) > 0. This interference results in an
increase in lθ1(s) upon the application of the backward gradient, consequently leading to unlearn-
ing in the process of finding the best action. Gradient-orthogonalization prevents this unlearning
by modifying backward gradient, which can preserve the information of backward gradient while
eliminating interference.

16



Published as a conference paper at ICLR 2024

Definition 1: We define ∇⊥
θ L

θ
2(s

′) and ∇∥
θL

θ
2(s

′) as the perpendicular component and parallel
component of ∇θL

θ
2(s

′) with respect to ∇θL
θ
1(s), formally:

∇⊥
θ L

θ
2(s

′) = (f∗p )
′(r + γV (s′)− V (s)) · γ

∇θV (s′)− ∇θV (s)⊤∇θV (s′)

∥∇θV (s)∥2
∇θV (s)︸ ︷︷ ︸

∇⊥
θ V (s′)


∇∥

θL
θ
2(s

′) = (f∗p )
′(r + γV (s′)− V (s)) · γ ∇θV (s)⊤∇θV (s′)

∥∇θV (s)∥2
∇θV (s)︸ ︷︷ ︸

∇∥
θV (s′)

(21)

Similarly, we define ∇⊥
θ V (s′) and ∇∥

θV (s′) as the perpendicular component and parallel component
of ∇θV (s′) with respect to ∇θV (s). Note that ∇⊥

θ V (s′) and ∇∥
θV (s′) can directly obtained from

∇⊥
θ L

θ
2(s

′) and ∇∥
θL

θ
2(s

′). So we directly define them in eq (21).

Theorem 2. Define the angle between ∇θV (s) and ∇θV (s′) as ϕ(s, s′). In orthogonal-gradient

update, if ϕ(s, s′) ̸= 0, then for all η > 1
sin2 ϕ(s,s′)

(
cosϕ(s, s′) ∥∇θV (s)∥

γ∥∇θV (s′)∥ − ( ∥∇θV (s)∥
γ∥∇θV (s′)∥ )

2
)

, we

have Lθ′′
(s, s′)− Lθ(s, s′) < 0.

Proof. For simplicity of analysis, we still consider the change of lθ(s, s′) under first-order approxi-
mation. Due to the fact that the learning rate α is actually very small, we consider this approximation
to be reasonable. Then we have:

lθ
′′
(s, s′)− lθ(s, s′) = (∇θL

θ
1(s) +∇θL

θ
2(s

′))⊤(θ′′ − θ)

= −α(∇θL
θ
1(s) +∇θL

θ
2(s

′))⊤(∇θL
θ
1(s) + η∇⊥

θ L
θ
2(s

′))
(22)

First, consider a special case when ∇θL
θ
1(s) + ∇∥

θL
θ
2(s

′) lies in the same direction as ∇θL
θ
1(s).

In this case,
(
∇θL

θ
1(s) + ∇∥

θL
θ
2(s

′)
)⊤

∇θL
θ
1(s) ≥ 0. We can replace ∇θL

θ
2(s

′) = ∇∥
θL

θ
2(s

′) +

∇⊥
θ L

θ
2(s

′) in eq (21) and get:

lθ
′′
(s, s′)− lθ(s, s′) = −α(∇θL

θ
1(s) +∇∥

θL
θ
2(s

′) +∇⊥
θ L

θ
2(s

′))⊤(∇θL
θ
1(s) + η∇⊥

θ L
θ
2(s

′))

= −α

((
∇θL

θ
1(s) +∇∥

θL
θ
2(s

′)
)⊤

∇θL
θ
1(s)︸ ︷︷ ︸

in this case≥0

+ η ·
(
∇θL

θ
1(s) +∇∥

θL
θ
2(s

′)
)⊤

∇⊥
θ L

θ
2(s

′)︸ ︷︷ ︸
=0

+ (∇⊥
θ L

θ
2(s

′))⊤∇θL
θ
1(s)︸ ︷︷ ︸

=0

+ η∥∇⊥
θ L

θ
2(s

′)∥2︸ ︷︷ ︸
by definition≥0

)
(23)

It’s obvious that in this case lθ
′′
(s, s′) − lθ(s, s′) ≤ 0 always satisfies, which means optimality

is preserved as long as η > 0. This indicates that we only have to choose appropriate η when(
∇θL

θ
1(s) + ∇∥

θL
θ
2(s

′)
)⊤

∇θL
θ
1(s) = ∥∇θL

θ
1(s)∥2 + ∇∥

θL
θ
2(s

′)⊤∇θL
θ
1(s) < 0. Due to the fact

that:

∇∥
θL

θ
2(s

′)⊤∇θL
θ
1(s) = −γ · [(f∗p )′(r + γV (s′)− V (s))]2∇∥

θV (s′)⊤∇θV (s)

= −γ · [(f∗p )′(r + γV (s′)− V (s))]2 cosϕ∥∇θV (s)∥∥∇θV (s′)∥ < 0
(24)

We only have to consider the case when cosϕ > 0. Note that the last equality can be derived by
replacing ∇∥

θV (s′) = cosϕ∥∇θV (s′)∥ ∇θV (s)
∥∇θV (s)∥ . In this case, we can simplify eq (22) with eq (21)

17



Published as a conference paper at ICLR 2024

and the definition of ∇θL
θ
1(s) and ∇θL

θ
2(s

′). First plugging eq (21) into eq (22) we have:

lθ
′′
(s, s′)− lθ(s, s′) = −α

(
∇θL

θ
1(s) +∇θL

θ
2(s

′)
)⊤[

∇θL
θ
1(s) + η

(
∇θL

θ
2(s

′)

− ∇θL
θ
1(s)

⊤∇θL
θ
2(s

′)

∥∇θLθ
1(s)∥2

∇θL
θ
1(s)

)]
= −α(∥∇θL

θ
1(s)∥2 +∇θL

θ
1(s)

⊤∇θL
θ
2(s

′)

+ η(∥∇θL
θ
2(s

′)∥2 − (
∇θL

θ
1(s)

⊤∇θL
θ
2(s

′)

∥∇θLθ
1(s)∥

)2))

(25)

Recall that:

∇θL
θ
1(s) = −(f∗p )

′(r + γV (s′)− V (s))∇θV (s)

∇θL
θ
2(s

′) = γ(f∗p )
′(r + γV (s′)− V (s))∇θV (s′)

(26)

We can plug eq (26) into eq (25) and get:

lθ
′′
(s, s′)− lθ(s, s′) = −α

[
(f∗p )

′(r + γV (s′)− V (s))
]2(

∥∇θV (s)∥2 − γ · ∇θV (s)⊤∇θV (s′)

+ ηγ2(∥∇θV (s′)∥2 − (
∇θV (s)⊤∇θV (s′)

∥∇θV (s)∥
)2)
)

(27)

To preserve optimality, we should choose appropriate η to ensure this change is negative. We can
get the equivalent form of this condition through some straightforward simplifications, which turns
into:

η ≥ γ · ∇θV (s)⊤∇θV (s′)− ∥∇θV (s)∥2

γ2 · ∥∇θV (s′)∥2 · sin2 ϕ

=
1

sin2 ϕ

(
cosϕ

∥∇θV (s)∥
γ∥∇θV (s′)∥

− (
∥∇θV (s)∥
γ∥∇θV (s′)∥

)2
) (28)

It is evident that this quadratic function has a global maximum when considering ∥∇θV (s)∥
γ∥∇θV (s′)∥ as a

variable. In fact, the global maximum is exactly cot2 ϕ
4 , so once ϕ(s, s′) ̸= 0, there exists η ≥ cot2 ϕ

4

such that lθ(s, s′) is still decrease after applying gradient-orthogonalization.

Although the result above gives a lower bound for η independent of θ, s, and s′, obviously the
bound is far from tight. In fact, when we apply layer normalization (Ba et al., 2016) throughout
optimization, ∥∇θV (s)∥ and ∥∇θV (s′)∥ will be kept in a small interval. This means ∥∇θV (s)∥

∥∇θV (s′)∥ will

be close to 1 and ∥∇θV (s)∥
∥γ∇θV (s′)∥ will be larger than 1. Under this condition, any positive choice of η

will satisfy the condition above and thus ensure a monotonic decrease of Lθ(s, s′).

Finally, it can be easily deduced through similar reasoning that semi-gradient can’t ensure the de-
crease of lθ(s, s′). So with gradient-orthogonalization, we can ensure the monotonic decrease of
Lθ(s, s′) while avoiding unlearning of minimizing Lθ

1(s).

Definition 2: We define ϕθ(s, s′) as the angle between ∇θV (s) and ∇θV (s′), formally:

ϕθ(s, s
′) = arccos(

∇θV (s)⊤∇θV (s′)

∥∇θV (s)∥ · ∥∇θV (s′)∥
) (29)

Note that with ϕθ(s, s′) we can represent ∇⊥
θ V (s′) and ∇∥

θV (s′) more conveniently. One can easily

verify ∇∥
θV (s′) = cosϕ∥∇θV (s′)∥ ∇θV (s)

∥∇θV (s)∥ and ∇⊥
θ V (s′)= sinϕ∥∇θV (s′)∥ ∇⊥

θ V (s′)

∥∇⊥
θ V (s′)∥ , this also

corresponds to the geometric interpretation of ∇⊥
θ V (s′) and ∇∥

θV (s′).

Definition 3: Define the Hessian of Vθ on s and s′ as H(s) = ∇2
θV (s), H(s′) = ∇2

θV (s′). Then
define ∆λ(A) = λmin(A) − λmax(A), where λmin(A) and λmax(A) are minimal and maximal
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eigenvalues of A respectively. Finally define the constant β appears in Theorem 3 with β = 3
√
3

4 ·
min

{
∆λ
(
H(s)

)
,∆λ

(
H(s′)

)}
. Note that when Vθ is smooth with respect to θ, β is close to 0.

Lemma 1: When considering inner constraint ω ≥ 0 in eq (12), i.e. f∗(y) = max{0, (f ′)−1(y)} ·
y − f

(
max{0, (f ′)−1(y)}

)
. The inequality (f∗)′(y) ≥ 0 holds for arbitrary convex f and y.

Proof. First considering the case when (f ′)−1(y) ≤ 0, it’s obvious that f∗(y) = −f(0). In this
case (f∗)′(y) = 0, which satisfy the inequality.

Then considering (f ′)−1(y) > 0, in this case f∗(y) = (f ′)−1(y) · y − f
(
(f ′)−1(y)

)
. Note that

y · x − f(x) is concave, which means its saddle point x = (f ′)−1(y) is also the global maximum
point. Plugging x = (f ′)−1(y) into y · x− f(x) leads to the equation:

sup{y · x− f(x), x ∈ R} = (f ′)−1(y) · y + f
(
(f ′)−1(y)

)
= f∗(y) (30)

This means in this case f∗ is exactly the normal convex conjugate, while its solution (f ′)−1(y) is
ensured to be positive. Then by definition, we have:

(f∗)′(y) =
(f∗)(y +∆y)− (f∗)(y)

∆y

=

(
max

x
(y +∆y) · x− f(x)

)
−
(
(f ′)−1(y) · y − f

(
(f ′)−1(y)

))
∆y

≥

(
(f ′)−1(y) · (y +∆y)− f

(
(f ′)−1(y)

))
−
(
(f ′)−1(y) · y − f

(
(f ′)−1(y)

))
∆y

= (f ′)−1(y) > 0

(31)

So for arbitrary convex f and y, we have (f∗)′(y) ≥ 0.

Lemma 2: If x and y are n-dimensional orthonomal vectors, A is a n × n real symmetric matrix,
then x⊤Ay ≥ λmin − λmax.

Proof. As A is a real symmetric matrix, it can establish a set of orthonormal basis vectors using
its eigenvectors. Suppose these vectors are zi=1···n. We can decompose x and y under these basis
vectors, x =

∑n
i=1 aizi and y =

∑n
j=1 bjzj respectively. Then we have:

n∑
i=1

aibi = x⊤y = 0︸ ︷︷ ︸
orthonomal vectors

(32)

x⊤Ay = x⊤(

n∑
j=1

λjbjzj) = (

n∑
i=1

aizi)(

n∑
j=1

λjbjzj) =

n∑
i=1

λiaibi (33)

Which means x⊤Ay just reweight aibi with λi and sum them together. It’s clear that:

n∑
i=1

λiaibi ≥ λmax(
∑

j s.t. ajbj<0

ajbj) + λmin(
∑

j s.t. ajbj>0

ajbj) (34)

So with
∑

j s.t. ajbj<0 ajbj +
∑

j s.t. ajbj>0 ajbj = 0 we have

n∑
i=1

λiaibi ≥ (λmin − λmax)
∑

j s.t. ajbj>0

ajbj ≥ (λmin − λmax)∥x∥∥y∥ = (λmin − λmax) (35)
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Theorem 3 (Orthogonal-gradient update helps alleviate feature co-adaptation). Assume the norm
of ∇θV (s) is bounded, i.e. ∀s,m ≤ ∥∇θV (s)∥2 ≤ M . Define consecutive value curvature
ξ(θ, s, s′) = ∇⊥

θ V (s′)⊤H(s)∇⊥
θ V (s′), where H(s) is the Hessian matrix of V (s). Assume

ξ(θ, s, s′) ≥ l · ∥∇⊥
θ V (s′)∥2 where l > 0. Then in orthogonal-gradient update, we have

Ψθ′′(s, s′)−Ψθ′(s, s′) ≤ −αηγ · (f∗)′(r + γV (s′)− V (s))[sin2 ϕ(s, s′) · l ·m+ β ·M ] (36)

where β is a constant close to 0 if the condition number of H(s) is small.

Proof. To check the change of ψθ(s, s
′) caused by backward gradient, we also conduct analysis

under first-order approximation. This is reasonable due to the fact that θ′′ − θ is on the order of
O(α), where α typically represents a very small learning rate. So applying the same transformation
in Theorem 1 we can get:

Ψθ′′(s, s′)−Ψθ′(s, s′) = ∇θΨθ′(s, s′)⊤(θ′′ − θ′) +O(α2)

=
[
∇θV (s′)⊤H(s) +∇θV (s)⊤H(s′)

]
(θ′′ − θ′) +O(α2)

(37)

Where H(s) is the Hessian matrix of Vθ(s) with respect to θ, i.e. ∇2
θVθ(s). Note that we substi-

tute ∇θΨθ′(s, s′) with ∇θΨθ(s, s
′) because their difference will only contribute to a second-order

infinitesimal with respect to α, which will be absorbed into O(α2).

After replacing θ′′ − θ′ with −αη∇θl
⊥(s′) we have

Ψθ′′(s, s′)−Ψθ′(s, s′) ≈ −αηγ · (f∗p )′(r + γV (s′)− V (s))
(
∇θV (s′)⊤H(s)∇⊥

θ V (s′)

+∇θV (s)⊤H(s′)∇⊥
θ V (s′)

)
= −αηγ · (f∗p )′(r + γV (s′)− V (s))

(
∥∇⊥

θ V (s′)∥2H(s)︸ ︷︷ ︸
1⃝

+ ⟨∇∥
θV (s′),∇⊥

θ V (s′)⟩H(s)︸ ︷︷ ︸
2⃝

+ ⟨∇θV (s),∇⊥
θ V (s′)⟩H(s′)︸ ︷︷ ︸
3⃝

)
(38)

One can further utilize the following equation to replace ∇∥
θV (s′) and ∇⊥

θ V (s′) in 2⃝, 3⃝:

∇∥
θV (s′) = | cosϕ|∥∇θV (s′)∥ cosϕ∇θV (s)

| cosϕ|∥∇θV (s)∥
,∇⊥

θ V (s′) = sinϕ∥∇θV (s′)∥ ∇⊥
θ V (s′)

∥∇⊥
θ V (s′)∥

(39)
This leads to the following results:

2⃝ = sinϕ| cosϕ|∥∇θV (s′)∥2⟨ ∇⊥
θ V (s′)

∥∇⊥
θ V (s′)∥

,
cosϕ∇θV (s)

| cosϕ|∥∇θV (s)∥
⟩H(s)

3⃝ = sinϕ∥∇θV (s)∥∥∇θV (s′)∥⟨ ∇⊥
θ V (s′)

∥∇⊥
θ V (s′)∥

,
∇θV (s)

∥∇θV (s)∥
⟩H(s′)

(40)

Note that as cosϕ∇θV (s)
| cosϕ|∥∇θV (s)∥ , ∇θV (s)

∥∇θV (s)∥ are orthonormal to ∇⊥
θ V (s′)

∥∇⊥
θ V (s′)∥ and H(s) is real symmetric,

2⃝ and 3⃝ can be futher bounded with lemma 2. This gives the following bound:

2⃝+ 3⃝ ≥ sinϕ| cosϕ|∥∇θV (s′)∥2(λmin(H(s))− λmax(H(s)))

+ sinϕ∥∇θV (s)∥∥∇θV (s′)∥(λmin(H(s′))− λmax(H(s′)))

≥ (sinϕ| cosϕ|∥∇θV (s′)∥2 + sinϕ∥∇θV (s)∥∥∇θV (s′)∥) ·min
{
∆λ
(
H(s)

)
,∆λ

(
H(s′)

)}
(41)

The ∆λ here is defined in Definition 3. With ∀s, m ≤ ∥∇θV (s)∥2 ≤ M we can further bound
2⃝+ 3⃝ with:

2⃝+ 3⃝ ≥ (1 + | cosϕ|) sinϕ ·min
{
∆λ
(
H(s)

)
,∆λ

(
H(s′)

)}
·M (42)
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Moreover, due to the fact that ϕ ∈ [0, π], sinϕ(1 + | cosϕ|) is non-negative and have upper bound
3
√
3

4 .

Under the assumption of consecutive value curvature, and by replacing 2⃝ + 3⃝ in eq (38) with eq
(42), Ψθ′′(s, s′)−Ψθ′(s, s′) can be ultimately bounded by:

Ψθ′′(s, s′)−Ψθ′(s, s′) ≤ −αηγ · (f∗p )′(r + γV (s′)− V (s))[sin2 ϕ · l ·m+ β ·M ] (43)

It’s worth noting that we can derive the final bound because (f∗p )
′(r + γVθ(s

′) − Vθ(s)) is always
non-negative, which has been proved in Lemma 1. When minimizing standard mean-square Bellman
error, r + γVθ(s

′) − Vθ(s) could be negative and thus no upper bound is guaranteed. This means
Theorem 3 reflects the nature of the combination of DICE and orthogonal-gradient, rather than the
nature of each one separately.

Definition 4: Define Kmax as the maximum value of the square of ∇s∇θVθ(s)’s eigenvalues, i.e.
Kmax = max

[
λ
(
∇s∇θVθ(s)

)2]
. Here we inherit λ(·) from Definition 3. Similarly define Kmin.

Then define the constant C appears in Proposition 2.1 with C =
K2

min

2Kmax
. Note that C ≥ 0 and C is

almost surely positive unless 0 is exactly ∇s∇θVθ(s)’s eigenvalue.

Theorem 4. (How feature co-adaptation affects state-level robustness) Under linear setting when
V (s) can be expressed as ∇θV (s)⊤θ, assume ∥∇θV (s)∥2 ≤M , then there exists some small noise
ε ∈ R|S| such that V (s′ + ε) − V (s) will have different sign with V (s′) − V (s), if Ψθ(s, s

′) >
M − C · ∥ε∥2 for some constant C > 0.

Proof. We begin with deriving the upper bound for ∥∇θV (s)−∇θV (s′)∥2. Expanding ∥∇θV (s)−
∇θV (s′)∥2 we can get:

∥∇θV (s)−∇θV (s′)∥2 = ∥∇θV (s)∥2 + ∥∇θV (s′)∥2 − 2 · ∇θV (s′)⊤∇θV (s) (44)

Plugging in the bound ∥∇θV (s)∥2 ≤M and ∇θV (s′)⊤∇θV (s) > M − K2
min

2Kmax
∥ε∥2 we have

∥∇θV (s)−∇θV (s′)∥2 < K2
min

Kmax
∥ε∥2 (45)

Without loss of generality, we only analyze the case when V (s′) − V (s) < 0. Due to the fact that
noise ε is usually small, we can use first-order Taylor expansion to approximate V (s′ + ε) in the
neighborhood of V (s′). Then we have:

V (s′ + ε) = ∇θV (s′ + ε)⊤θ

≈
[
∇θV (s′) +∇s∇θVθ(s)

⊤ε
]⊤
θ

= ∇θV (s′)⊤θ + ε⊤Aθ

(46)

Here we denote A as ∇s∇θVθ(s) for simplicity. After substituting eq (46) into V (s′ + ε) − V (s)
we have:

Vθ(s
′ + ε)− Vθ(s) = ∇θV (s′)⊤θ + ε⊤Aθ −∇θV (s)⊤θ

=
[
∇θV (s′)−∇θV (s)]⊤θ + ε⊤Aθ

= ∆f⊤θ + ε⊤Aθ

(47)

Here again, for simplicity, we denote the difference of feature ∇θV (s′)−∇θV (s) as ∆f . Similarly
we can get V (s′)− V (s) = ∆f⊤θ. Then set ε = −∥ε∥ (AA⊤)−1A∆f

∥(AA⊤)−1A∆f∥ , which could be interpreted
as a rotated ε. We’ll then prove that this rotated ε can change the sign of V (s′+ε)−V (s) compared
to V (s′)− V (s) while still satisfying Ψθ(s, s

′) > M − K2
min

2Kmax
· ∥ε∥2.

Consider the following optimization problem:

min
x

∥A⊤x−∆f∥2 (48)
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Solving this problem we can get the x whose projection under A is closest to ∆f . It’s well known
that this problem has the following close-form solution:

x = (AA⊤)−1A ·∆f (49)
Then under the condition that ∆f ∈ span(A), it’s obvious that we can choose x such that
this optimization target is 0. This also means that A⊤(AA⊤)−1A · ∆f = ∆f . Plugging in
ε = −∥ε∥ (AA⊤)−1A∆f

∥(AA⊤)−1A∆f∥ and the above relationship into eq (47) we have:

V (s′ + ε)− V (s) = ∆f⊤θ − ∥ε∥ ·∆f⊤
(

A⊤(AA⊤)−1A

∥(AA⊤)−1A∆f∥

)
θ

= (1− ∥ε∥
∥(AA⊤)−1A∆f∥

) ·∆f⊤θ
(50)

Recall that from eq (45) we have ∥∆f∥ = ∥∇θV (s) − ∇θV (s′)∥ < Kmin√
Kmax

∥ε∥. Applying this to
eq (50) we have:

∥ε∥
∥(AA⊤)−1A∆f∥

>
∥ε∥

max
∣∣∣λ[(AA⊤)−1A

]∣∣∣ · ∥∆f∥
>

√
Kmax

Kmin ·max
∣∣∣λ[(AA⊤)−1A

]∣∣∣
=

√√√√Kmax

K2
min

1

maxλ
(
A⊤
[
(AA⊤)−1

]2
A
)

(51)

From the definition of Kmax and Kmin it’s obvious that λ
(
A⊤[(AA⊤)−1

]2
A
)
< Kmax

K2
min

. Plugging

this into eq (51) we have ∥ε∥
∥(AA⊤)−1A∆f∥ > 1, which means:

V (s′ + ε)− V (s) = (1− ∥ε∥
∥(AA⊤)−1A∆f∥

) ·∆f⊤θ > 0 (52)

The last inequality comes from the case we consider that V (s′) − V (s) = ∆f⊤θ < 0. Moreover,
due to the fact that the choice of ε keeps its norm unchanged, Ψθ(s, s

′) > M − K2
min

2Kmax
· ∥ε∥2 still

holds. Finally, one can easily verify this under the case where V (s′)− V (s) > 0.

C MORE DISCUSSION ON GRADIENT FLOW OF DICE

In this section, we’ll delve into discussing the first gradient term mentioned in section 2.2. We’ll
first verify that adding (1−γ)Es∼d0 [∇θV (s)] won’t change our theoretical results. Then we’ll show
that in our practical algorithm, this term will not impact the results of projection, and thus also has
no influence on the practical algorithm of O-DICE.

To begin with, we first consider Theorem 1, Theorem 3 and Theorem 4. Theorem 1 shows that
orthogonal-gradient will not influence the process of seeking the best actions while Theorem 3,
4 shows orthogonal-gradient leads to better state feature representation and thus brings more ro-
bustness. These two theorems are completely independent of the first gradient term. As for
Theorem 2, it shows that ∇θL

θ
1(s) + ∇⊥

θ L
θ
2(s

′) lies in the same half-plane with ∇θL
θ
1(s) +

∇θL
θ
2(s

′). One can easily verify that after adding the first term, the extended orthogonal-gradient
(1− γ)Es∼d0 [∇θV (s)] +∇θL

θ
1(s) +∇⊥

θ L
θ
2(s

′) still lies in the same half-plane with the extended
true-gradient (1 − γ)Es∼d0 [∇θV (s)] + ∇θL

θ
1(s) + ∇θL

θ
2(s

′). This indicates that the extended
version of Theorem 2 also holds even considering (1− γ)Es∼d0 [∇θV (s)].

Moving forward to the practical algorithm, because we replace d0 with dD and use empirical Bell-
man operator, only one batch of (s, a, s′) is needed for one gradient step. This makes (1−λ)∇θV (s)
has exactly same direction as ∇θL

θ
1(s). Due to the property of orthogonal projection, ∇⊥

θ L
θ
2(s

′)
keeps the same after considering the first gradient term. Thus it has no influence both theoretically
and practically.
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D EXPERIMENTAL DETAILS

More details of the practical algorithm As is shown in the pseudo-code, O-DICE doesn’t need
parameters for policy extraction , which is more convenient when compared with many other state-
of-the-art algorithms (Xu et al., 2023; Garg et al., 2023). Moreover, as we choose Pearson χ2 for
f -divergence in practice, the corresponding f , f∗, (f ′)−1 has the following form:

f(x) = (x− 1)2; f∗(y) = y(
y

4
+ 1); (f ′)−1(R) =

R

2
+ 1 (53)

We also apply the trick used in SQL (Xu et al., 2023), which removes the ”+1” term in ω∗(s, a)
in eq (17). This trick could be seen as multiplying the residual term R by a large value. Besides
that, during policy extraction, we use r(s, a) + γVθ(s

′)− Vθ(s) to represent residual term due to its
relationship with seeking optimal actions. The final objective for policy extraction in our method is
E(s,a)∼dD [max{0, r(s, a) + γVθ(s

′)− Vθ(s)} · log π(a|s)].
Toy case experimental details In order to study the influence of forward and backward gradient
on V (s), we ran V-DICE with 3 different gradient types (true-gradient, semi-gradient, orthogonal-
gradient) separately on a pre-collected dataset for 10000 steps and plotted their corresponding V (s)
distributions. The pre-collected dataset contains about 20 trajectories, 800 transitions. For the net-
work, we use 3-layer MLP with 128 hidden units, Adam optimizer (Kingma & Ba, 2015) with a
learning rate of 10−4. We choose 5 · 10−3 as the soft update weight for V . Moreover, as mentioned
before, V-DICE with different gradient types may need different λ and η to achieve the best perfor-
mance. For the sake of fairness, we tuned hyper parameters for all gradient types to achieve the best
performance.

D4RL experimental details For all tasks, we conducted our algorithm for 106 steps and reported
the final performance. In MuJoCo locomotion tasks, we computed the average mean returns over 10
evaluations every 5 · 103 training steps, across 5 different seeds. For AntMaze tasks, we calculated
the average over 50 evaluations every 2 · 104 training steps, also across 5 seeds. Following previous
research, we standardized the returns by dividing the difference in returns between the best and
worst trajectories in MuJoCo tasks. In AntMaze tasks, we subtracted 3 from the rewards.

For the network, we use 3-layer MLP with 256 hidden units and Adam optimizer (Kingma & Ba,
2015) with a learning rate of 1 · 10−4 for both V and π in all tasks. We use a target network with
soft update weight 5 · 10−3 for V .

We re-implemented OptiDICE (Lee et al., 2021) using PyTorch and ran it on all datasets. We
followed the same reporting methods as mentioned earlier. Although f -DVL (Sikchi et al., 2023)
reported the performance of two variants, we only take the results of f -DVL using χ2 because it
chooses similar f as other DICE methods. Baseline results for other methods were directly sourced
from their respective papers.

In O-DCIE, we have two parameters: λ and η. Because a larger λ indicates a stronger ability to
search for optimal actions, we select a larger λ if the value of V doesn’t diverge. As for η, we
experiment with values from the range [0.2, 0.4, 0.6, 0.8, 1.0] to find the setting that gives us the
best performance. The values of λ and η for all datasets are listed in Table 3. In offline IL, we use
λ = 0.4 and η = 1.0 across all datasets.
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Table 3: λ and η used in O-DICE

Dataset λ η
halfcheetah-medium-v2 0.5 0.2
hopper-medium-v2 0.6 1.0
walker2d-medium-v2 0.5 0.2
halfcheetah-medium-replay-v2 0.6 0.2
hopper-medium-replay-v2 0.6 1.0
walker2d-medium-replay-v2 0.6 0.6
halfcheetah-medium-expert-v2 0.5 0.2
hopper-medium-expert-v2 0.5 1.0
walker2d-medium-expert-v2 0.5 0.2
antmaze-umaze-v2 0.6 1.0
antmaze-umaze-diverse-v2 0.4 1.0
antmaze-medium-play-v2 0.7 0.2
antmaze-medium-diverse-v2 0.7 0.2
antmaze-large-play-v2 0.7 0.8
antmaze-large-diverse-v2 0.8 0.8
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Figure 4: Learning curves of O-DICE and S-DICE on D4RL MuJoCo locomotion datasets.
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Figure 5: Learning curves of O-DICE and S-DICE on D4RL AntMaze datasets.
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