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ABSTRACT

This paper studies budgeted block subsampling for stochastic Riemannian optimiza-
tion. Starting from the Horvitz–Thompson estimator, we derive an independent
Bernoulli design with a water-filling probability rule that minimizes the second
moment under a fixed expected number of active blocks. The resulting estimator,
GeoBIS, is unbiased and achieves the canonical inverse-in-budget behavior of its
second moment. We also analyze exact-K negatively dependent designs, includ-
ing projection determinantal point processes and sampling without replacement
with unequal probabilities. Under a mild alignment condition on block directions,
exact-K strictly reduces the cross term in the variance. A simple wall-clock model
provides a closed-form rule for selecting the active-block budget and clarifies
when exact-K is worthwhile. Experiments on orthogonality-constrained sequence
models and thin-Stiefel adapters follow the predicted trends and validate GeoBIS
as a practical default.

1 INTRODUCTION

Optimization with manifold constraints appears in many modern machine learning systems. Examples
include orthogonal and Stiefel constraints in sequence models and adapters, subspace learning and
matrix factorizations, and modules on product or hyperbolic manifolds. In these settings, the
Riemannian gradient lives in a tangent space that admits natural block decompositions: coordinate
groups, skew-rotation atoms such as Givens or Householder generators, or per-factor blocks in
product manifolds. Executing full tangent updates can be expensive, and a common engineering
strategy is to activate only a subset of blocks at each step and to reweight the contribution of sampled
blocks using Horvitz–Thompson scaling so that the gradient estimator remains unbiased.

This paper addresses the design of such block subsampling policies when a fixed compute budget
limits the expected number of active blocks per step. The first question is whether one can choose
marginal probabilities so that the resulting estimator minimizes its second moment for a given budget.
The second question is whether using a fixed-size subset with negative dependence can further reduce
redundancy among sampled blocks when their directions are aligned. The third question is how to
choose the budget itself in a way that optimizes wall-clock time to a target accuracy, while keeping
the method practical.

The contributions are organized as follows. First, we present GeoBIS, an independent Bernoulli
design that minimizes the Horvitz–Thompson second moment under a fixed expected number of
active blocks through a simple water-filling rule. The formula admits an exact capped variant when
some probabilities hit one. Second, we give a design-agnostic lower bound showing that the inverse-
in-budget dependence of the dominant term in the second moment is unavoidable for any unbiased
design; this identifies a statistical frontier and explains why water-filling is instance-optimal up to
constants. Third, we study exact-K negatively dependent designs, including projection determinantal
point processes and unequal-probability sampling without replacement, and we state a precise
alignment condition under which these designs strictly reduce the cross term in the variance compared
to independent Bernoulli sampling with matched marginals. Fourth, we provide a wall-clock analysis
with a simple cost model that yields a closed-form rule for setting the active-block budget and an
online schedule based on exponential moving averages. Finally, we discuss orthogonal and Stiefel
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instantiations and present experiments whose focus is on validating the statistical and compute trends
rather than on competitive accuracy.

The paper is written to separate essential ideas from optional extensions. Each section begins with
context and design choices before introducing the formal statements.

2 RELATED WORK

Riemannian optimization is by now a standard tool for constrained machine learning. Foundational
references include treatments of retractions, vector transports, and convergence guarantees for first-
order methods and trust-region methods. Monographs such as Absil et al. (2008) and Boumal (2023)
cover the relevant geometric preliminaries and provide a unifying view of manifold-constrained algo-
rithms. Early stochastic Riemannian methods and their convergence properties appear in Bonnabel
(2013), while analyses for geodesically convex problems and smoothness under retractions are studied
in Zhang & Sra (2016). Variance reduction in Riemannian settings has been explored in Sato et al.
(2019) and quasi-Newton adaptations in Kasai et al. (2018).

Orthogonality constraints arise in several model classes. For feasible updates with orthogonality
constraints, Cayley-transform based methods and related retractions are discussed in Wen & Yin
(2013). Their use within deep learning layers and flows appears in Lezcano-Casado (2019) and
Trockman & Kolter (2021). These works focus on preserving constraints efficiently and motivate
block choices aligned with the geometry, such as skew-symmetric generators for the orthogonal group
and projected gradients on the Stiefel manifold.

In Euclidean settings, randomized coordinate descent and block coordinate methods have a long
history. Analyses that allow arbitrary sampling and show the role of importance sampling include
Nesterov (2012); Richtárik & Takáč (2016); Qu et al. (2015). Without-replacement sampling and
random reshuffling often improve practical convergence behavior compared to with-replacement
sampling, as discussed in Shamir (2016); Gürbüzbalaban et al. (2021); HaoChen & Sra (2019). The
present paper brings budget-explicit sampling design and compute-aware analysis to Riemannian
block updates, where geometric alignment enables sharper variance formulas and practical selection
rules.

Negative dependence and diversity-seeking fixed-size designs can reduce redundancy in subsampled
sets. Determinantal point processes provide a tractable family of negatively associated distributions
over subsets with closed-form marginals and pairwise inclusion probabilities; see Kulesza & Taskar
(2012); Hough et al. (2006). Projection determinantal point processes, built from an orthogonal
projector, are particularly convenient because they maintain a fixed size and admit simple sampling
routines once the top eigenspace is available. The use of such designs for randomized numerical
linear algebra and column subset selection is surveyed in Dereziński & Mahoney (2020), with related
ideas in volume sampling Deshpande et al. (2006) and leverage-score based methods Cohen et al.
(2017). In survey sampling, classical schemes for unequal-probability sampling without replacement
include Sampford (1967) and pivotal splitting methods such as Deville & Tillé (1998), which avoid
eigen-decompositions while matching prescribed marginals. We use these designs as optional exact-
K extensions of the independent sampler and clarify the condition under which they strictly reduce
the variance.

Finally, recent work on Riemannian coordinate or block methods with iteration complexity guarantees
includes Han et al. (2024). Our approach differs by focusing on the design of unbiased estimators
with minimal second moment under an explicit compute budget, by giving closed-form rules for
marginal probabilities and for the active-block budget itself, and by quantifying when and why
negative dependence helps in practice.

3 SETUP AND NOTATION

This section sets the notation and states the estimator family under study. The goal is to mini-
mize a smooth objective on a Riemannian manifold using unbiased stochastic gradients formed by
subsampling blocks of the tangent space.
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Let (M, g) be a finite-dimensional Riemannian manifold. We minimize a smooth function F :M→
R using retraction-based updates of the form

Xt+1 = RetrXt

(
−ηt ξ̂t

)
, ξ̂t ∈ TXt

M, (1)

where ηt > 0 is a stepsize, ξ̂t is an unbiased estimator of the Riemannian gradient ξt = gradF (Xt),
and Retr is a first-order accurate retraction.

At a point X , assume a block decomposition of the tangent space

TXM =

B⊕
b=1

Vb, ξ =

B∑
b=1

ξ(b), ξ(b) ∈ Vb. (2)

Define block magnitudes vb = ∥ξ(b)∥gX and unit block directions ub = ξ(b)/vb for vb > 0. The
directional cosines between blocks are

ρbc = ⟨ub, uc⟩gX ∈ [−1, 1], G = [ρbc]. (3)

We allow mild deviations from exact block orthogonality and quantify them by a coherence parameter
µ = maxb̸=c |ρbc|.
The estimator family is based on Horvitz–Thompson scaling. Let S ⊂ [B] be a random subset
of blocks with first-order inclusion probabilities πb = Pr(b ∈ S) and second-order inclusion
probabilities πbc = Pr({b, c} ⊂ S). The estimator is

ξ̂ =
∑
b∈S

ξ(b)

πb
. (4)

It is unbiased because E[ξ̂] =
∑

b Pr(b ∈ S) ξ(b)/πb =
∑

b ξ(b) = ξ. The second moment and
variance decompose as follows.

Lemma 1 (Variance decomposition). For any unbiased Horvitz–Thompson estimator supported on a
block subset S,

Var(ξ̂) =
∑
b

(
1
πb
− 1

)
v2b + 2

∑
b<c

(
πbc

πbπc
− 1

)
vbvc ρbc. (5)

The first term depends only on the marginals and is the dominant quantity to optimize under a
budget. The second term depends on dependence across block indicators; it is zero under independent
Bernoulli sampling and becomes negative under negatively associated exact-K designs when the
block directions are aligned.

4 GEOBIS: BUDGET-OPTIMAL BERNOULLI VIA WATER-FILLING

This section presents the independent design. Each block b is included independently with probability
pb ∈ (0, 1] and is scaled by Ib/pb. The expected number of active blocks is the budget K =

∑
b pb.

When blocks are orthogonal in the metric, the expected second moment is
∑

b v
2
b/pb. We now

minimize this quantity under the linear budget constraint and recover a water-filling rule.

Proposition 1 (Water-filling). Consider the strictly convex problem minp∈(0,1]B
∑

b v
2
b/pb subject to∑

b pb = K. The unique solution is

p⋆b = min{1, λvb}, where λ > 0 is chosen so that
∑
b

p⋆b = K. (6)

In the no-cap regime pb < 1 for all b, this yields p⋆b = K vb/
∑

j vj and the expected second moment
equals (

∑
b vb)

2/K.

The proof uses KKT conditions with inequality constraints pb ≤ 1 and the convexity of x 7→ 1/x.
An efficient implementation sorts the vb once per step to determine the capped set and computes
the threshold λ by a one-pass sweep. When caps are active, the second moment decomposes into a
capped part plus an uncapped part divided by the residual budget.
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Practical safety. Horvitz–Thompson scaling uses 1/pb and can be numerically unstable if a
proxy misclassifies a very small vb. We recommend a probability floor pmin and use pb =
min{1,max{pmin, λvb}}. We also recommend smoothing scores with exponentials moving av-
erages to reduce noise.

Mild non-orthogonality. When blocks are nearly orthogonal, the Bernoulli formulas remain
accurate. The following bound expresses how much the variance can deviate from the independent-
marginal term.

Proposition 2 (Coherence-based robustness). Let µ = maxb̸=c |ρbc|. For any exact-K design with
first- and second-order inclusions (πb, πbc),∣∣∣∣∣Var(ξ̂)−∑

b

(
1
πb
− 1

)
v2b

∣∣∣∣∣ ≤ 2µ
∑
b<c

∣∣∣ πbc

πbπc
− 1

∣∣∣ vbvc. (7)

In particular, under Bernoulli sampling the right-hand side is zero, and under negatively associated
exact-K designs it is controlled by the size of off-diagonal entries.

Proxy scores and regret. In practice one may water-fill on proxy scores sb that approximate vb
within a multiplicative error (1± ϵ), and occasionally misidentify the top capped set. In the no-cap
regime, the multiplicative inflation of the second moment is at most (1 + ϵ)/(1− ϵ). With caps and a
misranking probability δ of the top set, the excess second moment is bounded by a term proportional
to δ (1 + ϵ)/(1− ϵ) times the uncapped contribution.

5 EXACT-K NEGATIVE-DEPENDENCE EXTENSIONS

This section discusses fixed-size designs that discourage redundant co-selection of aligned blocks.
We present projection determinantal point processes and unequal-probability sampling without
replacement, state the variance formula under exact-K, and give a condition under which exact-K
strictly improves over Bernoulli at matched marginals.

Projection determinantal point processes. Let W = diag(
√
vb) and G = [ρbc]. Form the

geometry-weighted Gram matrix M = WGW . Let VK be the top-K eigenspace of M and K♯ =

VKV ⊤
K the projection kernel. The projection k-DPP with kernel K♯ satisfies πb = K♯

bb and πbc =

πbπc − (K♯
bc)

2. By construction, the subset size is K, and the block indicators are negatively
associated.

Unequal-probability sampling without replacement. When one desires exact-K without
eigenspace computations, pivotal Poisson and related Sampford-type schemes provide fixed-size
sampling with prescribed marginals πb. These designs maintain Horvitz–Thompson unbiasedness
and avoid spectral preprocessing.

Variance comparison at matched marginals. The variance of the Horvitz–Thompson estimator
under exact-K reads

Var(ξ̂) =
∑
b

(
1
πb
− 1

)
v2b + 2

∑
b<c

(
πbc

πbπc
− 1

)
vbvc ρbc. (8)

For the projection k-DPP, the pairwise term becomes −2
∑

b<c(K
♯
bc)

2vbvcρbc/(πbπc). A direct
comparison to Bernoulli with the same marginals therefore requires a condition that this signed sum
is nonnegative. We phrase this as an aggregate alignment condition.

Assumption 1 (Aggregate alignment). Let πb = K♯
bb and define weights wbc = (K♯

bc)
2vbvc/(πbπc).

Assume that
∑

b<c wbcρbc ≥ 0. This holds, for example, if all ρbc ≥ 0 on the support of K♯.

Theorem 1 (Exact-K variance reduction under alignment). Let ξ̂DPP be the Horvitz–Thompson
estimator under the projection k-DPP with kernel K♯ and marginals πb = K♯

bb. Let ξ̂Bern be the
Bernoulli estimator with the same marginals. Under the aggregate alignment assumption,

Var(ξ̂DPP) ≤ Var(ξ̂Bern), (9)
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with strict inequality if there exists b ̸= c such that ρbc > 0 and K♯
bc ̸= 0.

This result clarifies when negative dependence is beneficial. On manifolds and block choices where
cross-block cosines are small, such as disjoint Givens generators on the orthogonal group, the
improvement is minor in practice and the extra selection overhead can outweigh the benefit. On
models with coherent blocks, exact-K can reduce the variance at matched marginals.

6 LOWER BOUND AND INSTANCE OPTIMALITY

We now show that the inverse-in-budget dependence of the dominant term in the second moment
is unavoidable for any unbiased estimator that respects the budget on expected active blocks. This
identifies a statistical frontier and explains why the independent water-filling design is instance-
optimal up to constants.

Theorem 2 (Design-agnostic lower bound). Let ξ̂ be any unbiased Horvitz–Thompson estimator with
marginals summing to K. Then

E∥ξ̂∥2 ≥ ∥ξ∥2 +
(
∑

b vb)
2

K
− (

∑
b

vb)
2. (10)

Equivalently, the variance satisfies Var(ξ̂) ≥ (
∑

b vb)
2/K −

∑
b v

2
b .

The proof bounds the cross term in the variance decomposition below and uses Cauchy–Schwarz to
minimize

∑
b v

2
b/πb subject to

∑
b πb = K. The independent design with water-filling achieves the

lower bound in the no-cap regime. Exact-K designs can only subtract a nonnegative cross term when
the alignment condition holds.

7 NONCONVEX PROGRESS AND WALL-CLOCK SCHEDULING

We briefly recall a standard retraction-smoothness descent lemma and combine it with the second-
moment formulas to motivate a simple rule for choosing the active-block budget.

Assumption 2 (Retraction smoothness). There exists L > 0 such that for all X and small ζ ∈ TXM,

F (RetrX(ζ)) ≤ F (X) + ⟨gradF (X), ζ⟩gX +
L

2
∥ζ∥2gX . (11)

Under unbiasedness and bounded second moment E∥ξ̂t∥2 ≤ Gt, constant stepsize η ≤ 1/L yields

1

T

T−1∑
t=0

E∥gradF (Xt)∥2 ≤
2(F (X0)− F inf)

ηT
+ LηG, G =

1

T

∑
t

Gt. (12)

For independent water-filling without caps, a coarse but useful model writes Gt ≈ at + bt/K
with at =

∑
b v

2
t,b and bt = (

∑
b vt,b)

2. If the per-step cost is C0 + C1K and we approximate at

and bt by slowly varying averages a and b, then the time to a target stationarity is proportional to
(C0 + C1K)(a+ b/K). The minimizer is

K⋆ =

√
C0 b

C1 a
. (13)

This rule is myopic and assumes local stationarity of a and b. In practice, one tracks exponential
moving averages and clips K⋆ to [1, B]. Under exact-K designs that satisfy the alignment condition,
the second moment is further reduced by the negative cross term, while the selection overhead
increases the fixed per-step cost. The same balancing logic applies.

8 ORTHOGONAL AND STIEFEL INSTANTIATIONS

This section describes the geometry-aware block choices and local formulas used in practice.

5
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Orthogonal group. The orthogonal group O(d) consists of matrices X ∈ Rd×d with X⊤X = I .
The tangent space at X is {Z : X⊤Z + Z⊤X = 0}. For an Euclidean gradient G = ∇XF , the
Riemannian gradient under the canonical metric is

gradF (X) = G−X sym(X⊤G) = ΩX, Ω = 1
2

(
GX⊤ −XG⊤) . (14)

A natural block family is given by skew-symmetric generators Eij −Eji. The block magnitudes are
vij =

√
2 |Ωij |, and the water-filling rule uses these local scores. Retractions include Cayley and

exponential maps on skew subspaces; disjoint pairs update in parallel.

Stiefel manifold. The thin Stiefel manifold St(d, p) consists of matrices X ∈ Rd×p with X⊤X =
Ip. The Riemannian gradient is the projected Euclidean gradient G − X sym(X⊤G). Natural
blocks are row- or column-groups aligned with the metric. Retractions include QR- and polar-based
retractions and Cayley-type updates adapted to the constraint.

9 EXPERIMENTS

The experiments are designed to validate the statistical and compute trends predicted by the analysis
rather than to optimize task accuracy. We consider three sequence datasets with orthogonality-
constrained recurrent models and a thin Stiefel adapter inserted in a small convolutional network.
The methods compared are independent water-filling and uniform sampling at matched budget and a
full-gradient baseline. Negative-dependence exact-K designs are disabled in these regimes because
selection overhead dominates.

Tables summarize wall-clock time, validation accuracy, and the mean second moment of the
Horvitz–Thompson estimator. The inverse-in-budget trend for the second moment under water-
filling is consistent across tasks. Uniform sampling yields larger second moments under the same
budget, as expected from the lower bound.

Orthogonality-constrained sequence models. Copy, Adding, and psMNIST with a Cayley-
retracted orthogonal RNN. Methods: full gradient, uniform, and GeoBIS with budgets in a small grid.
Metrics: mean second moment, final validation accuracy, and time to reach a fixed fraction of the
best accuracy.

Table 1: Copy task with an orthogonality-constrained RNN (Cayley retraction). Budget K is the
expected number of active blocks for sampling-based methods.

Method Budget Time (s) Val. Acc. (final) Mean E∥ξ̂∥2g
Full gradient – 319.3 0.1775 1.42e−01
GeoBIS (Bernoulli) 4 325.8 0.1775 6.34e+02
GeoBIS (Bernoulli) 8 322.7 0.1775 3.21e+02
GeoBIS (Bernoulli) 16 324.0 0.1775 1.52e+02

Uniform baseline ref – 321.1 0.1775 1.42e−01
Uniform 4 321.7 0.1775 1.24e+03
Uniform 8 317.8 0.1775 6.05e+02
Uniform 16 320.9 0.1775 2.74e+02
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Table 2: Adding task with an orthogonality-constrained RNN (Cayley retraction).

Method Budget Time (s) Val. Acc. (final) Mean E∥ξ̂∥2g
Full gradient – 283.4 0.5320 2.43e−01
GeoBIS (Bernoulli) 4 309.7 0.5320 1.04e+03
GeoBIS (Bernoulli) 8 305.6 0.5320 5.57e+02
GeoBIS (Bernoulli) 16 310.9 0.5320 2.73e+02

Uniform baseline ref – 304.1 0.5320 2.43e−01
Uniform 4 301.9 0.5320 2.30e+03
Uniform 8 304.8 0.5320 1.19e+03
Uniform 16 305.0 0.5320 4.95e+02

Table 3: psMNIST with an orthogonality-constrained RNN (Cayley retraction). †: run completed
only one epoch, so time and means are not directly comparable to 5-epoch runs.

Method Budget Time (s) Val. Acc. (final) Mean E∥ξ̂∥2g
Full gradient – 1784.4 0.1256 2.76e+00
GeoBIS (Bernoulli) 4 1239.5 0.0996 1.09e+04
GeoBIS (Bernoulli) 8 1266.7 0.1119 6.12e+03
GeoBIS (Bernoulli)† 16 252.2 0.0980 2.79e+03

Uniform baseline ref – 1636.7 0.1256 2.76e+00
Uniform 4 1238.8 0.0833 1.96e+04
Uniform 8 1224.3 0.1051 9.04e+03
Uniform 16 1222.9 0.1126 4.25e+03

Stiefel adapter. A thin Stiefel adapter after a small convolutional backbone trained on CIFAR-10.
Methods and metrics mirror the sequence setting. The observed second-moment reductions for
GeoBIS at fixed budget align with the theory, and accuracy differences are small, as expected when
backprop dominates compute.

Table 4: Thin Stiefel adapter on CIFAR-10. GeoBIS reduces the mean HT second moment at fixed
budget; accuracy and wall-clock are comparable to Uniform.

Method Budget Time (s) Val. Acc. (final) Mean E∥ξ̂∥2

GeoBIS (Bernoulli) 4 308.7 0.804 5.33e−01
Uniform 4 295.5 0.808 5.90e−01
GeoBIS (Bernoulli) 8 300.0 0.810 3.03e−01
Uniform 8 295.8 0.785 3.58e−01
GeoBIS (Bernoulli) 16 299.6 0.808 1.56e−01
Uniform 16 303.6 0.807 1.80e−01

Table 5: Thin Stiefel adapter on CIFAR-10: time to reach 0.95× the best validation accuracy across
all runs.

Method Budget Time to target (s)

GeoBIS (Bernoulli) 4 228.1
Uniform 4 188.1
GeoBIS (Bernoulli) 8 200.2
Uniform 8 215.7
GeoBIS (Bernoulli) 16 218.6
Uniform 16 213.6

7
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Summary. Across both domains, water-filling improves the mean second moment at fixed budget
relative to uniform sampling, with trends matching the inverse-in-budget law. Exact-K designs are
left as an opt-in for heavier settings with coherent blocks and lower relative overhead.

10 REPRODUCIBILITY STATEMENT

We will release code (after the review process is complete) that exactly reproduces every number in
the paper’s tables from a clean environment. The package includes: (i) reference implementations
of water-filling, independent sampling with a probability floor, and orthogonal/Stiefel retractions;
(ii) task-specific training and evaluation scripts for the Copy, Adding, psMNIST, and CIFAR-10
thin-Stiefel adapter setups; (iii) configuration files that correspond one-to-one with each table row
(budget K, seeds, optimizer and schedule, batch sizes, retraction type); (iv) and an environment
specification.
As for LLM usage, LLMs were used to provide help with paper writing and polishing (especially
around creating table structures, relevant bibtex references, and template fitting).

11 LIMITATIONS AND SOCIETAL IMPACT

The main limitation is that exact-K designs require either eigenspace computations or pivotal
sampling; when the fixed overhead is large and block alignment is weak, the marginal benefit can
be negative. The wall-clock rule is myopic and assumes locally stationary statistics for the block
magnitudes; this is a practical compromise and works well with moving averages but does not
constitute a global optimality result. This work is methodological; we foresee standard concerns
around compute and energy use during training but no special risks beyond those encountered in
typical optimization research.

12 CONCLUSION

GeoBIS provides a simple and budget-optimal independent design for block subsampling in stochastic
Riemannian optimization, with closed-form probabilities and second-moment expressions, including
capped regimes. Exact-K negative-dependence extensions can further reduce variance under an
explicit alignment condition, and a simple cost model yields a closed-form rule for the active-block
budget. The method aligns with the geometry of common manifolds, drops cleanly into existing code,
and is supported by experiments that validate its statistical and compute advantages.
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M. Dereziński and M.W. Mahoney. Determinantal point processes in randomized numerical linear
algebra. arXiv preprint arXiv:2005.03185, 2020.

A. Deshpande, L. Rademacher, S. Vempala, and G. Wang. Matrix approximation and projective
clustering via volume sampling. Theory of Computing, 2(1):225–247, 2006.
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A ADDITIONAL PRELIMINARIES

This appendix collects definitions and lemmas used in the main text. A retraction RetrX : TXM→
M is a smooth map that satisfies RetrX(0X) = X and whose differential at the origin equals the
identity. Retraction-smoothness states that along retraction curves, the objective is upper-bounded
by a quadratic with constant L. For stochastic analysis, we assume unbiasedness and a bounded
second moment for the estimator. Block decompositions may be only approximately orthogonal; the
coherence parameter µ controls the magnitude of off-diagonal terms in inner products between unit
block directions.

B VARIANCE DECOMPOSITION PROOF

For completeness, we provide a short derivation of the variance identity. Write ξ̂−ξ =
∑

b(
Ib
πb
−1)ξ(b).

Since E[ Ibπb
− 1] = 0 and E[( Ib

πb
− 1)( Ic

πc
− 1)] = πbc

πbπc
− 1 for b ̸= c,

E∥ξ̂ − ξ∥2 =
∑
b

E
(

Ib
πb
− 1

)2

∥ξ(b)∥2 + 2
∑
b<c

E
(

Ib
πb
− 1

)(
Ic
πc
− 1

)
⟨ξ(b), ξ(c), (15)

⟩ =
∑
b

( 1
πb
− 1)v2b + 2

∑
b<c

(
πbc

πbπc
− 1

)
vbvc ρbc. (16)

This equals the variance because the estimator is unbiased.

C WATER-FILLING WITH CAPS

We solve min
∑

b v
2
b/pb subject to

∑
b pb = K and 0 < pb ≤ 1. The Lagrangian is

L(p, µ, α) =
∑
b

v2b
pb

+ µ
(∑

b

pb −K
)
+
∑
b

αb(pb − 1), (17)

with αb ≥ 0. First-order conditions yield −v2
b

p2
b
+ µ + αb = 0. If pb < 1, then αb = 0 and

pb =
√
v2b/µ = λvb with λ = 1/

√
µ. If λvb > 1, then pb = 1 and the corresponding αb is

positive. Let C = {b : λvb ≥ 1} and U = [B] \ C with |C| = m. The budget constraint becomes
m+ λ

∑
b∈U vb = K, hence λ = (K −m)/SU where SU =

∑
b∈U vb. Under block orthogonality,

E∥ξ̂∥2 =
∑
b∈C

v2b +
S2
U

K −m
. (18)

When blocks are nearly orthogonal, add 2
∑

b<c vbvcρbc to capture off-diagonal corrections.

D COHERENCE-BASED ROBUSTNESS BOUND

We quantify deviations from the independent-marginal term in the variance due to non-orthogonality
and dependence. Using the variance identity and triangle inequality,∣∣∣∣∣Var(ξ̂)−∑

b

(
1
πb
− 1

)
v2b

∣∣∣∣∣ =
∣∣∣∣∣2∑

b<c

(
πbc

πbπc
− 1

)
vbvc ρbc

∣∣∣∣∣ (19)

≤ 2
∑
b<c

∣∣∣ πbc

πbπc
− 1

∣∣∣ vbvc |ρbc| (20)

≤ 2µ
∑
b<c

∣∣∣ πbc

πbπc
− 1

∣∣∣ vbvc. (21)

Under Bernoulli, the factor is zero because πbc = πbπc. Under exact-K with negative association,
the factor is bounded by the strength of repulsion and the magnitudes of the off-diagonal cosines.
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E LOWER BOUND PROOF

Starting from the variance identity,

E∥ξ̂∥2 = ∥ξ∥2 +
∑
b

(
1
πb
− 1

)
v2b + 2

∑
b<c

(
πbc

πbπc
− 1

)
vbvc ρbc. (22)

Lower-bound the last term by −2
∑

b<c vbvc and obtain

E∥ξ̂∥2 ≥ ∥ξ∥2 +
∑
b

v2b
πb
−
∑
b

v2b − 2
∑
b<c

vbvc = ∥ξ∥2 +
∑
b

v2b
πb
− (

∑
b

vb)
2. (23)

By Cauchy–Schwarz,
∑

b v
2
b/πb ≥ (

∑
b vb)

2/
∑

b πb = (
∑

b vb)
2/K. Substituting proves the claim.

F EXACT-K VARIANCE COMPARISON PROOF

Let VarBern denote the variance under Bernoulli sampling with marginals πb. Then VarBern =∑
b(

1
πb
− 1)v2b . Under projection k-DPP,

VarDPP =
∑
b

(
1
πb
− 1

)
v2b − 2

∑
b<c

(K♯
bc)

2

πbπc
vbvcρbc. (24)

The difference VarBern−VarDPP equals the signed sum on the right. Under the aggregate alignment
assumption, this difference is nonnegative, and it is strictly positive if there exists a pair with positive
cosine and nonzero kernel entry.

G WALL-CLOCK RULE DERIVATION AND SCHEDULING

We model the per-step cost as C0 + C1K. Under independent water-filling, write G(K) ≈ a+ b/K
for slowly varying averages a and b. The time to a target tolerance behaves like T (K) ∝ (C0 +
C1K)(a+ b/K). Differentiating and setting to zero yields

(C0 + C1K)

(
− b

K2

)
+ C1

(
a+

b

K

)
= 0 ⇒ K⋆ =

√
C0 b

C1 a
. (25)

We adopt a myopic schedule that updates Kt using exponential moving averages of at =
∑

b v
2
t,b

and bt = (
∑

b vt,b)
2, clips Kt to [1, B], and refreshes the averages periodically to adapt to changing

regimes. Under exact-K, adjust the cost to include selection overhead in C0 and, when alignment
holds, replace b by an empirically reduced effective quantity.

H ALGORITHMS

This section provides pseudocode for the independent design with water-filling and for projection
k-DPP sampling.

Algorithm 1 GeoBIS one step with water-filling and probability floor
1: Input: current point X , blocks Vb, desired budget K, floor pmin

2: Compute block gradients ξ(b) and scores vb = ∥ξ(b)∥gX
3: Sort vb in descending order
4: Find capped set C and threshold λ such that p⋆b = min{1, λvb} satisfy

∑
b p

⋆
b = K

5: Set pb = min{1,max{pmin, p
⋆
b}} for all b

6: Sample Ib ∼ Bernoulli(pb) independently
7: Form ξ̂ =

∑
b(Ib/pb) ξ(b)

8: Update X ← RetrX(−η ξ̂)
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Algorithm 2 Projection k-DPP sampling with a candidate pool
1: Input: current X , blocks Vb, target size K, candidate multiplier α ≥ 1
2: Compute scores vb and unit directions ub = ξ(b)/vb for nonzero vb
3: Form a candidate set of size αK with the largest vb
4: Estimate cosines ρbc = ⟨ub, uc⟩gX within the candidate set
5: Form M = WGW with W = diag(

√
vb) over the candidate set

6: Compute the top-K eigenspace VK of M (randomized SVD or Oja updates)
7: Set K♯ = VKV ⊤

K and sample a projection k-DPP subset S
8: Use πb = K♯

bb and form ξ̂ =
∑

b∈S ξ(b)/πb

9: Update X ← RetrX(−η ξ̂)

I ORTHOGONAL AND STIEFEL DETAILS

On O(d), the Riemannian gradient can be written as ΩX with Ω skew-symmetric. Disjoint pair
blocks Eij − Eji lead to local scores vij =

√
2|Ωij |. Cayley-based retractions on small skew

subspaces are efficient and parallelizable. On St(d, p), the projection of the Euclidean gradient is
G−X sym(X⊤G), and row or column blocks are aligned with the metric. QR and polar retractions
are standard choices. In both cases, scoring is local and inexpensive compared to backpropagation,
which explains why independent water-filling is a practical default under short and medium sequence
lengths.
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