
LISA: Layerwise Importance Sampling for
Memory-Efficient Large Language Model Fine-Tuning

Rui Pan♡∗, Xiang Liu♣∗, Shizhe Diao♦, Renjie Pi♡, Jipeng Zhang♡,
Chi Han♠, Tong Zhang♠

♡The Hong Kong University of Science and Technology
♣The Hong Kong University of Science and Technology(Guangzhou)

♦NVIDIA ♠University of Illinois Urbana-Champaign
{rpan, sdiaoaa, rpi, jzhanggr}@ust.hk xliu886@connect.hkust-gz.edu.cn

{chihan3, tozhang}@illinois.edu

Abstract

The machine learning community has witnessed impressive advancements since
large language models (LLMs) first appeared. Yet, their massive memory con-
sumption has become a significant roadblock to large-scale training. For instance,
a 7B model typically requires at least 60 GB of GPU memory with full parameter
training, which presents challenges for researchers without access to high-resource
environments. Parameter efficient fine-tuning techniques such as Low-Rank Adap-
tation (LoRA) have been proposed to alleviate this problem. However, in most
large-scale fine-tuning settings, their performance does not reach the level of full
parameter training because they confine the parameter search to a low-rank sub-
space. Attempting to complement this deficiency, we investigate the layerwise
properties of LoRA on fine-tuning tasks and observe an unexpected but consistent
skewness of weight norms across different layers. Utilizing this key observation, a
surprisingly simple training strategy is discovered, which outperforms both LoRA
and full parameter training in a wide range of settings with memory costs as low as
LoRA. We name it Layerwise Importance Sampled AdamW (LISA), a promising
alternative for LoRA, which applies the idea of importance sampling to differ-
ent layers in LLMs and randomly freeze most middle layers during optimization.
Experimental results show that with similar or less GPU memory consumption,
LISA surpasses LoRA or even full parameter tuning in downstream fine-tuning
tasks, where LISA consistently outperforms LoRA by over 10%-35% in terms of
MT-Bench score while achieving on-par or better performance in MMLU, AGIEval
and WinoGrande. On large models, specifically LLaMA-2-70B, LISA surpasses
LoRA on MT-Bench, GSM8K, and PubMedQA, demonstrating its effectiveness
across different domains.

1 Introduction

Large language models (LLMs) like ChatGPT excel in tasks such as writing documents, generating
complex code, answering questions, and conducting human-like conversations [1]. With LLMs
being increasingly applied in diverse task domains, domain-specific fine-tuning has emerged as a
critical strategy to enhance their downstream capabilities [2, 3, 4, 5]. Nevertheless, these methods
are typically time-intensive and consume substantial computational resources, posing significant
challenges to the development of large-scale models [6]. For example, continual pre-training typically

*Equal Contribution.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

requires several weeks even with multiple 80 GB GPUs. To reduce costs, Parameter-Efficient
Fine-Tuning (PEFT) techniques have been proposed to minimize the number of trainable parameters.

0 20 40 60 80 100 120
step

1.0

1.1

1.2

1.3

1.4

lo
ss

LISA
GaLore

LoRA

GaLore
LoRA
LISA
FT

Figure 1: Training loss of LLaMA-2-
7B on Alpaca GPT-4.

These techniques include adapter weights [7], prompt
weights [8], and LoRA [9]. Among these, LoRA stands out
as one of the most widely adopted due to its unique ability
to merge the adaptor back into the base model parameters,
significantly enhancing efficiency. However, LoRA’s su-
perior performance in fine-tuning tasks has yet to reach a
point that universally surpasses full parameter fine-tuning
in all settings [10, 11]. In particular, it has been observed
that LoRA tends to falter on large-scale datasets during
continual pre-training [12], which raises doubts about the
effectiveness of LoRA under those circumstances. We at-
tribute this to LoRA’s much fewer trainable parameters
compared to the base model, which limits the representa-
tion power of LoRA training.

To overcome this shortcoming, we delve into LoRA’s training statistics in each layer, aspiring to
bridge the difference between LoRA and full-parameter fine-tuning. Surprisingly, we discover
that LoRA’s layerwise weight norms have an uncommonly skewed distribution, where the bottom
layer and/or the top layer occupy the majority of weights during the update. In contrast, the other
self-attention layers only account for a small amount, which means different layers have different
importance when updating. This key observation inspires us to “sample” different layers by their
importance, which matches the idea of importance sampling [13, 14].

As a natural consequence, this strategy brings forth our Layerwise Importance Sampled Adam (LISA)
algorithm, where by selectively updating only essential LLM layers and leaving others untouched,
LISA enables training large-scale language models (≥ 65B parameters) with less or similar memory
consumption as LoRA. Furthermore, fine-tuned on downstream tasks, LISA outperformed both
LoRA and conventional full-parameter fine-tuning approaches by a large margin, indicating the large
potential of LISA as a promising alternative to LoRA.

We summarize our key contributions as follows,

• We discover the phenomenon of skewed weight-norm distribution across layers in LoRA,
which implies the varied importance of different layers in large-scale LLM training.

• We propose the Layerwise Importance Sampled AdamW (LISA), a simple optimization
method capable of scaling up to over 70B LLMs with less or similar memory cost as LoRA.

• We demonstrate LISA’s effectiveness in fine-tuning tasks for modern LLMs, where it
outperforms LoRA by 10%-35% in MT-Bench and achieves better performance in multiple
benchmarks. In addition, LISA exhibits much better convergence behaviors than LoRA.
LISA even outperforms full parameters training under certain settings. Similar performance
gain is observed across different sized models (7B-70B) and tasks, including instruction
following, medical QA, and math problems.

2 Related Work

2.1 Large Language Models

In the realm of natural language processing (NLP), the Transformer architecture has been a revolu-
tionary technique, initially known for its effectiveness in machine translation tasks [15]. With the
inception of models like BERT [16] and GPT-2 [17], the approach shifted towards pre-training on
extensive corpora, which led to significant performance enhancements in downstream fine-tuning
tasks [2, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]. However, the growing number of parameters in these
models results in a huge GPU memory consumption, rendering the fine-tuning of large scale models
(≥ 65B) infeasible under low resource scenarios. This has prompted a shift towards more efficient
training of LLMs.

2

2.2 Parameter-Effieient Fine-Tuning

Parameter-efficient fine-tuning (PEFT) methods adapt pre-trained models by fine-tuning only a
subset of parameters. In general, PEFT methods can be grouped into three classes: 1) Prompt
Learning methods [8, 28, 29, 30, 31, 32, 33], 2) Adapter methods [7, 9, 34, 35, 36, 37, 38], and
3) Selective methods [39, 39, 40, 41]. Prompt learning methods emphasize optimizing the input
token or input embedding with frozen model parameters, which generally has the least training
cost among all three types. Adapter methods normally introduce an auxiliary module with much
fewer parameters than the original model, and updates are only applied to the adapter module during
training. Compared with them, selective methods are more closely related to LISA, which focuses on
optimizing a fraction of the model’s parameters without appending extra modules. Recent advances
in this domain have introduced several notable techniques through layer freezing. AutoFreeze [39]
offers an adaptive mechanism to identify layers for freezing automatically and accelerates the training
process. FreezeOut [42] progressively freezes intermediate layers, significantly reducing training
time without notably affecting accuracy. The SmartFRZ [40] framework utilizes an attention-based
predictor for layer selection, substantially cutting computation and training time while maintaining
accuracy. However, none of these layer-freezing strategies has been widely adopted in the context of
Large Language Models due to their inherent complexity or non-compatibility with modern memory
reduction techniques [43, 44, 27] for LLMs.

2.3 Low-Rank Adaptation (LoRA)

In contrast, the Low-Rank Adaptation (LoRA) technique is much more prevalent in common LLM
training [9]. LoRA reduces the number of trainable parameters by employing low-rank matrices,
thereby lessening the computational burden and memory cost. One key strength of LoRA is its
compatibility with models featuring linear layers, where the decomposed low-rank matrices can be
merged back into the original model. This allows for efficient deployment without changing the
model architecture. As a result, LoRA can be seamlessly combined with other techniques, such as
quantization [11] or Mixture of Experts [45]. Despite these advantages, LoRA’s performance is not
universally comparable with full parameter fine-tuning. There have been tasks in [10] that LoRA
performs much worse than full parameter training on. This phenomenon is especially evident in
large-scale pre-training settings [12], where to the best of our knowledge, only full parameter training
was adopted for successful open-source LLMs [21, 22, 23, 46, 47, 26, 27].

2.4 Large-scale Optimization Algorithms

In addition to approaches that change model architectures, there have also been efforts to improve
the efficiency of optimization algorithms for LLMs. One such approach is layerwise optimization, a
concept with roots extending back several decades. Notably, [48] introduced an effective layer-by-
layer pre-training method for Deep Belief Networks (DBN), demonstrating the benefits of sequential
layer optimization. This idea was expanded by researchers like [49, 50], who illustrated the advantages
of a greedy, unsupervised approach to pre-training each layer of deep networks. In the context of
large batch training, [51, 52] developed LARS and LAMB to improve generalization and mitigate the
performance declines associated with large batch sizes. Despite these innovations, Adam [53, 54,
55, 27] and AdamW [56] continue to be the predominant optimization methods used in most LLM
settings.

Recently, other attempts have also been made to reduce the training cost of LLMs. For example,
MeZO [57] adopted zeroth order optimization, bringing significant memory savings during training.
However, it also incurred a considerable performance drop in multiple benchmarks, particularly in
complex fine-tuning scenarios. Regarding acceleration, Sophia [58] incorporates clipped second-order
information into the optimization, obtaining non-trivial speedup on LLM training. The significant
downsides are its intrinsic complexity of Hessian estimation and unverified empirical performance in
large-size models (e.g., ≥ 65B). In parallel to our work, [59] proposed GaLore, a memory-efficient
training strategy that reduces memory cost by projecting gradients into a low-rank compact space.
Yet the performance has still not surpassed full-parameter training in fine-tuning settings. To sum up,
LoRA-variant methods [9, 11, 59] with AdamW [56] is still the dominant paradigm for large-size
LLM fine-tuning, the performance of which still demands further improvements.

3

3 Method

3.1 Motivation

To understand how LoRA achieves effective training with only a few parameters, we conducted
empirical studies on multiple models, especially observing the weight norms across various layers.
We fine-tune it on the Alpaca-GPT4 dataset [60]. During the training, we meticulously recorded the
mean weight norms of each layer ℓ at every step t after updates, i.e.

w(ℓ) ≜ mean-weight-norm(ℓ) =
1

T

T∑
t=1

∥θ(ℓ)
t ∥2

Figure 2 presents these findings, with the x-axis representing the layer id, from embedding weights to
the final layer, and the y-axis quantifying the weight norm. The visualization reveals one key trend:

• The embedding layer or the language modeling (LM) head layer exhibits significantly
larger weight norms than intermediary layers in LoRA, often by a factor of hundreds. This
phenomenon, however, was not salient under full-parameter training settings.

tok
en

 em
be

dd
ing

po
sit

ion
 em

be
dd

ing h.0 h.1 h.2 h.3 h.4 h.5 h.6 h.7 h.8 h.9 h.1
0

h.1
1

lm
 he

ad

Model Layers

10
1

10
2

10
3

W
ei

gh
t N

or
m

Weight Norm of Each Layer For GPT2

GPT2 with Full Parameters
GPT2 with LORA

tok
en

 em
be

dd
ing

lay
er

s.0

lay
er

s.5

lay
er

s.1
0

lay
er

s.1
5

lay
er

s.2
0

lay
er

s.2
5

lay
er

s.3
0

lm
 he

ad

Model Layers

10
0

10
1

10
2

10
3

W
ei

gh
t N

or
m

Weight Norm of Each Layer For LLaMA-2-7B

LLaMA-2-7B with Full Parameters
LLaMA-2-7B with LORA

Figure 2: Layer-wise weight norms during training of GPT2 and LLaMA-2-7B Model with LoRA
and Full Parameters training.

This observation indicates that the update emphasis of LoRA and full parameter training differ
significantly, which can be attributed to the difference in their learned knowledge. For example, in
embedding layers, tokens with similar meanings, i.e., synonyms, can be projected into the same
embedding space and converted to similar embeddings. LoRA may capture this similarity in language
and “group” them in the low-dimension space, allowing frequent features of language meanings to be
promptly identified and optimized. The price is LoRA’s limited representation power restricted by its
intrinsic low-rank space, as we can see from the comparison with LISA in image generation tasks
(Appendix A.1), where LoRA memorizes and learns details much slower than LISA. Other possible
explanations can also justify this phenomenon. Despite various interpretations of this observation,
one fact remains clear: LoRA values layerwise importance differently from full parameter tuning.

3.2 Layerwise Importance Sampled AdamW (LISA)

To exploit the discovery above, we aspire to simulate LoRA’s updating pattern via sampling different
layers to freeze. This way, we can avoid LoRA’s inherent deficiency of limited low-rank representation
ability and emulate its fast learning process. Intuitively, given the same global learning rates across
layers, layers with small weight norms in LoRA should also have small sampling probabilities to
unfreeze in full-parameter settings so the expected learning rates across iterations can stay the same.
This is exactly the idea of importance sampling [13, 14], where instead of applying layerwise different
learning rates {ηt} in full-parameter settings to emulate LoRA’s updates {η̃t}, we apply sampling
and instead get the same expected parameter update

η
(ℓ)
t = η̃

(ℓ)
t ·

w̃(ℓ)

w(ℓ)
⇒ η

(ℓ)
t = η(ℓ), p(ℓ) =

w̃(ℓ)

w(ℓ)

4

This gives rise to our Layerwise Importance Sampling AdamW method, as illustrated in Algorithm 1.
In practice, since all layers except the bottom and top layer have small weight norms in LoRA,
we adopt {pℓ}NL

ℓ=1 = {1.0, γ/NL, γ/NL, . . . , γ/NL, 1.0} in practice, where γ controls the expected
number of unfreeze layers during optimization, and the embedding layer E and head layer H remain
active. Intuitively, γ serves as a compensation factor to bridge the difference between LoRA and
full parameter tuning, letting LISA emulate a similar layerwise update pattern as LoRA. To further
control the memory consumption in practical settings, we instead randomly sample γ layers every
time to upper-bound the maximum number of unfrozen layers during training.
Algorithm 1 Layerwise Importance Sampling AdamW (LISA)

Require: number of layers NL, number of iterations T , sampling period K, number of sampled
layers γ, initial learning rate η0

1: for i← 0 to T/K − 1 do
2: Freeze all layers except the embedding and language modeling head layer
3: Randomly sample γ intermediate layers to unfreeze
4: Run AdamW for K iterations with {ηt}ik+k−1

t=ik
5: end for

4 Experimental Results
Table 1: The chart illustrates peak GPU memory consumption for various model architectures and
configurations, highlighting differences across models. The LISA configuration is specifically labeled
in the table: “E” denotes the embedding layer, “H” represents the language modeling head layer, and
“2L” indicates two additional intermediate layers. *: Model parallelism is applied for the 70B model.

VANILLA LORA RANK LISA ACTIVATE LAYERS

MODEL - 128 256 512 E+H E+H+2L E+H+4L

GPT2-SMALL 3.8G 3.3G 3.5G 3.7G 3.3G 3.3G 3.4G
TINYLLAMA 13G 7.9G 8.6G 10G 7.4G 8.0G 8.3G
MISTRAL-7B 59G 23G 26G 28G 21G 23G 24G
LLAMA-2-7B 59G 23G 26G 28G 21G 23G 24G
LLAMA-2-70B* OOM 79G OOM OOM 71G 75G 79G

4.1 Memory Efficiency

We conducted peak GPU memory experiments to demonstrate LISA’s memory efficiency and show-
case its comparable or lower memory cost than LoRA.

Figure 3: GPU memory consumption of LLaMA-
2-7B with different methods and batch size 1.

Settings To reasonably estimate the memory
cost, we randomly sample prompts from the
Alpaca dataset [61] and limit the maximum out-
put token length to 1024. We focus on two
key hyperparameters: LoRA’s rank and LISA’s
number of activation layers. For other hyper-
parameters, a mini-batch size of 1 was consis-
tently used across five LLMs from 120M to
70B parameters, deliberately excluding other
GPU memory-saving techniques such as gra-
dient checkpointing [62], offloading [63], and
flash attention [64, 65]. All memory-efficiency
experiments are conducted on 4× NVIDIA Am-
pere Architecture GPUs with 80G memory.

Results Upon examining Table 1, it is evident
that the LISA configuration, particularly when
enhanced with both the embedding layer (E) and
two additional layers (E+H+2L), demonstrates a considerable reduction in GPU memory usage when
fine-tuning the LLaMA-2-70B model, as compared to the LoRA method. Specifically, the LISA
E+H+2L configuration shows a decrease to 75G of peak GPU memory from the 79G required by the

5

LoRA Rank 128 configuration. This efficiency gain is not an isolated incident; a systematic memory
usage decrease is observed across various model architectures, suggesting that LISA’s method of
activating layers is inherently more memory-efficient.

In Figure 3, it is worth noticing that the memory reduction in LISA allows LLaMA-2-7B to be trained
on a single RTX4090 (24GB) GPU, which makes high-quality fine-tuning affordable even on a laptop
computer. In particular, LISA requires much less activation memory consumption than LoRA since it
does not introduce additional parameters brought by the adaptor. LISA’s activation memory is even
slightly less than full parameter training since pytorch [66] with deepspeed [44] allows deletion of
redundant activations before backpropagation.

Figure 4: Single-iteration time cost of LLaMA-2-
7B with different methods and batch size 1.

On top of that, a reduction in memory foot-
print from LISA also leads to an acceleration
in speed. As shown in Figure 4, LISA provides
almost 2.9× speedup when compared with full-
parameter training, and∼ 1.5× speedup against
LoRA, partially due to the removal of adaptor
structures. It is worth noticing that the reduc-
tion of memory footprint in both LoRA and
LISA leads to a significant acceleration of for-
ward propagation, emphasizing the importance
of memory-efficient training.

4.2 Moderate Scale Fine-Tuning

LISA can achieve this significant memory sav-
ing while still obtaining competitive perfor-
mance under the fine-tuning setting.

Table 2: Results of different methods on MMLU, AGIEval, and WinoGrande, measured by accuracy.

MODEL METHOD MMLU (5-SHOT) AGIEVAL (3-SHOT) WINOGRANDE (5-SHOT)

TINYLLAMA

VANILLA 25.50 19.55 59.91
LORA 25.81 ± 0.07 19.82 ± 0.11 61.33 ± 0.09
GALORE 25.21 ± 0.06 21.19 ± 0.07 61.09 ± 0.12
LISA 26.02 ± 0.13 21.71 ± 0.09 61.48 ± 0.08
FT 25.62 ± 0.10 21.28 ± 0.07 62.12 ± 0.15

MISTRAL-7B

VANILLA 60.12 26.79 79.24
LORA 61.78 ± 0.09 27.56 ± 0.07 78.85 ± 0.11
GALORE 57.87 ± 0.08 26.23 ± 0.05 75.85 ± 0.13
LISA 62.09 ± 0.10 29.76 ± 0.09 78.93 ± 0.08
FT 61.70 ± 0.13 28.07 ± 0.12 78.85 ± 0.12

LLAMA-2-7B

VANILLA 45.87 25.69 74.11
LORA 45.50 ± 0.07 24.73 ±0.04 74.74 ± 0.09
GALORE 45.56 ± 0.05 24.39 ± 0.11 73.32 ± 0.12
LISA 46.21 ± 0.12 26.06 ± 0.08 75.30 ± 0.11
FT 45.66 ± 0.09 27.02 ± 0.10 75.06 ± 0.13

Settings To demonstrate the superiority of LISA over LoRA, we evaluate them on the instruction-
following fine-tuning task with the Alpaca GPT-4 dataset [61], which consists of 52k conversation
pairs generated by GPT-4 [5]. The effectiveness of fine-tuning was evaluated on multiple benchmarks:
MT-Bench [67] features 80 high-quality, multi-turn questions designed to assess LLMs on multiple
aspects; MMLU [68] includes a total of 57 tasks with 14,079 questions covering a broad spectrum
of world knowledge; AGIEval [69] serves as a human-centric benchmark for general abilities,
comprising 9,316 instances; WinoGrande [70] is a large-scale dataset for commonsense reasoning,
consisting of 44,000 instances designed to challenge models’ understanding of the context and
commonsense knowledge.

In our experiments, we assessed three baseline models: TinyLlama [47], Mistral-7B [46], and
LLaMA-2-7B [23]. These models, varying in size ranging from 1B to 7B parameters, provide a

6

diverse representation of decoder-only models. For hyper-parameters, we adopt a rank of 128 for
LoRA and E+H+2L for LISA in this section, with full details available in Appendix B.

Table 3: Different methods on MT-Bench.

MODEL METHOD MT-BENCH ↑

TINYLLAMA

VANILLA 1.25
LORA 1.90 ± 0.14
GALORE 2.61 ± 0.17
LISA 2.57 ± 0.25
FT 2.21 ± 0.16

MISTRAL-7B

VANILLA 4.32
LORA 4.41 ± 0.09
GALORE 4.36 ± 0.16
LISA 4.85 ± 0.14
FT 4.64 ± 0.12

LLAMA-2-7B

VANILLA 3.29
LORA 4.45 ± 0.15
GALORE 4.63 ± 0.09
LISA 4.94 ± 0.14
FT 4.75 ± 0.16

Results Table2 and 3 present a detailed compari-
son on moderate-scale LLMs. The baselines include
Full-parameter Training (FT), Low-Rank Adaptation
(LoRA) [9] and Gradient Low-Rank Projection (Ga-
Lore) [59]. The results demonstrate that LISA consis-
tently outperforms other fine-tuning methods in most
evaluation tracks, indicating its robustness and effec-
tiveness across diverse tasks and model architectures.
LISA is particularly effective in instruction follow-
ing tasks, where a large gap is observed when com-
pared with other baseline methods. LISA even out-
performs Full-parameter Training, suggesting that an
implicit regularization effect is present when the num-
ber of unfrozen layers is restricted, which is similar
to dropout [71]. According to more results in stable
diffusion and detailed MT-Bench scores, we found
that LISA outperforms LoRA mostly in memorization
tasks, such as depicting high-resolution image details
in image generation, or Writing or Humanities tasks
in instruction following. This implies that LISA’s performance improvement may majorly come from
the ability to memorize long-tailed patterns, while LoRA is better at multi-hop reasoning with limited
knowledge. For more details, please refer to Appendix A.1 and A.2.

4.3 Moderate Scale Continual Pre-training

Table 4: Comparison of Moderate Scale Model
Continual Pre-training on OpenWebMath Dataset.

MODEL METHOD GSM8K ↑ MEM. ↓

TINYLLAMA

VANILLA 2.26 -
LISA 3.56 8G
FT 3.26 13G

LLAMA-2-7B
VANILLA 14.40 -
LISA 22.21 26G
FT 22.21 59G

Continual pre-training is crucial for enabling
models to adapt to new data and domains.
To evaluate LISA’s efficacy in the continual
pre-training scenario, we experiment on the
mathematics domain in comparison with Full-
parameter Training.

Settings We adopt the mathematics corpus
OpenWebMath [72] for constructing the con-
tinual pre-training dataset. Specifically, we ex-
tracted a high-quality subset from it which con-
tains 1.5 billion tokens. Full details are ex-
plained in Appendix B.2. After continual pre-
trainig, we then apply the same fine-tuning procedure on the GSM8K [73] training set, which
comprises 7473 instances.

Results Table 4 shows that LISA is capable of achieving on-par or even better performance than
full-parameter training with much less memory consumption. Specifically, LISA requires only half
of the memory cost compared to full-parameter training. This indicates a better balance between
computational efficiency and model performance is achieved by LISA. According to our experience,
reducing the number of unfrozen layers to half the original size leads to no worse or even better
performance during continual pretraining, while requiring much less memory consumption.

4.4 Large Scale Fine-Tuning

To further demonstrate LISA’s scalability on large-sized LLMs, we conduct additional fine-tuning
experiments on LLaMA-2-70B [23].

Settings On top of the aforementioned instruction-following tasks in Section 4.2, we use extra
domain-specific fine-tuning tasks on mathematics and medical QA benchmarks. The GSM8K
dataset [73], comprising 7473 training instances and 1319 test instances, is used for the mathematics

7

domain. For the medical domain, we select the PubMedQA dataset [74], which includes 211.3K
artificially generated QA training instances and 1K test instances.

Table 5: Different methods on MT-Bench, GSM8K,
and PubMedQA score for LLaMA-2-70B.

METHOD MT-BENCH↑ GSM8K↑ PUBMEDQA↑
VANILLA 5.19 54.8 83.0
LORA 6.10 59.4 90.8
LISA 6.72 61.1 91.6
FT 6.25 67.1 90.8

Evaluation on the PubMedQA dataset [74] is
conducted in a 5-shot prompt setting, while
the GSM8K dataset [73] assessment was con-
ducted using Chain-of-Thought (CoT) prompt-
ing, following recent studies [75, 76, 77]. Re-
garding hyperparameters, as detailed in the
section 4.1, we utilize the rank 256 for LoRA
and the configuration E+H+4L for LISA. Fur-
ther information is available in Appendix B.

Results As shown in Table 5, LISA consis-
tently produces better or on-par performance when compared with LoRA. Furthermore, LISA again
surpasses full-parameter training in instruction-tuning tasks, providing strong evidence to support
LISA’s scalability under large-scale training scenarios. More results are available in Appendix A.2.

4.5 Ablation Studies

Table 6: Different LISA hyperparameters combina-
tions. All settings adopt learning rate η0 = 10−5.
Here γ stands for sampling layers, K stands for
sampling period.

MODELS γ K
MT-BENCH

SCORE

TINYLLAMA

2

⌈T/125⌉ 2.44
⌈T/25⌉ 2.73
⌈T/5⌉ 2.64
T 2.26

8

⌈T/125⌉ 2.59
⌈T/25⌉ 2.81
⌈T/5⌉ 2.74
T 2.53

LLAMA-2-7B

2

⌈T/125⌉ 4.86
⌈T/25⌉ 4.91
⌈T/5⌉ 4.88
T 4.64

8

⌈T/125⌉ 4.94
⌈T/25⌉ 5.11
⌈T/5⌉ 5.01
T 4.73

Hyperparameters of LISA The two key hy-
perparameters of LISA are the number of sam-
pling layers γ and sampling period K. To obtain
intuitive and empirical guidance of those hyper-
parameter choices, we conduct ablation studies
using TinyLlama [47] and LLaMA-2-7B [23]
models with the Alpaca-GPT4 dataset. The con-
figurations for γ, such as E+H+2L, E+H+8L,
were denoted as γ = 2 and γ = 8. As for the
sampling period K = T/n, T = 122 represent-
ing the maximum training step within our exper-
imental framework. The findings, presented in
Table 6, reveal that both γ and K markedly af-
fect the LISA algorithm’s performance. Specif-
ically, a higher γ value increases the quantity of
trainable parameters, albeit with higher memory
costs. On the other hand, an optimal K value fa-
cilitates more frequent layer switching, thereby
improving performance to a certain threshold,
beyond which the performance may deteriorate.
Generally, the rule of thumb is: More sampling
layers and higher sampling period lead to bet-
ter performance. For a detailed examination
of loss curves and MT-Bench results, refer to
Appendix A.4.

Table 7: The MT-Bench scores derived from vary-
ing random seeds for layer selection.

MODEL SEED 1 SEED 2 SEED 3

TINYLLAMA 2.57 2.55 2.60
MISTRAL-7B 4.85 4.82 4.82

LLAMA-2-7B 4.94 4.92 4.89

Sensitiveness of LISA As LISA is algorith-
mically dependent on the sampling sequence of
layers, it is intriguing to see how stable LISA’s
performance is under the effect of randomness.
For this purpose, we further investigate LISA’s
performance variance over three distinct runs,
each with a different random seed for layer selec-
tion. Here, we adopt TinyLlama, LLaMA-2-7B,
and Mistral-7B models with the Alpaca-GPT4
dataset while keeping all other hyperparameters consistent with those used in the instruction follow-
ing experiments in section 4.2. As shown in Table 7, LISA is quite resilient to different random
seeds, where the performance gap across three runs is within 0.13, a small value compared to the

8

performance gains over baseline methods. For more ablation experiment on LISA hyperparameters,
please refer to Appendix A.4.

5 Discussion

Theoretical Properties of LISA Compared with LoRA, which introduces additional parameters
and leads to changes in loss objectives, layerwise importance sampling methods enjoy nice conver-
gence guarantees in the original loss. For layerwise importance sampled SGD, similar to gradient
sparsification [78, 55], the convergence can still be guaranteed for unbiased estimation of gradients
with increased variance. The convergence behavior can be further improved by reducing the variance
with appropriately defined importance sampling strategy [14]. For layerwise importance sampled
Adam, theoretical results in [79, 55] prove its convergence in convex objectives. If we denote f as
the loss function and assume that the stochastic gradients are bounded, then based on [56], we know
that AdamW optimizing f aligns with Adam optimizing f with a scaled regularizer, which can be
written as

f reg(w) ≜ f(w) +
1

2
w⊤Sw,

where S is a finite positive semidefinite diagonal matrix. Following existing convergence results of
RBC-Adam (Corollary 1 in [79]), we have the convergence guarantee of LISA in Theorem 1.

Theorem 1 Let the loss function f be convex and smooth. If the algorithm runs in a bounded convex
set and the stochastic gradients are bounded, the sequence {wt}Tt=1 generated by LISA admits the
following convergence rate:

1

T

T∑
t=1

f reg(wt)− f reg
∗ ≤ O

(
1√
T

)
,

where f reg
∗ denotes the optimum value of f reg.

Memorization and Reasoning In our instruction following experiments in Appendix A.1 and A.2,
we observe that LISA is much better than LoRA at memorization-centered tasks, such as Writing
or depicting image details, while this gap is much smaller in reasoning-centered tasks like Code or
Math. It is an intriguing observation since LISA emphasizes more on layer-wise width and restricts
the depth of learned parameters, while LoRA focuses more on depth and restricts the representation
space in each layer. It may suggest that width is crucial for memorization, while depth is important
for reasoning, a similar phenomenon that echos the intuition of [80]. Based on the same intuition, it
may be possible to combine the benefits of both and bring forth an even better PEFT method.

6 Conclusion

In this paper, we propose Layerwise Importance Sampled AdamW (LISA), an optimization algorithm
that randomly freezes layers of LLM based on a given probability. Inspired by observations of LoRA’s
skewed weight norm distribution, a simple and memory-efficient freezing paradigm is introduced
for LLM training. This paradigm achieves significant performance improvements over LoRA on
downstream fine-tuning tasks with various models, including LLaMA-2-70B. Further experiments
on domain-specific training also demonstrate its effectiveness, showing LISA’s huge potential as a
promising alternative to LoRA for LLM training.

Limitations

The major bottleneck of LISA is the same as LoRA, where during optimization, the forward pass still
requires the model to be presented in the memory, leading to significant memory consumption. This
limitation shall be compensated by approaches similar to QLoRA [11], where we intend to conduct
further experiments to verify its performance.

In addition, as suggested by the theoretical intuition, the strategy of E+H+2L in Section 4.2 and
E+H+4L in Section 4.4 may not be the optimal importance sampling strategy, given it still sampled

9

intermediate layers in a uniformly random fashion. We anticipate the optimizer’s efficiency will be
further improved when considering data sources and model architecture in the importance sampling
procedure.

References
[1] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,

Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton,
Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F Christiano,
Jan Leike, and Ryan Lowe. Training language models to follow instructions with human
feedback. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors,
Advances in Neural Information Processing Systems, volume 35, pages 27730–27744. Curran
Associates, Inc., 2022.

[2] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. J. Mach. Learn. Res., 21:140:1–140:67, 2020.

[3] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay,
Noam M. Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Benton C. Hutchinson,
Reiner Pope, James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier
García, Vedant Misra, Kevin Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David
Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani
Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat,
Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei
Zhou, Xuezhi Wang, Brennan Saeta, Mark Díaz, Orhan Firat, Michele Catasta, Jason Wei,
Kathleen S. Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm:
Scaling language modeling with pathways. J. Mach. Learn. Res., 24:240:1–240:113, 2022.

[4] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan,
Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna
Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre
Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas
Scialom, and Gabriel Synnaeve. Code llama: Open foundation models for code, 2023.

[5] OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Flo-
rencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat,
Red Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao,
Mo Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christo-
pher Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg
Brockman, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew
Cann, Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis
Chantzis, Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester
Cho, Casey Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory
Decareaux, Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve
Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus,
Niko Felix, Simón Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges,
Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan
Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei
Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke,
Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu,
Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang,
Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan,
Łukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan
Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Hendrik Kirchner, Jamie Kiros,
Matt Knight, Daniel Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis,
Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike,

10

Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz
Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Man-
ning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob
McGrew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David
Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie
Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély,
Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo
Noh, Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pan-
tuliano, Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail Pavlov,
Andrew Peng, Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Ponde
de Oliveira Pinto, Michael, Pokorny, Michelle Pokrass, Vitchyr Pong, Tolly Powell, Alethea
Power, Boris Power, Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh,
Cameron Raymond, Francis Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez,
Nick Ryder, Mario Saltarelli, Ted Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt,
David Schnurr, John Schulman, Daniel Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh,
Sarah Shoker, Pranav Shyam, Szymon Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Kata-
rina Slama, Ian Sohl, Benjamin Sokolowsky, Yang Song, Natalie Staudacher, Felipe Petroski
Such, Natalie Summers, Ilya Sutskever, Jie Tang, Nikolas Tezak, Madeleine Thompson, Phil
Tillet, Amin Tootoonchian, Elizabeth Tseng, Preston Tuggle, Nick Turley, Jerry Tworek, Juan
Felipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya, Chelsea Voss, Carroll Wainwright,
Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei, CJ Weinmann, Akila
Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner, Clemens
Winter, Samuel Wolrich, Hannah Wong, Lauren Workman, Sherwin Wu, Jeff Wu, Michael Wu,
Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan, Wojciech Zaremba, Rowan Zellers,
Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao Zheng, Juntang Zhuang, William Zhuk,
and Barret Zoph. Gpt-4 technical report, 2023.

[6] Longteng Zhang, Xiang Liu, Zeyu Li, Xinglin Pan, Peijie Dong, Ruibo Fan, Rui Guo, Xin
Wang, Qiong Luo, Shaohuai Shi, and Xiaowen Chu. Dissecting the runtime performance of the
training, fine-tuning, and inference of large language models, 2023.

[7] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning
for NLP. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th
International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach,
California, USA, volume 97 of Proceedings of Machine Learning Research, pages 2790–2799.
PMLR, 2019.

[8] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long
Papers), pages 4582–4597, Online, 2021. Association for Computational Linguistics.

[9] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. In The
Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April
25-29, 2022. OpenReview.net, 2022.

[10] Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding
Hu, Yulin Chen, Chi-Min Chan, Weize Chen, et al. Delta tuning: A comprehensive study of
parameter efficient methods for pre-trained language models. ArXiv preprint, abs/2203.06904,
2022.

[11] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient
finetuning of quantized llms. ArXiv preprint, abs/2305.14314, 2023.

[12] Vladislav Lialin, Namrata Shivagunde, Sherin Muckatira, and Anna Rumshisky. Relora: High-
rank training through low-rank updates, 2023.

[13] Teun Kloek and Herman K Van Dijk. Bayesian estimates of equation system parameters: an
application of integration by monte carlo. Econometrica: Journal of the Econometric Society,
pages 1–19, 1978.

11

[14] Peilin Zhao and Tong Zhang. Stochastic optimization with importance sampling for regularized
loss minimization. In Francis R. Bach and David M. Blei, editors, Proceedings of the 32nd
International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015,
volume 37 of JMLR Workshop and Conference Proceedings, pages 1–9. JMLR.org, 2015.

[15] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett, editors, Advances in Neural Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA,
pages 5998–6008, 2017.

[16] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis,
Minnesota, 2019. Association for Computational Linguistics.

[17] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

[18] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin,
editors, Advances in Neural Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[19] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen,
Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained
transformer language models. ArXiv preprint, abs/2205.01068, 2022.

[20] Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow,
Roman Castagné, Alexandra Sasha Luccioni, François Yvon, et al. Bloom: A 176b-parameter
open-access multilingual language model. ArXiv preprint, abs/2211.05100, 2022.

[21] Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Alshamsi, Alessandro Cappelli, Ruxandra
Cojocaru, Maitha Alhammadi, Mazzotta Daniele, Daniel Heslow, Julien Launay, Quentin
Malartic, Badreddine Noune, Baptiste Pannier, and Guilherme Penedo. The falcon series of
language models: Towards open frontier models. 2023.

[22] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open
and efficient foundation language models. ArXiv preprint, abs/2302.13971, 2023.

[23] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. ArXiv preprint, abs/2307.09288, 2023.

[24] Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna:
An open-source chatbot impressing gpt-4 with 90%* chatgpt quality, 2023.

[25] Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien,
Eric Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward
Raff, et al. Pythia: A suite for analyzing large language models across training and scaling. In
International Conference on Machine Learning, pages 2397–2430. PMLR, 2023.

[26] Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand,
et al. Mixtral of experts. ArXiv preprint, abs/2401.04088, 2024.

12

[27] Zhenheng Tang, Yuxin Wang, Xin He, Longteng Zhang, Xinglin Pan, Qiang Wang, Rongfei
Zeng, Kaiyong Zhao, Shaohuai Shi, Bingsheng He, et al. Fusionai: Decentralized training and
deploying llms with massive consumer-level gpus. arXiv preprint arXiv:2309.01172, 2023.

[28] Karen Hambardzumyan, Hrant Khachatrian, and Jonathan May. WARP: Word-level Adversarial
ReProgramming. In Proceedings of the 59th Annual Meeting of the Association for Computa-
tional Linguistics and the 11th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 4921–4933, Online, 2021. Association for Computational
Linguistics.

[29] Zexuan Zhong, Dan Friedman, and Danqi Chen. Factual probing is [MASK]: Learning vs.
learning to recall. In Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 5017–5033,
Online, 2021. Association for Computational Linguistics.

[30] Xu Han, Weilin Zhao, Ning Ding, Zhiyuan Liu, and Maosong Sun. PTR: Prompt Tuning with
Rules for Text Classification. ArXiv preprint, abs/2105.11259, 2021.

[31] Guanghui Qin and Jason Eisner. Learning how to ask: Querying LMs with mixtures of
soft prompts. In Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 5203–5212,
Online, 2021. Association for Computational Linguistics.

[32] Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and Jie Tang. Gpt
understands, too. ArXiv preprint, abs/2103.10385, 2021.

[33] Shizhe Diao, Zhichao Huang, Ruijia Xu, Xuechun Li, LIN Yong, Xiao Zhou, and Tong Zhang.
Black-box prompt learning for pre-trained language models. Transactions on Machine Learning
Research, 2022.

[34] Shizhe Diao, Ruijia Xu, Hongjin Su, Yilei Jiang, Yan Song, and Tong Zhang. Taming pre-
trained language models with n-gram representations for low-resource domain adaptation. In
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and
the 11th International Joint Conference on Natural Language Processing (Volume 1: Long
Papers), pages 3336–3349, Online, 2021. Association for Computational Linguistics.

[35] Shizhe Diao, Tianyang Xu, Ruijia Xu, Jiawei Wang, and Tong Zhang. Mixture-of-domain-
adapters: Decoupling and injecting domain knowledge to pre-trained language models memories.
ArXiv preprint, abs/2306.05406, 2023.

[36] Fanxu Meng, Zhaohui Wang, and Muhan Zhang. Pissa: Principal singular values and singular
vectors adaptation of large language models, 2024.

[37] Haobo SONG, Hao Zhao, Soumajit Majumder, and Tao Lin. Increasing model capacity for free:
A simple strategy for parameter efficient fine-tuning. In The Twelfth International Conference
on Learning Representations, 2024.

[38] Yuheng Ji, Yue Liu, Zhicheng Zhang, Zhao Zhang, Yuting Zhao, Gang Zhou, Xingwei Zhang,
Xinwang Liu, and Xiaolong Zheng. Advlora: Adversarial low-rank adaptation of vision-
language models, 2024.

[39] Yuhan Liu, Saurabh Agarwal, and Shivaram Venkataraman. Autofreeze: Automatically freezing
model blocks to accelerate fine-tuning, 2021.

[40] Sheng Li, Geng Yuan, Yue Dai, Youtao Zhang, Yanzhi Wang, and Xulong Tang. SmartFRZ: An
efficient training framework using attention-based layer freezing. In The Eleventh International
Conference on Learning Representations, 2023.

[41] Qijun Luo, Hengxu Yu, and Xiao Li. Badam: A memory efficient full parameter training
method for large language models, 2024.

[42] Andrew Brock, Theodore Lim, James M. Ritchie, and Nick Weston. Freezeout: Accelerate
training by progressively freezing layers. ArXiv preprint, abs/1706.04983, 2017.

13

[43] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimiza-
tions toward training trillion parameter models. In SC20: International Conference for High
Performance Computing, Networking, Storage and Analysis, pages 1–16. IEEE, 2020.

[44] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System
optimizations enable training deep learning models with over 100 billion parameters. In Rajesh
Gupta, Yan Liu, Jiliang Tang, and B. Aditya Prakash, editors, KDD ’20: The 26th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, Virtual Event, CA, USA, August 23-27,
2020, pages 3505–3506. ACM, 2020.

[45] Yunhao Gou, Zhili Liu, Kai Chen, Lanqing Hong, Hang Xu, Aoxue Li, Dit-Yan Yeung, James T
Kwok, and Yu Zhang. Mixture of cluster-conditional lora experts for vision-language instruction
tuning. ArXiv preprint, abs/2312.12379, 2023.

[46] Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile
Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut
Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023.

[47] Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small
language model, 2024.

[48] Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for deep
belief nets. Neural Computation, page 1527–1554, 2006.

[49] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer-wise
training of deep networks. In Bernhard Schölkopf, John C. Platt, and Thomas Hofmann, editors,
Advances in Neural Information Processing Systems 19, Proceedings of the Twentieth Annual
Conference on Neural Information Processing Systems, Vancouver, British Columbia, Canada,
December 4-7, 2006, pages 153–160. MIT Press, 2006.

[50] Zhenheng Tang, Yonggang Zhang, Shaohuai Shi, Xinmei Tian, Tongliang Liu, Bo Han, and
Xiaowen Chu. Fedimpro: Measuring and improving client update in federated learning. In The
Twelfth International Conference on Learning Representations, 2024.

[51] Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks.
ArXiv preprint, abs/1708.03888, 2017.

[52] Yang You, Jing Li, Sashank J. Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli,
Xiaodan Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization
for deep learning: Training BERT in 76 minutes. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

[53] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun, editors, 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[54] Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In
6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada,
April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018.

[55] Zhenheng Tang, Shaohuai Shi, Xiaowen Chu, Wei Wang, and Bo Li. Communication-efficient
distributed deep learning: A comprehensive survey. arXiv preprint arXiv:2003.06307, 2020.

[56] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019.

[57] Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D. Lee, Danqi Chen,
and Sanjeev Arora. Fine-tuning language models with just forward passes. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023.

14

[58] Hong Liu, Zhiyuan Li, David Leo Wright Hall, Percy Liang, and Tengyu Ma. Sophia: A
scalable stochastic second-order optimizer for language model pre-training. In The Twelfth
International Conference on Learning Representations, 2024.

[59] Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection. ArXiv preprint,
abs/2403.03507, 2024.

[60] Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction tuning
with gpt-4. ArXiv preprint, abs/2304.03277, 2023.

[61] Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction tuning
with gpt-4. arXiv preprint arXiv:2304.03277, 2023.

[62] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost. ArXiv preprint, abs/1604.06174, 2016.

[63] Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase, Shuangyan Yang,
Minjia Zhang, Dong Li, and Yuxiong He. Zero-offload: Democratizing billion-scale model
training, 2021.

[64] Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast
and memory-efficient exact attention with IO-awareness. In Advances in Neural Information
Processing Systems, 2022.

[65] Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. In
International Conference on Learning Representations (ICLR), 2024.

[66] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Köpf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelz-
imer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances in Neural
Information Processing Systems 32: Annual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages 8024–8035,
2019.

[67] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena, 2023.

[68] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. In 9th International
Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net, 2021.

[69] Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang, Shuai Lu, Yanlin Wang, Amin Saied,
Weizhu Chen, and Nan Duan. Agieval: A human-centric benchmark for evaluating foundation
models, 2023.

[70] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. In The Thirty-Fourth AAAI Conference on
Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial
Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in
Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 8732–8740.
AAAI Press, 2020.

[71] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine
Learning Research, 15(56):1929–1958, 2014.

15

[72] Keiran Paster, Marco Dos Santos, Zhangir Azerbayev, and Jimmy Ba. Openwebmath: An open
dataset of high-quality mathematical web text. In The Twelfth International Conference on
Learning Representations, 2024.

[73] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021.

[74] Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William Cohen, and Xinghua Lu. PubMedQA: A
dataset for biomedical research question answering. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), pages 2567–2577, Hong Kong, China,
2019. Association for Computational Linguistics.

[75] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in Neural Information Processing Systems, 35:24824–24837, 2022.

[76] Kashun Shum, Shizhe Diao, and Tong Zhang. Automatic prompt augmentation and selection
with chain-of-thought from labeled data. In Findings of the Association for Computational
Linguistics: EMNLP 2023, pages 12113–12139, 2023.

[77] Shizhe Diao, Pengcheng Wang, Yong Lin, Rui Pan, Xiang Liu, and Tong Zhang. Active
prompting with chain-of-thought for large language models. In Lun-Wei Ku, Andre Martins,
and Vivek Srikumar, editors, Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 1330–1350, Bangkok, Thailand,
August 2024. Association for Computational Linguistics.

[78] Jianqiao Wangni, Jialei Wang, Ji Liu, and Tong Zhang. Gradient sparsification for
communication-efficient distributed optimization. In Samy Bengio, Hanna M. Wallach, Hugo
Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances in
Neural Information Processing Systems 31: Annual Conference on Neural Information Process-
ing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages 1306–1316,
2018.

[79] Yangfan Zhou, Mingchuan Zhang, Junlong Zhu, Ruijuan Zheng, and Qingtao Wu. A random-
ized block-coordinate adam online learning optimization algorithm. Neural Computing and
Applications, 32(16):12671–12684, 2020.

[80] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye,
Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al. Wide & deep learning for
recommender systems. In Proceedings of the 1st workshop on deep learning for recommender
systems, pages 7–10, 2016.

[81] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin,
editors, Advances in Neural Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[82] Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang Zhao. Latent consistency models:
Synthesizing high-resolution images with few-step inference. ArXiv preprint, abs/2310.04378,
2023.

[83] Yung-Sung Chuang, Yujia Xie, Hongyin Luo, Yoon Kim, James R. Glass, and Pengcheng He.
Dola: Decoding by contrasting layers improves factuality in large language models. In The
Twelfth International Conference on Learning Representations, 2024.

[84] Lucas Georges Gabriel Charpentier and David Samuel. Not all layers are equally as important:
Every layer counts BERT. In Alex Warstadt, Aaron Mueller, Leshem Choshen, Ethan Wilcox,
Chengxu Zhuang, Juan Ciro, Rafael Mosquera, Bhargavi Paranjabe, Adina Williams, Tal Linzen,
and Ryan Cotterell, editors, Proceedings of the BabyLM Challenge at the 27th Conference
on Computational Natural Language Learning, pages 238–252, Singapore, December 2023.
Association for Computational Linguistics.

16

[85] Shizhe Diao, Rui Pan, Hanze Dong, KaShun Shum, Jipeng Zhang, Wei Xiong, and Tong Zhang.
LMFlow: An extensible toolkit for finetuning and inference of large foundation models. In
Kai-Wei Chang, Annie Lee, and Nazneen Rajani, editors, Proceedings of the 2024 Conference
of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies (Volume 3: System Demonstrations), pages 116–127, Mexico City,
Mexico, June 2024. Association for Computational Linguistics.

17

A Additional Experiments

A.1 Image Generation

Stable Diffusion has emerged as a powerful approach for generating high-quality images by leveraging
the diffusion process in a latent space [81]. This method involves diffusing the data distribution
over time and iteratively refining the generated samples to enhance their realism and fidelity. The
key innovation lies in operating within the latent space of a pre-trained autoencoder, significantly
reducing computational complexity while maintaining high-quality outputs. The Latent Consistency
Model (LCM) further improves the efficiency and performance of diffusion models in the latent
space by incorporating a consistency loss, which penalizes deviations from the expected latent
trajectories [82]. This ensures that the generated samples remain coherent and visually plausible
throughout the diffusion steps.

In our experiments, we evaluated the performance of LCM against other fine-tuning methods such as
LoRA, and LISA using latent consistency distillation to distill stable diffusion v1.5 and v2.1 model.
We utilized the official code* and parameters for both LISA and LoRA from the Diffusers library to
ensure consistency and comparability of results. Adjustments were made only to the batch size and
accumulation steps to achieve a balanced trade-off between computational efficiency and performance.
Figure 5 is the generated image comparison. Observations reveal that LISA can generate higher-
quality images in fewer inference steps. The images generated using LISA display more intricate
details and sharper clarity, particularly evident in the distinct facial features and environment textures.
In contrast, the LoRA-generated images offer a softer, more blended aesthetic with a dream-like
quality, emphasizing smooth transitions over precise detail. The prompts for images in figure 5 in the
left-to-right are given below

• Self-portrait oil painting, a beautiful cyborg with golden hair, 8k.

• Astronaut in a jungle, cold color palette, muted colors, detailed, 8k.

• A photo of a beautiful mountain with a realistic sunset and blue lake, a highly detailed
masterpiece.

A.2 Instruction Following Fine-tuning

Table 8 offers a comprehensive evaluation of three fine-tuning methods—Full Parameter Fine-
Tuning (FT), Low-Rank Adaptation (LoRA), Gradient Low-Rank Projection(GaLore), and Layerwise
Importance Sampling AdamW (LISA)—across a diverse set of tasks including Writing, Roleplay,
Reasoning, Math, Extraction, STEM, and Humanities within the MT-Bench benchmark. The results
demonstrate LISA’s superior performance, which surpasses LoRA, GaLore, and full parameter tuning
in most settings. Notably, LISA consistently outperforms LoRA and full parameter tuning in domains
such as Writing, STEM, and Humanities. This implies that LISA can benefit memorization tasks,
while LoRA partially favors reasoning tasks.

Table 8: Comparison of Language Model Fine-Tuning Methods on the MT-Bench score.

MT-BENCH
MODEL & METHOD WRITING ROLEPLAY REASONING CODE MATH EXTRACTION STEM HUMANITIES AVG. ↑
TINYLLAMA (VANILLA) 1.05 2.25 1.25 1.00 1.00 1.00 1.45 1.00 1.25
TINYLLAMA (LORA) 2.77 4.05 1.35 1.00 1.40 1.00 1.55 2.15 1.90
TINYLLAMA (GALORE) 3.55 5.20 2.40 1.15 1.40 1.85 2.95 2.40 2.61
TINYLLAMA (LISA) 3.30 4.40 2.65 1.12 1.30 1.75 3.00 3.05 2.57
TINYLLAMA (FT) 3.27 3.95 1.35 1.04 1.33 1.73 2.69 2.35 2.21

MISTRAL-7B (VANILLA) 5.25 3.20 4.50 1.60 2.70 6.50 6.17 4.65 4.32
MISTRAL-7B (LORA) 5.30 4.40 4.65 2.35 3.30 5.50 5.55 4.30 4.41
MISTRAL-7B (GALORE) 5.05 5.27 4.45 1.70 2.50 5.21 5.52 5.20 4.36
MISTRAL-7B (LISA) 6.84 3.65 5.45 2.20 2.75 5.65 5.95 6.35 4.85
MISTRAL-7B (FT) 5.50 4.45 5.45 2.50 3.25 5.78 4.75 5.45 4.64

LLAMA-2-7B (VANILLA) 2.75 4.40 2.80 1.55 1.80 3.20 5.25 4.60 3.29
LLAMA-2-7B (LORA) 6.30 5.65 4.05 1.60 1.45 4.17 6.20 6.20 4.45
LLAMA-2-7B (GALORE) 5.60 6.40 3.20 1.25 1.95 5.05 6.57 7.00 4.63
LLAMA-2-7B (LISA) 6.55 6.90 3.45 1.60 2.16 4.50 6.75 7.65 4.94
LLAMA-2-7B (FT) 5.55 6.45 3.60 1.75 2.00 4.70 6.45 7.50 4.75

*https://github.com/huggingface/diffusers/tree/main/examples/consistency_distillation

18

LoRA LISA
Stable Diffusion v2.1

LoRA LISA
Stable Diffusion v1.5

Figure 5: Generated images using LoRA (left) and LISA (right) on Stable Diffusion v2.1 model and
Stable Diffusion v1.5. First row: number of inference step = 2. Second row: number of inference
step = 10.

Table 9 provides detailed MT-Bench scores for the LLaMA-2-70B model discussed in Section 4.4,
demonstrating LISA’s superior performance over LoRA in all aspects under large-scale training
scenarios. Furthermore, in Figure 6, we observe that LISA consistently exhibits on-par or faster
convergence speed than LoRA across different models, which provides strong evidence for LISA’s
superiority in practice.

Table 9: Mean score of three fine-tuning methods over three seeds for LLaMA-2-70B on the MT-
Bench.

MT-BENCH
MODEL & METHOD WRITING ROLEPLAY REASONING CODE MATH EXTRACTION STEM HUMANITIES AVG. ↑
LLAMA-2-70B(VANILLA) 7.77 5.52 2.95 1.70 1.70 6.40 7.42 8.07 5.19
LLAMA-2-70B(LORA) 7.55 7.00 5.30 3.15 2.60 6.55 8.00 8.70 6.10
LLAMA-2-70B(LISA) 8.18 7.90 5.45 4.45 2.75 7.45 8.60 9.05 6.72
LLAMA-2-70B(FT) 6.45 7.50 5.50 3.40 2.15 7.55 8.10 9.40 6.25

The aforementioned results show that Vanilla LLaMA-2-70B excels in Writing, but full-parameter
fine-tuning led to a decline in these areas, a phenomenon known as the “Alignment Tax” [1]. This
tax highlights the trade-offs between performance and human alignment in instruction tuning. LISA,
however, maintains strong performance across various domains with a lower ”Alignment Tax“.

19

Figure 6: Loss curves for LoRA, LISA, and full-parameter training on the Alpaca-GPT4 dataset
across different models.

A.3 Continual Pre-training

2 4 8 16 FT
The Number of LISA activated layers

0.18

0.19

0.20

0.21

0.22

0.23

0.24

Ac
cu

ra
cy

Different LISA activated layers in continual pretraining

Figure 7: The comparison of full parameter (FT) training
and LISA with different sampling layers under continual pre-
training scenario. The accuracy is the test set of GSM8K.

To better analyze the performance of
LISA in the continual pre-training sce-
nario, we used OpenWebMath for con-
tinual pre-training and the GSM8K
train split for the fine-tuning stage,
varying the number of sampling lay-
ers, γ, within LISA, ranging from
2, 4, 8, 16, compared to the accuracy
of the full parameter (FT) continual
pre-training. Table 7 details the re-
sults for the LLaMA-2-7B model un-
der various continual pre-training con-
figurations. Notably, LISA with eight
sampling layers achieves comparable
accuracy with full parameters contin-
ual pre-training method. Furthermore,
LISA with 16 sampling layers passes
the accuracy of full parameter train-
ing.

A.4 Ablation Experiments

A.4.1 Sampling Layers γ

We conducted an ablation study on the LLaMA-2-7B model trained with the Alpaca-GPT4 dataset,
setting the sampling period K = 13, so the number of samplings is exactly 10. The study explored
different configurations of sampling layers γ including {E+H+2L, E+H+4L, E+H+8L}. Figure 8
depicts the impact of the number of sampling layers γ on the training dynamics of the model. Three
scenarios were analyzed: γ = 2 (blue line), γ = 4 (green line), and γ = 8 (red line), throughout 120
training steps. Initially, all three configurations exhibit a steep decrease in loss, signaling rapid initial
improvements in model performance. it’s clear that the scenario with γ = 8 consistently maintains a
lower loss compared to the γ = 2 and γ = 4 configurations, suggesting that a higher γ value leads to
better performance in this context.

20

Figure 8: Comparison of loss curves for the γ ablation experiment.

Table 10 demonstrates that LISA with only E + H layers experiences a performance decline when
the 0 sampling layers γ are omitted, highlighting the importance of these layers.

Table 10: Results of additional experiments on LISA with only E + H layers.

MODEL METHOD
MMLU

(5-SHOT)
AGIEVAL
(3-SHOT)

WINOGRANDE
(5-SHOT) MT-BENCH

TINYLLAMA

VANILLA 25.50 19.55 59.91 1.25
LISA (E + H) 25.49 ± 0.14 20.75 ± 0.21 60.43 ± 0.19 2.18 ± 0.31
LISA 26.02 ± 0.13 21.71 ± 0.09 61.48 ± 0.08 2.57 ± 0.25
FT 25.62 ± 0.10 21.28 ± 0.07 62.12 ± 0.15 2.21 ± 0.16

MISTRAL-7B

VANILLA 60.12 26.79 79.24 4.32
LISA (E + H) 61.49 ± 0.12 27.66 ± 0.07 77.93 ± 0.11 4.51 ± 0.27
LISA 62.09 ± 0.10 29.76 ± 0.09 78.93 ± 0.08 4.85 ± 0.14
FT 61.70 ± 0.13 28.07 ± 0.12 78.85 ± 0.12 4.64 ± 0.12

LLAMA-2-7B

VANILLA 45.87 25.69 74.11 3.29
LISA (E + H) 45.88 ± 0.12 25.82 ± 0.15 73.48 ± 0.22 4.63 ± 0.35
LISA 46.21 ± 0.12 26.06 ± 0.08 75.30 ± 0.11 4.94 ± 0.14
FT 45.66 ± 0.09 27.02 ± 0.10 75.06 ± 0.13 4.75 ± 0.16

To better understand the LISA and hyperparameter Sampling Layers γ, we conducted ablation
experiments on Sampling Layers γ and learning rate η. The aim was to investigate the combined
impact of these two variables on the LISA. Our experiments utilized the LLaMA-2-7B model, trained
on the GSM8K dataset. We examined the effect of increasing the number of Sampling Layers γ while
simultaneously decreasing the learning rate η.

Table 11: Compare LISA with different Sampling Layers γ and Learning Rate η, evaluate on GSM8K.

SAMPLING
LAYERS γ

LEARNING RATE η
5× 10−5 2.5× 10−5 1.25× 10−5 6.25× 10−6

2 15.77 15.32 15.21 15.01
4 11.29 11.34 15.87 15.27
8 13.32 14.39 16.30 15.32

16 15.42 15.92 15.78 16.57

The Table 11, indicates that a higher number of sampling layers can enhance the model’s effectiveness,
provided the learning rate is adjusted appropriately. Specifically, the optimal performance is observed
when the learning rate η is reduced in proportion to the increase in the number of sampling layers
γ, demonstrating the delicate balance required between these two parameters to maximize LISA’s
efficacy.

21

A.4.2 Sampling Period K

Figure 9: Comparison of loss curves for the sampling period K ablation
experiment.

Figure 9 displays the effects
of varying sampling Period
K on training a 7B-sized
model using the 52K-entry
Alpaca-GPT4 dataset. This
graph contrasts loss curves
for different sampling pe-
riod K values: K = 122
(green line), K = 25 (red
line), and K = 13 (blue
line) across 122 training
steps. The results indicate
that although each K value
results in distinct training
trajectories, their conver-
gence points are remarkably
similar. This finding im-
plies that for a 7B model
trained on a 52K instruction conversation pair dataset, a sampling period of K = 13 is optimal for
achieving the best loss curve and corresponding MT-Bench score radar graph.

A.4.3 Sensitiveness to Randomness

LLaMA-2-7B on Alpaca-GPT4 with update step per sampling period K = 13, and sampling
layers γ = 2, run three times with different random layer pick. Figure 10 shows that different
random selections of layers slightly affect the training process but converge similarly. Despite initial
fluctuations, the loss trends of three runs—distinguished by blue, green, and red lines—demonstrate
that the model consistently reaches a stable state, underscoring the robustness of the training against
the randomness in layer selection.

Figure 10: Comparison of loss curves for random variance ablation experiment, indicating the loss
metric over steps.

Table 12: Compare LISA with fixed lay-
ers on LLaMA-2-7B, evaluate on MT-
Bench.

METHOD MT-BENCH ↑
LISA 4.94
LISA-FIX-1 4.62
LISA-FIX-2 4.60
LISA-FIX-3 4.67

Additionally, we also conduct experiments that analyze
the impact of fixing randomly selected layers during train-
ing. The suggestion highlighted a need to evaluate the
model’s stability and performance under such conditions.
To address this, we conducted further experiments using
the LLaMA-2-7B model, maintaining identical hyperpa-
rameters and datasets as in our paper, and repeated the
experiments three times to reduce variability from the ran-
dom selection process.

22

The results are presented as table 12, with ’LISA-fix’ denoting the experiments with randomly fixed
layers and the appended number indicating the different selected seeds. The results are presented
as table 12, with ’LISA-fix’ denoting the experiments with randomly fixed layers and the appended
number indicating the different selected seeds.

A.5 Performance with Early Exiting

Table 13: GSM8K Scores for LLaMA-2-7B when
LISA meets the early exiting strategy DoLa.

METHOD GSM8K % ↑
VANILLA 15
VANILLA + DOLA 11
FT + DOLA 16
LISA + DOLA 17

According to previous works [83, 84], the
early exiting strategy in LLMs is effective.
We are interested in investigating whether the
LISA algorithm will have a different impact
when combined with the early exiting strategy.
To explore this, we conducted a series of
experiments using the LLaMA-2-7B model,
focusing on various training methods and
early exit points. The early exiting method is
DoLa [83].

We conducted all of our experiments using the LLaMA-2-7B model, selecting layers [0, 8, 16, 32] as
early exit points for evaluation under four different training conditions: Vanilla (baseline), Vanilla with
DoLa, Full Parameter Fine-Tuning (FT) with DoLa, and LISA with DoLa. The model used is the same
one trained on the Alpaca-GPT4 dataset, as reported in section 4.2. This comprehensive approach
enabled a detailed comparison of the model’s performance and layer representation capabilities under
various training methodologies. Due to time constraints, our experiments were conducted on a subset
of 100 questions from the GSM8K test set, employing the same prompt as in the DoLa paper.

From the table 13, it can be seen that the LISA algorithm does not negatively affect the representation
or performance of some layers of the model; instead, it contributes to some improvements in
effectiveness.

A.6 Comparison of Evaluation Loss

Besides the training loss, we also care about how LISA performs on the validation dataset. So, we
split the Alpaca-GPT4 dataset into train and validation sets, the ratio is 9 : 1, and ensure there is
no data overlap between these two sets. Then we use the same setting in the sec 4.2, training the
LLaMA-2-7B on the Alpaca-GPT4 dataset with full parameter training (FT), LoRA, GaLore, and
LISA. As Figure 11 shows, the trend in validation loss mirrors that observed in training loss, with
LISA exhibiting no signs of overfitting. This consistency underlines LISA’s robustness in maintaining
performance across different dataset splits.

0 20 40 60 80 100 120
Step

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

Lo
ss

LISA
GaLore

LoRA

Comparison of Validation Loss Curves on Alpaca-GPT4 Dataset for LLaMA-2-7B

GaLore
LoRA
LISA
FT

Figure 11: Validation loss comparison on the Alpaca-GPT4 dataset for LLaMA-2-7B, showing LISA,
GaLore, LoRA, and FT strategies, with arrows indicating specific observations in the loss trends.

23

Table 15: The statistics of datasets. # TRAIN and # TEST denote the number of training and test
samples respectively. The unit for OpenWebMath is the number of documents.

DATASET # TRAIN # TEST

ALPACA GPT-4[60] 52,000 -
MT-BENCH [67] - 80
GSM8K [73] 7,473 1,319
MMLU [68] - 14,079
AGIEVAL [69] - 9316
WINOGRANDE [70] - 44,000
PUBMEDQA [74] 211,269 1,000
OPENWEBMATH [72] 6.3M -

A.7 Additional Observations of Layerwise Skewness

We conduct further weight norm experiments on Mistral-7 B to support our motivation that the bottom
and top layers have a more significant impact on the output. Figure 12 provides similar observations
as LLaMA-2-7B, where the bottom layer has a larger weight norm than other layers.

em
be

d_
tok

en
s

lay
er

s.0
lay

er
s.1

lay
er

s.2
lay

er
s.3

lay
er

s.4
lay

er
s.5

lay
er

s.6
lay

er
s.7

lay
er

s.8
lay

er
s.9

lay
er

s.1
0

lay
er

s.1
1

lay
er

s.1
2

lay
er

s.1
3

lay
er

s.1
4

lay
er

s.1
5

lay
er

s.1
6

lay
er

s.1
7

lay
er

s.1
8

lay
er

s.1
9

lay
er

s.2
0

lay
er

s.2
1

lay
er

s.2
2

lay
er

s.2
3

lay
er

s.2
4

lay
er

s.2
5

lay
er

s.2
6

lay
er

s.2
7

lay
er

s.2
8

lay
er

s.2
9

lay
er

s.3
0

lay
er

s.3
1

lm
_h

ea
d

Model Layers

10
0

10
1

10
2

10
3

W
ei

gh
t N

or
m

Weight Norm of Each Layer For Mistral-7B
Mistral-7B with Full Parameters
Mistral-7B with LORA

Figure 12: Layer-wise weight norms during training of Mistral-7B with LoRA and Full Parameters
training.

B Training Setup and Hyperparameters

B.1 Training Setup

Table 14: Baseline Model Specifications

MODEL NAME # PARAMS # LAYERS
MODEL

DIM
HEADS

TINYLLAMA 1.1 B 22 2048 32
MISTRAL-7B 7 B 32 4096 32
LLAMA-2-7B 7 B 32 4096 32
LLAMA-2-70B 70 B 80 8192 64

In our experiments, we employ the
LMFlow toolkit [85]* for conducting
full parameter fine-tuning, LoRA tun-
ing, and LISA tuning. We set the
epoch number to 1 for fine-tuning and
continual pre-training scenarios. Ad-
ditionally, we utilized DeepSpeed of-
fload technology [63] to run the LLMs
efficiently. All experiments were conducted on 8× NVIDIA Ampere Architecture GPU with 48 GB
memory. Table 14 and table 15 are the information covered in this paper.

*https://github.com/OptimalScale/LMFlow

24

Table 16: The hyperparameter search identified optimal settings for each method: FP (Full Parameter
Training), LoRA, GaLore, and LISA.

FP LoRA LISA

Model lr lr Rank lr γ K

GPT2-Small 3× 10−4 6× 10−4 128 6× 10−4 2 3
TinyLlama 5× 10−6 5× 10−5 128 5× 10−5 2 10
Mistral-7B 5× 10−6 5× 10−5 128 5× 10−5 2 10

LLaMA-2-7B 5× 10−6 5× 10−5 128 5× 10−5 2 10
LLaMA-2-70B 5× 10−6 5× 10−5 128 5× 10−5 4 10

Our study explored a range of learning rates from 5× 10−6 to 3× 10−4, applying this spectrum to
Full Parameter Training, LoRA, and LISA methods. For LoRA, we adjusted the rank r to either 128
or 256 to vary the number of trainable parameters, applying LoRA across all linear layers. Regarding
the number of sampling layers γ, our selections were guided by GPU memory considerations as
reported in LoRA studies [9]; For the LISA algorithm, we selected γ = 2, and for experiments
involving the 70B model, we opted for γ = 4. The sampling period (K), defined as the number of
update steps per sampling interval, ranges from 1 to 50. This range was influenced by variables such
as the size of the dataset, the batch size, and the number of training steps. To manage this effectively,
we partitioned the entire training dataset into K segments, thereby enabling precise regulation of the
training steps within each sampling period.

B.2 Continual Pre-training Dataset

We extracted a high-quality subset from OpenWebMath [72], using the ‘Math_score’ attribute from
the metadata as the metric for high-quality instances. The ‘Math_Score’ represents the probability
that a document is mathematical, and we set the threshold at 0.95. Finally, the number of tokens for
this high-quality subset is 1.5 billion.

B.3 Hyperparameter search

We commenced our study with a grid search covering (i) learning rate, (ii) number of sampling layers
γ, and (iii) sampling period K. Noting the effective performance of the LoRA method, we set the
rank value to r = 128 or r = 256.

The optimal learning rate was explored within the range {5× 10−6, 10−5, 5× 10−5, 6× 10−4, 3×
10−4}, applicable to full parameter training, LoRA, and LISA. For GaLore, we adhered to the official
Transformers implementation*, utilizing default parameters, with the learning rate matching that of
the full parameter training.

Regarding the number of sampling layers γ, in alignment with Table 1, we selected values that
matched or were lower than LoRA’s GPU memory cost. Consequently, γ = 2 was predominantly
used in the LISA experiments, while γ = 4 was chosen for the 70B model experiments.

For the sampling period K, we examined values within 1, 3, 5, 10, 50, 80, aiming to maintain the
model’s update steps within a range of 10 to 50 per sampling period. This selection was informed by
dataset size, batch size, and total training steps.

The comprehensive results of our hyperparameter search, detailing the optimal values for each
configuration, are presented in Table 16.

C Licenses

For instruction following and domain-specific fine-tuning tasks, all the datasets, including Alpaca [61],
GSM8k [73], MMLU [68], AGIEval [69] and PubMedQA [74] are released under MIT license.

*https://huggingface.co/blog/galore

25

WinoGrande [70] and MT-Bench [67] are under Apache-2.0 license. For GPT-4, the generated dataset
is only for research purposes, which shall not violate its terms of use.

26

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We proposed Layerwise Importance Sampled AdamW (LISA), a promising
alternative for LoRA, which applies the idea of importance sampling to different layers in
LLMs and randomly freeze most middle layers during optimization. Experimental results
show that with similar or less GPU memory consumption, LISA surpasses LoRA or even
full parameter tuning in downstream fine-tuning tasks, where LISA consistently outperforms
LoRA by over 11%-37% in terms of MT-Bench and multiple benchmarks.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Limitation section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

27

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: See Discussion section 5.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: See Experimental Result section 4

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

28

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: See Experiment section 4 and Appendix B.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Experiment section 4 and Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: See Experiment section 4 and Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

29

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Experiment section 4.1 and Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, the research conducted in the paper conforms in every respect with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: NA.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

30

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: NA.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: See Licenses section C.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

31

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: NA.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: NA.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: NA.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

32

	Introduction
	Related Work
	Large Language Models
	Parameter-Effieient Fine-Tuning
	Low-Rank Adaptation (LoRA)
	Large-scale Optimization Algorithms

	Method
	Motivation
	Layerwise Importance Sampled AdamW (LISA)

	Experimental Results
	Memory Efficiency
	Moderate Scale Fine-Tuning
	Moderate Scale Continual Pre-training
	Large Scale Fine-Tuning
	Ablation Studies

	Discussion
	Conclusion
	Additional Experiments
	Image Generation
	Instruction Following Fine-tuning
	Continual Pre-training
	Ablation Experiments
	Sampling Layers
	Sampling Period K
	Sensitiveness to Randomness

	Performance with Early Exiting
	Comparison of Evaluation Loss
	Additional Observations of Layerwise Skewness

	Training Setup and Hyperparameters
	Training Setup
	Continual Pre-training Dataset
	Hyperparameter search

	Licenses

