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Abstract
Modern image classifiers are used potentially in
safety-critical applications and thus should not be
vulnerable to natural transformations of the image
as it can happen due to variations in the image
acquisition. While it is known that image clas-
sifiers can degrade significantly in performance
with respect to translations and rotations, the cor-
responding works did not ensure that the object
of interest is fully contained in the image and also
introduce boundary artefacts so that the input is
not a natural image. In this paper we leverage pix-
elwise segmentations of the ImageNet-S dataset
(Gao et al., 2021) in order to search for the trans-
lation and rotation which ensures that the object
is i) fully contained in the image (potentially to-
gether with a zoom) and ii) the image is natural
(no padding with black pixels) such that the re-
sulting natural image is misclassified. We observe
a consistent drop in accuracy over a large set of
image classifiers showing that natural adversar-
ial changes are an important threat model which
deserves more attention.

1. Introduction
Due to the usage of neural networks in various safety-critical
applications, it is of paramount importance to study their
behaviour and failure modes.

2. The Task
For tasks in computer vision, we would expect models de-
ployed on real world-tasks to have a minimum level of
robustness towards natural input changes. Previous works
have considered various changes, for example corruptions
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Figure 1. Illustration of the work flow for translations. We gener-
ate from the segmented images translated versions of the image
always containing the bounding box of the object. The cropped
regions and the resulting images are shown on the right.

(Hendrycks & Dietterich, 2018; Taori et al., 2020), changes
in the background (Xiao et al., 2020) or chains of simple,
restricted transformation functions like noise-injection, flow-
field or color-distortion (Suzuki & Sato, 2019). Addition-
ally, adversarial samples via differentiable rendering (Liu
et al., 2019) or learning the perturbation set (Wong & Kolter,
2021) have been considered. This paper focuses on the geo-
metric transformations of translations and rotations, which
can naturally follow from a slightly different angle or posi-
tion of the camera, due to e.g. movement. While existing
work has already shown the brittleness of existing models
to these simple geometric transformations (Athalye et al.,
2018; Engstrom et al., 2019; Gokhale et al., 2021), in these
studies it was not guaranteed that i) the translated/rotated
image still contains the object and ii) the images were not
natural as padding with black pixels or other variants has
been used which leads to an image which would be con-
sidered unnatural. In contrast, we leverage the recent work
of Gao et. al (2021), who published Imagenet-S dataset
containing a subset of ImageNet images, with full semantic
segmentations according to the ImageNet classes. Using
these groundtruth segmentations, we ensure that the object
corresponding to the class of the image is fully contained in
the translated/rotated version of the image and all images
are “natural”, in the sense that there are no black pixels
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or other forms of padding like reflection. This pipeline is
illustrated by Figure 1. Since we manage to transform the in-
put without the use of padding, the generated images could
naturally occur by a slight translation/rotation of the cam-
era configuration and thus no potential bias is introduced
and thus our benchmark yields a realistic worst-case eval-
uation. The worst-case translation/rotation is found by a
grid-search which is adaptively refined for improved effi-
ciency. While it has been argued that CNN architectures
are not necessarily translation invariant (Kayhan & Gemert,
2020), it is nevertheless surprising that state-of-the-art mod-
els trained typically with heavy data augmentation still show
significant performance degradation when such simple trans-
formations such as translation and rotation are used. We
also observe quite different degradation of SOTA ImageNet
models, showing that certain architectures/training schemes
lead to significantly more robust models.

To guarantee full visibility of the objects to classify, we need
to track their position during the transformations. To achieve
this, we use the segmentation Imagenet-S Dataset (Gao et al.,
2021). We have chosen the Imagenet-S 300 version for the
validation partition, which is the only partition for which
the data can be accessed. This dataset in turn is based on the
relabeled ImageNet from Beyer et. al (2020). We perform a
rudimentary cleaning of the dataset by sorting out the data
points where the classes from the segmentation-annotation
do not agree with the new labels from Beyer et. al (2020).
The segmentation-data and the labels can be downloaded
with instructions on the respective repositories.

To prepare the data for the transformations, we first fit a
bounding box around the object and enclose the bounding
box with a best-fit centered square of the desired input
dimension t for the model, usually 224px, which encodes
the current crop. The crop is the section of the image that
the model will get as input. To allow for batch-processing,
we have to bring the image into a uniform representation.
We do this by padding, or cropping, the image to t pixels
around crop-area of length t, so an starting with an image of
arbitrary (h,w) dimensions, we arrive at (3t, 3t). Summing
up, we arrive at the padded image-data with dimension
(3t, 3t) and the metadata consisting of the bounds of the
embedded image, the position of the crop and the position
of the object inside the crop-area. This process is visualized
in Figure 1. Not every object is embedded in an image with
enough background so that it can be fully shown without
leaving the image area. We discard those images and arrive
at a total number of 2013 instances to classify. In the rare
case that multiple instances are on the same image, we treat
them as separate classification targets.

prepared image zoomed image translated image

Figure 2. This figure visualizes the translation pipeline from the
perspective of the meta-information.

Figure 3. Predicted probability for ice cream over all translations
of an image of the class ice cream for the BEIT model from Bao
et. al (2021).

2.1. Translation

We now have everything we need to compute the bounds for
our transformations. Starting with the translation, we first
zoom out up to 20% to gain the freedom to translate without
the object leaving our crop-area. We then compute the
bounds both from the crop-area to the surrounding image-
space, but also to the enclosed object and combine them into
our maximum translation bounds. This pipeline is visualized
in Figure 2.

The confidence plot in the correct class over the set of pos-
sible translations shows often drastic changes, as shown
in Figure 3. Curiously, we also notice a 1px-periodic pat-
tern in the confidence surface for most images. In order to
find the worst-case translation without doing an exhaustive
search, we perform adaptive sampling. First, we find the
minimum for the periodic pattern by a dense sampling of
a small patch near the origin. We then perform a coarse
sampling using 2px steps over the whole possible range of
translations keeping the object fully visible in the image and
then perform a denser sampling around the neighborhood of
the translations leading to the smallest confidence. It takes
about 90 minutes to analyze the 2013 samples on a Nvidia
Tesla V100-SXM2.
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Figure 4. Accuracy on untranslated images versus worst-case accu-
racy over all possible translations for the SEResNeXt-model (more
models in the appendix). The x-axis varies over the set of images
which allow at least a minimum degree of freedom max(h,w) of
the translation (the dotted line shows the number of such images).
The gap increases when the degree of freedom becomes larger.

2.2. Rotation

Analyzing rotations is easier, since the parameter space
is only one-dimensional and quite restricted. We first try
to zoom out to nearly 29.28% to get more freedom for
the rotation. Next, we compute the maximum possible
rotation both with respect to the image bounds and to the
object bounds. The minimum over those values defines the
parameter-space so that the object is visible for all generated
rotations and there is no padding with black pixels. We then
sample the parameter evenly spaced 500 times and record
our results. It takes about two hours to analyze the 2013
samples on a Nvidia Tesla V100-SXM2.

3. Analysis
We evaluate a range of recent state-of-the-art mod-
els and classical models to compare the performance
and assess whether improvements were made. We
employ the pre-trained BEIT (Bao et al., 2021)
(beit large patch16 224), Swin Transformer (Liu et al.,
2021) (swin large patch4 window7 224) and SEResNeXt
(Hu et al., 2017) (seresnext50 32x4d) from the PyTorch
Image Models (timm)-library (Wightman, 2019). We also
study the pre-trained ConvNext model (Liu et al., 2022)
in the large-configuration. Additionally, the pre-trained
Resnet50 (He et al., 2015), Resnet18 (He et al., 2015) and
VGG16 (Simonyan & Zisserman, 2015) from the torch-
vision model-zoo are investigated. All models expect the
input to be of dimension (224, 224).

3.1. Translation

When analyzing the translations, the first thing to notice is
that the worst-case performance of the models depends on
the possible degrees of freedom for translation. This is visu-

Figure 5. A correctly and an incorrectly classified sample for the
BEiT-Model. The dog of class “pug” is fully visible in both images.

alized in Figure 4. The translations are feasible, measured
by max(h,w) where h and w are the translation bounds for
with and height in pixels, the wider the gap. Note that this
changes the set of images we can work with and thus we
report the original performance on these images too. Re-
sults for all models are shown in Table 1. The differences
in performance are astounding and when investigating the
locations of the label flips, we often find localized areas
which are usually disjoint between models. A visualization
of this phenomena can be found in the Appendix. When
visualizing the various translated images, the similarity be-
tween correctly classified images and wrongly classified
is striking. The reason for the miss classification of the
models is usually not obvious, they appear very similar to
humans, an example is shown in Figure 5. The drop in ac-
curacy is surprising when considering that we only translate
the visible crop inside the image bounds, without changing
anything about the image itself.

3.2. Rotation

The degradation in prediction performance is less severe
for rotation than for translation, but one can still observe a
drop in worst-case accuracy as shown in Table 2. Similar to
translation, we see a dependence on the freedom of rotation
available, with drastically strong degradation if we restrict
ourselves to instances which allow for a minimum of 30
degrees rotation while keeping the object in the image and
no padding with black pixels is necessary.

4. Conclusion
In this paper we have analyzed various existing models
on ImageNet with respect to their behavior with respect to
translation and rotation. In contrast to previous work we
ensure that the object is always visible and there are no
artefacts from potential padding of the image. Even though
the full class information is available in every transformed
image we see large drops in worst case accuracy. Thus even
SOTA models can be fooled by this simple shifts mimicking
variations in the camera position. In particular for images
where one can test larger translations and rotations the per-
formance drops are very high. On the other hand we see
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Table 1. Translation: For all models we report top-1 ImageNet-accuracy accImageNet. For the subset of 2013 images from ImageNet-S
(Gao et al., 2021) we report the accuracy for the untranslated subset accuntrans and the worst case accuracy accworst over all translations
leaving the object fully visible. Additionally, we report separately for the subset of 229 images which allow translations of at least 100
pixels (max(h,w) ≥ 100) the accuracy on these (untranslated) images and with the worst case over all possible translations. Note the
significant drop in accuracy of up to 17% for all images and up to 40% for the images which allow larger translations. The BEiT and
ConvNext model are significantly more robust than the Swin Transformer even though having similar ImageNet accuracy.

max(h,w) ≥ 0 max(h,w) ≥ 100
Models accImageNet accuntrans accworst ∆ accuntrans accworst ∆

BEiT 87.4 89.5 84.8 4.7 82.0 69.3 12.7
Swin Transformer 86.3 89.4 77.8 11.5 84.6 49.6 35.1
ConvNext 84.3 87.9 81.4 6.5 80.8 61.1 19.7
SEResNeXt 81.2 86.1 75.3 10.9 77.2 50.0 27.2
Resnet50 76.1 82.9 68.7 14.2 76.0 39.7 36.2
VGG16 71.5 78.5 63.7 14.8 69.7 37.3 32.5
Resnet18 69.7 78.0 61.1 17.0 71.1 30.7 40.4

also quite significant differences in the worst-case accuracy
of the models even though the original ImageNet perfor-
mance is very similar. It is therefore an interesting open
question if this is due to the employed architecture, the data
augmentation during training or the amount of training data.
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Table 2. Rotation: For all models we report top-1 ImageNet-accuracy accImageNet. For the subset of 2013 images from ImageNet-S
(Gao et al., 2021) we report the accuracy for the unrotated subset accunrotated and the worst case accuracy accworst over all rotations
leaving the object fully visible. Additionally, we report separately for the subset of 109 images which allow rotations of at least 30
degrees the accuracy on these (unrotated) images and the worst case over all possible rotations. Note that for the worst case over images
allowing rotations of at least 30 degrees we see performance drops of up to 35%. Again we observe that the BEiT and ConvNext model
are significantly more robust than the Swin Transformer even though having similar ImageNet accuracy.

min(deg) ≥ 0 min(deg) ≥ 30
Models accImageNet accunrotated accworst ∆ accunrotated accworst ∆

BEiT 87.4 90.5 89.5 1.0 87.6 80.0 7.6
Swin Transformer 86.3 90.6 87.8 2.8 88.6 61.0 27.6
ConvNext 84.3 89.4 82.8 6.6 84.6 69.2 15.4
SEResNeXt 81.2 87.0 84.8 2.2 83.8 61.9 21.9
Resnet50 76.1 85.4 82.0 3.4 81.0 45.7 35.2
VGG16 71.5 80.7 77.1 3.6 75.2 43.8 31.4
Resnet18 69.7 79.9 76.3 3.6 74.3 40.0 34.3
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A. The Accuracy Gap - Translation

BEiT

35

Swin Transformer
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ResNet 50 VGG 16

ResNet 18

Figure 6. Accuracy gap vs freedom of translation for various models
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B. Position of the Label Flips

The corresponding sample of the class doberman

Figure 7. The position of the label flips in the parameter-space of the translation by model.


