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Abstract

Evaluating conversational information retrieval
(CIR) systems is a challenging task that re-
quires a significant amount of human labor for
annotation. It is imperative to invest signifi-
cant effort into researching more labor-effective
methods for evaluating CIR systems. To touch
upon this challenge, we take the first step to
involve active testing in CIR evaluation and
propose a novel method called HumCoE. It
strategically selects a few data for human an-
notation and then calibrates the evaluation re-
sults to eliminate evaluation biases. As such, it
makes an accurate evaluation of the CIR system
at low human labor. We experimentally reveal
that it consumes less than 1% of human labor
and achieves a consistency rate of 95%-99%
with human evaluation results. This empha-
sizes the superiority of our method.

1 Introduction

As evidenced by various studies (Zhang et al., 2018;
Aliannejadi et al., 2021), the conversational infor-
mation retrieval (CIR) system has shown its effec-
tiveness in domains such as conversational question
answering (Reddy et al., 2019) and conversational
recommendation (Lei et al., 2020b). However, ac-
curate evaluation of CIR systems continues to be a
rapidly evolving research area due to the multi-turn
nature of user-system conversations (Zamani et al.,
2022; Sekulić et al., 2022; Gao et al., 2021). It of-
ten requires the user to constantly interact with the
CIR system and then evaluate the system based on
its real-time responses, which are labor-expensive
and generally only feasible in an industry lab (Lab-
hishetty and Zhai, 2021).

To alleviate this problem, current practices pre-
pare a set of input data and employ humans to either
manually annotate the answer to be compared with
the system-generated results or directly score the
corresponding system output (Larson et al., 2019;
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Li et al., 2022). For example, Braun et al. (2017);
Choi et al. (2018) require the human to answer the
questions in a pre-collected question set and use
these answers as ground truth to evaluate the model-
generated results. Li et al. (2022) requires the hu-
man to validate and re-annotate the pre-collected
conversation dataset to provide finer-grained labels
for the input and characterize the system perfor-
mance based on such labels. Moreover, Alianne-
jadi et al. (2020) employs the human to directly
rate each response of the system on relevance and
naturalness. While these methods show their ef-
fectiveness in CIR evaluation, they still require
traversing the entire dataset, resulting in signifi-
cant human labor costs (Budzianowski et al., 2018;
Dalton et al., 2020; Adlakha et al., 2022). Conse-
quently, it is imperative to invest significant effort
into researching more labor-effective methods for
evaluating CIR systems.

To this end, we take the first step to involve
active testing1 for the label-effective CIR eval-
uation, proposing a novel method calledHuman-
machine Collaborative Evaluation (HumCoE, for
short). The idea is to strategically select a few data
for the human to annotate the system outputs (e.g.,
provide an answer to the question), and then cali-
brate the evaluation results to eliminate evaluation
biases. Specifically, given an affordable number
of human interactions, HumCoE starts by select-
ing a subset of representative data and requesting
human annotation or scoring. In this process, the
representative data is measured based on the prob-
ability of inconsistency between CIR’s prediction
and a pseudo-label that is generated by a surrogate
machine. After that, HumCoE assigns an impor-
tance weight to each selected data and calibrates
the evaluation results. As such, the sampling bias
is eliminated, and hence the evaluation accuracy is

1It estimates model performance (i.e., CIR system, in our
case) by selecting a small subset of data for human annotation
(i.e., evaluation)(Rahman et al., 2020; Nguyen et al., 2018).



largely improved.
We demonstrate the effectiveness of HumCoE on

typical CIR tasks, including asking clarifying ques-
tions and the conversational question answering. In
our experiments, we assess the task success rate
and quality of system responses using automatic
evaluation metrics on pre-collected conversational
datasets. Additionally, we employ the human to as-
sess the relevance and naturalness scores of system
responses. Our experiments indicate that HumCoE
produces results that are extremely comparable to
those of a human-based evaluation yet require very
little labor. It consumes less than 1% of human
labor and achieves a consistency rate of 95%-99%
with human evaluation results on all tasks. Com-
pared to other classical active testing methods, our
approach achieves a higher evaluation consistency
rate by an average of 11.75%. We also explore
our method in the context of ChatGPT. We notice
that ChatGPT does not provide satisfactory evalu-
ation consistency with human evaluation, with an
average consistency rate of 88.24%. But, after in-
troducing a small number of labor costs (0.68%),
HumCoE improves the evaluation consistency by
9.59%. This highlights the importance of human-
machine collaboration for efficient CIR evaluation.

Evaluating any highly interactive process is chal-
lenging. In this paper, we experimentally reveal
our effectiveness and efficiency on the CIR evalua-
tion task. We believe that our work could provide
a landmark for future human-machine-based CIR
evaluation research. To sum up, we claim the fol-
lowing contributions.

• We call attention to the challenge of designing
labor-effective methods for accurately evaluating
CIR systems.

• For the first time, we introduce active testing to
evaluate the CIR system and propose a novel
method called HumCoE. It strategically selects
representative data for human annotation and
carefully calibrates the evaluation results.

• We verify our effectiveness with empirical stud-
ies, which demonstrate that our method enables
accurate evaluation with minimal human effort.
We set a landmark for future human-machine-
based CIR evaluation research.

2 Related Works

As our focus is on utilizing both human and ma-
chine in evaluating the CIR system via active test-

ing, we offer literature reviews on CIR evaluation
and active testing. For more discussion on human-
machine evaluation, please refer to Appendix E.

CIR Evaluation. Given an evaluation met-
ric, existing methods use user utterances and the
system’s responses to evaluate the CIR system.
Such information is either obtained from real-time
user-system conversations during online evalua-
tion or contained in a pre-collected conversational
dataset during offline evaluation (Zamani et al.,
2022). Online evaluation (Zamani et al., 2022;
Aliannejadi et al., 2019; Li et al., 2019) employs
real users to interact with the CIR system several
times and dynamically obtains user utterances and
the system’s responses for evaluation (Ram et al.,
2018; Park et al., 2020). However, a large number
of interactions require a huge labor cost, which
limits the feasibility and application scenarios of
this method. Alternatively, the offline evaluation
method is economically inexpensive as it permits
evaluations via static conversational datasets (Yang
et al., 2018; Budzianowski et al., 2018; Hender-
son et al., 2019). During the evaluation, the CIR
system only receives rigid and fixed questions or
responses, extracted from the static conversational
datasets. However, let alone that such methods do
not transfer well to the real-world scenario and of-
ten lead to unnatural conversations (Lipani et al.,
2021; Sekulić et al., 2022), constructing the dataset
still requires a significant amount of human labor
(Budzianowski et al., 2018; Dalton et al., 2020;
Adlakha et al., 2022), especially when evaluating
specific features of the system that are absent from
its training data (Braun et al., 2017; Larson et al.,
2019; Li et al., 2022). As a result, how to design
labor-effective methods for CIR evaluation is still
an unaddressed problem. In this paper, we propose
an evaluation method based on human-machine col-
laboration. We experimentally show that it makes
an accurate evaluation that is extremely compara-
ble to those of the human-based evaluation with
low human labor.

Active Testing. Different from active learning,
which targets selecting partial data to train a better
model, active testing focuses on reliably estimating
model performance by selecting less unlabeled test-
ing data for human annotation (Nguyen et al., 2018;
Li et al., 2020). By allocating data between humans
and machines, active testing methods achieve col-
laboration between humans and machines. Thus,
data selection plays an important role in active test-



ing. Usually, hard-to-predict data with large model
prediction uncertainties (Rahman et al., 2020) or
inconsistencies in model predictions (Nguyen et al.,
2018) are always preferred. More broadly, Zhang
et al. (2021a) has shown its evaluation effectiveness
on the task of malevolence identification. It assigns
dialogues with high model uncertainty to the hu-
man while assigning the rest to the machine for
evaluation. Inspired by the idea of active testing,
we take the first step to apply it to CIR evaluation
by selecting partial hard data for human evaluation
and carefully calibrating the results. According to
our experiments, although human evaluation costs
are reduced, existing methods (Zhang et al., 2021a;
Rahman et al., 2020; Nguyen et al., 2018) still suf-
fer low evaluation accuracy because the machine
may be error-prone and the evaluation results are
uncalibrated. This emphasizes the importance of
evaluation calibration.

3 Task Definition

Given an evaluation metric EM and a test conver-
sational dataset2 D, the evaluation τ is completed
by calculating the metric value on the given dataset,
described by the following equations.

τ(D,EM,YD) =

∑
di∈D,yi∈YD

EM(di, yi)

|D|
.

(1)
Here, di = {xi, ui} represents the i-th user-

CIR interaction that consists of multiple conver-
sational turns. Specifically, xi = (x1i , x

2
i , ..., x

k
i ) is

a list of responses of CIR f , where xji is j-th CIR
response in i-th user-CIR interaction. Similarly,
ui = (u1i , u

2
i , ..., u

k
i ) is a list of user responses, and

yi is a list of user-annotated ground truth CIR re-
sponses. Take the conversational question answer
as an example (Peng et al., 2022), xji refers to the
system returned answer to j-th user query uji in i-th
user-CIR interaction. In this case, EM could refer
to the Rouge-L to evaluate the word overlap be-
tween the CIR response xji and ground truth yji , i.e.,
EM(di, yi) = 1/k

∑
j Rouge-L(xji , y

j
i ). EM

could also refer to the Accuracy to evaluate the task
success rate of CIR retrieving the correct answer,
i.e., EM(di, yi) = 1/k

∑
j I(x

j
i = yji ), where

I(·) is an indicator. We denote τ(D,EM,YD) as
human evaluation, where the size of D is usually
large to guarantee the statistical significance of the
evaluation results.

2Usually, It is a pre-collected dataset annotated by humans.
Ours are created automatically (cf. section 4).

4 Methodology

There are two steps in HumCoE: 1) It starts by
selecting a subset of representative data Ds and re-
questing human annotation or scoring YDs , where
the representative data Ds are selected based on a
surrogate machine. 2) After that, it assigns an im-
portance weight to each selected data and calibrates
the evaluation results.

Step 1: Surrogate Machine based Data Sam-
pling. We aim to select representative data for
human annotation. In this process, the represen-
tative data is measured based on the probability
of inconsistency between CIR’s prediction and a
pseudo-label that is generated by a surrogate ma-
chine.

Before human annotation, we involve a sur-
rogate machine g as a user proxy to generate
pseudo-labels. Taking the conversational question-
answering task as an example, the surrogate ma-
chine is required to answer the input questions.
The output answers are stored as pseudo-labels.
Formally, given the surrogate machine-annotated
dataset D1, we denote di = {xi, vi} ∈ D1 and
vi is a list of proxy responses. Usually, a surro-
gate machine g is trained or fine-tuned based on
the same training data as f . Meanwhile, designing
g with a different architecture from f is always
preferred to encourage response diversity between
f and g. For example, one could set GPT-2 as f
and BART as g to generate responses during the
conversations.

Borrowing the idea of active testing methods
(Zhang et al., 2021a), we aim to select a subset of
representative data Ds that are hard for the CIR
system to properly handle for human annotation
YDs . The "hardness" in this paper is measured by
the probability of the CIR system making mistakes
on pseudo-labels ŶD1 , rather than the model uncer-
tainty (Zhang et al., 2021a). Namely, we prefer data
with a high probability of inconsistency between
CIR’s predictions and pseudo labels. Technically,
we measure the hardness as follows.

q(di) ∝ 1− EM (di, ŷi) . (2)

Large q(di) means that the performance of CIR f
on di in terms of a metric EM may not be satisfy-
ing. Finally, given the maximum number of human
interactions T , we sample a subset Ds with the size
|Ds| = T according to probability q. The selected
data are assigned to the human for evaluation and
obtaining the ground truth labels.



Step 2: Evaluation Calibration. Using hard
samples to evaluate a CIR system inevitably leads
to biased evaluation results. It tends to underes-
timate the effectiveness of the system. To this
end, HumCoE assigns a weight to each sample
and corrects its importance in the evaluation re-
sults, thereby moderating the negative impact of
hard samples on the evaluation results. Formally,
we follow previous work on active learning (Far-
quhar et al., 2021) and design the weight wi of
sample di as follows.

wi = 1 +
N − T

N − 1

(
1

Nq(di)
− 1

)
, (3)

where N is the size of the proxy-CIR conversation
dataset D1. In this case, we assign smaller weights
to data with large q(di) and penalize the importance
of hard data. Different from existing work (Zhang
et al., 2021a), we finally calibrate and yield the
evaluation result as follows.

τ̂(Ds, EM, YDs) =

∑
di∈Ds,yi∈YDs

wiEM(di, yi)

|Ds|
. (4)

5 Experiments

Our method formulates a human-machine collab-
oration to reduce the labor of human evaluation
while retaining its evaluation accuracy. Therefore,
the main experiments in section 5.1 are designed
to assess if HumCoE and active testing based eval-
uation methods could approximate the results of
the human evaluation at a very few cost on human
labor. Finally, we further perform ablation studies
on HumCoE in section 5.2 to analyze its properties.

Baselines. We utilize human evaluation to eval-
uate a given CIR system with no limitations on hu-
man labor costs. We compare our method to other
active testing methods that are most relevant to us,
including HMCEval (Zhang et al., 2021a), Active
Top-K (Rahman et al., 2020), and Most-Confident
Mistake (MCM) (Nguyen et al., 2018).

• HMCEval (Zhang et al., 2021a). It is intended
for assessing malevolence in dialogues, and
it frames dialogue evaluation as a sample as-
signment problem. To achieve this, HMCEval
presents a constrained optimization problem.

• Active Top-K (Rahman et al., 2020) draws the
top-k hard samples from the CIR’s ranked uncer-
tainty scores.

• MCM (Nguyen et al., 2018) selects hard samples
whose CIR prediction confidences are very high,
and whose CIR prediction results are inconsis-
tent with those of the surrogate machine. For
example, if the CIR predicts a positive label with
high probability while the surrogate machine as-
signs a negative pseudo label, it suggests that the
surrogate machine’s label may be incorrect and
needs human annotation for correction.

These methods select hard samples for human
evaluation like us but adopt different sampling
strategies. Note that we take the first step to utilize
active testing to evaluate CIR. In our experiments,
we re-implement other active testing methods to fit
in the CIR scenario.

Implementation Details. Considering evaluat-
ing any highly interactive process is challenging,
we follow previous works (Hwa, 2000; Kristjans-
son et al., 2004) and assume the time spent by the
human evaluations on each sample di is constant3.
Therefore, we use the number of human evalua-
tions to estimate the human labor, i.e., the size of
Ds. In our experiments, we limit the size of Ds

in {5, 10, 15, 20, 25, 30} to verify the effectiveness
of different evaluation methods with minimal labor
costs. Considering the randomness of data sam-
pling, we run the evaluation 100 times and report
the mean estimation results τ .

τ =

∑
si∈Seed τ̂(Ds, EM, YDs |si)

|Seed|
(5)

Each time, the random seed is fixed and shared with
different evaluation method. For implementation
details, we refer readers to Appendix A.

Evaluation Metrics. We assess if HumCoE
could approximate the results of the human eval-
uation at a very few cost on human interactions.
Therefore, we consider the following metrics.

• Evaluation Consistency. We calculate the abso-
lute value of the inconsistency between human
evaluation τ(D,EM,YD) and a given evalua-
tion method τ0, i.e., ∆τ = |τ(D,EM,YD)−τ0|.
The lower the inconsistency, the greater the eval-
uation accuracy of the given evaluation method.
We further report the consistency ratio as τ◦ =
1− ∆τ

τ(D,EM) .

3Treating human labor equally on each data point is widely
used and necessary in current research (Rahman et al., 2020;
Aliannejadi and Trippas, 2022; Desmond et al., 2021).



• Evaluation Stability. It measures the stability
of HumCoE since the data sampling introduces
randomness to a certain extent. We consider the
variance τv of multiple evaluation results and
the squared error τe to highlight the evaluation
stability in a finer-grained way.

τv =

∑
si∈Seed (τ̂(Ds, EM, YDs |si)− τ)2

|Seed|

τe =

∑
si∈Seed (τ̂(Ds, EM, YDs |si)− τ(D,EM,YD))2

|Seed|
(6)

5.1 Main Results
We verify if HumCoE and other active testing meth-
ods approximate the results of the human evalua-
tion at a very few cost on human labor. We show
HumCoE’s effectiveness on typical CIR tasks, in-
cluding the conversational question answer and
clarifying question, suggested by a recent survey
on CIR (Gao et al., 2022). We evaluate the task suc-
cess rate as well as the quality of system responses.
Regarding clarifying questions, we consider two
settings: the question is retrieved from pre-defined
candidates or generated by a language model. We
leave the implementation details in Appendix A.

5.1.1 Task 1: Conversational QA
Task Description. Question answering is con-
cerned with delivering relatively short pieces of
information to answer the queries. Conversational
question-answering systems need to handle the
more complex linguistic characteristics of conversa-
tions, anaphoras or ellipses may occur in question
sentences (Vakulenko et al., 2021). In the user-
CIR conversations, the CIR system must respond
to every question posed by the user.

Datasets & Metrics. Following previous works
(Kim et al., 2022; Peng et al., 2022), we use the
CoQA dataset (Reddy et al., 2019). CoQA is es-
sentially a collection of dialogues of questions and
answers from crowded human annotations. Follow-
ing (Peng et al., 2022; Bao et al., 2022), Rouge-L
is used to assess the word overlap between the pre-
diction and the ground truth answer.

Task Model in CIR. As the task model em-
ployed in CIR, we use the recently proposed
and open-sourced method GODEL (Peng et al.,
2022) and evaluate the effectiveness of GODEL
on CoQA. In our experiments, both GODEL-base
and GODEL-large are evaluated on the test data,
which consists of 7979 conversations. In Hum-
CoE, GODEL-base and GODEL-large are used

interchangeably as the surrogate machines. In par-
ticular, we use GODEL-base as the task model f
and GODEL-large as the surrogate machine g, and
vice versa. The predicted answers of the surrogate
machine are utilized in Eq. 2 as pseudo-labels,
while Rouge-L plays the role of EM . Since CoQA
are fully annotated by humans, human evaluation
can be easily and accurately computed. Based on
the test data, we compared the answers generated
by the GODEL-base and GODEL-large on the test
data with the manually annotated answers, respec-
tively. Human evaluation of the two models yields
results of 68.56 and 75.09.

Evaluation Results. As shown in Table 1, Hum-
CoE consumes only less than 0.38% (i.e., 30 out
of 7979) of human labor and achieves an average
consistency rate of 99.41% with human evaluation,
which verifies the effectiveness and efficiency of
our method on the conversational question answer-
ing task. We also found that the size of the parame-
ters of the surrogate machine g and task model f
has little impact on the evaluation results of Hum-
CoE. Meanwhile, compared to other active testing
methods, our method achieves an average evalua-
tion accuracy of 99.17% and 99.64% on two task
models for different labor costs. This translates into
46.86% and 36.51% performance gains over Active
Top-K, 13.23% and 3.81% performance gains over
HMCEval, and 13.37% and 4.04% performance
gains over MCM.

Table 1: Evaluation Consistency on CoQA. We report
the consistency ratio τ◦ (%) and the inconsistency ∆τ .
’#’ means the number of human interactions, and the
number in the table is in the form of τ◦(∆τ).

CIR f # HumCoE (ours) Active Top-K HMCEval MCM

Godel-base

5 99.69(0.21) 56.96(29.51) 85.91(9.66) 85.92(9.65)
10 98.73(0.87) 60.08(27.37) 85.91(9.66) 85.91(9.66)
15 98.44(1.07) 40.05(41.10) 85.91(9.66) 85.91(9.66)
20 99.58(0.29) 51.93(32.96) 85.94(9.64) 85.91(9.66)
25 99.20(0.55) 53.21(32.08) 85.98(9.61) 85.90(9.67)
30 99.39(0.42) 51.63(33.16) 85.97(9.62) 85.87(9.69)

Godel-large

5 99.84(0.12) 53.27(35.09) 95.82(3.14) 95.78(3.17)
10 99.28(0.54) 53.27(35.09) 95.82(3.14) 95.71(3.22)
15 99.72(0.21) 74.58(19.09) 95.79(3.16) 95.63(3.28)
20 99.33(0.50) 72.58(20.59) 95.81(3.15) 95.54(3.35)
25 99.91(0.07) 63.39(27.49) 95.86(3.11) 95.50(3.38)
30 99.75(0.19) 61.70(28.76) 95.86(3.11) 95.46(3.41)

Avg. τ◦ (%) 99.41 57.72 90.88 90.75

5.1.2 Task 2: Clarifying Question (Retrieved)
Task Description. With a mixed-initiative conver-
sational search, the CIR can take the lead and ask
the user clarifying questions to clear up the ambigu-
ity in the user’s query (Sekulić et al., 2022; Keyvan



and Huang, 2022). Formally, the user expresses
their demand in the initial query form, which is
subsequently provided to the CIR system. The user
needs to generate an answer to the system’s clari-
fying question. The CIR system aims to elucidate
the information need through a series of clarifying
questions and return the correct answer.

In accordance with earlier studies (Aliannejadi
et al., 2020), we assume that the clarifying ques-
tions are retrieved from a pre-defined question pool
(see section 5.1.3 for model-generated clarifying
questions). In this task, we evaluate the task suc-
cess rate (i.e., if it returns the correct answer at the
end), and ignore the evaluation on question quality
as the question is pre-defined4.

Datasets & Metrics. ClariQ (Aliannejadi et al.,
2021, 2020) is employed to evaluate our methods.
Given a conversation with multiple turns, we evalu-
ate if the CIR could select a candidate question that
would best clarify the user’s intent. Thus, it is a
classification problem, and we utilize the accuracy
metric to measure the task success rate.

Task Model in CIR. Following Aliannejadi et al.
(2021), we use BERT-base as CIR model f . As for
the surrogate machine g, we consider ERNIE-base
for simplicity. Notably, the two models are also
used interchangeably as f and g. The retrieved
questions of the surrogate machine are utilized in
Eq. 2 as pseudo-labels, and the accuracy metric
serves as EM . Later, these two models are fine-
tuned on ClariQ training data and then evaluated
on the test data, which contains 4411 conversations.
Similarly, since ClariQ is fully human-annotated,
the results of human evaluation on the BERT and
ERNIE are 88.03% and 91.79%, respectively.

Table 2: Evaluation Consistency on ClariQ, where the
clarifying questions are retrieved.

CIR f # HumCoE (ours) Active Top-K HMCEval MCM

BERT

5 99.76(0.21) 90.88(8.03) 97.52(2.18) 97.52(2.18)
10 99.69(0.27) 56.80(38.03) 97.52(2.18) 97.52(2.18)
15 99.93(0.06) 53.02(41.36) 97.50(2.20) 97.50(2.20)
20 99.91(0.08) 51.12(43.03) 97.40(2.29) 97.40(2.29)
25 99.75(0.22) 59.07(36.03) 97.32(2.36) 97.32(2.36)
30 99.73(0.24) 60.58(34.70) 97.32(2.36) 97.30(2.38)

ERNIE

5 97.01(2.74) 43.58(51.79) 98.25(1.61) 98.25(1.61)
10 99.74(0.24) 76.26(21.79) 98.34(1.52) 98.34(1.52)
15 99.56(0.40) 79.89(18.46) 98.42(1.45) 98.42(1.45)
20 99.87(0.12) 76.26(21.79) 98.40(1.47) 98.50(1.38)
25 99.67(0.30) 82.80(15.79) 98.42(1.45) 98.52(1.36)
30 99.74(0.24) 76.26(21.79) 98.47(1.40) 98.59(1.29)

Avg. τ◦ (%) 99.53 67.21 97.91 97.37

4We also ignore the interaction efficiency as it could be
easily computed without human involvement.

Evaluation Results. Table 2 demonstrates how
our HumCoE continues to achieve promising re-
sults and improve over the baseline on the clarify-
ing question. In particular, our HumCoE consumes
only less than 0.68% of human labor (i.e., 30 out
of 4411) and achieves an average consistency rate
of 99.53% with human evaluation. It achieves eval-
uation accuracy of 99.80% and 99.27% on two
task models with different labor costs. Compared
to other active testing methods, HumCoE enjoys
32.32% performance gains over Active Top-K (i.e.,
37.89% on BERT and 26.76% on ERNIE), 1.62%
performance gains over HMCEval (i.e., 2.37% on
BERT and 0.89% on ERNIE), and 2.16% perfor-
mance gains over MCM (i.e., 2.37% on BERT and
0.83% on ERNIE).

5.1.3 Task 3: Clarifying Question (Generated)
Task Description. The CIR system that generates
clarifying questions is evaluated in this task. Here,
we switch our attention to assessing the quality of
the model-generated questions.

Datasets & Metrics. Following earlier studies
(Aliannejadi et al., 2021, 2020), we also consider
ClariQ. To evaluate the quality of the generated
questions, we consider two types of evaluation met-
rics, i.e., automatic and user-based metrics. Specif-
ically, Rouge-L is used as the automatic evaluation
metric, where human-annotated questions act as
the references. Regarding the user-based evalua-
tion, we follow previous work (Aliannejadi et al.,
2020) and employ users to assess the relevance and
naturalness of each system response. On the one
hand, the relevance score (0-5) measures if the clar-
ifying question is relevant to the user’s information
needs. The naturalness score (0–5), on the other
hand, measures if the clarifying question is natural
in the context of the conversation.

Task Model in CIR. Following (Sekulić et al.,
2021), we alternate between using BART-base and
GPT2-base as the task model f and surrogate ma-
chine g. These two models are fine-tuned on ClariQ
training data. Here, we report the results of human
evaluation on the BART and GPT-2: the Rouge-L
score on BART and GPT-2 are 37.57 and 48.46,
respectively. Meanwhile, the relevance score and
naturalness scores for GPT-2 are 3.09 and 3.51,
while the scores for BART are 3.82 and 3.85, re-
spectively.

Automatic calculation on relevance and nat-
uralness scores. The process of manual scoring
is difficult to explicitly write into a specific for-



Table 3: Question quality evaluation on ClariQ, where the questions are model generated. We report the consistency
ratio τ◦ (%) and inconsistency ∆τ . For consistency rate of ChatGPT, it achieves 89.32% on relevance score and
89.46% on naturalness score when f=GPT-2. For BART, ChatGPT achieves 88.22% and 85.97% on those scores.
After introducing a small number of labor cost, HumCoE further improves the evaluation consistency.

CIR f # HumCoE (ours) Active Top-K HMCEval MCM CIR f # HumCoE (ours) Active Top-K HMCEval MCM

Clarifying Question (Generated) with Offline Automatic Metric

GPT-2
(Rouge-L)

5 99.57(0.16) 89.97(3.77) 94.01(2.25) 94.14(2.20)

BART
(Rouge-L)

5 93.56(3.12) 69.93(14.57) 82.07(8.69) 82.81(8.33)
10 98.86(0.43) 81.16(7.08) 94.01(2.25) 93.88(2.30) 10 94.99(2.43) 69.58(14.74) 82.15(8.65) 83.41(8.04)
15 97.55(0.92) 88.32(4.39) 93.85(2.31) 93.77(2.34) 15 95.23(2.31) 71.42(13.85) 82.83(8.32) 84.38(7.57)
20 96.75(1.22) 79.82(7.58) 93.59(2.41) 93.05(2.61) 20 96.10(1.89) 67.79(15.61) 83.04(8.22) 85.27(7.14)
25 95.26(1.78) 81.29(7.03) 93.80(2.33) 92.76(2.72) 25 95.60(2.13) 72.29(13.43) 83.45(8.02) 85.62(6.97)
30 93.43(2.47) 85.01(5.63) 93.69(2.37) 92.44(2.84) 30 94.82(2.51) 76.25(11.51) 83.55(7.97) 86.03(6.77)

Avg. τ◦ (%) 96.90 84.26 93.83 93.34 Avg. τ◦ (%) 95.05 71.21 82.85 84.59
Clarifying Question (Generated) with Online Human-based Metrics

GPT-2
(Relevance)

5 99.06(0.03) 96.55(0.11) 99.06(0.03) 98.81(0.04)

GPT-2
(Naturalness)

5 98.74(0.04) 87.39(0.44) 89.54(0.37) 90.03(0.35)
10 98.86(0.04) 80.82(0.59) 99.21(0.02) 98.38(0.05) 10 99.62(0.01) 85.49(0.51) 89.79(0.36) 90.77(0.32)
15 97.74(0.07) 82.61(0.54) 98.96(0.03) 97.69(0.07) 15 98.39(0.06) 80.43(0.69) 89.87(0.36) 91.62(0.29)
20 97.34(0.08) 78.13(0.68) 99.04(0.03) 96.88(0.10) 20 98.03(0.07) 78.37(0.76) 89.99(0.35) 92.29(0.27)
25 97.63(0.07) 86.21(0.43) 98.86(0.04) 96.20(0.12) 25 98.18(0.06) 80.55(0.68) 89.96(0.35) 93.00(0.25)
30 96.81(0.10) 86.57(0.42) 98.73(0.04) 95.61(0.14) 30 98.00(0.07) 79.79(0.71) 89.99(0.35) 93.74(0.22)

BART
(Relevance)

5 98.86(0.04) 94.15(0.22) 88.55(0.44) 88.02(0.46)

BART
(Naturalness)

5 99.75(0.01) 89.97(0.39) 86.24(0.53) 85.69(0.55)
10 98.38(0.06) 97.64(0.09) 88.33(0.45) 87.94(0.46) 10 98.69(0.05) 95.16(0.19) 86.08(0.54) 85.51(0.56)
15 97.99(0.08) 95.32(0.18) 88.47(0.44) 87.45(0.48) 15 99.16(0.03) 95.73(0.16) 86.36(0.53) 85.49(0.56)
20 98.19(0.07) 97.21(0.11) 88.57(0.44) 87.24(0.49) 20 97.88(0.08) 96.45(0.14) 86.42(0.52) 85.14(0.57)
25 98.03(0.08) 93.81(0.24) 88.59(0.44) 86.97(0.50) 25 98.23(0.07) 97.23(0.11) 86.75(0.51) 84.94(0.58)
30 98.00(0.08) 94.44(0.21) 88.82(0.43) 86.73(0.51) 30 98.50(0.06) 96.60(0.13) 86.87(0.51) 84.65(0.59)

Avg. τ◦ (%) 98.07 90.29 93.77 92.33 Avg. τ◦ (%) 98.60 88.60 88.16 88.57

mula. Namely, there is no pre-defined and specific
formula like Rouge-L that takes a generated sen-
tence as input and directly outputs the relevance
and naturalness scores. Therefore, it is challeng-
ing to calculate Eq.2 for relevance and naturalness
score evaluation as the EM is unknown. To this
end, we design prompts for ChatGPT scoring and
achieve automatic calculation of relevance and nat-
uralness scores (see Appendix B for details). In
this case, q(di) ∝ 1− ChatGPT (di, ŷi).

Given the results of ChatGPT on GPT-2, the rel-
evance and naturalness scores are 3.42 and 3.14,
which translate into an evaluation consistency of
89.32% and 89.46% with human evaluation. We
also examine the inter-annotator reliability of the
ChatGPT scores in a finer-grained way. In par-
ticular, we resort to Krippendorff’s alpha (Krip-
pendorff), which is a commonly used reliability
coefficient developed to measure the agreement
among different annotators. Given human evalua-
tion, ChatGPT scores only achieve 0.321 on rele-
vance and 0.284 on naturalness, implying the agree-
ment between human evaluation and ChatGPT is
relatively low. Similarly, regarding the BART, the
relevance and naturalness scores from ChatGPT
are 3.37 and 3.31, respectively. In this case, Chat-
GPT scores achieve 88.22% and 85.97% in terms
of evaluation accuracy, 0.405 on relevance, and
0.339 on naturalness in terms of Krippendorff’s
alpha. We highlight that the consistency between

ChatGPT and human evaluation results is not sat-
isfying (on average, 88.24%), and ChatGPT may
be difficult to replace humans in achieving fully
automated CIR evaluation. Interestingly, by intro-
ducing a small number of labor costs (0.68% of
human labor), HumCoE corrects the evaluation re-
sults of ChatGPT and improves consistency with
human evaluation results by 9.59% (see the Evalu-
ation Results below).

Evaluation Results. Table 3 summarizes the
results of different evaluation methods on different
evaluation metrics. Our method consumes only less
than 0.68% of human labor (i.e., 30 out of 4411)
and achieves an average consistency rate of 95.98%
on Rouge-L with human evaluation (i.e., 96.90%
on GPT-2 and 95.05% on BART), 98.07% on Rel-
evant score (i.e., 97.88% on GPT-2 and 98.24%
on BART), and 98.60% on Naturalness score (i.e.,
98.49% on GPT-2 and 98.70% on BART). By in-
troducing a small number of labor costs (0.68%
of human labor), HumCoE corrects the evaluation
results of ChatGPT and improves the consistency
in terms of Relevant score (i.e., 8.56% improve-
ment on GPT-2 and 10.02% on BART) and Natu-
ralness score (i.e., 9.03% improvement on GPT-2
and 12.73% on BART). This motivates the need
of human-machine collaboration for CIR evalu-
ation. Meanwhile, we observed that HumCoE’s
advantage on GPT-2’s averaged relevance score is
slightly reduced by 1.07% compared to HMCEval.
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Figure 1: Ablation studies on conversational question answering task. The sampling process enhances the stability
of HumCoE, while the alibration procedure focuses more on improving the accuracy.

The reason behind this is that the response of GPT-
2 is overestimated by ChatGPT, as evidenced by the
higher average relevance score (3.42) compared to
human evaluation (3.09). This poses larger weights
to selected data during the evaluation calibration,
ultimately resulting in less precise evaluation re-
sults. However, our method still achieves better
results than HMCEval in most cases. On average,
it enjoys 7.64% performance gains on Rouge-L,
4.30% on Relevance score, and 10.33% on Natural-
ness score.

Summarization on three tasks. From the above
experiments, we have two observations: 1) We ex-
perimentally demonstrate that HumCoE produces
evaluation results that are highly close to those
obtained through human evaluation while also sig-
nificantly reducing the amount of human labor re-
quired. With less than 1% of human labor, Hum-
CoE achieves a consistency rate between 95% and
99% when compared to human evaluation. This re-
veals that the proposed method in this paper could
effectively reduce human labor when evaluating a
CIR system. 2) Our approach performs better than
other active testing baselines in terms of the average
consistency rate for all tasks. Specifically, with less
than 1% human labor, our approach achieves an av-
erage consistency rate of 98.32%, which is 22.01%
higher than the Active Top-k method, 6.51% higher
than the HMCEval method, and 6.73% higher than
MCM. As mentioned earlier, our method experi-
ences a slight drop in performance when assessing
the Relevance score for the GPT-2 model because
ChatGPT overestimates the response of GPT-2.
However, our approach still showcases its supe-
riority over other baselines across numerous tasks
and evaluation metrics.

5.2 Ablation studies

This section aims to perform ablation studies on
HumCoE and investigate its properties in detail.

We examine the Evaluation Stability (i.e., τv and
τe) and Evaluation Consistency (i.e., τ◦) with or
without surrogate machine based data sampling and
evaluation calibration. Specifically, we remove sur-
rogate machine based data sampling and replace it
with random sampling, which we refer to as Hum-
CoE w/ Random sample. HumCoE w/o Calibration
means no calibration. We experimentally show that
our surrogate machine-based sampling enhances
the stability of HumCoE, while the calibration pro-
cedure focuses more on improving the accuracy.

Due to limited space, we present the results for
conversational question answering in Fig.1 and pro-
vide the rest in Appendix D. According to τv and τe
in Fig.1(b) and Fig.1(c), randomly selecting partial
data for human annotations and calibration involves
higher variance and instability (i.e., large τv and
τe). Also, the calibration method enhances stabil-
ity to some degree. These observations are in line
with previous studies stating that the importance
sampling is a classic variance reduction technique
(Elvira and Martino, 2021). Regarding the evalua-
tion consistency in Fig.1(a), the use of calibration
or surrogate machine based data sampling tech-
niques alone tends to reduce the consistency of
evaluation results. But even with random sampling,
calibration techniques still maintain good results
(i.e., HumCoE w/ Random sample). This indicates
that the calibration technique is more helpful in
improving evaluation accuracy.

6 Conclusion

Evaluating any highly interactive process is a chal-
lenging task when taking human labor into account.
To touch upon this challenge, we take the first step
to utilize active testing to evaluate the CIR system.
We tentatively give a successful implementation to
explore the potential of human-machine collabo-
rative evaluation in the CIR scenario. Empirical
experiments are conducted to testify to the effec-



tiveness of our method. In a consistent manner, our
method produces results that are extremely com-
parable to those of a human-based evaluation yet
require very little human labor compared to other
baselines. Our future work may design a more
sophisticated active testing method and see the pos-
sible outcomes of CIR evaluation.

7 Limitations

As demonstrated in Section 5.1.3, some evaluation
metrics in CIR cannot be directly computed using
a predefined mathematical formula, such as rele-
vance and naturalness scores. This may restrict
the application of HumCoE in evaluating CIR. In
our experiments, we use ChatGPT to automatically
simulate the human scoring process for these two
metrics. Although our approach significantly ad-
dresses the inconsistency issue between ChatGPT
and human evaluations with minimal human ef-
fort and provides evaluation results that are highly
comparable to human evaluations, we observed a
slight reduction in the consistency of our method’s
evaluation results due to ChatGPT’s overestimation
when automatically computing the relevant scores
of GPT-2. Therefore, when there is no predefined
mathematical formula to directly compute an eval-
uation metric, determining how to further enhance
the evaluation accuracy of HumCoE with minimal
human labor costs remains a challenge.
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A Implementation Details

A.1 HumCoE Implementation

We use Eq.2 to compute the hardness value q(di)
for each sample di. These hardness values are
then normalized to a range of 0 to 1 by di-
viding each element by its sum, i.e., q(di) =
q(di)/

∑
dj
q(dj). To avoid sampling data with

excessively small q(di), we add a clipping oper-
ation by setting q(di) = min(q(di), α). Here,
α is a hyper-parameter, and in practice, we set
α = 0.2/|D1|, where 1/|D1| represents the uni-
form sample probability. We observed that remov-
ing excessively small sample weights can enhance
evaluation stability. To implement the data sam-
pling step, we use the WeightedRandomSampler
class in Pytorch. Later, we limit the size of Ds in
{5, 10, 15, 20, 25, 30} to verify the effectiveness of
different evaluation methods with minimal labor
costs. Considering the randomness of data sam-
pling, we ran the evaluation 100 times and reported
the mean estimation results.

A.2 Baseline Implementation

There is no previous work on active testing methods
for CIR. We re-implement existing baselines as fol-
lows. Since our method prefers hard samples, we
compare methods that also select hard samples for
human annotations, including HMCEval (Zhang
et al., 2021a), MCM (Nguyen et al., 2018), and
Active Top-K (Rahman et al., 2020). Given that the
previous methods are not designed for CIR eval-
uation, we re-implement them in the CIR setting,
where the same entropy-based method is used.

• Most-Confident Mistake (MCM) (Nguyen et al.,
2018) selects hard samples whose CIR prediction
confidences are very high, and whose CIR predic-
tion results are inconsistent with those of the sur-
rogate machine. For example, if a CIR believes
that the current sample is predicted as being pos-
itive with high probability, while the surrogate
machine’s pseudo-label is negative. The label
from the surrogate machine is likely at fault, re-
quiring human annotation for correction.

• Active Top-K (Rahman et al., 2020) draws
the top-k hard samples from the CIR’s ranked
uncertainty scores. It has two variants, i.e.,
Human-Only Active Top-K and Hybrid Active
Top-K. The former uses only human-annotated
data, while the latter incorporates both human-
annotated data and surrogate machine-annotated
data for CIR evaluation. In this case, HMCEval
(Zhang et al., 2021a) is a Hybrid Active Top-K-
based method.

• HMCEval (Zhang et al., 2021a). We have re-
implemented HMCEval, originally designed to
evaluate malevolence, to fit in the CIR scenario.
Specifically, since we treat human labor for each
interaction sample equally and machine evalu-
ation is labor-free5, the solution of HMCEval
suggests to assign samples with high prediction
certainty to human and machine is responsible
for evaluating the rest. To measure uncertainty,
we initially used the maximum class probability
(MCP), as suggested in the original HMCEval pa-
per. However, MCP is intended for classification-
based evaluation metrics (because identifying the
malevolence in the dialog is a classification task
itself), which does not apply to our first and third
tasks which are generation-based. To this end,
we resort to the entropy-based method as an al-
ternative to uncertainty modeling. In particular,
inspired by (Xiao and Wang, 2019; Liu and Hou,
2023), we calculate the average entropy of gener-
ating each word (or tokens) as the uncertainty of
the given model generating the whole response.
Because the output dimension of the predictive
word distribution is very large, it would be im-
precise and not very useful to calculate the distri-
bution entropy directly on this high-dimensional
distribution. Therefore, we choose the top-5 val-
ues from the predictive distribution and convert
them into a 5-dimensional distribution using Soft-
Max (We also use the same trick for MCM and
Active Top-K). We then use this to calculate the
word entropy.

A.3 Task Setup & Task Model
Implementation

In HumCoE, we train all surrogate machines using
the same training data as the CIR model f . We

5Treating human labor equally on each data point is widely
used and necessary in current research on Active testing
(Nguyen et al., 2018; Rahman et al., 2020), CIR (Alianne-
jadi and Trippas, 2022; Lei et al., 2020a), and human-machine
interaction (Klie et al., 2020; Desmond et al., 2021).



Table 4: Automatic calculation on relevance and naturalness score using ChatGPT scoring

Prompt Template
1. [QUESTION] I am think about ${facet}. I say that ${query}. [ANSWER] ${answer}. [SCORE] {"Relavence": ?, "Naturalness": _}
2. [QUESTION] I am think about ${facet}. I say that ${query}. [ANSWER] ${answer}. [SCORE] {"Relavence": ?, "Naturalness": _}
### On a 5-scale, 5 is the best, rate the [ANSWER] in above sentence based on the following criteria:

Relavence: Is the [ANSWER] relevant to the [QUESTION].

Naturalness: Is the [ANSWER] natural.

Here are some examples:
1) [QUESTION] I am think about shirts. I say that Find Brooks Brothers clearance. [ANSWER] are you looking for a specific Brooks Brothers. [SCORE] {"Relavence": 2, "Naturalness": 1}

2) [QUESTION] I am think about list homes sale. I say that tell me about cass county missouri. [ANSWER] are you looking for a sale for a home in dellas. [SCORE] {"Relavence": 4, "Naturalness": 4}

Present the scores in JSON format as follows:
{"Relavence":<float>, "Naturalness":<float>}
Please provide scores and explain reasons.###

conducted all our experiments on an NVIDIA RTX
A6000 GPU with 48G graphical memory.

A.3.1 Conversational Question Answering
Conversational question-answering systems need
to handle the more complex linguistic characteris-
tics of conversations, anaphoras or ellipses may oc-
cur in question sentences (Vakulenko et al., 2021).
In user-CIR conversations, the CIR system must
respond to every question posed by the user. As
for the task model in HumCoE, we use the recently
proposed and open-sourced method GODEL (Peng
et al., 2022), which can be downloaded from Hug-
gingface6, and we use the given instruction to finish
a conversational question answering task. In Hum-
CoE, we use GODEL-base as the task model f
and GODEL-large as the surrogate machine g, and
vice versa. Following previous works (Kim et al.,
2022; Peng et al., 2022), we use the CoQA dataset
(Reddy et al., 2019) for conversational question-
answering simulation. Based on the test data, we
compared the answers generated by the GODEL-
base and GODEL-large on the test data with the
manually annotated answers, respectively. We use
Rouge-L to assess the word overlap between the
prediction and the ground truth answer. In this
case, q(di) ∝ 1 − Rouge-L (di, ŷi). Note that hu-
man evaluation of the two models yields results of
68.56 and 75.09.

A.3.2 Clarifying Question (Retrieved)
The CIR system needs to have a clear understand-
ing of the underlying user needs. Since user’s
queries are often under-specified and vague, with
a mixed-initiative conversational search, the CIR
can take the lead and ask the user clarifying ques-
tions to clear up the ambiguity in the user’s query

6GODEL-large: https://huggingface.co/microsoft/
GODEL-v1_1-large-seq2seq, GODEL-base: https://
huggingface.co/microsoft/GODEL-v1_1-base-seq2seq

(Sekulić et al., 2022; Keyvan and Huang, 2022).
Formally, the user expresses their demand in the
initial query form, which is subsequently provided
to the CIR system. The user needs to generate an
answer to the system’s clarifying question. The
CIR system aims to elucidate the information need
through a series of clarifying questions and return
the correct answer. Following (Aliannejadi et al.,
2020), we assume that the clarifying questions are
retrieved from a pre-defined question pool. In this
task, we evaluate the task success rate (i.e., if it
returns the correct answer at the end), and ignore
the evaluation of question quality as the question is
pre-defined. Regarding the task model in this task,
we follow the previous study (Aliannejadi et al.,
2021), and utilize BERT-base and ERNIE-base as
f and g interchangeably in our experiments. These
two models are fine-tuned on ClariQ (Aliannejadi
et al., 2021, 2020) training data and then evaluated
on its test data. Specifically, we fine-tune each
model on one epoch with 5e−7 learning rate, 32
batch size, and Adam optimizer. Considering that
it is a classification problem, we utilize the accu-
racy metric to measure the task success rate. In this
case, q(di) ∝ 1−Acc (di, ŷi). Note that the results
of human evaluation on the BERT and ERNIE are
88.03% and 91.79%, respectively.

A.3.3 Clarifying Question (Generated)

In this task, the CIR system that generates clarify-
ing questions is evaluated. Here, we shift the focus
to evaluating the quality of the generated questions.
Following earlier studies (Aliannejadi et al., 2021,
2020), we also consider ClariQ in our experiments.
To evaluate the quality of the generated questions,
we consider two types of evaluation metrics, i.e.,
automatic and user-based metrics. Rouge-L is used
as the automatic evaluation metric, while the user-
based evaluation is conducted by the human provid-
ing ground truth (cf. Appendix C) and the ChatGPT

https://huggingface.co/microsoft/GODEL-v1_1-large-seq2seq
https://huggingface.co/microsoft/GODEL-v1_1-large-seq2seq
https://huggingface.co/microsoft/GODEL-v1_1-base-seq2seq
https://huggingface.co/microsoft/GODEL-v1_1-base-seq2seq
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Figure 2: Ablation studies on all tasks and metrics.

completing the automatic evaluation (cf. Appendix
B). In this case, q(di) ∝ 1− Rouge-L (di, ŷi) and
q(di) ∝ 1− ChatGPT (di, ŷi). Here, we report the
results of human evaluation on the BART and GPT-
2: the Rouge-L scores on the BART and GPT-2
are 37.57 and 48.46, respectively. Meanwhile, the
relevance score and naturalness score for GPT-2
are 3.09 and 3.51, respectively, while the scores

for BART are 3.82 and 3.85, respectively. As for
the task model, we follow (Sekulić et al., 2021)
and alternate between using BART-base and GPT2-
base, which are also fine-tuned on ClariQ training.
Specifically, we fine-tune each model for 5 epochs
using an Adam optimizer, 5e−5 learning rate, and
a batch size of 32.



B Automatic calculation on relevance and
naturalness score using ChatGPT

Tasks (such as conversational question-answering)
utilize automatic metrics (such as Rouge-L) for
evaluation. In terms of evaluating model-generated-
based clarifying questions, relevance and natural-
ness cannot be automatically calculated. To this
end, we resort to ChatGPT to calculate relevance
and naturalness. As ChatGPT requires a fee and
has been banned in some countries, we use Mon-
ica7 for annotations, which is a Chrome extension
powered by ChatGPT API. As free users of Monica,
we have a daily usage limit. Thus, we require Mon-
ica to annotate multiple data at a time (precisely, 20
at a time). Specifically, to enhance the precision of
ChatGPT scoring, we include two score definitions
and scoring cases as input. The prompt template
for ChatGPT scoring can be found in Table 4.

C User-evaluation on relevance and
naturalness score (human annotations)

For the clarifying question task with model-
generated questions, we follow previous work
(Aliannejadi et al., 2020) and employ 3 annota-
tors to assess the relevance and naturalness of each
system response (i.e., GPT-2 and BART) on the
test data. The relevance score (0–5) measures if
the clarifying question is relevant to the user’s in-
formation needs, while the naturalness score (0–5)
measures if the clarifying question is natural in the
context of the conversation.

In particular, we provide each annotator with the
meanings and evaluation protocols of two scores.
Three annotators independently annotate and eval-
uate the system responses on the test data, dis-
cuss any disagreements, and revise the annotation
scheme. Before annotating the test data, the three
annotators complete the annotation exercises on
100 examples randomly selected from the training
data. They continue this process until they achieve
inter-annotator reliability of Krippendorff’s alpha
greater than 0.7 on these samples. Afterward, each
annotator scores all the system responses. The final
human evaluation score for each data is the mean
of the scores given by the three annotators. This
approach improves the robustness of the results.

7https://monica.im/

Table 5: Evaluation Consistency on TopiOCQA.

CIR # HumCoE (ours) Active Top-K HMCEval MCM

5 82.87(3.51) 17.05(16.98) 76.19(4.87) 20.90(16.19)
10 77.73(4.56) 19.43(16.49) 76.19(4.87) 23.80(15.59)
15 82.68(3.54) 32.58(13.80) 76.19(4.87) 21.30(16.11)
20 80.94(3.90) 24.43(15.47) 76.00(4.91) 23.70(15.62)
25 79.81(4.13) 39.09(12.47) 76.00(4.91) 22.10(15.94)

DRP

30 79.55(4.19) 32.58(13.80) 76.00(4.91) 23.60(15.64)

5 90.18(4.25) 30.33(30.19) 72.70(11.83) 15.40(36.66)
10 91.98(3.47) 45.26(23.72) 72.79(11.79) 7.70(40.00)
15 90.89(3.95) 50.28(21.55) 72.78(11.80) 3.80(41.69)
20 89.41(4.59) 65.35(15.01) 72.82(11.78) 10.60(38.74)
25 90.62(4.07) 72.29(12.01) 72.85(11.77) 5.40(41.00)

FID

30 90.61(4.07) 64.11(15.55) 72.83(11.77) 9.20(39.35)

D Appendix on ablation studies

We report the results of ablation studies in Fig. 2,
which are consistent with the previous observations
in Section 5.2. However, we notice some special
cases in the results. For example, in Fig. 2(b2)
and Fig. 2(c2), without calibration, the evaluation
stability is worse than the case without surrogate
machine based data sampling. This motivates more
future work to study better and more stable active
testing algorithms.

However, from the overall experimental re-
sults, we experimentally show that our surrogate
machine-based data sampling enhances the stabil-
ity of HumCoE, while the calibration procedure fo-
cuses more on improving our accuracy. According
to the results of evaluation consistency τ◦, combin-
ing evaluation calibration and surrogate machine
based data sampling methods can achieve better
results in terms of the average consistency rate
for all tasks. Specifically, our approach achieves
an average consistency rate of 98.32%, which is
2.75% higher than the HumCoE w/ Random sample
and 5.88% higher than the HumCoE w/o Calibra-
tion. It also implies that calibration brings 3.13%
performance gains over HumCoE w/o Calibration.
Regarding the evaluation stability, our HumCoE
also enjoys better results in terms of the average
τv and average τe for all tasks. In particular, our
approach achieves an average τv of 0.34, which
translates into 1.24 higher than the HumCoE w/
Random sample and 0.24 higher than the HumCoE
w/o Calibration. We also achieve an average τe
of 0.35, which is 1.36 higher than the HumCoE w/
Random sample and 0.95 higher than the HumCoE
w/o Calibration. These indicate that the surrogate
machine based data sampling method brings higher
evaluation stability than the random one.

https://monica.im/


E Appendix on Related Work

Human-machine Evaluation. Human-machine
evaluation has been under-explored in the NLP
community, where the traditional focus has been
on building a better model (Wang et al., 2021).
They mainly build upon the human-in-the-loop sce-
nario, where the values of automatic evaluation
metrics are provided for humans as evaluation sug-
gestions (Khashabi et al., 2021; Sedoc et al., 2019).
Such methods only reduce human cognitive labor
yet still require humans to go through the whole
dataset. We argue that they are machine-assisted
evaluation methods rather than human-machine col-
laboration methods for evaluation. Thus, current
human-machine evaluation is out of our research
scope.

Learning to defer. One way to achieve human-
machine evaluation is through learning to defer
(Madras et al., 2018; Mozannar and Sontag, 2020),
also known as rejection learning (Chow, 1970).
This approach involves assigning tasks to either
machines or humans to make decisions. When
applied to the evaluation task, the main goal of
learning to defer is to determine which data should
be given to humans and which should be given to
machines to ensure accurate evaluation results for
the entire dataset. Similar to HMCEval (Zhang
et al., 2021b), the most common method is to as-
sign data with high machine prediction uncertainty
to humans and easier-to-predict data to machines
(Ni et al., 2019; Grandvalet et al., 2008) However,
our method differs from learning to defer in that
we focus on selecting a subset of data for human
evaluation that can accurately estimate the evalua-
tion results for the entire dataset, without requiring
machines to evaluate the remaining data.

F Appendix on More Experiments

To provide a more comprehensive understanding,
we conduct additional experiments on TopiOCQA
(Adlakha et al., 2022), where the CIR model is
DPR (Karpukhin et al., 2020) and the surrogate
model is FiD (Izacard and Grave, 2021) (which
are used interchangeably). Here, both models are
fine-tuned on the TopiOCQA dataset. The results,
shown in Table 5, demonstrate that our HumCoE
approach continues to achieve promising results
and outperforms the baselines.


