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ABSTRACT

Adapting a pre-trained foundation model on downstream tasks should ensure ro-
bustness against distribution shifts without the need to retrain the whole model.
Although existing weight interpolation methods are simple yet effective, we ar-
gue their static nature limits downstream performance while achieving efficiency.
In this work, we propose DaWin, a training-free dynamic weight interpolation
method that leverages the entropy of individual models over each unlabeled test
sample to assess model expertise, and compute per-sample interpolation coeffi-
cients dynamically. Unlike previous works that typically rely on additional train-
ing to learn such coefficients, our approach requires no training. Then, we propose
a mixture modeling approach that greatly reduces inference overhead raised by
dynamic interpolation. We validate DaWin on the large-scale visual recognition
benchmarks, spanning 14 tasks across robust fine-tuning – ImageNet and derived
five distribution shift benchmarks – and multi-task learning with eight classifica-
tion tasks. Results demonstrate that DaWin achieves significant performance gain
in considered settings, with minimal computational overhead. We further discuss
DaWin’s analytic behavior to explain its empirical success. Here is our code.

1 INTRODUCTION

The emergence of foundation models (Bommasani et al., 2021; Radford et al., 2021; Brown et al.,
2020) has significantly lowered the barrier to deploying artificial intelligence solutions across a
wide range of real-world problems. Leveraging the strong general knowledge acquired through
large-scale pre-training, foundation models can be efficiently adapted for numerous tasks. However,
recent studies have shown that while fine-tuning improves performance on specific downstream
tasks, it may often undermine the model’s generalizability and robustness (Wortsman et al., 2022b).
For example, a model fine-tuned on ImageNet has better accuracy on in-distribution (ID) data yet
may underperform in out-of-distribution (OOD) data such as ImageNet-A (Hendrycks et al., 2021b).

To address this issue, robust fine-tuning methods (Wortsman et al., 2022b) have been recently devel-
oped to adapt models to ID while maintaining strong OOD generalization. Some approaches incor-
porate regularization into the learning objective (Ju et al., 2022; Tian et al., 2023a; Oh et al., 2024),
while others focus on preserving the knowledge of the pre-trained model by modifying fine-tuning
procedure (Kumar et al., 2022; Lee et al., 2023; Goyal et al., 2023). Notably, weight interpolation
approaches allow for the integration of knowledge from multiple models via simple interpolation or
averaging and have proven effective in both robust fine-tuning (Wortsman et al., 2022b;a; Jang et al.,
2024) and multi-task learning (Ilharco et al., 2022; Yadav et al., 2023; Yu et al., 2024) settings.

The weight interpolation approaches are particularly appealing because they are easily applied to any
fine-tuned model as a post-hoc plug-in method, delivering competitive performance. Most existing
works (Wortsman et al., 2022b;a) focus on creating a single merged model using a static global
interpolation coefficient λ for all test samples: (1 − λ)θ0 + λθ1, where θ0 and θ1 are the weights
of two individual models. While these methods efficiently achieve strong performance, we argue
that the optimal coefficients vary across input data samples, leaving notable potential for improving
the performance of the interpolation-based approaches. Recent studies on dynamic merging (Cheng
et al., 2024; Lu et al., 2024; Tang et al., 2024) explore sample-wise interpolation with (1−λ(x))θ0+
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λ(x)θ1, which introduce extra learnable modules to replace the global coefficient with sample-wise
coefficient λ(x) from a given sample x. Yet, these methods require additional training and careful
design of the router modules to determine λ(x), which brings non-trivial complexity.

In this work, we propose a dynamic weight interpolation framework, DaWin, that performs sample-
wise interpolation without any additional training. To begin with, we conduct a pilot study to in-
vestigate the upper-bound performance of dynamic interpolation methods. Specifically, we simulate
an oracle sample-wise weight interpolation by leveraging ground truth test labels for sample-wise
model expertise estimation via the cross-entropy (X-entropy) loss. Given a test sample, a model
yielding a smaller X-entropy incurs larger importance for that sample during weight interpolation,
reflecting the expertise of the corresponding model. Here, we observed that fine-grained dynamic
interpolation (e.g., at a sample level) indeed significantly outperforms static interpolation.

Our pilot study informatively guides our methodology design by approximating the upper-bound
performance in practical scenarios when the ground truth labels of test samples are not available.
Specifically, we design an entropy ratio-based score function that can act as a reliable alternative to
the X-entropy ratio to robustly determine the sample-wise interpolation coefficients across different
samples from diverse domains. The rationale behind using entropy as a surrogate is grounded in
the observation that the entropy of a sample’s predicted probability distribution strongly correlates
with X-entropy. Lastly, to resolve the computation overhead induced by sample-wise interpolation
operation during inference time, we further devise a mixture modeling-based (Ma & Leijon, 2011)
coefficient clustering method that dramatically reduces the computation. Compared with the most
competitive baseline, DaWin improves the performance by 4.5% and 1.8% in terms of the OOD ac-
curacy and multi-task learning average accuracy for CLIP (Radford et al., 2021) image classification,
even though DaWin requires far less computational cost during the training or inference.

Our contributions can be summarized in three key points:

i. We present an intuitive numerical analysis of oracle dynamic interpolation methods and show
that the X-entropy ratio is a reliable metric to compute per-sample interpolation coefficients.

ii. We propose a practical implementation, DaWin, that approximates the oracle dynamic interpo-
lation by leveraging the prediction entropy ratio of individual models on unlabeled test samples
to determine sample-wise interpolation coefficients automatically.

iii. Extensive validation shows that DaWin consistently improves classification accuracy on distri-
bution shift and multi-task learning setups while not remarkably increasing the inference time,
and we provide a theoretical analysis to explain the empirical success of DaWin.

2 PRELIMINARY

2.1 BACKGROUND

Classification under distribution shift. We consider a classification problem over a domain X
with input x and a label space Y = {1, ..., C}, where the goal is to approximate the true labeling
function h : X → Y with a parametric model f : X → ∆C−1. This model maps x to C − 1
dimensional simplex, which aims to minimize error l : Y × Y → R on inputs drawn from any
potential target distribution PT . In the robust fine-tuning scenario (Wortsman et al., 2022b; Kumar
et al., 2022), the target distribution PT , where a pre-trained model f being adapted to, is typically
assumed to be covariate-shifted version (OOD) of the ID source distribution PS . Both distributions
share the same class label space Y , and have the same conditional distribution over target labels, i.e.,
PS(y|x) = PT (y|x), but have different marginal distributions over input PS(x) ̸= PT (x).

Model merging. Let f(·; θ0) and f(·; θ1) denote models that are individually trained on the same or
different datasets but have identical architecture. For example, f(·; θ0) could represent a pre-trained
model such as CLIP (Radford et al., 2021), while f(·; θ1) is the fine-tuned counterpart on a particular
downstream task. Model merging approach (Wortsman et al., 2022b;a) constructs a merged model
f(·; θλ), which achieves a better trade-off between ID and OOD performance than the individual
models by interpolating in the weight space θλ = (1 − λ)θ0 + λθ1. We will use the terms inter-
polation and merging interchangeably. Throughout the paper, we use the term static interpolation
to denote methods that induce a single merged model corresponding to a single interpolation coef-
ficient applied for all test samples. In contrast, dynamic interpolation refers to methods that yield
multiple merged models, with interpolation coefficients depending on the sample x or domain X .
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Table 1: Pilot experiments for upper-bound analysis. We evaluate zero-shot (ZS), fine-tuned (FT), and
several interpolation methods with CLIP ViT-B/32 on ImageNet (IN) and its five distribution shifts: ImageNet
(IN)-V2/R/A/S and ObjectNet (ObjNet). Given test domain X , domain-wise coefficients λ∗(X ) are found by
grid search over each test set, and the sample-wise coefficients λ∗(x) for each test sample x are determined by
the X-entropy loss ratio of individual models. † denotes oracles that utilize ground truth test labels.

Method Model Weight Acc. Under Distribution Shifts

IN IN-V2 IN-R IN-A IN-S ObjNet Avg

ZS (Radford et al., 2021) θ0 63.4 55.9 69.3 31.4 42.3 43.5 48.5
FT (Wortsman et al., 2022b) θ1 78.4 67.2 59.3 24.7 42.2 42.0 47.9

WiSE-FT (Wortsman et al., 2022b) (1− λ)θ0 + λθ1 79.1 68.4 65.4 29.4 46.0 45.9 51.0
Dynamic Interpolation† (domain) (1− λ∗(X ))θ0 + λ∗(X )θ1 79.1 68.5 72.9 36.3 48.5 48.9 55.0
Dynamic Interpolation† (sample) (1− λ∗(x))θ0 + λ∗(x)θ1 83.4 74.4 77.9 42.9 53.4 54.6 60.6

Figure 1: Distribution of interpolation coefficients. Histograms of sample-wise interpolation coefficients
induced by the X-entropy ratio between two models (ZS and FT). Oracle coefficient estimates vary significantly
within a domain (IN) and across domains (IN v.s. IN-V2/R/A/S/ObjNet) regarding symmetry and skewness.

2.2 PILOT STUDY

Our goal. We begin by conducting a pilot study to understand the benefits of dynamic interpolation,
which adapts interpolation coefficients at a finer granularity (such as sample level, λ(x)), as opposed
to using global coefficient λ for all samples (Wortsman et al., 2022b;a). To explore the upper limits
of these methods, we experiment with ground truth labels as an oracle1 to estimate upper-bound
performance and understand the maximum potential of model interpolation methods. This study
will further guide our method design in Sec. 3 by approximating the oracle performance.

Setup and hypothesis. We assess the top-1 classification accuracy of several approaches
on ImageNet-1K (IN) (Russakovsky et al., 2015) and distribution-shifted benchmarks IN-
V2/R/A/S/ObjNet (Recht et al., 2019; Hendrycks et al., 2021a;b; Wang et al., 2019; Barbu et al.,
2019) by fine-tuning the CLIP ViT-B/322 (Radford et al., 2021) on IN. Besides the individ-
ual models (zero-shot; ZS and fine-tuned; FT), we include a representative static interpolation
method, WiSE-FT (Wortsman et al., 2022b), which determines the interpolation coefficient λ via
grid search on the ID validation set. Then, we implement two oracle interpolation methods: Dy-
namic Interpolation† per domain and per sample. For the domain-wise dynamic interpolation, or-
acle coefficients λ∗(X ) are determined by grid search over all test samples within each domain
X , such as art or sketch. In contrast, for sample-wise oracle interpolation coefficients λ∗(x),
we use negative X-entropy to measure models’ expertise on a specific input x, which results in
λ∗(x) = exp(−l(f(x; θ1), y))/(exp(−l(f(x; θ0), y)) + exp(−l(f(x; θ1), y))). Note that we can
regard the model f(x; θ) as an estimator of a conditional probability density function, e.g., pθ(y|x).
Then, given the equality between the X-entropy over the one-hot label and negative log-likelihood,
λ∗(x) can be interpreted as a posterior of Bernoulli distribution in the noise-contrastive estimation
(Gutmann & Hyvärinen, 2010), i.e., λ∗(x) = pθ1(y|x)/(pθ0(y|x) + pθ1(y|x)), which models the
probability whether a data (x, y) comes from the distribution pθ1(y|x). See Appendix A.1 for more.

In this experiment, we hypothesize that (1) Fine-grain interpolation, which adapts coefficients at
a finer level (such as the sample level), can lead to substantial improvements compared to static
interpolation, such as WiSE-FT. (2) Per-sample interpolation coefficients can effectively estimated
with X-entropy-based model expertise measurement.

1We use the term oracle to denote a scenario where we utilize the ground truth test label, and it should not
be confused with optimal. Optimality of λ∗(x) regarding weight interpolation is further discussed in Tab C.

2We employed the pre-trained model available at: https://github.com/openai/CLIP.
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Figure 2: Correlation between entropy ratio and X-entropy ratio. We split each test set into four subsets
(TrueTrue, TrueFalse, FalseTrue, FalseFalse) based on the correctness of two models’ predictions
(ZS and FT). On each split and the entire data, we show scatter plots of the entropy ratio (x-axis) and x-entropy
ratio (y-axis) computed by two models with corresponding Pearson correlations. The top and bottom rows
denote results from ImageNet and ImageNet-R. Results imply that the entropy ratio strongly correlates with the
X-entropy ratio overall, except FalseFalse case, wherein we could not expect satisfactory performance for
individual models and interpolation methods as an inherent limitation given fixed individual models.

Results and interpretations. We verify our hypothesis in Table 1. Here, the domain-wise and
sample-wise dynamic interpolation methods perform far better than individual models or static in-
terpolation. Moreover, compared with the domain-wise interpolation method, sample-wise interpo-
lations show much higher performance in all cases. This supports our hypotheses that fine-grain
interpolation leads to better downstream accuracy, and the negative X-entropy can be used as a
reliable estimator of per-sample model expertise to induce the interpolation coefficients.

In Figure 1, the interpolation coefficients λ∗(x), computed using the X-entropy ratio (corresponding
to the last row of Table 1), vary significantly within and across domains. On the one hand, the es-
timated coefficients are widely distributed from zero to one on all evaluation datasets. On the other
hand, the distributions of coefficients also vary depending on the domain, e.g., IN and IN-A ex-
hibit right-skewed and left-skewed distributions, respectively. This confirms that optimal coefficient
estimation varies by sample, motivating the exploration of the sample-wise dynamic interpolation
method. In summary, we conclude that determining proper interpolation coefficients on a sample-
wise basis dramatically elevates the achievable performance of model merging-based approaches.

3 METHOD

3.1 REVISITING ENTROPY AS A MEASURE OF MODEL EXPERTISE

While the pilot study in the previous section provides encouraging results, those oracle methods
cannot work in practice. This is because we do not have access to the ground truth labels for
incoming test samples. This leads us to the question: how can we reliably estimate the interpolation
coefficient solely based on the test input x? There is extensive literature which adopts entropy as a
proxy of X-entropy (Grandvalet & Bengio, 2004; Chapelle & Zien, 2005; Shu et al., 2018; Wang
et al., 2021; Prabhu et al., 2021). The rationale behind using entropy as a surrogate is grounded
in the observation that the entropy of a sample’s prediction distribution strongly correlates with X-
entropy, even under distribution shifts (Wang et al., 2021) those models have not explicitly trained
on. This work presents the first attempt to leverage the sample-wise entropy to measure each model’s
expertise to determine the interpolation coefficients given each test sample. It is worth noting that
this approach differs from AdaMerging (Yang et al., 2024b), which seeks to learn a global coefficient
inducing a single merged model to minimize the expected entropy over the entire test set.

In this section, we will show that entropy is well-correlated with X-entropy and can thus be used
to estimate model expertise. Specifically, we divide the test set into four splits, {TrueTrue,
TrueFalse, FalseTrue, FalseFalse}, based on the correctness of predictions made
by two models (zero-shot and fine-tuned CLIP). For example, TrueTrue represents the set
{(xi, yi)|f(xi; θ0) = yi and f(xi; θ1) = yi}. We then compute the Pearson correlation coeffi-
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Figure 3: Framework overview. DaWin estimates per sample model expertise (exponentiated negative en-
tropy) and then produces coefficients based on the relative expertise of models for dynamic interpolation.

cients between entropy and X-entropy within each split. Figure 2 shows scatter plots with fitted
regression lines of the entropy and X-entropy ratios between two models on IN (top) and IN-R (bot-
tom). Specifically, we plot H(f(x;θ0))

H(f(x;θ0))+H(f(x;θ1))
and l(f(x;θ0),y)

l(f(x;θ0),y)+l(f(x;θ1),y)
for entire test samples

and compute Pearson correlation coefficient between them, where H denotes the entropy.

Here, aside from the FalseFalse case where both models failed to produce reliable predictions3,
we observe strong correlations (Schober et al., 2018) across the remaining splits and the entire
dataset. This implies that entropy is a reasonable proxy to the X-entropy for estimating per-sample
model expertise and, ultimately, computing sample-wise interpolation coefficients.

3.2 DYNAMIC INTERPOLATION VIA ENTROPY RATIO

After confirming a strong correlation between the entropy and X-entropy, we propose a new dynamic
weight interpolation, DaWin, by defining sample-wise interpolation coefficients λ(x) as below:

λ(x) =
exp(−H(f(x; θ1)))

exp(−H(f(x; θ0))) + exp(−H(f(x; θ1)))
. (1)

Here, H represents the entropy over the output probability distribution of model f(·; θ) given input
x. The value of λ(x) approaches 1 when model f(·; θ1) exhibits lower entropy (greater expertise),
whereas it approaches 0 if the entropy of model f(·; θ1) becomes higher. Figure 3 illustrates the
overall framework. Intuitively, this approach is analogous to classifier selection methods (Giacinto
& Roli, 2001; Ko et al., 2008), which aims to dynamically select suitable classifier(s) given a test
sample. However, DaWin differs in terms of its motivation, expertise metric, and goal as we pursue
finding the interpolation coefficients that may induce better performance compared with the best
model selection method (See Table 5). We further discuss the connection between DaWin and the
selection-based method in Sec. 6. Note that our sample-wise expertise estimations do not require
any hyperparameters for computing interpolation coefficients. This eliminates the need for inten-
sive hyperparameter tuning often required in prior works (Wortsman et al., 2022b; Ilharco et al.,
2023) to achieve the best result. Meanwhile, if we assume access to all test samples simultaneously,
we can refine some unstable coefficient estimations by introducing per-domain expertise offset. We
use this offset adjustment by default (Sec. A.1). Besides, to bypass using overconfident output (Guo
et al., 2017) during expertise estimation, we conduct the temperature scaling on ID validation set.

Sample-wise entropy valley hypothesis. One of the most popular hypotheses that explain the
success of weight interpolations is linear mode connectivity (LMC; Frankle et al. (2020)), which
ensures that interpolated models are also laid on good solution space as well as low-loss converged
individual models. Although entropy is a concave function for the probability density, we believe
that a similar statement can be claimed, which we refer to sample-wise entropy valley as follows:

i) There exists λ such that Ex[H(f(x;λθ0 + (1− λ)θ1)] ≤ min{Ex[H(f(x; θ0))],Ex[H(f(x; θ1))]}.
ii) Given λ obeyed to (i) and evidence of sample-wise linear feature connectivity (Zhou et al., 2023), there

also exists λ(x) such that Ex[H(f(x;λ(x)θ0 + (1− λ(x))θ1)] ≤ Ex[H(f(x;λθ0 + (1− λ)θ1)].

As empirical validation of this hypothesis, Figure 6 and Figure H show that the interpolated model
actually induces smaller entropy than individuals (i) on average, and DaWin achieves lower en-
tropy than static interpolation (ii). Given the strong correlation between entropy and X-entropy, this
hypothesis advocates the benefit of DaWin than static interpolation methods.

3However, even individuals fail, an interpolated model can yield correct predictions (Yong et al., 2024).
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3.3 EFFICIENT DYNAMIC INTERPOLATION BY MIXTURE MODELING

Although our primary goal is to achieve better downstream task performance by way of dynamic in-
terpolation, performing interpolation on every sample inevitably increases the inference-time com-
putation, with the cost scaling linearly with the number of model parameters (Lu et al., 2024). To
ensure practicality while pursuing state-of-the-art downstream task performance, we devise an effi-
cient dynamic interpolation method by leveraging mixture modeling.

Let {xi}Ni=1 denote the N test samples and {λ(xi)}Ni=1 the corresponding interpolation coefficients
computed by DaWin framework. Note that λ(xi) ∈ [0, 1] for all i = 1, . . . , N , and they can be
regarded as sampled observations from some Beta distributions. Then, we accurately model the
probability density function of interpolation coefficients via Beta mixture model4 as follows:

Λi ∼ ΣK
k=1πkBeta(λ(xi); ak, bk),

where Λi indicates random variables of λ(xi) and {πk}Kk=1 are the prior probabilities for each Beta
distribution Beta(·; a1, b1), ...,Beta(·; aK , bK). We initialize the parameters (ak, bk)

K
k=1 randomly

for each Beta distribution and estimate the initial membership of each sample via K-means cluster-
ing. Then, the expectation-maximization (EM) algorithm is adopted to iteratively refine the param-
eters of the Beta mixture and the membership inference quality. This process only takes around 30
seconds for 50K samples. Finally, given a test sample xi, we infer the membership of that sample
via maximum likelihood k∗ = argmaxk Beta(λ(xi); ak, bk), and use the mean of the corresponding
Beta distribution ak∗

ak∗+bk∗ . This approach significantly reduces the computational burden of sample-
wise dynamic interpolation from N (number of test samples) to K (number of pre-defined clusters),
where K ≪ N . We outline the detailed procedures of DaWin in Algorithm 1 (Appendix A.1).

4 EXPERIMENTS

4.1 SETUP

Tasks and datasets. We validate DaWin on two scenarios: (1) robust fine-tuning (Wortsman
et al., 2022b) and (2) multi-task learning (Ilharco et al., 2022) with focusing on the top-1 classifi-
cation accuracy (Acc). Following robust fine-tuning literature (Wortsman et al., 2022b; Kumar et al.,
2022), we use ImageNet-1K and its five OOD variants, ImageNet-V2, ImageNet-R, ImageNet-A,
ImageNet-Sketch, and ObjectNet, to evaluate robustness under distribution shifts. For multi-task
learning, we follow the standard evaluation protocol (Ilharco et al., 2022; Yang et al., 2024b) us-
ing eight benchmark datasets: SUN397, Cars, RESISC45, EuroSAT, SVHN, GTSRB, MNIST, and
DTD. Please see the Appendix A.2 for the omitted references and description for each dataset.

Models and baselines. For robust fine-tuning, we adopt CLIP ViT-{B/32, B/16, L/14} (Radford
et al., 2021) as zero-shot (ZS) models to ensure a fair comparison with (Wortsman et al., 2022b;a;
Ilharco et al., 2022; Yang et al., 2024b), and fine-tuned (FT) checkpoints for each backbone from
Jang et al. (2024) (see details in Appendix A.2). For the weight interpolation baseline methods, we
include WiSE-FT (Wortsman et al., 2022b), Model Soup (Wortsman et al., 2022a), and Model Stock
(Jang et al., 2024), along with the traditional output ensemble method. In addition, we consider
several state-of-the-art robust fine-tuning methods such as LP-FT (Kumar et al., 2022), CAR-FT
(Mao et al., 2024), FLYP (Goyal et al., 2023), Lipsum-FT (Nam et al., 2024), and CaRot (Oh
et al., 2024). For multi-task learning, we use CLIP ViT-B/32 as our backbone and consider the
model merging baselines as follows: weight averaging, Fisher Merging (Matena & Raffel, 2022),
RegMean (Jin et al., 2023), Task Arithmetic (Ilharco et al., 2023), Ties-Merging (Yadav et al., 2023),
AdaMerging (Yang et al., 2024b), and Pareto Merging (Chen & Kwok, 2024). For a fair comparison,
we do not experiment with other training-intensive dynamic methods that introduce lots of additional
parameters (Tang et al., 2024), the post-hoc methods (Yang et al., 2024a) and test-time prompt tuning
(Shu et al., 2022), which are orthogonal to baseline and our methods. For DaWin, we set K to 3, 5,
2 for ViT-{B/32, B/16, L/14} in the robust fine-tuning and K = 1 in the multi-task setups.

4.2 RESULTS ON ROBUST FINE-TUNING

Better performance trade-off between ID and OOD. In Figure 4, we present the accuracy for ID
(x-axis) and OOD average (y-axis) across three backbone models, along with baseline performance.

4We advocate Beta mixture more than a non-parametric method, e.g., K-means, for better performance due
to the distributional structure. For cases of more than two models, it can be easily extended to Dirichlet mixture.
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Figure 4: ID and OOD trade-off analysis. Trade-offs in terms of ID and OOD classification accuracy on Ima-
geNet distribution shift benchmarks with CLIP ViT-{B/32, B/16, L/14} from left to right. The hyperparameter
grid of WiSE-FT is set to {0.1, 0.2, ..., 0.9}. DaWin achieves performance beyond the Pareto-optimal points
given two models, ZS and FT (See Figure A in Appendix A.3 for more results).

Achieving superior ID/OOD trade-offs beyond or even comparable to the WiSE-FT hyperparame-
ter sweep is challenging. Nevertheless, DaWin provides a remarkably better performance trade-off
compared to baseline methods. It is also worth noting that DaWin does not require any hyperparam-
eter tuning. Instead, it dynamically generates interpolation coefficients solely based on the trained
models’ output. This distinguishes DaWin from other hyperparameter-intensive fine-tuning such
as CaRot (Oh et al., 2024) and Lipsum-FT (Nam et al., 2024) or existing interpolation methods
(Wortsman et al., 2022b). Table 2 provides detailed train/inference costs and ID/OOD accuracies.
Compared with Model Soups (Uniform and Greedy Soups) and Model Stock, which require more
than two models to ensure diversity among interpolation candidate models (Wortsman et al., 2022a)
or periodic interpolations during training (Jang et al., 2024), DaWin operates with only a single fine-
tuned model while achieving significantly better performance trade-off. These trends hold across
other backbones (see Tables 3 and 4), verifying DaWin’s generality in terms of modeling scale.
Although DaWin compromises the inference-time efficiency for accuracy, given that existing works
typically require hyperparameter tuning in practice (Wortsman et al., 2022b), relative computation
overhead is minor given that we set (K +M) ≲ H in all our experiments (See Figure 8).

Table 2: Accuracy on ImageNet (ID) and its OOD for CLIP ViT-B/32. Cost (T, I) denote the number of training
runs required to build the final model and the number of evaluations during inference, respectively. Given M
models, N denotes the number of test samples, and H and K denote the size of the hyperparameter grid and
the number of mixture components, respectively. Note that (K+M) ≲ H in all our experiments. Coefficients
for Output ensemble and WiSE-FT were picked by grid search on ID validations set.

Method Cost (T) Cost (I) ImageNet Acc (ID) Avg. Acc on OOD

ZS - O(1) 63.35 48.48
FT 1 O(1) 78.35 47.08

Output ensemble 1 O(M) 78.97 51.76
WiSE-FT (Wortsman et al., 2022b) 1 O(H) 79.14 51.02
Uniform Soup (Wortsman et al., 2022a) 48 O(1) 79.76 52.08
Greedy Soup (Wortsman et al., 2022a) 48 O(1) 80.42 50.83
Model Stock (Jang et al., 2024) 2+α O(1) 79.89 50.99

DaWin w/o mixture modeling 1 O(N +M) 78.71 54.41
DaWin 1 O(K +M) 78.70 54.36

Ablation study. We explore alternative metrics
beyond entropy for estimating sample-wise model
expertise, as shown in Figure 5. Specifically,
we consider four different pseudo label (PL) ap-
proaches (Lee et al., 2013) to replace the entropy,
{ŷ, ỹ} × {soft, hard}, where ŷ = 1

2f(x; θ0) +
1
2f(x; θ1) and ỹ = f(x; 1

2θ0 + 1
2θ1). The set-

tings {soft, hard} indicate whether the argmax
operation is applied to PL or not. We observe that
some PLs slightly outperform entropy in terms of
ID accuracy but bring no gains in OOD accuracy.
To maintain simplicity in line with Occam’s razor
(Good, 1977), we adopt entropy as the expertise
metric on unlabeled test samples.

Figure 5: Effectiveness of our expertise met-
ric. We evaluate five different expertise metrics
on ID (left) and OOD (right). Entropy (H) be-
haves like loss (l) with the pseudo labels, where its
performance nearly matches or surpasses the best-
performing l though its simplicity.
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Table 3: Accuracy on ImageNet (ID) and distribution shifts
(OOD) for CLIP ViT-B/16.

Method ID OOD Avg.

ZS 68.3 57.7
FT 82.8 56.3
LP-FT (Kumar et al., 2022) 82.5 61.3
CAR-FT (Mao et al., 2024) 83.2 59.4
FLYP (Goyal et al., 2023) 82.7 60.6
Lipsum-FT (Nam et al., 2024) 83.3 62.7
CaRot (Oh et al., 2024) 83.1 64.0

Output ensemble 83.4 63.6
WiSE-FT (Wortsman et al., 2022b) 83.5 64.2
Model Stock (Jang et al., 2024) 84.1 62.4

DaWin 83.4 66.9

Table 4: Accuracy on ImageNet (ID) and distri-
bution shifts (OOD) for CLIP ViT-L/14.

Method ID OOD Avg.

ZS 75.5 70.9
FT 87.0 70.6
FLYP 86.2 71.4
CaRot 87.0 74.1

Output ensemble 87.3 73.3
WiSE-FT 87.3 73.2
Model Stock 87.7 73.5

DaWin 86.9 76.0

Figure 6: Entropy comparison on ImageNet-A for CLIP ViT-B/32. We visualize the average entropy from
each method on the entire dataset and four different splits based on the correctness of zero-shot (ZS) and fine-
tuned (FT) models. Compared with individual models, weight averaging (WA) induces lower entropy overall,
and our DaWin achieves the lowest entropy across all splits (See Figure F in Appendix for full results).

Entropy analysis. Our DaWin method is built on the correlation between entropy and X-entropy.
While the analyses from Sec. 2.2 support using entropy as a proxy of X-entropy, it does not answer
how the entropy of interpolated final models behaves. To explore this, we analyze the average
entropy of interpolated models generated by DaWin in Figure 6. We see that the simple weight
averaging (WA) produces lower entropy compared to individual models, and our DaWin achieves
the lower entropy in all cases. This indicates that DaWin’s expertise-based interpolation successfully
weighs individual experts for accurate prediction and decreases per-sample entropy accordingly. In
Sec. 6, we further provide a discussion on the analytic behavior of DaWin’s weighting strategy.

Applications: dynamic selection and dynamic output ensemble. Given that DaWin is motivated
by the concept of “entropy as a measure of model expertise,” we can extend this beyond weight
interpolation to two other approaches, dynamic classifier selection (DCS; Giacinto & Roli (2001);
Britto et al. (2014)) and dynamic output ensemble (DOE; Alam et al. (2020); Li et al. (2023)).

Table 5: Results of per-sample dynamic clas-
sifier selection (DCS), dynamic output ensem-
ble (DOE), and dynamic weight interpolation
(DaWin) on ImageNet (ID) and under distribu-
tion shifts (OOD) for different CLIP ViT back-
bone models.

Model Method

FT DCS DOE DaWin

ID

B/32 78.35 78.59 78.71 78.71
B/16 82.80 82.15 83.24 83.38
L/14 87.07 86.53 87.07 86.88

O
O

D B/32 47.08 52.87 52.71 54.41
B/16 56.25 64.90 64.85 66.85
L/14 70.59 74.71 75.14 76.01

To be specific, DCS aims to select the most suitable
classifier for each test sample based on the competence
(referred to as expertise in our terminology) among
multiple classifiers. We provide the results of DCS
by adopting entropy as a competence measurement
for classifier selection, i.e., selecting a lower entropy
model per sample. Besides, we also present a dy-
namic output ensemble (DOE) by our λ(x) directly on
the output probability space rather than weight space.
In Table 5, we see that entropy-based DCS and DOE
bring large performance gains compared with a single
fine-tuned model (FT), while the DaWin achieves the
largest gain. This implies that users can flexibly build
their dynamic system using test sample entropy accord-
ing to their budget and performance criteria.

4.3 RESULTS ON MULTI-TASK LEARNING

We now evaluate existing merging approaches and our DaWin on multi-task learning benchmarks
with CLIP ViT-B/32. Following the standard evaluation protocol (Yang et al., 2024b), we have M
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Table 6: Multi-task learning performance. We use CLIP ViT-B/32 for evaluation across eight benchmark
tasks. † denotes using the ground truth domain indicator to select expert models for each domain. We report the
layer-wise method for AdaMerging (Yang et al., 2024b) here, which surpasses those of the task-wise method.
Note that AdaMerging and Pareto Merging both require a non-trivial amount of training.

Method SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD Avg.

Pre-trained 63.2 59.6 60.2 45.2 31.6 32.6 48.3 44.4 48.1
Jointly fine-tuned 73.9 74.4 93.9 98.2 95.8 98.9 99.5 77.9 88.9
Individuals† 75.3 77.7 96.1 99.8 97.5 98.7 99.7 79.4 90.5

Weight Average (Ilharco et al., 2022) 65.3 63.3 71.4 72.6 64.2 52.8 87.5 50.1 65.9
Fisher Merging (Matena & Raffel, 2022) 68.6 69.2 70.7 66.4 72.9 51.1 87.9 59.9 68.3
RegMean (Jin et al., 2023) 65.3 63.5 75.6 78.6 78.1 67.4 93.7 52.0 71.8

Task Arithmetic (Ilharco et al., 2023) 55.3 54.9 66.7 75.9 80.2 69.7 97.3 50.1 68.8
Ties-Merging (Yadav et al., 2023) 65.0 64.3 74.7 75.7 81.3 69.4 96.5 54.3 72.6
AdaMerging (Yang et al., 2024b) 64.2 68.0 79.2 93.0 87.0 92.0 97.5 58.8 80.0
AdaMerging++ (Yang et al., 2024b) 65.8 68.4 82.0 93.6 89.6 89.0 98.3 60.2 80.9
Pareto Merging (Chen & Kwok, 2024) 71.4 74.9 87.0 97.1 92.0 96.8 98.2 61.1 84.8

DaWin 66.2 66.7 91.3 99.2 94.7 98.1 99.5 74.6 86.3

tasks and models individually fine-tuned on each task (where M = 8). We do not know where each
test sample arises from during evaluation and cannot choose true experts per domain. While both
AdaMerging and DaWin use unlabeled testset, DaWin produces dynamic merged models given
tasks or samples, whereas AdaMerging induces a single merged model for all tasks by default.

Figure 7: Merging coefficient visualiza-
tion. We visualize DaWin’s coefficients
across 8 datasets (columns) with 8 fine-
tuned models (rows).

Here, we modify the interpolation formula in Sec. 2.1
into task arithmetic formulation, i.e., given weights of pre-
trained model θ0 and fine-tuned models {θj}Mj=1, a dynamic
interpolation is defined as θλ(x) = θ0 + λ0

∑M
j=1 λj(x)τj

where τj = θj − θ0, λj(x), and λ0 denote the task vector
(Ilharco et al., 2023), weight for j-th task vector, and scal-
ing term (set to 0.3 following Ilharco et al. (2023)), respec-
tively. In Table 6, DaWin greatly outperforms advanced
weight averaging methods (Jin et al., 2023) and adaptive
merging methods (Chen & Kwok, 2024) that require tough
training, whereby approaching a ground truth expert selec-
tion method, e.g., Individuals†. This verifies the versatility
of DaWin, which is beneficial for adapting the model on
multiple tasks as well as a single-task setup. Figure 7 shows
the average of estimated sample-wise coefficients (y-axis)
per dataset (x-axis). DaWin assigns the highest weights to
true experts (diagonal) per task and leverages relevant experts by reflecting task-wise similarity, e.g.,
SVHN⇔MNIST for digit recognition and EuroSAT⇔ RESISC45 for scenery classification.

5 RELATED WORK

Robust fine-tuning aims to adapt a model on a target task while preserving the generalization capa-
bility learned during pre-training. A straightforward approach injects regularization into the learning
objective. For example, Ju et al. (2022) proposed a regularization motivated by Hessian analysis,
Tian et al. (2023a;b) devised a trainable projection method to constrain the parameter space, CAR-
FT (Mao et al., 2024) devised the context-awareness regularization, and CaRot (Oh et al., 2024)
introduced a regularization based on singular values. Another line of works modifies the training
procedure to keep the pre-trained knowledge by decoupling the tuning of a linear head from the
entire model (Kumar et al., 2022), employing a data-dependent tunable module (Lee et al., 2023),
utilizing bi-level optimization (Choi et al., 2024), or mimicking the pre-training procedure (Goyal
et al., 2023). In contrast, weight interpolation approaches emerged as an effective yet efficient solu-
tion that conducts simple interpolation of individual model weights (Izmailov et al., 2018; Wortsman
et al., 2022a;b; Jang et al., 2024). Unlike existing works inducing a single interpolated model, we
propose a dynamic interpolation method that produces per-sample models for better adaptation.

Model merging studies mainly focus on integrating multiple models trained on different tasks into
a single model to create a versatile, general-purpose multi-task model. After some seminal works
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in the era of foundation models (Ilharco et al., 2022; 2023; Jin et al., 2023), numerous advances
have been made those aim at reducing conflict between merged parameters (Yadav et al., 2023;
Yu et al., 2024; Marczak et al., 2024), merging with weight disentanglement (Wang et al., 2024;
Ortiz-Jimenez et al., 2024; Jin et al., 2024), optimizing interpolation coefficients on unlabeled test
samples (Yang et al., 2024b; Chen & Kwok, 2024) or learning additional modules generating per-
sample/domain coefficients dynamically (Cheng et al., 2024; Lu et al., 2024; Tang et al., 2024; Yang
et al., 2024a). While those methods provide huge performance gains compared with static methods
such as (Wortsman et al., 2022a), they all bring extra learnable modules and training. We focus
on methods that do not induce extra complex training and devise a training-free dynamic merging
method, DaWin, which seeks a good trade-off between efficiency and downstream performance.
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Figure 8: Accuracy and wall-clock inference
time with CLIP ViT-B/32. We compare search-
based methods, a test-time method (AdaMerging),
and ours regarding the accuracy and inference
time on robust fine-tuning (left) and multi-task
learning evaluation on the SVHN dataset (right).

6 DISCUSSION

Accuracy and runtime trade-off. While we focus
on improving accuracy through model merging ap-
proaches, it is crucial to ensure the extra computa-
tion demands of DaWin during inference are man-
ageable. Fig. 8 presents trade-offs between the accu-
racy and wall-clock time for various merging meth-
ods. For methods requiring hyperparameter tun-
ing, e.g., WiSE-FT and Task Arithmetic, the wall-
block time (logarithm of second) reflects a cumu-
lative time for evaluations across all hyperparame-
ters. For methods like DaWin or AdaMerging, we
include the time required for additional workloads.
In both settings, DaWin shows favorable trade-offs that outperform the most efficient one in terms
of accuracy while its runtime is far less than computation-heavier methods such as per sample inter-
polation without mixture modeling (Sample-wise Interp.) or AdaMerging. Thus, DaWin provides a
high-performing merging solution that can be flexibly adapted considering a given cost budget.

Theoretical analysis. To understand the empirical success of DaWin, we present an analytic behav-
ior of entropy-based dynamic weight interpolation in contrast to input-independent uniform weight
interpolation, which yields a uniform interpolation coefficient (Wortsman et al., 2022a).
Lemma 6.1 (Expert-biased weighting behavior of DaWin; Proof is deferred to Appendix A.4).
Suppose we have M different models {f(·; θj)}Mj=1 parameterized by {θj}Mj=1 with a homogeneous
architecture defined by f(·). Let λ(x) = (λ1(x), . . . , λM (x)) be the sample-wise interpolation
coefficient vector given x, and [f(x; θ)]c denotes the probability mass for class c. Then, we have

λj∈J (x) ≥ 1

M
if H(f(x; θj∈J )) ≤ H(f(x; θk/∈J )) ∀j and k,

where J = {i| argmax
c

[f(x; θi)]c = y}.

Lemma 6.1 implies that, under the entropy-dominancy assumption, DaWin always produces per-
sample expert-biased coefficient vectors, which result in the interpolated models being biased to-
wards true experts, i.e., models that produce correct prediction given x. This desirable behavior is
aligned with the motivation of dynamic classifier selection discussed in Sec. 4.2, whereas DaWin
conducts interpolation rather than selection. Meanwhile, as the number of models participating in
interpolation increased, samples that at least one model correctly classifies also increased. There-
fore, the coverage of DaWin for weighing the correct experts expands accordingly. This analysis
endows a potential clue for remarkable gains observed in the multi-task setting, which conducts
merging beyond two models (See Sec. 4.3).

Conclusion. This work has presented a novel training-free dynamic weight interpolation method,
DaWin, that estimates the sample-wise model expertise with output entropy to produce reliable per-
sample interpolation coefficients. We further proposed a mixture modeling approach, which greatly
enhances computational efficiency. We then extensively evaluated DaWin with three different back-
bone models on two application scenarios, robust fine-tuning and multi-task learning, spanning 14
benchmark classification tasks. Regarding ID/OOD trade-offs in robust fine-tuning setup and overall
accuracy in multi-task setup, DaWin consistently outperforms existing methods, implying its gen-
erality. This empirical success was further explained by discussing an analytic behavior of DaWin.
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A APPENDIX

We provide the following items in this Appendix:

• (A.1) Algorithm and additional details on DaWin
• (A.2) Additional details on the experiment setup
• (A.3) Additional empirical results
• (A.4) Missing proof
• (A.5) Limitation and future work

A.1 ALGORITHM AND ADDITIONAL DETAILS ON DAWIN

Algorithm 1: Procedure for training-free dynamic weight interpolation (DaWin)

Input: Test samples X = {xi}Ni=1 ∈ RN×D, models f(·; θ0) and f(·; θ1) of the same
architecture, entropy function H(·), and the number of mixture component K

for i = 1, . . . , N do
(Hi,0, Hi,1)← (H(f(xi; θ0)), H(f(xi; θ1))) // Per-sample model expertise
if offset adjustment then

λ(xi)← exp(−Hi,1)+O(X)/T (X)
exp(−Hi,0)+exp(−Hi,1)+O(X)

else
λ(xi)← exp(−Hi,1)

exp(−Hi,0)+exp(−Hi,1)
// Per-sample interp. coefficient

end
end
bmm← BetaMixture({λ(xi)}Ni=1;K).fit()
{mi}Ni=1 ← bmm.predict(X) // Membership inference on test samples
for k = 0, . . . ,K − 1 do

Xk ← X[I(mi == k), :]
λ(Xk)← bmm[k].mean()
θλ(Xk) ← (1− λ(Xk))θ0 + λ(Xk)θ1 // Cluster-wise dynamic interp.

end

Incorporating domain-wise expertise. While Eq. 1 yields sample-wise interpolation coefficients
solely based on the per-sample expertise estimation, if we can access the whole test samples si-
multaneously, we can refine the coefficient computation by introducing domain-wise offset terms.
These terms are automatically estimated by the per-domain entropy of each model. Given the signif-
icant performance improvements with domain-wise dynamic interpolation (c.f. Table 1), we expect
domain-wise expertise per model can be a complimentary benefit to compute the interpolation coef-
ficient. Therefore, we modify the sample-wise coefficient term in Eq. 1 as below:

λ(x) =
exp(−H(f(x; θ1))) +O(X)/T (X)

exp(−H(f(x; θ0))) + exp(−H(f(x; θ1))) +O(X)
, (2)

O(X) =
1

2
(

std(H(f(X; θ0)))

mean(H(f(X; θ0)))
+

std(H(f(X; θ1)))

mean(H(f(X; θ1)))
) T (X) =

H(f(X; θ0)) +H(f(X; θ1))

H(f(X; θ0))
,

where O(X) and T (X) denote the per-domain offset (formulated as an average coefficient of vari-
ation) and relative domain expertise terms, respectively. By incorporating domain-wise expertise,
DaWIN offers more stable dynamic interpolation coefficients, correcting some of the inaccuracies
in sample-wise estimation (see Table A). It is worth noting that these sample-wise and domain-wise
expertise estimations do not require any hyperparameters for computing interpolation coeffi-
cients. This eliminates the need for intensive hyperparameter tuning that is often required in prior
works (Wortsman et al., 2022b; Ilharco et al., 2023) to achieve the best performance.

X-entropy ratio and likelihood ratio. Let f(x; θ) = pθ(y|x) be a classifier parameterized with
θ that models the ground truth conditional probability distribution p(y|x). Given that we observe
one-hot encoded target labels so that l(f(x; θ), y) = − log(pθ(y|x)), then we can rewrite the oracle
sample-wise coefficient in Sec 2.2 as follow, λ∗(x) = pθ1(y|x)/(pθ0(y|x) + pθ1(y|x)).
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Details on Beta Mixture Model (BMM) with Expectation Maximization algorithm. To en-
hance the inference-time efficiency of dynamic interpolation, we propose a mixture modeling ap-
proach over the estimated per-sample interpolation coefficients to reduce the number of interpolation
operations from N (entire test sample) to K (pre-defined number of mixture components). Here, we
elaborate on the detailed procedure of Beta Mixture Modeling5.

We have coefficient estimates over N test samples via Eq. 1 or Eq. 2 as {λ(xi)}Ni=1. Our goal is to
model those coefficients with a mixture of K Beta distributions as below:

Beta(λ(xi); ak, bk) =
Γ(ak + bk)

Γ(ak)Γ(bk)
λ(xi)

ak−1(1− λ(xi))
bk−1 (3)

p(λ(xi)) =

K∑
k=1

πkBeta(λ(xi); ak, bk) (4)

where ak > 0 and bk > 0 are the shape parameters of component k, Γ(·) and πk denote the
Gamma function and mixing prior probabilities for each Beta component satisfying

∑K
k=1 πk = 1

and πk ≥ 0. We first initialize the responsibilities {γik} by applying K-Means clustering to {λ(xi)}
to assign the initial membership per each observation to one of K components. We also initialize
the parameter estimates of BMM as below:

Mixing Priors(πk) : π
(0)
k =

N
(0)
k

N
, where N

(0)
k =

N∑
i=1

γ
(0)
ik . (5)

Shape Parameters(ak, bk) : a
(0)
k = C

(0)
k × λ̄0

k + ϵ, (6)

b
(0)
k = C

(0)
k × (1− λ̄

(0)
k ) + ϵ (7)

where λ̄
(0)
k =

1

N0
k

N∑
i=1

γ
(0)
ik λ(xi), (8)

s
2,(0)
k =

1

N0
k

N∑
i=1

γ
(0)
ik (λ(xi)− λ̄

(0)
k )2, (9)

C
(0)
k =

λ̄0
k(1− λ̄0

k)

s
2,(0)
k

− 1, (10)

where ϵ is a small positive constant to ensure numerical stability. Here, the initial shape parameters
are estimated by method-of-moments (Pearson, 1936). Then, we conduct the expectation step (E-
step) and the maximization step (M-step) alternatively until convergence to refine the parameter
estimate as follows:

• E-step:

– Compute log responsibilities lnγ(t)
ik .

– Update responsibilities γ(t)
ik = exp(lnγ(t)

ik ).

• M-step:

– Update mixing priors π(t+1)
k .

– Update shape parameters a(t+1)
k , b

(t+1)
k using method-of-moments estimation.

• Convergence Check:

– Compute log-likelihood L(t+1), where L(t) =
∑N

i=1 lnp(λ(xi))

– If |L(t+1) − L(t)| < tolerence, stop the iterations.

Then, we get the estimated parameter Θ = {πk, ak, bk}Kk=1 of BMM to infer per-sample weight
interpolation coefficients.

5The same procedure is adopted for the Dirichlet Mixture Model in multi-task learning scenario by modi-
fying the probability density function from Beta distribution to Dirichlet distribution.
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A.2 ADDITIONAL DETAILS ON THE EXPERIMENT SETUP

In this section, we provide extended details for task definition, baseline methods, and implementa-
tion details. Some contents might be duplicated from the main paper.

A.2.1 TASKS AND DATASETS

We validate DaWin on two scenarios: (1) robust fine-tuning (Wortsman et al., 2022b) and (2)
multi-task learning (Ilharco et al., 2022) with focusing on the top-1 classification accuracy (Acc).
Following robust fine-tuning literature (Wortsman et al., 2022b; Kumar et al., 2022), we use
ImageNet-1K (Russakovsky et al., 2015) and its five variants, ImageNet-V2 (Recht et al., 2019), a
post-decade reproduced version of the original ImageNet test set by following the dataset generating
process of ImageNet, ImageNet-R (Hendrycks et al., 2021a), a rendition-specific collection of 200
ImageNet classes, ImageNet-A (Hendrycks et al., 2021b), an actual examples from ImageNet test
set misclassified by a ResNet-50 model over 200 ImageNet classes, ImageNet-Sketch (Wang et al.,
2019), a sketch-specific collection of 1000 ImageNet classes, and ObjectNet (Barbu et al., 2019)
for evaluating robustness under distribution shifts. For multi-task learning, we follow the standard
evaluation protocol (Ilharco et al., 2022; Yang et al., 2024b) using eight benchmark datasets from
the optical character images, traffic signs, scenery or satellite imagery, and fine-grain categorization
over cars and texture: SUN397 (Xiao et al., 2016), Cars (Krause et al., 2013), RESISC45 (Cheng
et al., 2017), EuroSAT (Helber et al., 2019), SVHN (Yuval, 2011), GTSRB (Stallkamp et al., 2011),
MNIST (LeCun, 1998), and DTD (Cimpoi et al., 2014).

A.2.2 MODELS AND BASELINES

For robust fine-tuning, we adopt CLIP ViT-{B/32, B/16, L/14} (Radford et al., 2021) as zero-shot
(ZS) models to ensure a fair comparison with (Wortsman et al., 2022b;a; Ilharco et al., 2022; Yang
et al., 2024b), and fine-tuned (FT) checkpoints for each CLIP ViT backbone from Jang et al. (2024).
For the weight interpolation baseline methods, we include WiSE-FT (Wortsman et al., 2022b), which
conducts a weight interpolation between a pre-trained model and a fine-tuned model given a single
pre-defined interpolation coefficient, Model Soup (Wortsman et al., 2022a), which conducts aver-
aging of all models’ weights (Uniform Soup) or greedily selected models’ weights (Greedy Soup)
trained with different training hyperparameter configurations, and Model Stock (Jang et al., 2024),
iteratively interpolate a pre-trained model with few fine-tuning model based on the cosine distance
between pre-trained model weight and the fine-tuning model weights, along with the traditional out-
put ensemble method. In addition, we consider several state-of-the-art robust fine-tuning methods
such as LP-FT (Kumar et al., 2022), a two-stage method to avoid pre-trained feature distortion,
CAR-FT (Mao et al., 2024), a regularized fine-tuning method leveraging context-aware prompt,
FLYP (Goyal et al., 2023), a contrastive learning based fine-tuning method, Lipsum-FT (Nam et al.,
2024), a regularized fine-tuning method motivated by energy score gap between zero-shot and fine-
tuned models, and CaRot (Oh et al., 2024), a theory-inspired singular value regularization method.

For multi-task learning, we use CLIP ViT-B/32 as our backbone and consider the model merging
baselines as follows: a simple weight averaging (Ilharco et al., 2022), Fisher Merging (Matena &
Raffel, 2022), a Fisher information metric-based weighted averaging method, RegMean (Jin et al.,
2023), an averaging method that minimizes L2 distance between the averaged weight and individual
weights, Task Arithmetic (Ilharco et al., 2023), a method perform arithmetic across task vectors
rather the original weight vector itself which are produced by the subtractions between a pre-trained
model weight and individual fine-tuned model weights, Ties-Merging (Yadav et al., 2023), a post-
hoc weight refinement method mitigating conflicts between task vectors, AdaMerging (Yang et al.,
2024b) and Pareto Merging (Chen & Kwok, 2024) methods those driving additional optimization
procedure to a global interpolation coefficient and the conditional coefficient generation models that
trained to minimize entropy over entire test sample.

A.2.3 IMPLEMENTATION DETAILS

For fine-tuning CLIPs on ImageNet, Wortsman et al. (2022a) and its successor (Jang et al., 2024)
conducted multiple training with different training configurations such as data augmentation, learn-
ing rate, weight decay, and random initialization seeds given fixed epochs (16) and batch size (512).
Here, we use the best model weight provided by the authors of Jang et al. (2024) per each backbone.
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For fine-tuning weights of CLIP on multi-task learning setup, we adopt the official checkpoints from
Ilharco et al. (2023) on the eight datasets.

On DaWin’s evaluation, we first get the entropy of batch test samples from the interpolation can-
didate models6 (wherein temperature scaling (Guo et al., 2017) is applied in the robust fine-tuning
setup with ID validation set), then we compute interpolation coefficients by building a softmax-like
model expertise ratio term with exponentiated negative entropy of each model. We further perform
the mixture modeling over the batch test samples and finally conduct dynamic model merging with
interpolation coefficients corresponding to estimated membership from the fitted mixture model to
obtain the prediction per sample. About the Beta (on robust fine-tuning setup) and Dirichlet (on
multi-tasks learning setup) mixture modeling on interpolation coefficients for DaWin, we set K to
3, 5, 2 for ViT-{B/32, B/16, L/14} in the robust fine-tuning and K = 1 in the multi-task setups.
Unless otherwise mentioned, we adopt the offset adjustment term (Eq. 2) by default, assuming that
the entire test samples per task are available and fit the Beta (and Dirichlet) mixture model on the
entire coefficients per task, likewise assumption of Yang et al. (2024b;a); Chen & Kwok (2024).

A.3 ADDITIONAL EMPIRICAL RESULTS

Table A: Ablation study on offset adjustment. We validate the effect of using the offset adjustment term on
ImageNet ID and OOD accuracy.

Model Offset Adjustment ID Avg. Acc on OOD

ViT-B/32 - 78.3 54.1
✓ 78.7 54.4

ViT-B/16 - 83.1 66.6
✓ 83.4 66.9

ViT-L/14 - 86.7 75.9
✓ 86.9 76.0

We ablate the offset adjustment and expertise metric to investigate the effectiveness of the design
choices of each component. Firstly, as we can see in Table A, offset adjustment consistently boosts
the ID and OOD accuracy across all cases, which supports the use of domain-wise relative expertise
(average entropy over all test samples) to enhance sample-wise expertise estimation. To secure

Table B: Sensitivity analysis on sample size. We report DaWin’s ImageNet and its OOD variants’ accuracy
of CLIP ViT-B/32 under varying sample wise for fitting Beta Mixture Model (where the number of mixture
components K=3). DaWin shows robustness against varying sample sizes.

Sample size ImageNet Accuracy Avg. Acc on OOD

32 78.55 54.30
64 78.69 54.27
128 78.71 54.27
256 78.70 54.28
512 78.70 54.25
1024 78.71 54.24
2048 78.67 54.26

N 78.70 54.36

inference time efficiency, we adopt the Beta mixture modeling approach on the batch-wise DaWin’s
coefficients. The fitness of the Beta mixture model may be improved as the sample size is increased,
whereas a smaller sample size enables more granular interpolations to be applied. Therefore, we
evaluate the performance of DaWin under varying sample sizes. Table B presents the ID and OOD
performance of DaWin on the ImageNet distribution shift benchmark for the CLIP ViT-B/32 back-
bone model. DaWin shows strong robustness against varying sample sizes.

6Candidate models are constituted with the pre-trained and fine-tuned models for robust fine-tuning setting,
the task-specific eight fine-tuned models for multi-task learning setting.
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Figure A: ID and OOD trade-off analysis. We visualize performance trade-offs regarding ID and OOD
classification accuracy on the ImageNet distribution shift benchmarks with CLIP ViT-{B/32, B/16, L/14} from
left to right. Interpolation coefficients are swept over {0.1, 0.2, ..., 0.9}.

In Figure A, we present the results of DaWin with WiSE-FT as a plug-in augmentation on the robust
fine-tuning setup. We multiply our estimated coefficients from Beta mixture by a scalar coefficient
α, e.g., λwise(x) = λ(x) × α. Although it brings slight benefits in the case of CLIP ViT-B/32,
the WiSE-FT interpolation trace becomes almost a line on the ViT-B/16 and ViT-L/14 cases. This
implies that DaWin already achieves performance beyond the Pareto-optimal trade-offs and cannot
be further improved by WiSE-FT, given models f(·; θ0) and f(·; θ1). Meanwhile, Figure B reveals
that DaWin produces larger λ(x) for samples that are hard to recognize the target object due to
overwhelming background semantics, which the pre-trained model may wrongly pay attention to.

Figure B: DaWIN’s bottom-5 and top-5 estimated coefficient analysis. We visualize the images with labels
corresponding to bottom-5 and top-5 sample-wise interpolation coefficients estimated by DaWIN of pre-trained
and ImageNet fine-tuned CLIP ViT-B/32. Each row denotes the actual test samples from ImageNet, ImageNet-
V2, ImageNet-R, ImageNet-A, ImageNet-Sketch, and ObjectNet. We see that the images corresponding to
coefficients lean towards the fine-tuned model, which typically contains multiple semantics, and the object
corresponding to the ground truth label is overwhelmed by other semantics.
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Figure C: Correlation between entropy and X-entropy. We split each testset into four subsets (TrueTrue,
TrueFalse, FalseTrue, FalseFalse) based on the correctness of the two models’ predictions. On
each data split and the entire dataset, we visualize scatter plots of entropy (x-axis) and cross-entropy (y-axis)
computed by two models (zero-shot and fine-tuned) with corresponding Pearson correlation coefficients per
model. Each row from top to bottom shows results from ImageNet, ImageNetV2, ImageNetR, ImageNetA,
ImageNetSketch, and ObjectNet.

DaWin adopts entropy as a proxy of X-entropy to estimate the model expertise without access to
the true target label. Figure C presents the correlation between entropy and X-entropy of the pre-
trained CLIP ViT-B/32 f(·; θ0) and ImageNet fine-tuned counterpart f(·; θ1). Results indicate that
the model producing correct predictions holds a strong correlation between entropy and X-entropy
while the model failing to correctly predict test samples shows bad or no correlation. However, if
at least one model success in making a correct prediction in a given sample x, and the entropy of
the correct predictor may be smaller than that of another model, thereby DaWin would be likely to
produce λ(x) biased towards the correct predictor’s weight (See Lemma 6.1).
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Figure D: Correlation between entropy ratio and X-Entropy ratio. We split each testset into four subsets
(TrueTrue, TrueFalse, FalseTrue, FalseFalse) based on the correctness of the two models’ predic-
tions. On each split and the entire dataset, we visualize scatter plots of entropy ratio (x-axis) and cross-entropy
ratio (y-axis) computed by two models (zero-shot and fine-tuned) with corresponding Pearson correlation co-
efficients. Each row from top to bottom shows results from ImageNet, ImageNetV2, ImageNetR, ImageNetA,
ImageNetSketch, and ObjectNet.

In Figure D, we provide the extended results of Figure 2, showing the correlations between entropy
ratio and X-entropy ratio, on the whole evaluation datasets of robust fine-tuning setup. The entropy
ratio approximates the X-entropy ratio overall across datasets and sub-populations of each dataset,
even though for the most challenging OOD, i.e., ImageNet-A, which is constructed with natural ad-
versarial examples, there is a weak-yet-non-trivial correlation (Schober et al., 2018) between entropy
and X-entropy. Moreover, we note that weight interpolation (or output ensemble) has an advantage
that elicits the correct prediction by modifying the relative feature importance (Yong et al., 2024)
even though two individual models fail to produce correct predictions (i.e., in the FalseFalse
case), thereby expected to outperform the model selection method (See Table 5).
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Figure E: Estimated coefficient density analysis on ImageNet distribution shift benchmarks with CLIP
ViT-B/32. We visualize histograms of estimated sample-wise interpolation coefficients by the expertise ratio,
which is computed using X-entropy (Oracle; we can not access it in reality) and entropy as expertise met-
rics. Each column denotes the splits {Entire,TrueTrue,TrueFalse,FalseTrue,FalseFlase} of
the test set, those are categorized by the correctness of zero-shot CLIP, and ImageNet fine-tuned CLIP’s pre-
dictions. Each low denotes the result of the test set: from ImageNet, ImageNet-V2, ImageNet-R, ImageNet-A,
ImageNet-Sketch, and ObjectNet. Entropy-based coefficient estimation shows remarkably good fitness in the
TrueTrue, FalseTrue splits, and produces left-skewed distribution in the case of TrueFalse, which
is desired to construct the interpolated model biased towards zero-shot model weight. Overall, except the
FalseFalse case, the entropy-based coefficient estimation provides reasonable alternatives to X-entropy-
based oracle coefficients.

We visualize the histogram of interpolation coefficients computed by entropy and X-entropy ratio in
Figure E. While the entropy-based coefficients quite diverge from the oracle X-entropy-based coef-
ficients in some cases (e.g., TrueFalse and FalseFalse of ImageNet-Sketch and ObjectNet),
the overall distributions of entropy-based coefficients show good fitness to X-entropy-based coeffi-
cients across datasets. This result supports using entropy as a proxy of X-entropy to estimate model
expertise given unlabeled test-time input to determine the per-sample interpolation coefficient.
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Figure F: Entropy comparison on ImageNet distribution shiftㄴ with CLIP ViT-B/32. Across IN, IN-V2,
IN-R, IN-A, IN-S, and ObjNet from top to bottom, we visualize the final output entropy from each model
on the entire dataset and four different splits based on the correctness of zero-shot (ZS) and fine-tuned (FT)
models. Compared with individual models, weight averaging (WA) induces lower entropy overall, and our
DaWin achieves the lowest entropy across all splits.

In Figure F, we provide the extended results of Figure 6, showing the average entropy over test
samples, on the whole evaluation datasets of robust fine-tuning setup. In almost all of cases, weight
interpolation achieves smaller entropy than individual models, and DaWin achieves the smallest
entropy. This supports our sample-wise entropy valley hypothesis in Section 3.2 and helps us to
understand DaWin’s great performance gains.
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Figure G: Distance between datasets. We visualize the mean maximum discrepancy (MMD) and Frechet
inception distance across eight datasets used in multi-task learning benchmarks in the left and right panels,
respectively. To compute MMD and FID, we adopt the pre-trained OpenAI CLIP ViT-B/32 and ImageNet pre-
trained Inception V3 models as feature extractors respectively.

Figure H: Empirical validation on the sample-wise entropy valley hypothesis. We visualize the average
entropy for each dataset across various methods including single model evaluations (ZS and FT), static weight
interpolation (WiSE-FT 0.05, ..., 0.95), some dynamic weight interpolation methods (U(0, 1), N(0.5, 0.22)),
N(0.8, 0.12), Max logit ratio, Confidence ratio, and Confidence difference ratio), and our DaWin method.

In Figure G, we visualize the distance between eight datasets used in the multi-task learning se-
tups. The computed cross-dataset distances are matched with the average coefficients derived from
DaWin in Figure 7 to some extent.

Similar to the linear mode connectivity phenomenon that prevails between pre-trained and fine-tuned
checkpoints of foundation models (Wortsman et al., 2022b; Ramé et al., 2023) which indicates the
interpolations between two checkpoints do not increase the expected loss (e.g., X-entropy) on down-
stream, in Section 3.2, we hypothesized the expected entropy of model output may also show similar
convexity trend over interpolations between pre-trained and fine-tuned model checkpoints. In Fig-
ure H, we see that this claim empirically holds for the six datasets including ID (ImageNet) and
OOD (its five variances), i.e., there exists an interpolated model that achieves smaller entropy than
individual models (ZS and FT). Besides, we further observed that there exists a per-sample dy-
namic interpolation method that achieves much smaller entropy compared to the static interpolation
method. Therefore, our two statements in the sample-wise entropy valley hypothesis show empirical
evidence.

26



Published as a conference paper at ICLR 2025

Table C: Optimality check for λ∗(x). We provide mean squared error (MSE) between the optimally es-
timated per-sample interpolation coefficients and our X-entropy ratio-based estimation in Section 2.2. We
estimate the optimal coefficient per sample by conducting a finer-grained grid search for the coefficients, e.g.,
{0.05, 0.10, ..., 0.90, 0.95} per sample to minimize the X-entropy loss of interpolated model given a sample x.
As baseline coefficients, U(0, 1) and WiSE-FT constant (0.8) denote per sample random uniform variable and
a constant scalar 0.8 for all samples respectively.

- ImageNet ImageNetV2 ImageNetR ImageNetA ImageNetSketch ObjectNet

Std. of per-sample optimal coefficients λ∗(x) 0.2827 0.3068 0.3237 0.3287 0.3413 0.3438

MSE between λ∗(x) and U(0, 1) 0.1797 0.1823 0.1869 0.1976 0.1980 0.2013
MSE between λ∗(x) and WiSE-FT constant 0.1084 0.1390 0.2081 0.2427 0.2036 0.2131
MSE between λ∗(x) and X-entropy ratio (ours) 0.0382 0.1559 0.0479 0.0364 0.0400 0.0440

In Section 2.2, we adopted the negative X-entropy as an oracle model expertise metric and used
the exponentiated negative X-entropy ratio as our desired per-sample interpolation coefficients. Al-
though the exponentiated negative X-entropy ratio λ∗(x) has a nice interpretation connected to the
density estimation (Sec A.1), it is not guaranteed that the λ∗(x)’s optimality in the context of weight
interpolation. To investigate how close our λ∗(x) are to the true optimal per-sample interpolation
coefficients that minimize the X-entropy losses of interpolation model given samples, we measure
mean squared error (MSE) between ours and optimally estimated per-sample coefficients (we esti-
mate these by conducting grid search for interpolation coefficient over {0.05, 0.10, ..., 0.90, 0.95}
per sample). Table C presents the results indicating that our λ∗(x) are generally much closer to the
optimally estimated coefficient compared with random uniform variable or tuned WiSE-FT constant
coefficient. Given that the standard deviation of oracle coefficients are about from 0.28 to 0.34, the
closeness between optimal and X-entropy ratio-based coefficients is remarkable.

Table D: Alternative per-sample interpolation coefficients. We provide results from some different design
choices for per-sample dynamic interpolations (Beta Mixture Modeling with K=3 applied for efficient infer-
ence) on ImageNet distribution shift benchmarks. Although other data-independent or data-dependent methods
struggle to strike a good balance between ID and OOD performances, DaWin shows outstanding performance
among considered candidates demonstrating its effectiveness well-grounded with its unique motivation.

Category Coefficient per sample ID Acc OOD Acc Avg.

No interpolation (FT) - 78.4 47.1
Static interpolation 0.8 (WiSE-FT) 79.1 51.0

Data-independent U(0, 1) 75.9 52.9
Data-independent N(0.5, 0.22) 77.5 54.1
Data-independent N(0.8, 0.12) 79.1 51.1

Data-dependent Max Logit Ratio 76.6 54.3
Data-dependent Confidence Diff. Ratio 77.5 54.2
Data-dependent Confidence Ratio 77.5 54.2
Data-dependent Entropy Ratio (ours) 78.7 54.4

In Table D, we provide some alternative design choices for functions that estimate per-sample inter-
polation coefficients from two categories, data-independent and data-dependent. We see that DaWin
outperforms other baseline methods indicating our careful design choice of DaWin motivated by a
pilot study has non-trivial benefits rather than other heuristic alternatives.

Table E: Performance of DaWin w/ and w/o confidence calibration on ImageNet (ID) and its variants
(OOD). Here, we adopt temperature scaling on ID validation set to calibrate individual models’ outputs.

Method ID Acc OOD Acc

WiSE-FT 79.1 51.0
DaWin (default) 78.7 54.4
DaWin w/ bad calibration 76.6 54.0

Meanwhile, DaWin adopts the entropy of output probability distributions of individual models. As
mentioned in Section A.2, we apply temperature scaling to individual merging candidate models
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to get calibrated outputs from them. The natural question is “how does the uncertainty calibration
of individual models affect the final performance of DaWin?”. We adopt temperature scaling on
the ID validation set by default to calibrate individual models in the robust fine-tuning setup, so we
now ablate the temperature scaling in Table E. We can see that DaWin without temperature scaling
(denoted as bad calibration) somewhat compromises ID performance. However, it still significantly
outperforms the static merging method on OOD performance which demonstrates the effectiveness
of our method even without delicate tuning.

Table F: Runtime, FLOPs, and Peak memory allocation comparison between static (WiSE-FT) and dy-
namic (DaWin) weight interpolation for evaluation on ImageNet variants. Here, we use ViT-B/32 back-
bone model on NVIDIA A100 GPU(s). DaWin (parallel) conducts the expertise computation process in parallel
(i.e., forward evaluations for pre-trained and fine-tuned models are conducted simultaneously) with multiple
GPUs for faster inference.

Method Total Runtime (sec) FLOPs per sample Peak memory (MB) per sample OOD Avg. Acc

WiSE-FT 1040 4.4139 454 51.0
DaWin 1802 13.2452 1338 54.4
DaWin (parallel) 1341 8.8313 1338 54.4

Along with Figure 8, to further investigate the trade-offs between DaWin and a simpler method,
we provide evaluation results with additional metrics (FLOPs and peak memory allocation) and
variants of DaWin in Table F. Here, DaWin (parallel) denotes the setting where we parallelize
the evaluations of individual models during the expertise estimation phase before conducting the
interpolation7. DaWin shows three times FLOPs than WiSE-FT, but the actual runtime is less than
twice that of WiSE-FT because DaWin does not require intensive hyperparameter tuning, unlike
WiSE-FT. Besides, the computational complexity can be further reduced by adopting the parallel
inference pipeline for the model expertise estimation phase of DaWin.

Table G: Fine-grained analysis on interpolation candidates. Model Pool denotes the candidate models (fine-
tuned on those datasets) we use to build the interpolated model. We simulate some scenarios where we use
relevant expert models only or mixed candidates of experts and non-experts to get the interpolated model.
Relevant datasets are determined based on task and semantic similarity between datasets.

Scenario Model Pool Evaluation data Task Arithmetic AdaMerging++ DaWin

Experts only SVHN, MNIST SVHN 87.5 94.1 90.5
Mixed SVHN, MNIST, EuroSAT SVHN 84.4 93.7 93.8
Mixed SVHN, MNIST, EuroSAT, RESISC45 SVHN 81.5 93.4 94.8
Experts only EuroSAT, RESISC45 EuroSAT 96.4 98.1 98.6
Mixed SVHN, MNIST, EuroSAT EuroSAT 86.9 97.7 99.6
Mixed SVHN, MNIST, EuroSAT, RESISC45 EuroSAT 89.6 97.7 99.7

Including our method, the success of model merging methods (also traditional ensemble methods)
depends on the relation between the training datasets of merging candidate models and the evaluation
dataset. In Table G, we systematically analyze the effect of the relation between train and evaluation
datasets on the performance of the merged method by constructing a model pool for merging based
on the distance between train datasets (where the candidate models are trained) and test datasets.
Please refer to Figure G and Figure 7 to check the quantities of similarity between datasets.

We simulate scenarios where all models are relevant to solve the downstream task, or some models
are relevant but others are not to solve the downstream task. Although the baseline methods perform
well when we have expert models trained on datasets that are relevant to the evaluation dataset, they
suffer from performance degeneration as the non-expert models are included in the merging pool.
This indicates that there are some interferences between models (and train corresponding datasets)
that hurt post-merging performance if we inappropriately determine the interpolation coefficient.
Meanwhile, DaWin takes benefits from even non-expert models by leveraging the entropy ratio-
based weighting strategy, and the performance is improved as more models participate in merging.

7This treatment is orthogonal to the commonly used distributed data-parallel inference mode and is only
applicable to DaWin.
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A.4 MISSING PROOF

In Sec. 6, we provided an analytic behavior of DaWin, which generated true-expert biased interpo-
lation weight vectors as below:
Lemma A.1 (Restatement of expert-biased weighting behavior of DaWin). Suppose we have M
different models {f(·; θj)}Mj=1 parameterized by {θj}Mj=1 with a homogeneous architecture defined
by f(·). Let λ(x) = (λ1(x), . . . , λM (x)) be the sample-wise interpolation coefficient vector given
x, and [f(x; θ)]c denotes the probability mass for class c. Then, we have

λj∈J (x) ≥ 1

M
if H(f(x; θj∈J )) ≤ H(f(x; θk/∈J )) ∀j and k,

where J = {i| argmax
c

[f(x; θi)]c = y}.

Proof. The proof is very straightforward, given the assumption and definitions of problem setup.

H(f(x; θj∈J )) ≤ H(f(x; θk/∈J )) (By assumption)
exp(−H(f(x; θj∈J ))) ≥ exp(−H(f(x; θk/∈J )))

λj∈J (x) ≥ λk/∈J (x) (By definition of λ(x))

λj∈J (x) ≥ 1

M
(Given that

∑M
j=1 λj(x) = 1)

A.5 LIMITATION AND FUTURE WORK

By following previous works (Wortsman et al., 2022b; Ilharco et al., 2023; Yang et al., 2024b), we
limited our validation scope to an image classification of fully fine-tuned visual foundation models
with restricted scale and architecture, e.g., CLIP ViT-{B/32, B/16, L/14}. Exploring DaWin on
diverse model architecture (Liu et al., 2022; Gu & Dao, 2023; Liu et al., 2024), large-scale modeling
setup (Dehghani et al., 2023), large language models (Yu et al., 2024; Goddard et al., 2024; Rame
et al., 2023), multimodal generative models (Liu et al., 2023; Biggs et al., 2024; Nair et al., 2024),
continual adaptation scenario (Marczak et al., 2024), and parameter-efficient tuning regime (Li &
Liang, 2021; Hu et al., 2021; Chronopoulou et al., 2023) can be exciting future work directions.

Meanwhile, the increased amount of computation during inference time is another limitation of
DaWin. However, we note that scaling test-time computation can be a cost-effective solution for
foundation models to address challenging tasks and data in the wild (Snell et al., 2024; Jaech et al.,
2024; Muennighoff et al., 2025). Given the observations that modern multimodal foundation models
still struggle with out-of-distribution query (OpenAI, 2024; Zhang et al., 2024; Oh et al., 2025),
improving the robustness of foundation models by allocating more budgets for test-time computation
through dynamic merging, such as DaWin, is worth to be investigated further.
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