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Abstract

While direct policy optimization methods exist,
pioneering LLMs are fine-tuned with reinforce-
ment learning from human feedback (RLHF) to
generate better responses under the supervision
of a reward model learned from preference data.
One major challenge of RLHF is the inaccuracy
of the intermediate reward model, especially in
the tasks that requires complex reasoning for the
reward model to score a response. We find that
the reliability of the reward model varies across
responses assigned with different rewards. This
motivates us to filter the samples whose rewards
may be unreliable to improve the signal-to-noise
ratio during policy learning, resulting in Policy
Filtration for Proximal Policy Optimization (PF-
PPO). To choose a proper policy filtering strategy,
we use the coefficient of determination (R2) be-
tween the rewards and actual scores on filtered
samples as the metrics to help us find promis-
ing strategies since it measures how well the re-
wards filtered by PF-PPO indicate real perfor-
mance. We provide extensive experiments to val-
idate the effectiveness of PF-PPO in code gener-
ation and math reasoning tasks. In code gener-
ation, PF-PPO achieves the state-of-the-art per-
formance of 7-billion-parameter models on Hu-
manEval (+7.9%), MBPP (+0.7%), and LeetCode
Contest (+10.0%) which is a more challenging
benchmark created by us. In math reasoning,
PF-PPO yields performance increase using dif-
ferent reward models and benchmarks (Ape210K
and CMATH). Code is available on https://
github.com/swtheing/PF-PPO-RLHF.
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Figure 1. The reward model can be inaccurate, i.e., the actual score
of the response does not align well with the reward given by the
reward model. However, the reward model in specific regions (e.g.,
when it gives rewards higher than 0.8) is more reliable, i.e., the
responses with similar rewards result in consistent performance.
We use a fine-tuned policy to generate 10 responses for each of
the 164 prompts in the HumanEval dataset and use a reward model
trained with the common recipe to generate their rewards. We
group the responses with similar rewards and calculate the average
of their actual scores (i.e., the average correctness), indicating each
group by one point. To evaluate the reliability of the reward model,
we repeat the process ten times corresponding to the ten lines.

1. Introduction
Reinforcement Learning from Human Feedback (RLHF)
is a key technique to align large language models (LLMs)
with human values and preferences (Christiano et al., 2017;
Ziegler et al., 2019; Ouyang et al., 2022). RLHF has been
proven to be an essential process for LLMs to produce more
helpful, harmless, and honest responses (Bai et al., 2022).
Despite various non-RL algorithms such as DPO (Rafailov
et al., 2024) are proposed, state-of-the-art applications such
as ChatGPT/GPT-4 (OpenAI, 2023), Claude (Anthropic,
2023), and Gemini (Team et al., 2023) adopt the RL algo-
rithm (e.g., PPO) for policy optimization. The key challenge
of RLHF is the inaccuracy of the intermediate reward model.
While there are researchers investigate how to learn reliable
reward models (see e.g., Wang et al., 2024), we focus on how
to learn better policy under the guidance of such inaccurate
reward models.

We observe that, though the reward model gives inaccurate
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rewards in general, it can be more reliable in specific regions
(e.g., when it gives high rewards) than the others. The
observation is based on the simple experiment: We use a
policy model fine-tuned for code generation to generate
a set of responses for prompts in the HumanEval dataset.
Later, we score these responses using a reward model trained
with the common recipe (see Ouyang et al., 2022, and also
Section 2) and compare them with the actual scores. We find
that, across different sets of samples, the reward model is
more reliable when it gives high or low rewards than when
it gives moderate rewards (cf. Figure 1). This property also
holds on other datasets and tasks and see Appendix A for
more experiment results and further discussion. Considering
that RLHF updates the policy solely based on the reward
signal, this observation motivates us to filter out the samples
with possibly unreliable rewards aiming to improve RLHF
by increasing the signal-to-noise ratio on training samples.

Based on this motivation, we propose a simple modification
to the standard PPO-based RLHF algorithm (Ouyang et al.,
2022), resulting in Policy Filtration for PPO (PF-PPO). As
in standard PPO, we generate N samples for each prompt
and score these samples using the reward model. Then, we
use a filtered subset of these samples in PF-PPO for sub-
sequent policy training. We design filtering strategies to
improve the reliability of the reward model on the filtered
samples by maximizing the coefficient of determination
(R2) between the rewards and actual scores on these fil-
tered samples. We show that the rewards of these filtered
samples are more accurate, thus providing better training
signal and improving the performance of the policy. Our
method is also connected with reject sampling that filters
out responses with low rewards during inference to yield a
better response. Reject sampling is a simple but surprisingly
strong inference-time strategy, whereas we adopt similar
filtration in an RL algorithm.

Empirically, we show that PF-PPO can improve the per-
formance of LLMs on the tasks where the complex logic
makes the reward model inaccurate in general. We con-
duct extensive ablation studies to validate the design of our
algorithm. In code generation, we illustrate the effective-
ness of our algorithm by fine-tuning LLMs that achieves
new sota on HumanEval and MBPP benchmarks across
7-billion-parameter LLMs. We also create the LeetCode
Contest benchmark that includes competition-level coding
tasks for human experts and observe that PF-PPO results
in even more significant improvement on this challenging
benchmark. In math reasoning, we demonstrate that PF-
PPO can improve the performance across different types of
reward models.

2. Related Work
Limitation of reward model. The outcome of RLHF highly
relies on the quality of the reward model. Unfortunately,
the reward model can hardly provide accurate scores due to
1) the mis-specified reward modeling to represent human
preferences (Lambert et al., 2023; Pitis, 2023); 2) the pres-
ence of incorrect and ambiguous preferences in the dataset
(Ouyang et al., 2022; Bai et al., 2022), and 3) the poor gen-
eralization ability of the reward model (McKinney et al.,
2023). The inaccuracy of reward model is attributed as one
major cause of reward hacking and hallucination in LLMs
(Kalai & Vempala, 2024). While there are previous papers
try to improve the accuracy of the reward model itself (Wang
et al., 2024; Coste et al., 2023; Zhang et al., 2024), the ob-
jective of our paper is to design a better RLHF algorithm in
the face of inaccurate reward models. Moreover, Bai et al.
(2022) also mentioned that using the output of the reward
model directly in the RLHF process may not be a good
choice. A possible solution is to penalize the outputs with
low rewards more to improve the worst-case responses but
they did not further implement this.

Reject sampling. Reject sampling (or best-of-N sampling)
is a popular and effective inference-time strategy to enhance
the response of an LLM by generating N responses and
select the best one according to a reward model (Nakano
et al., 2021; Cobbe et al., 2021). This trick can yield good
responses while keeping a tight KL constraint to the original
policy. Inspired by its effectiveness in inference, researchers
also try to involve this trick in policy optimization. For
example, RAFT (Dong et al., 2023), BOND (Sessa et al.,
2024) and vBoN (Amini et al., 2024) learn a policy that
distills the best-of-N policy using supervised fine-tuning
losses. In a boarder sense, the rank information of the N
samples can also be leveraged. For example, RRHF (Yuan
et al., 2023) and PRO (Song et al., 2024) train the policy
using the combination of a ranking loss and a SFT loss (w.r.t.
the best response) based on N responses for each prompt.
However, these algorithms do not adopt an elaborate RL
algorithm, while state-of-the-art language models adopts RL
algorithms in alignment, benefiting from the generalization
power of the reward model especially in reasoning tasks (Ivi-
son et al., 2024). Unlike these algorithms, we adopt the idea
of reject sampling in the sampling phase of an RL algorithm
instead of using supervised learning losses.

RLHF algorithms in the face of inaccurate reward mod-
els. One key challenge in RLHF is the inaccuracy of reward
model, which can lead to reward over-optimization (Gao
et al., 2023; Skalse et al., 2022; Chaudhari et al., 2024). Op-
timization with a policy constraint (e.g., a KL divergence be-
tween the target policy and the reference policy) is a remedy
frequently used in not only RL-based algorithms (Ouyang
et al., 2022; Wu et al., 2023; Zhu et al., 2023) but also di-
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rect policy optimization algorithms (Rafailov et al., 2024;
Zhao et al., 2023; Liu et al., 2023). Going beyond policy
constraint, Moskovitz et al. (2023) only maximize rewards
up to a threshold to avoid excessive deviation from a pre-
trained policy. In this paper, we not only rely on the policy
constraint to optimize in the face of inaccurate rewards but
also try to avoid using samples with unreliable rewards.

3. Preliminary
Notations. We use [a, b] to denote the set {a, a+ 1, · · · , b}
and use [b] as the shorthand for [1, b]. We use ⊕ to denote
the concatenation on tokens, and use xa:b as the shorthand
for the concatenation (xa ⊕ xa+1 ⊕ · · · ⊕ xb). We use ci
and yi to indicate the i-th token in the context c (including
task instruction, prompt, inputs, etc.) and the response y
respectively.

MDP formulation. We adopt a Markov decision pro-
cess (MDP) formulation for RLHF. Specifically, language
generation is formulated as an MDP M = (S,A, P,R)
with states s ∈ S, actions a ∈ A, transition probabili-
ties P ∈ ∆(S)S×A, and the next-state-based reward func-
tion R : S → [0, 1]. Given a context c with Tc to-
kens, on each step t ∈ [Tc + 1, T ]1, the language model
πθ(at|st) selects a token at = yt−Tc

based on the state
st := (c1:Tc

⊕ y1:t−Tc−1). Then, the language model enters
the next state st+1 := (c1:Tc ⊕ y1:t−Tc) until the language
model completes the response y1:T−Tc . For simplicity, we
will also use contextual-bandit-style notations, e.g., we de-
note the language generation process as y ∼ πθ(·|c).

RLHF. Reinforcement learning with human feedback
(RLHF) is an important process to address objective mis-
match between the next-token-prediction objective in pre-
training and our expectation of LLMs to follow the instruc-
tions and assist humans to complete various tasks. We
briefly review the pipeline of RLHF.

• Supervised fine-tuning. In the supervised fine-tuning
(SFT) phase, a pre-trained LLM is fine-tuned with a high-
quality supervised dataset collected for specific down-
stream tasks. Typically, the LLM is fine-tuned with a
maximum likelihood loss, and we denote the output of
this phase as πSFT. While subsequent RLHF procedure
is necessary for training high-quality LLMs, this phase
alone can also yield an LLM that reasonably follows hu-
man instructions (see e.g., Longpre et al., 2023).

• Reward model learning. In the reward model learning
phase, we learn a reward model Rϕ(y|c) ∈ [−1, 1] param-
eterized by ϕ that scores the response y to the context c

1We fix the index of the terminal state to be the maximum
length T . To adapt responses of different lengths, we left pad the
context c.

based on collected preference data DHF := {(c, yw, yl)}
specifying that yw is a preferred response to c than yl. The
reward model is initialized by πSFT with an additional out-
put layer. A preference model links the reward model with
the preference data, and Bradley-Terry model (Bradley &
Terry, 1952) is a common choice:

P(yw ≻ yl|c) = σ(Rϕ(y
w|c)−Rϕ(y

l|c)), (1)

where σ is the sigmoid function. The learning objective
of reward model is to maximize the log-probability on
preference data:

max
ϕ

E(c,yw,yl)∼DHF [logP(yw ≻ yl|c)] . (2)

• RL fine-tuning. In this stage, we fine-tune the language
model πθ to maximize the rewards given by the reward
model with a policy constraint. The optimization problem
is formulated as

max
θ

EcEy∼πθ(·|c)
[
rϕ(y|c)− βDKL(πθ(·|c)||πSFT(·|c))

]
.

(3)
The second term prevents the learned policy deviating too
much from the SFT model, and this is a popular technique
to alleviate reward over-optimization (Jaques et al., 2019;
Stiennon et al., 2020).

PPO. Proximal policy optimization (PPO) (Schulman et al.,
2017) is an RL algorithm that uses a clipped version of the
policy gradient for more conservative and stable learning. It
becomes a standard algorithm for RL fine-tuning in RLHF
that optimizes the modified (cumulative) reward

rϕ(y|c)−
T∑

t=Tc+1

β
(
log πθ(yt|c⊕ y1:t−1)

− log πSFT(yt|c⊕ y1:t−1)
) (4)

where the reward model gives sparse rewards and the policy
constraint yields dense rewards. PPO is an on-policy algo-
rithm where the policy gradient is estimated based on the
samples collected by the current policy πθ.

Algorithm 1 Proximal policy optimization (PPO)

for iteration = 1, 2, · · · do
Fill the buffer B with samples collected by the current
language model πθ

Update πθ using PPO w.r.t. the cumulative reward
defined in Equation (4) based on B

end for

4. Methods
Our method is motivated by the observation that the reward
model is more reliable for the responses assigned with high-
/low rewards (cf. Figure 1). Consequently, we conjecture
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Algorithm 2 Policy Filtration Proximal policy Optimization
(PF-PPO)

for iteration = 1, 2, · · · do
Fill the buffer B with samples collected by the current
language model µθ

Update πθ using PPO w.r.t. the cumulative reward
defined in Equation (4) based on B

end for

that, if we wrap the policy with proper filtration during
policy optimization of RLHF, the reward model can avoid
yielding unreliable rewards and thus give better signal to
guide policy learning.

Policy filtration. Given an unfiltered policy model πθ(y|c)
that generates responses y to the context c, we denote the
corresponding filtered policy as µθ(y|c). We consider a
family of policy filtration, from which we can sample re-
sponses to the context c as follows: We first sample N re-
sponses from πθ(·|c) and rank them by the reward model Rϕ,
obtaining y1, · · · , yN with Rϕ(y1|c) ≥ · · · ≥ Rϕ(yN |c).
Then, given a weight vector w = (w1, · · · , wN ) satis-
fying

∑
i∈[N ] wi = 1, we sample a one-hot vector z =

(z1, · · · , zN ) from the categorical distribution parameter-
ized by w such that P[zi = 1] = wi. At last, the filtered
policy µθ(·|c) yields the response selected by z following
y =

∑
i∈[N ] ziyi.

We can define several filtered policies under this family.
Specifically, we obtain the best-of-N (BoN), best-random
(BR), and best-worst (BW) filtered policy by setting the
weight vector as follows:

wBoN = (1, 0, · · · , 0)

wBR =

(
1

2
,

1

2(N − 1)
, · · · , 1

2(N − 1)

)
wBW =

(
1

2
, 0, · · · , 0, 1

2

)
.

(5)

Training objective. Since our target is to learn a good
filtered policy µθ, we consider the follow objective:

max
θ

EcEy∼µθ(·|c)
[
rϕ(y|c)− βDKL(µθ(·|x)||πSFT(·|x))

]
.

(6)
In practice, use the samples collected by the unfiltered pol-
icy πθ as if they were collected by µθ in the original PPO
algorithm. This leads to Policy Filtration Proximal Policy
Optimization (PF-PPO) listed in Algorithm 2, which is an
algorithm that only modifies the sampling process of PPO.

Weight choice. By defining different weight vectors w, we
can obtain different policy filtering strategies for PF-PPO.
Our objective is to choose a weight vector w such that the
accuracy of the reward model on the responses generated

Policy No filter BoN BR BW
SFT 0.886 0.454 0.922 0.952

Middle RLHF 0.907 0.389 0.935 0.956
Final RLHF 0.876 0.431 0.916 0.946

Table 1. The coefficient of determination (R2) of the unfiltered
policy πθ and different filtered policies µθ between the rewards
given by the reward model and the actual scores. This metrics
correlates well with the final performance (see Section 5) and helps
us to determine the weight vector (or the policy filtering strategy)
in our algorithm PF-PPO. We choose the SFT policy and the
middle/final RLHF policy as the unfiltered policy πθ respectively.

by the filtered policies can be maximized. To measure this
accuracy, we choose a simple heuristic, the coefficient of de-
termination (aka R-squared or R2) (Draper, 1998) between
the rewards and the actual scores of the responses generated
by the policy. R2 measures how well the actual scores can
be predicted by the rewards with a linear model. Specifi-
cally, given a set of responses {(ci, yi)} sampled from the
filtered policy yi ∼ µθ(·|ci), we can collect the correspond-
ing reward Ri := Rϕ(yi|ci) and the actual score si. Then,
we fit a linear model f to predict the actual score based on
the reward and denote the predicted score as ŝi = f(Ri).

The R-squared is calculated as 1 −
∑

i(si−ŝi)
2∑

i(si−s̄)2 where s̄ is
the average of actual scores. Since PF-PPO optimizes the
policy based on the rewards on these responses, how well
these rewards indicate the actual performance is closely re-
lated to the final performance of our algorithm. We find R2

well correlates with the final performance and can imply the
level of reward over-optimization of the subsequent RLHF
algorithm, therefore serving as a useful metrics to determine
the weight vector used in PF-PPO.

To select a weight vector, we first checkpoint three poli-
cies πθ collected from different stages of a standard RLHF
process and collect responses using filtered policies µθ in
combination with different policy filtering strategies. Then,
we group the responses with similar rewards, record the
average actual score and reward for each group, and calcu-
late the R2 by treating each group as a sample point. We
exam how different policy filtering strategies can improve
the reliability of the rewards on the responses generated by
the corresponding filtered policies.

We present the results in Table 1. We observe that best-
random (BR) and best-worst (BW) can improve the reli-
ability of the given reward model on sampled responses
compared with unfiltered policy. The BoN strategy does
not improve the R2, which indicates that learning a BoN
filtered policy may not result in good performance in RL,
although learning for a best-of-N policy using supervised
learning presents good performance (Sessa et al., 2024).
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5. Experiments
5.1. Benchmarks

We conduct experiments on two tasks where the quality of
LLM responses can be precisely measured, code generation
and math reasoning. Specifically, we evaluate the algorithms
using the following benchmarks.

HumanEval benchmark and MBPP benchmark. Hu-
manEval (Chen et al., 2021) and MBPP (Austin et al., 2021)
are two popular benchmarks for evaluating code LLMs. Hu-
manEval includes 164 Python problems, each of which is
associated with multiple test cases used to assess the cor-
rectness of generated code in a zero-shot setting. Similarly,
MBPP includes 378 problems.

To train models for these two benchmarks, we select data
from 75k Magicoder-OSS-instruct (Wei et al., 2023b) and
55k evol-codealpaca-v1 (Luo et al., 2023) to construct the
SFT dataset, the reward model dataset, and the PPO query
dataset. For SFT, we use all the 130k training samples
from Magicoder-OSS-instruct and evol-codealpaca-v1. For
reward modeling, we curate 7k prompts from these 130k
samples and generate five responses using the SFT model for
each prompt. Following the methodology in Pal et al. (2024),
we select two responses with the maximum edit distance
to create response pairs for each prompt. We use these 7k
prompts with generated response pairs as the reward model
dataset. For policy optimization, we curate 3k prompts from
the 130k samples as the PPO query dataset.

LeetCode contest benchmark. To evaluate code LLMs
on more challenging problems, we construct the LeetCode
Contest benchmark. This benchmark includes competition-
level problems designed for human, and therefore is more
challenging since it requires human-level problem under-
standing and code generation skills. In this benchmark,
we collect 160 problems from LeetCode weekly contests
from July 2022 to January 2024. For each problem, we in-
clude 100 test cases to ensure the generated code is assessed
thoroughly.

To train models for this benchmark, we construct LeetCode
training datasets comprising 1,000 problems collected from
the LeetCode website. For SFT, we use self-generated cor-
rect answers to create the SFT dataset following the method-
ology in Setlur et al. (2024). For reward modeling, we
generate five responses using the SFT model for each of the
400 curated prompts and selected two responses for each
prompt following the similar procedure as above. For policy
optimization, we used the full 1,000 prompts as our PPO
query dataset to train the code LLM.

Ape210K and CMATH benchmarks. Ape210K (Zhao
et al., 2020) and CMATH (Wei et al., 2023a) are two popu-
lar Chinese benchmarks for elementary-school-level math

reasoning tasks. Ape210K contains 210k diverse math prob-
lems and we use a separate split of 5k problems for evalua-
tion, following the practice in Zhao et al. (2020). CMATH
contains 1.7k math word problems sourcing from actual
Chinese workbooks and exams. We check the correctness of
the answers using the automatic evaluation scripts provided
in Zhou et al. (2024). To train models for math reasoning,
we use the training split of 200k problems from Ape210K.

5.2. Implementation Details

We use deepseek-6.7B (Guo et al., 2024) and Qwen1.5-
7B (Team, 2024) as our base model for code generation
and math reasoning respectively. In the SFT phase, we
train on the SFT dataset for 5 epochs with the learning rate
1× 10−5, resulting in the SFT policy. In the reward model
training phase, we follow Ouyang et al. (2022) and train on
our reward model dataset for 1 epoch with the learning rate
1 × 10−5. In the PPO phase, we adopt the training tricks
from the blog (Shen et al., 2024). Specifically, we adopt re-
ward normalization and advantage normalization for stable
training. In addition, we set the learning rate for the policy
network as 5× 10−7 and learning rate for the value network
as 9 × 10−6. In the PPO algorithm, we collect responses
for the context in the PPO query dataset and iterate through
this dataset for 5 iterations (enough for convergence) and
select the best checkpoints on evaluation set as the outcome
policy. For each collected context-response pair, we use it
to accumulate loss and gradient for 3 times on average. We
use full parameter fine-tuning in all the phases. We provide
the source code for all experiments in the supplementary.

5.3. Experiment Results on Code Generation

Baselines. For code generation, we compare different vari-
ants of PF-PPO with reinforcement learning algorithms,
supervised fine-tuning methods, and direct policy optimiza-
tion methods. We use greedy decoding during inference
and pass@1 (Chen et al., 2021) as the performance met-
rics. For fair comparison between different baselines, we
re-implement these baselines with the same code base and
the same datasets. We also use the same reward model and
the same SFT policy if applicable.

Supervised fine-tuning. Starting from deepseek-6.7B, we
first fine-tune this policy on the SFT dataset. Other algo-
rithms learn based on this SFT policy. RAFT (Dong et al.,
2023) and BOND (Sessa et al., 2024) train the policy to fit
the best-of-N (BoN) responses or the BoN policy via dif-
ferent supervised learning losses. RAFT maximizes the log-
probability of the BoN response, whereas BOND minimizes
a combination of the forward and backward KL divergence
w.r.t. the BoN policy. We set the coefficient to combine
these two loss terms as βBOND = 1.0. BOND is an iterative
algorithm to fit the BoN policy based on the policy of the
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Family Method HumanEval MBPP LeetCode

Supervised Fine-Tuning SFT 74.2 70.8 15.2
RAFT (Dong et al., 2023) 76.9 71.3 17.8
BOND (Sessa et al., 2024) 80.8 75.2 30.0

Direct Policy Optimization DPO (Rafailov et al., 2024) 78.4 73.7 23.0
IPO (Azar et al., 2024) 78.2 72.9 23.2
KTO (Ethayarajh et al., 2024) 77.9 72.5 22.4
Iterative-DPO (Pang et al., 2024) 78.1 74.8 23.8

Reinforcement Learning PPO-S (Hu et al., 2024) 78.1 73.8 25.2
PPO-M (cf. Shao et al., 2024) 80.2 75.0 29.8
PF-PPO (BoN) 75.8 71.7 16.8
PF-PPO (BR) 82.9 75.9 33.0
PF-PPO (BW) 82.4 76.2 30.4

SOTA (7B models) Magicoder (Wei et al., 2023b) 76.8 75.7

Table 2. The performance of different algorithms on Code Generation. We compare pass@1 of PF-PPO (our algorithm) against
baseline methods. For each benchmark, we select the best score across 5 epochs for each method. The highest and the second highest
scores on each benchmark are highlighted in bold and underline respectively. All experiments are based on the same code base for fair
comparison, except for the scores reported by Magicoder which is the best 7B model so far.

last iteration, and we train the policy for 4 iterations.

Direct policy optimization. To implement direct policy opti-
mization methods, we use our reward model dataset as the
preference dataset required in these methods. We imple-
ment DPO (Rafailov et al., 2024), IPO (Azar et al., 2024),
KTO (Ethayarajh et al., 2024), and iterative DPO (Pang
et al., 2024). For iterative DPO, we train the DPO model for
three iterations. For each iteration, we construct the prefer-
ence dataset as follows: The prompts are sampled from the
reward model dataset and responses are generated by the
trained DPO model from the previous iteration (if exists) or
the previous SFT phase.

Reinforcement Learning. For standard RLHF, we use the
implementation from OpenRLHF (Hu et al., 2024), which
incorporates several advanced PPO training techniques and
has demonstrates strong performance on various bench-
marks. We denote this baseline as PPO-S. For our method
PF-PPO, we implement three variants (BoN, BR, and BW)
as introduced in the previous section. Since PF-PPO col-
lects multiple responses for a given prompt/context, we in-
troduce another baseline called PPO-M (PPO with multiple
responses) that uses all the N responses for training without
filtering.2 The effective difference between PPO-S and PPO-
M is that the buffer B in PPO-M contains more samples with
the same context c but with different responses y which may
provide detailed token-level instruction by comparing the
responses corresponding to the same context. Therefore,

2PPO-M can also be regarded as integrating GRPO (Shao et al.,
2024) into PPO, which has been adopted by Deepseek-V2 (Zhu
et al., 2024) and Qwen2 (Yang et al., 2024).

comparing with PPO-M can help us distinguish the effect of
collecting multiple responses and that of filtering collected
responses. For fair comparison, we ensure that the computa-
tional costs of PF-PPO for each iteration is no larger than
those of PPO-M and PPO-S, and we refer the readers to
Appendix C for the detailed analysis on the computational
efficiency of PPO-S, PPO-M, and PF-PPO.

Experiment results. We present the pass@1 results of dif-
ferent methods on the three benchmarks in Table 2. The
experiment results show that PF-PPO (BR) and PF-PPO
(BW) obtain the highest scores on these benchmarks, indi-
cating the effectiveness of our method. Furthermore, we
have the following observations:

• IPO and KTO (improved versions of DPO) do not out-
perform DPO when trained on properly selected datasets.
This indicates that appropriate dataset construction can
address the weaknesses of DPO found in previous papers,
enabling DPO to achieve a performance comparable to its
improved versions.

• PPO-based algorithms outperform SFT-based and DPO-
based algorithms in general, demonstrating that PPO is
superior to these algorithms on reasoning tasks. We spec-
ulate that the good performance of PPO may stem from
the generalization ability of the reward model and the
value network used in PPO, which can be used to trans-
form trajectory-level reward modeling to token-wise ad-
vantages and thus provides more fine-grained guidance.
Moreover, the gap between PPO-based algorithms and the
others becomes larger on the more challenging LeetCode
benchmark, which further highlights the advantage of RL
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Figure 2. Left: The training and evaluation reward of PPO-S, PPO-M, and FP-PPO on HumanEval. The training reward and the evaluation
reward are evaluated on the samples generated by the filtered policy µθ and the unfiltered policy πθ respectively. Right: The pass@1 of
PPO-S, PPO-M, and PF-PPO on the HumanEval benchmark.

on complex reasoning tasks

• BOND achieves the highest score among the baseline
methods. It demonstrates that iterative best-of-N (BoN)
distillation is an effective alignment approach. We spec-
ulate that BOND also benefits from its ability to reduce
learning on samples with unreliable rewards by selecting
the best candidate from a set of N samples.

• Motivated by the good performance of BOND, we imple-
ment PF-PPO (BoN) as a natural attempt to apply BoN to
an RL-based algorithm. However, PF-PPO (BoN) results
in poor performance. This indicates that compared with
SFT methods that only need good samples, bad samples
for the contrastive learning purposes are also important for
RL-based methods. This explains the reason why PF-PPO
(BR) and PF-PPO (BW) outperform PF-PPO (BoN).

• PF-PPO (BR) and PF-PPO (BW) outperform the others
with a larger gap challenging LeetCode tasks. We find
that the accuracy of the reward model decreases on this
benchmark since it is more difficult for the reward model
to distinguish whether one response is better than another,
especially when both responses contain errors. This de-
creases the reliability of the reward model in the moderate
reward region (cf. Figure 1). Consequently, PF-PPO
(BR) and PF-PPO (BW) can improve the performance in
these complex reasoning tasks by avoiding learning on
unreliable rewards.

Training curves. To provide a comprehensive view of the
three algorithms, we show the details of the training process.

We first present the training curves of PPO-S, PPO-M, and
PF-PPO in Figure 2 (left). The training rewards are evalu-
ated on the samples collected by the filtered policy µθ and
the evaluation rewards are calculated on the unfiltered policy

πθ. We observe that both the training reward and evaluation
reward of PPO-M and PF-PPO surpass those of PPO-S. This
indicates that sampling multiple responses from a context
enhances the performance of the RLHF method, consistent
with the findings in Shao et al. (2024). Moreover, in terms
of optimizing reward for the same given reward model, FP-
PPO achieves a higher or equal reward compared with PPO-
S and PPO-M, which indicates that the approximation made
in the FP-PPO (i.e., optimizing the unfiltered policy πθ as
if it were the filtered policy µθ) does not induce negative
effect on its capability of optimizing the reward.

We also show the pass@1 results of different algorithms in
Figure 2 (right). We observe that, while PF-PPO achieves
a similar reward to that of PPO-M, the pass@1 result of
PF-PPO exceeds that of PPO-M significantly. This results
from the fact that PF-PPO optimizes on the reliable region
of the reward model and thus alleviate the reward over-
optimization issue.

5.4. Alternative Policy Filtering Strategies

PF-PPO modifies the sampling procedure of standard PPO
by sampling N responses and randomly filtering responses
based on their ranks. In this part, we consider other alter-
natives to filter by threshold or down-weight the responses
with unreliable rewards in the sampling procedure.

• Filtering based on reward thresholds. Given a reward
model, we can filter the responses based on their rewards
using specified threshold. This results in three strate-
gies, PPO-top that only keeps the top samples whose
rewards exceeding a certain threshold, PPO-top-random
that keeps also keeps random samples with 50% proba-
bility, and PPO-top-bottom that keeps top samples and
bottom samples whose rewards are below another spec-
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Policy filtering
strategies

pass@1 on
Human

Eval

pass@1 on
MBPP

R2 based
on SFT
policy

PPO 78.1 73.8 0.782
PPO-M 80.8 75.0 0.886
PF-PPO (BoN) 75.8 71.7 0.454
PF-PPO (BR) 82.9 75.9 0.841
PF-PPO (BW) 82.4 76.2 0.952
PPO-top 80.5 71.2 0.621
PPO-top-rand 81.9 75.3 0.889
PPO-top-bott 81.7 75.4 0.927
PPO-pow-1 81.0 74.2 0.926
PPO-pow-2 81.3 75.4 0.939
PPO-pow-3 81.9 76.5 0.946

Table 3. The comparison on the pass@1 results of different policy
filtering strategies on HumanEval and their corresponding R2

based on the SFT policy. The background are colored based on
their values with blue and red indicating the minimum and the
maximum respectively.

ified threshold. These strategies can be regarded as the
threshold version of PF-PPO (BoN), PF-PPO (BR) and
PF-PPO (BW) respectively. The thresholds are tuned
coarsely to achieve good results on a separate validation
set.

• Filtering based on reward reweighting. Compared with
the above strategies that use thresholds, we consider a
softer version that adjusts the sample weights based on
their rewards, aiming at down-weight the samples with
moderate and possibly unreliable rewards. Specifically,
we increase the sample weight of the responses with
rewards in the reliable region and decrease the sample
weight otherwise. To achieve this goal, given a reward
model Rϕ that returns rewards in the range [−1, 1], we
assign the weight for the sample (c, y) proportional to
|Rϕ(y|c)|k and collect samples with these weights from
the buffer B to train the policy network and the value
network. We denote these strategies as PPO-pow-k.

A question then arises: how to choose a policy filtering
strategy from these strategies? To answer this question, we
propose to calculate the R2 between the rewards and the
actual scores on the samples collected by different strategies,
and then choose a strategy with good results on this metrics.
We can use the SFT policy as the unfiltered policy and
calculate R2 as described in Section 4. Since the SFT policy
is obtained prior to the PPO training phase, this metric can
be used to predict the results of different filtering strategies
before actually conduct costly PPO training.

We compare theses strategies on HumanEval and present
the performance of different policy filtering strategies and
their corresponding R2 in Table 3. We make the follow-
ing observations: First, the R2 of different strategies posi-
tively correlate with their performance in general, indicating

Ape210K CMATH

PPO-S + ORM 84.1 92.3
PF-PPO + ORM 86.2 95.1
PPO-S + Oracle 82.1 90.8
PF-PPO + Oracle 83.8 91.2
PPO-S + CRM 83.9 93.1
PF-PPO + CRM 84.3 94.2

Table 4. Comparison between PF-PPO and PPO-S on two math
benchmarks (Ape210K and CMATH) using three different reward
functions (the original reward model, the oracle model, and the
combined reward model). Better results for each reward model is
highlighted in bold.

R2 can serve as a tool to predict the performance of dif-
ferent policy filtering strategies. Second, different policy
filtering strategies (except for BoN versions) improve the
performance of the base PPO algorithms. This indicates
that filtering samples with unreliable rewards can increase
the signal-to-noise ratio of the reward model feedback and
thus improve the performance. Third, PF-PPO strategies
(which are rank-based) outperforms other strategies (which
are threshold-based or reweighting-based). This may due
to the fact that rank-based strategies are more robust to the
reward distribution of the given reward model.

Discussion. The performance of different policy filtering
strategies may vary across different tasks, different reward
models, and different base models. Therefore, although
we find that PF-PPO (BR) and PF-PPO (BW) are the best
strategies in our setting, other policy filtering strategies
may be a better choice in other settings. Therefore, a more
practical procedure should be first calculate the R2 using
the given reward model and the corresponding SFT policy
on the specific task and select candidate policy filtering
strategies. Note that R2 is not a perfect tool to select policy
filtering strategies and we leave seeking for better predictive
metrics as a future research direction.

5.5. Experiment Results on Math Reasoning

To evaluate the effectiveness of PF-PPO in other domains
and different types of reward models, we applied PF-PPO
to solve math problems. We consider three types of reward
models: the original reward model (ORM) that is trained on
preference datasets using a Bradley–Terry model (Bradley
& Terry, 1952), an oracle model (Oracle) that extracts the
final answer from the response and compares it with the
ground truth, and a combined reward model (CRM) that
integrates the above two models, similar to the approach
used in Qwen-Math (Yang et al., 2024). We compare PF-
PPO (BR) to PPO-S using these reward models.

We can observe that PF-PPO consistently outperforms the
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Task Evaluation Set Size BO1 Accuracy (%) BO5 Accuracy (%)

Logic Reasoning 1,203 48.9 (+2.3) 63.8 (+2.8)
Math 1,759 69.7 (+1.1) 79.9 (+2.3)
Code 3,933 55.8 (-0.2) 67.4 (+0.1)
STEM 4,466 54.7 (-0.1) 63.1 (+0.1)
Complex Tasks 2,990 9.5 (+1.0) 14.9 (+0.6)
Instruction Following 1,525 49.6 (+1.7) 59.8 (+1.8)
Knowledge 775 47.3 (+1.9) 58.3 (+1.8)
Language Understanding 680 63.8 (+1.6) 68.4 (+3.8)

Table 5. Improvement of PF-PPO compared with PPO-S on a wide range of tasks. We present the best-of-1 (BO1) and best-of-5 (BO5)
accuracies for PF-PPO and the accuracy improvement of PF-PPO compared to PPO-S. The results with significant improvement are
highlighted in bold.

PPO algorithm on these two benchmarks across different
reward models. In addition, the experiment results indicate
that even if we can have access to the ground truth, using
the oracle as the reward function does not perform as well
as using a reward model (either the original reward model
or the combined model). This finding is consistent with
experiment results in Qwen-Math (Yang et al., 2024) and
Deepseek-Math (Shao et al., 2024).

5.6. Experiment Results on Wider Range of Tasks

To further validate the broader effectiveness of our method,
we conducted experiments across diverse domains using
Doubao-25k (policy and reward model backbone). Tasks in-
cluded logic reasoning, math, code generation, STEM prob-
lems, complex tasks, instruction following, knowledge QA,
and language understanding. Each task has distinct evalu-
ation sets and verifiers to assess response correctness. We
consider the multi-task scenario where one model is trained
to complete various tasks. We present the results (accuracy
improvement over vanilla PPO) in Table 5. We highlight
statistically significant changes (exceeding ±0.5%, based
on test case counts) in bold. These results demonstrate
PF-PPO’s consistent effectiveness across tasks.

6. Conclusion
In this paper, we propose a new reinforcement learning with
human feedback (RLHF) method, Policy Filtration for
Proximal Policy Optimization (PF-PPO), aimed at miti-
gating the adverse effects of reward noise. When training the
reward model using the Bradley-Terry approach, the reward
signal is generally more reliable in the high or low reward
regions but less reliable in the moderate reward regions. Mo-
tivated by this observation, we adopt a rank-based method
to selectively use sample from these reliable regions more
in PPO to improve the quality of the signal provided by the
reward model. We conduct comprehensive experiments to
demonstrate that PF-PPO consistently outperforms existing

baselines. Additionally, we analyze PF-PPO, standard PPO,
and PPO with multiple responses in details and show that
filtering samples with unreliable rewards can improve the
performance of the outcome policy.
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A. Reward Model
The design of our algorithm is motivated by the observation that the reward model is less reliable when it yields moderate
rewards. To provide more evidence that this property is universal across a broader range of benchmarks, we also analyze the
reward function on different benchmarks of code generation (MBPP and LeetCode) and math reasoning (Ape210K (Zhao
et al., 2020) and CMATH (Wei et al., 2023a)). We repeat the process in Figure 1 on these benchmarks and plot the figures in
Figure 3 and Figure 4. Note that we train different reward functions based on the datasets from these two benchmarks. We
observe that the property holds on these four additional benchmarks across different tasks, indicating this property may
extend to broader fields.

Intuitively, this property should be universal to a broader range of tasks, e.g., on Helpfulness and Harmlessness tasks (Bai
et al., 2022). For code generation tasks, it is quite common that some samples (e.g., the response matches the known correct
answer or the response contains an obvious error) are easier to evaluate than others (e.g., the response tries to solve the
problem by a novel approach). Therefore, those samples that are hard to evaluate by human should also be hard instances
for the reward model.
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(a) The actual scores vs. the reward values for the reward model evaluated on MBPP

(b) The actual scores vs. the reward values for the reward model evaluated on LeetCode

Figure 3. We provide additional evidence that the reward model is less reliable when it yields moderate rewards than when it yields high
or low rewards. We conduct the same statistics as in Figure 1 but on different benchmarks. Specifically, the reward models for the MBPP
and LeetCode benchmarks are trained separately using the corresponding datasets for these two benchmarks. The MBPP and LeetCode
benchmarks contains 378 and 1570 prompts respectively and we collect 10 responses for each prompt using a fine-tuned policy. We group
the responses with similar rewards and calculate the average of their actual scores (i.e., the average correctness), indicating each group by
one point. To evaluate the reliability of the reward model, we repeat the process ten times resulting in ten lines.
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(a) The actual scores vs. the reward values for the reward model evaluated on Ape210k

(b) The actual scores vs. the reward values for the reward model evaluated on CMATH

Figure 4. We provide additional evidence that the reward model is less reliable when it yields moderate rewards than when it yields high or
low rewards. We conduct the same statistics as in Figure 1 but on different benchmarks. Specifically, the reward models for the Ape210k
and CMATH benchmarks are trained separately using the corresponding datasets for these two benchmarks. We collect 10 responses for
each prompt in the dataset using a fine-tuned policy. We group the responses with similar rewards and calculate the average of their actual
scores (i.e., the average correctness), indicating each group by one point. To evaluate the reliability of the reward model, we repeat the
process ten times resulting in ten lines.

15



Policy Filtration for RLHF to Mitigate Noise in Reward Models

B. Qualitative results
In this section, we provide qualitative results on 1) how responses with high/middle/low rewards look like and why responses
with middle rewards are unreliable; and 2) the qualitative difference between the code generated by the PF-PPO policy and
the standard PPO (PPO-S) policy.

B.1. Analysis on the the responses associated with different rewards

We present a prompt along with several responses, including a correct response but assigned with a low reward, an incorrect
response but assigned with a high reward, an incorrect response with a low reward, and a correct response with a high
reward. The prompt describes a coding problem that requires to convert fractions to decimals.

We have the following findings:

• For the correct response but assigned with a low reward, the generated code is less clear and harder to read. For
example, the code may mix several steps into one line.

• For the incorrect response but assigned with a high reward, the response incorrectly mixes two correct approaches.
This mistake can hardly be identified by the reward model (and even GPT-4).

• For the incorrect response assigned with a low reward, the response contains an obvious mistake which is easily
detected by the reward model.

We also provide detailed analysis into the solutions to this problem. The given prompt is a coding task to convert fraction to
decimal.

1 Given two integers representing the numerator and denominator of a fraction, return
the fraction in string format.

2 If the fractional part is repeating, enclose the repeating part in parentheses.
3 If multiple answers are possible, return any of them.
4 It is guaranteed that the length of the answer string is less than 104 for all the

given inputs.
5
6 Please complete the following python code precisely:
7 ‘‘‘python
8 class Solution:
9 def fractionToDecimal(self, numerator: int, denominator: int) -> str:

10 ‘‘‘

This is a correct response with a high reward. This solution is thorough with clear variable names and properly structured
steps. It is easier to read due to breaking down steps explicitly such as calculating the integer part and handling the remainder.

1
2
3 To solve the problem of converting a fraction to its decimal representation, we can

follow these steps:
4
5 1. **Determine the sign of the resultant decimal**: If both the numerator and the

denominator are negative, the result should be positive. Otherwise, the result
will have a leading minus sign if and only if either the numerator or the
denominator is negative.

6
7 2. **Convert the numerator and denominator to positive values**: Since the division

process involves integer division and the decimal part requires modulus operation
, both numerator and denominator should be made positive for easier computation.

8
9 3. **Calculate the integer part**: The integer part is the result of integer division

of the numerator by the denominator.
10
11 4. **Manage the remainder**: As we perform integer division, the remainder will be

used to form the fractional part. This remainder will be treated as the new
numerator for the next step.
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12
13 5. **Use a dictionary to manage repetition**: To detect recurring decimals, we need

to keep track of all remainders we have seen and their respective positions in
the decimal expansion. If a remainder repeats, it indicates a recurring decimal.

14
15 6. **Build the result string**: Start with the integer part, then append a decimal

point. Then, use a loop to compute each digit of the fractional part. Use the
dictionary to detect and mark any recurring decimals.

16
17 7. **Return the result**: Finally, return the constructed string for the result.
18
19 Below is the complete Python code for the ‘fractionToDecimal‘ method:
20
21 ‘‘‘python
22 class Solution:
23 def fractionToDecimal(self, numerator: int, denominator: int) -> str:
24 if numerator == 0:
25 return "0"
26
27 # Determine the sign of the result
28 result_sign = "-" if (numerator < 0) ˆ (denominator < 0) else ""
29
30 # Make both numerator and denominator positive
31 numerator = abs(numerator)
32 denominator = abs(denominator)
33
34 # Calculate the integer part of the result
35 integer_part = numerator // denominator
36 remainder = numerator % denominator
37
38 # If there’s no remainder, return the integer part
39 if remainder == 0:
40 return result_sign + str(integer_part)
41
42 # Prepare to build the fractional part
43 result = []
44 result.append(".") # Start with the decimal point
45 remainder_map = {} # To keep track of remainders and their positions
46
47 # Process each place value in the fractional part
48 position = 0
49 while remainder not in remainder_map:
50 remainder_map[remainder] = position
51 remainder *= 10
52 result_digit = remainder // denominator
53 result.append(str(result_digit))
54 remainder %= denominator
55 if remainder == 0:
56 break
57 position += 1
58
59 # If there’s a repeat, insert parentheses
60 if remainder in remainder_map:
61 repeat_start = remainder_map[remainder]
62 result.insert(repeat_start + 1, "(")
63 result.append(")")
64
65 return result_sign + str(integer_part) + "".join(result)
66 ‘‘‘
67
68 This code correctly handles edge cases like zero denominator, negative numbers,

repeating decimals, and ensures that the result is less than 10ˆ4 characters long
.
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This is a correct response but assigned with a low reward. Compared with the previous response with high reward, this
response mixes multiple operations in one line, making it harder to understand (e.g., Line 34).

1 To solve the problem of converting a fraction to its decimal representation, we can
use the following approach:

2
3 1. Handle the sign of the result.
4 2. Calculate the integral part of the result, which is the part before the decimal

point.
5 3. Handle the case where the fractional part is repeating.
6 4. Calculate the fractional part and handle cycles.
7
8 Here’s the completed Python code:
9

10 ‘‘‘python
11 class Solution:
12 def fractionToDecimal(self, numerator: int, denominator: int) -> str:
13 # Handle sign of result
14 sign = ’-’ if numerator * denominator < 0 else ’’
15 numerator, denominator = abs(numerator), abs(denominator)
16
17 # Calculate integral part
18 integral_part = numerator // denominator
19
20 # Calculate fractional part
21 remainder = numerator % denominator
22 if remainder == 0:
23 return sign + str(integral_part)
24
25 # Use a dictionary to track remainders and their positions
26 # in the fractional part to detect cycles
27 seen_remainders = {}
28 result = []
29 index = 0
30
31 while remainder not in seen_remainders:
32 seen_remainders[remainder] = index
33 result.append(str(remainder * 10 // denominator))
34 remainder = (remainder * 10) % denominator
35 if remainder == 0:
36 break
37 index += 1
38
39 # If there’s a cycle, insert the parentheses
40 if remainder in seen_remainders:
41 index = seen_remainders[remainder]
42 result.insert(index, ’(’)
43 result.append(’)’)
44
45 return sign + str(integral_part) + ’.’ + ’’.join(result)
46 ‘‘‘
47
48 ### Explanation:
49
50 - We first handle the signs of the numerator and denominator.
51 - We then calculate the integral part of the result by integer division.
52 - If the remainder is zero, the fraction is an integer and we return it as a string.
53 - We use a dictionary ‘seen_remainders‘ to keep track of the positions where each

remainder appears, allowing us to detect cycles.
54 - If a cycle is detected, we insert parentheses at the start of the repeating part.
55 - Finally, we assemble the result as a string and return it.

This is an incorrect response but assigned with a high reward. In Line 32, the decimal point is added to the result list
but is not later counted when getting wrapped by the parentheses, leading to the wrong format. This is a mixture of two
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correct approaches, one that adds the decimal points to result but sets an offset for this (cf. Line 44 and Line 62 in the
first response) and one that outputs the decimal point separately (cf. Line 45 in the second response).

1 To solve the problem of converting a fraction to a decimal string, we need to handle
the following cases:

2
3 1. **Integers**: If the numerator and denominator are both integers, the decimal

representation is straightforward: divide the numerator by the denominator and
convert the result to a string.

4
5 2. **Decimal Representation**: If the division produces a remainder, it indicates a

repeating decimal pattern. Use a dictionary to keep track of the remainders and
their corresponding positions in the resultant decimal string. Whenever a
remainder repeats, enclose the repeating part in parentheses.

6
7 3. **Handling Negative Numbers**: Handle both positive and negative numbers

appropriately.
8
9 Here is the complete code for the solution:

10
11 ‘‘‘python
12 class Solution:
13 def fractionToDecimal(self, numerator: int, denominator: int) -> str:
14 # Handle sign of the result
15 sign = ’-’ if numerator * denominator < 0 else ’’
16 numerator, denominator = abs(numerator), abs(denominator)
17
18 # Calculate integral part
19 integral_part = numerator // denominator
20 numerator %= denominator
21
22 # Handle zero remainder
23 if numerator == 0:
24 return sign + str(integral_part)
25
26 # Prepare list to store the decimal digits
27 result = []
28 # Dictionary to keep track of remainders and their positions
29 remainder_map = {}
30
31 # Initialize the decimal part
32 result.append(’.’)
33 position = 0
34
35 # Loop until the remainder repeats or becomes zero
36 while numerator > 0:
37 # If the remainder has already appeared before, it’s a repeating part
38 if numerator in remainder_map:
39 result.insert(remainder_map[numerator], ’(’)
40 result.append(’)’)
41 break
42
43 # Record the position of the current remainder
44 remainder_map[numerator] = position
45 numerator *= 10
46 result.append(str(numerator // denominator))
47 numerator %= denominator
48 position += 1
49
50 return sign + str(integral_part) + ’’.join(result)
51 ‘‘‘
52
53 ### Explanation:
54 - We use a dictionary ‘remainder_map‘ to track the position of each remainder seen.

This helps us identify the repeating part of the decimal if it exists.
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55 - The loop continues until the remainder becomes zero or repeats itself.
56 - If the remainder repeats, we insert the opening ‘(‘ immediately before the repeated

part, and close it with ‘)‘.
57 - The result is assembled from the integral part, the decimal point, and the decimal

digits or parenthesized pattern.

This is an incorrect response with a low reward. In Line 59-61, the program contains an obvious error that it cannot handle
the scenario where there exists a decimal part but does not contain any repeating part.

1
2
3 To solve the problem of converting a fraction to its decimal representation, we need

to consider the following steps:
4
5 1. **Handling Zero Denominator**: If the denominator is zero, it’s impossible to

divide, so we should return "NaN" (Not a Number) or handle it according to the
problem constraints.

6
7 2. **Handling Negative Numbers**: If either the numerator or denominator is negative,

the sign of the result should be negative.
8
9 3. **Calculate the Integral Part**: The integral part is the part before the decimal

point, which can be calculated by integer division.
10
11 4. **Calculate the Fractional Part**:
12 - Use a dictionary to keep track of the positions where the same remainder started

repeating.
13 - Divide the remainder by the denominator repeatedly, building the fractional part

digit by digit.
14 - If the remainder repeats, it indicates a recurring decimal, and we should insert

parentheses to mark it.
15
16 Here’s the complete code implementation:
17
18 ‘‘‘python
19 class Solution:
20 def fractionToDecimal(self, numerator: int, denominator: int) -> str:
21 # Handle zero denominator
22 if denominator == 0:
23 return "NaN"
24
25 # Handle signs
26 result_sign = ’-’ if (numerator < 0) ˆ (denominator < 0) else ’’
27 numerator, denominator = abs(numerator), abs(denominator)
28
29 # Calculate the integral part
30 integral_part = numerator // denominator
31 numerator %= denominator
32
33 # Initialize the fractional part list and a dictionary to track remainders
34 fractional_part = []
35 remainder_index = {}
36
37 # Continue while there is a remainder
38 position = 0
39 while numerator > 0:
40 # If the remainder has already occurred before, it’s a repeating decimal
41 if numerator in remainder_index:
42 break
43
44 # Record this remainder’s position
45 remainder_index[numerator] = position
46
47 # Calculate the next digit
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48 numerator *= 10
49 fractional_part.append(str(numerator // denominator))
50 numerator %= denominator
51 position += 1
52
53 # Build the result
54 if not fractional_part:
55 # No repeating part, return integral part
56 return result_sign + str(integral_part)
57 else:
58 # Repeating part detected
59 repeating_start = remainder_index[numerator]
60 return result_sign + str(integral_part) + ’.’ + ’’.join(fractional_part[:

repeating_start]) + \
61 ’(’ + ’’.join(fractional_part[repeating_start:]) + ’)’
62 ‘‘‘
63
64 ### Explanation:
65
66 - **Integral Part**: We calculate the integral part as ‘numerator // denominator‘.
67 - **Non-repeating Part**: We use a dictionary to track positions of remainders, and

if the same remainder appears again, we know the fraction is repeating.
68 - **Repeating Part**: When a repeating part is detected, we insert parentheses around

the repeating part.
69 - **Edge Cases**: We handle edge cases such as negative numbers, zero denominator,

and ensuring the result is within the constraints of the problem.
70
71 This implementation correctly handles both whole number and repeating decimal results

, adhering to the problem statement’s requirements.

B.2. Analysis on the responses generated by PF-PPO compared with standard PPO (PPO-S)

We compare the answers from PF-PPO and PPO-S respectively for the same prompts, and conclude that the answer from the
PF-PPO policy is more inclined to follow a standard approach and the response is more concise (or shorter), making it easier
to understand and implement.

Specifically, we present their responses for the prompt that request the agent to write a code to find all safe nodes in a
directed graph. The two responses given by PF-PPO and PPO-S are both correct. However, the difference is that PF-PPO
adopts the deep first search (DFS) method while PPO-S adopts the topological sorting approach. The logic is simpler for
DFS and the implementation is easier, making it easier to understand. Both approaches have roughly equivalent time and
space costs, but the DFS method is slightly more space efficient.

These findings suggest an advantage in terms of readability and implementation simplicity when using the PF-PPO policy
(e.g., using recursion instead of using a queue to track BFS).

Prompt (find all safe nodes in a directed graph):

1 There is a directed graph of n nodes with each node labeled from 0 to n - 1. The
graph is represented by a 0-indexed 2D integer array graph where graph[i] is an
integer array of nodes adjacent to node i, meaning there is an edge from node i
to each node in graph[i].

2 A node is a terminal node if there are no outgoing edges. A node is a safe node if
every possible path starting from that node leads to a terminal node (or another
safe node).

3 Return an array containing all the safe nodes of the graph. The answer should be
sorted in ascending order.

4
5 Please complete the following python code precisely:
6 ‘‘‘python
7 class Solution:
8 def eventualSafeNodes(self, graph: List[List[int]]) -> List[int]:
9 ‘‘‘
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The response from PF-PPO:

1
2
3 To solve the problem of finding all safe nodes in a directed graph, we can use a

topological sorting approach. The idea is to explore the graph using depth-first
search (DFS) and maintain a status for each node indicating whether it is safe or
not. Here’s the step-by-step breakdown of the solution:

4
5 1. **Initialize Status**: We will use a status array to track the safety of each node

. 0 means the node is not visited yet, 1 means it is a safe node, and -1 means it
is currently in the recursion stack (i.e., being processed in the current DFS

path).
6
7 2. **DFS Function**:
8 - For each node, if it’s safe or not is already determined (i.e., status is not 0)

, return the status.
9 - Set the status to -1 to indicate that we are currently processing it.

10 - For each neighbor of the current node, call DFS. If any neighbor returns false,
it indicates that this path has a cycle and the node is not safe.

11 - If no cycle is found for all neighbors, mark the node as safe and return true.
12
13 3. **Iterate over all nodes**: Starting from each node that is not visited, perform a

DFS.
14
15 4. **Collect Results**: All nodes that return true from DFS are safe nodes. Collect

these node indices and return them in ascending order.
16
17 Here’s the complete Python code for the solution:
18
19 ‘‘‘python
20 from typing import List
21
22 class Solution:
23 def eventualSafeNodes(self, graph: List[List[int]]) -> List[int]:
24 n = len(graph)
25 # status: 0 for unvisited, 1 for safe, -1 for processing
26 status = [0] * n
27
28 def dfs(node):
29 # If the node is already processed (i.e., marked as safe or unsafe),

return its status
30 if status[node]!= 0:
31 return status[node] == 1
32
33 # Mark the node as being processed
34 status[node] = -1
35
36 # Visit all neighbors
37 for neighbor in graph[node]:
38 # If any neighbor is unsafe or in a cycle, the node is unsafe
39 if not dfs(neighbor):
40 return False
41
42 # All neighbors are safe, mark the node as safe and return true
43 status[node] = 1
44 return True
45
46 # Try to DFS from each node
47 safe_nodes = []
48 for i in range(n):
49 if dfs(i):
50 safe_nodes.append(i)
51
52 return safe_nodes
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53 ‘‘‘
54
55 ### Explanation:
56 - **Topological Sorting**: We are using DFS to check if a path exists from a node to

a terminal node. If a cycle is detected, the node is not safe.
57 - **DFS Function**: The ‘dfs‘ function determines if a node is safe by checking all

of its neighbors recursively. If any neighbor is unsafe or in a cycle, the node
is unsafe.

58 - **Status Tracking**: The status array is used to track if a node is safe or not,
and helps avoid redundant computations.

59 - **Result Collection**: All nodes that return ‘True‘ from the ‘dfs‘ function are
safe nodes, and are added to the result list.

60
61 This approach efficiently identifies safe nodes by using a topological sorting

approach and a depth-first search approach to detect cycles.

The response from PPO-S:

1
2
3 To solve this problem, we can use a \red{topological sort approach} combined with a

depth-first search (DFS) approach to determine the terminal and safe nodes in the
graph. The topological sort ensures that we process nodes in the order of their

out-degree, which is suitable for directed acyclic graphs (DAGs), where no cycles
can form.

4
5 The idea is to traverse the graph using DFS, keeping track of the current path during

traversal to detect cycles. Nodes that do not lead to a cycle are considered
terminal, and nodes that are part of a cycle or are part of a path that leads to
a cycle are considered unsafe.

6
7 Here’s the Python implementation of the solution:
8
9 ‘‘‘python

10 from typing import List
11 from collections import defaultdict, deque
12
13 class Solution:
14 def eventualSafeNodes(self, graph: List[List[int]]) -> List[int]:
15 # Initialize a dictionary to store the out-degree of each node
16 out_degree = defaultdict(int)
17 # Initialize a dictionary to store the dependencies (incoming edges) of each

node
18 dependencies = defaultdict(list)
19
20 n = len(graph)
21 # Build the dependencies and out-degree dictionaries
22 for u in range(n):
23 out_degree[u] = len(graph[u])
24 for v in graph[u]:
25 dependencies[v].append(u)
26
27 # Initialize a queue for BFS and a set to keep track of safe nodes
28 queue = deque()
29 safe_nodes = set()
30
31 # Add all nodes with no outgoing edges (terminals) to the queue
32 for u in range(n):
33 if out_degree[u] == 0:
34 queue.append(u)
35
36 # BFS to find safe nodes
37 while queue:
38 u = queue.popleft()
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39 safe_nodes.add(u)
40 # For each node v that depends on u, decrement its out-degree
41 # If v’s out-degree becomes zero, it becomes a terminal
42 for v in dependencies[u]:
43 out_degree[v] -= 1
44 if out_degree[v] == 0:
45 queue.append(v)
46
47 # Sort and return safe nodes
48 return sorted(safe_nodes)
49 ‘‘‘
50
51 ### Explanation:
52 1. **Dependencies**: We build a ‘dependencies‘ dictionary, where each key is a node

and the values are a list of nodes that depend on the key. This is used to track
back edges.

53 2. **Out-degree**: We also keep track of the out-degree of each node. This is used to
determine which nodes are terminal (i.e., have no outgoing edges).

54 3. **Topological Sort (BFS)**: We start by adding all nodes with no outgoing edges (
terminals) to the queue. We then process each node from this queue. For each node
, we mark it as safe, reduce the out-degree of its dependencies, and if any of
those dependencies become terminals (i.e., have no outgoing edges), they are
added to the queue. This ensures we process all nodes that are part of cycles and
prevent future revisits to nodes involved in such cycles.

55 4. **Result**: The safe nodes are collected and sorted and returned as the final
result.

56
57 This approach ensures that we correctly identify terminal nodes and use them to

establish safe nodes, as well as handle cycles in the graph.

C. Discussion on the computational costs
PPO-S, PPO-M, and PF-PPO all collect different number of responses per query and train using different number of samples.
For clarity, we list the computational complexity of these algorithms in Table 6. Note that, for all algorithms, we select the
best checkpoint on the evaluation set and report the performance of this checkpoint. Combining the results in Table 6 and
Figure 2, we can draw the following conclusions: First, the total computational complexity of PPO-S and PPO-M is almost
the same, and the only difference is that PPO-M is more likely to learn from different responses with the same query in the
same batch or adjacent batches, which improves the performance. Second, the computational complexity of PF-PPO is less
than that of PPO-S and PPO-M, while PF-PPO outperforms them. This indicates the effectiveness of our method.

PPO-S PPO-M PF-PPO (BR / BW)

Queries sampled per iteration 5n n n
Responses sampled per query 1 5 5
#Query-response pairs per iteration 5n 5n 5n
Reward model forward pass per iteration 5n 5n 5n
Critic forward&backward pass per iteration 5nm 5nm 2nm
Policy forward&backward pass per iteration 5nm 5nm 2nm

HumanEval 100% +2.69% +6.15% / +5.51%
MBPP 100% +1.63% +2.85% / +3.25%
LeetCode 100% +18.25% +30.95% / +20.63%

Table 6. Comparison of computational complexity and the performance of PPO-S, PPO-M, and PF-PPO. We use n to denote the number
of queries in the PPO query dataset, and use m to denote the number of PPO epochs (i.e., each query-response pair is used to accumulate
loss and gradient for m times on average). PPO-M and PF-PPO collect N = 5 responses per query, and PF-PPO select 2 out of the
N = 5 responses (on average) for network update. We also show the performance improvement of PPO-M and PF-PPO based on PPO-S.
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