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Abstract

Disentanglement learning is a core issue for understanding and reusing trained information
in Variational AutoEncoder (VAE), and an effective inductive bias has been reported as a
key factor. However, the actual implementation of such bias is still vague. In this paper, we
propose a novel method, called Multiple Invertible and partial-equivariant transformation
(MIPE-transformation), to inject inductive bias by 1) guaranteeing the invertibility of
latent-to-latent vector transformation while preserving a certain portion of equivariance of
input-to-latent vector transformation, called Invertible and partial-equivariant transformation
(IPE-transformation), 2) extending the form of prior and posterior in VAE frameworks
to an unrestricted form through a learnable conversion into an approximate exponential
family, called Exponential Family conversion (EF-conversion), and 3) integrating multiple
units of [IPE-transformation and EF-conversion, and their training. In experiments on 3D
Cars, 3D Shapes, and dSprites datasets, MIPE-transformation improves the disentanglement
performance of state-of-the-art VAEs.

1 Introduction

Disentanglement learning which aims to learn more interpretable representations is broadly useful in artificial
intelligence fields such as classification (Singla et all 2021)), zero-shot learning (Tenenbaum), 2018), and
domain adaptation (Li et al 2019; |Zou et al., |2020)). A disentangled representation is defined as a change in
a single dimension, which corresponds to unique semantic information. Several studies have been conducted
based on this framework.

A major model for enhancing disentanglement learning is the Variational AutoEncoder (VAE) (Kingma
& Welling), |2013). Based on the VAE, unsupervised disentangled representation learning has been devel-
oped (Higgins et al.| [2017; (Chen et all |2018; Kim & Mnih| 2018} [Jeong & Song, 2019; |Li et al., |2020)) through
the factorizable variations and control of uncorrelatedness of each dimension in representations. Moreover,
VAE models that handle the shape of the prior as a Gaussian mixture (Dilokthanakul et al.l 2016b) or von
Mises-Fisher (Davidson et al., 2018) were also developed, but disentanglement is still incomplete. @ A critical
study shows that unsupervised disentanglement learning is impossible without inductive bias (Locatello et al.|
2019).

Recently, such inductive bias has been introduced from various perspectives on the transformation of latent
vector space. Mathieu et al.| (2018]) @ demonstrated that regularizing the aggregate posterior, rather than

the posterior fitted to a complex prior, influences disentanglement learning. Intel-VAE (Miao et al.l [2022) @
utilized a complex prior and applied an invertible transformation to map the space to another latent space
for a complex prior, providing better data representation. Group theory based bias also significantly improves
in disentanglement (Zhu et all 2021; |[Yang et al.l 2022), which follows the definition by Higgins et al.| (2018)),
based on group theory @ even though these works implicitly inject the inductive bias. These works show
that equivariant transformation between the input and latent vector spaces has a key role in disentanglement.
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Inspired by the above works, we propose a Multiple Invertible and partial-equivariant transformation (MIPE-
transformation) method, which is simply insertable into VAEs. In this paper, we mainly focus on two main
aspects, as outlined below:

Limitation of the Gaussian Prior. @ To address the limitations of the Gaussian prior, we propose the
IPE-transformation, which generates an uncertain form of latent vector distributions, and we introduce a
training procedure to align them to be close to an exponential family, called exponential family conversion
(EF-conversion). This conversion allows the uncertain distribution to function within the typical training
framework of VAESs to convey sufficient dataset structure (Mathieu et all 2018; Miao et al., [2022)). We then
assume that an encoder is partial-equivariant function, a property we refer to as the encoder equivariance
condition.

Preserving Partial-Equivaraince. @ However the L2L transformation disrupts partial-equivariant
function, defined by Romero & Lohit| (2022), without condition. To address this issue, we implemented
the latent-to-latent (L2L) transformation via an exponential matrix to satisfy the conditions necessary for
preserving partial-equivariant; specifically, the transformation must be 1) symmetric and 2) invertible. @
Then we mathematically show that a symmetric matrix exponential is an appropriate transformation to be a
partial-equivariant function.

Through experiments involving both quantitative and qualitative analysis, MIPE-transformation demonstrates
significant improvements in disentangled representation learning across the 3D Cars, 3D Shapes, and dSprites
tasks. Our main contributions are summarized as follows.

1. We propose using a symmetric matrix exponential as a latent-to-latent vector transformation function
to induce inductive bias, leveraging its invertible and equivariant properties with mathematical
analysis.

2. We provide a training procedure and loss functions for VAEs to learn an unknown latent vector
distribution as an approximate exponential family.

3. We propose the novel MIPE-transformation architecture, which integrates multiple IPE-transformation
and EF-conversion, making it widely applicable to state-of-the-art VAEs.

4. We empirically analyze the properties of MIPE-transformation and validate its effectiveness in
disentanglement learning on benchmark datasets.

Table 1: Terms and Notations

z Latent vector from encoder P(+) Invertible function

Zm Transformed latent vector by ., (-) €m Transformed prior samples by 9, (+)

0, Natural Parameter of posterior 0, Natural Parameter of prior

T Sufficient Statistics A Log-Normalizer

v Evidence Dx1,(+|]))  Kullback-Leibler divergence

fa(9) Power Density Function M, (R) A set of n x n real matrix

GL,(R) General Linear Group Sym,(R) A set of n X n symmetric real matrix
En {eM|M € M, (R)} Eg {e%]S € Sym,(R)}

Gs Gs: (e, %) Gy Group of input space for symmetries
G, Group of latent space for symmetries | J GsNGyp,

vu()  vum() € Mu(R) Ven ()  YEN() € En

Yes()  YEs() € Eg 0 zero vector

0, n by n zero matrix X Input space

Z Latent vector space z Transformed latent vector space

= G[XGL—>GL T GLXGT—>GT

=7 Gl x Gl — Gi P GI x G — G
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2 Related Work

Recently, various studies have focused on unsupervised disentanglement learning. Previous works are based on
the definition by [Bengio et al.| (2013)). One of the branches is InfoGAN (Chen et al., 2016) based works such as
IB-GAN (Jeon et al., 2021), which implement an additional regularizer to improve informativeness (Eastwood
& Williams), [2018). The other branch is based on the VAE. 8-VAE (Higgins et al., [2017)) penalizes the
Kullback-Leibler divergence (KL divergence) using weighted hyper-parameters. Factor VAE (Kim & Mnih|
2018) and S-TCVAE (Chen et all 2018) are trained using total correlation (T'C) to encourage independent
dimensions in a latent vector, employing a discriminator and decomposed components of the KL divergence
term. Differently, we consider the recent disentanglement definition based on group theory (Higgins et al.,
2018).

Following the definitions of disentangled representation learning based on group theory, several works have
emphasized equivariant and improved disentangled representation learning. Commutative Lie Group VAE
(CLG-VAE) (Zhu et al, 2021]) proposed a direct mapping of the latent vector into Lie algebra to obtain a
group structure (inductive bias) with constraints: commutative and hessian loss. Furthermore, Groupified
VAE (Yang et al., 2022) utilizes the Spatial Broadcast Decoder (Watters et al., |2019)) to implement an
equivariant function to the cyclic group while guaranteeing the commutativity and invertibility of group
actions. Topographic VAE (Keller & Welling, 2021) combines Student’s-t distributions with variational
inference and enforces rotated latent vectors to be equivariant. On the other hand, we apply an unrestricted
prior and posterior for disentanglement learning.

There are several inductive biases to learning unsupervised disentanglement, such as group theory based and
sequential order. In this section, we briefly discuss sequential order inductive bias even though its method is
considered in different domains such as text and video frames. To individualize the static (time-invariant)
and dynamic (time-variant), |Li & Mandt| (2018)); Bai et al.| (2021) proposed the latent variables one (f) is
only dependent on the given times series datasets x.7, and the other (z1.7) is dependent on the x;.7 and
f- Moreover [Bai et al.| (2021)) propose the novel ELBO with maximizing mutual information between the
input and the latent vectors. These works empirically show that sequential order which includes separated
latent vectors improves unsupervised disentanglement learning with diverse qualitative analysis. Differently
in group theory based approaches, the proposed methods consider equivariant function between input and
latent vector space.

Other VAE approaches implement other prior from Gaussian distribution to transformed Gaussian distribution,
Gaussian mixture distribution (Dilokthanakul et al., [2016a) or von Mises-Fisher distribution (Davidson et al.,
2018)). |Mathieu et al.| (2018) @ shows that model regularization with a Gaussian prior is inappropriate
to convey sufficient dataset information and for disentanglement learning. Rather than using a Gaussian
distribution, we employed an exponential family with high flexibility that encompasses a range of different

distributions. IntelL.-VAE (Miao et al., 2022) utilize the invertible function to transform a Gaussian
distribution to a complex distribution as Mathieu et al.| (2018). Differently, we show a clearer relation of
invertibility to disentanglement and improve VAEs to use its unrestricted form of prior.

Invertible and equivariant Deep Neural Networks have been investigated with normalizing flows. As proven
by [Xiao & Liul (2020)), utilized matrix exponential on Neural networks is invertible, but it only provides
mathematical foundations of the transformation. Matrix exponential is utilized to implement an invertible
and equivariant function to improve the generative flow compare to linear function Hoogeboom et al.| (2020)).
To specify the exponential family, other works contribute uncertainty of exponential family distribution with
Bayesian update |Charpentier et al.| (2020; 2022). In addition, Ranganath et al.| (2014) hierarchically controls
the natural parameter across the layers and determines the exponential family distribution with the moment
of sufficient statistic. In our work, we show how to use it for disentanglement learning.

3 Method

The overview of a VAE equipped with MIPE-transformation is shown in Figure @ We aim to explain
the three core components of the MIPE-transformation. In Section 3.1, we mathematically prove why the
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Figure 1: The overall architecture of our proposed MIPET-VAE. The invertible and partial-equivariant
function ¢ (-) for L2L transformation consists of a symmetric matrix exponential to be 1) invertible and 2)
partial-equivariant. Then 3) EF conversion module converges the distribution of unrestricted £ to be EF
with L loss. Also, it applies KL divergence loss (Ly;) between the transformed posterior and prior, which
are expressed by the power density function of EF. In the last, EF conversion reduces the computational
error (L.q;) between approximated and true KL divergence. 4) The reddish color represents the integration
parts. The blue figures represent each property. The details of the gray box are in Figure

IPE-transformation, which transforms latent vectors, better preserves partial-equivariance when it is an
invertible and symmetric matrix. In Section 3.2, we describe EF-conversion, which extends the Gaussian
distribution to a diverse exponential family distribution. Finally, in Section 3.3, we illustrate how multiple
IPE-transformations and EF-conversions can be integrated into a VAE-based model to implicitly inject
inductive bias.

3.1 Partial-Equivariant Function and Invertible L2L Transformation
3.1.1 Why Should L2L Transformation Be Equivariant?

Let’s consider equivariant function between the input and transformed latent vector space, directly used
for a decoder in the VAE frameworks. All L2L transformations do not extend the encoder equivariance
condition to the relation between input and transformed latent space. This problem is more precisely shown
in Figure [2| which illustrates partial equivariance condition over the input space X, latent vector space
Z, and its transformed latent vector space Z with a corresponding group of symmetries Gy, G, and G,
respectively. In the VAEs literature, it has not been reported to restrict L2L transformation to guarantee
equivariant function between two spaces, so we propose a solution to guarantee at least a part of symmetries
to be equivariant.

3.1.2 Equivariance Property with Symmetric Matrix Exponential

To enhance the equivariance of L2L transformation, we focus on which transformation is appropriate.
Then we prove that an invertible and symmetric matrix preserves partial-equivariance better than other



Under review as submission to TMLR

[4Q) P M, (R)
2 GL(R
Representation ? Im() "( )
Space
Group of g GL\ T
Symmetries of /' g; aL gr
each ) @ G] @
Representation
Space =7 7
G " i,
uarantee the equivaraint over a
subset of symmetries on X and Z ] — G L ] G S

Figure 2: G, and G, are obtained through encoder g4 (encoder equivariance condition). The left side figure
shows the relation between each space and symmetries. If ¢(-) is equivariant function over all G, and Gr,
then there exist I', where I' : G, — Gr, and Eo ' : Gy — Gr. However, unrestricted ¢(-) has no guarantee
to be partial- or full-equivariant. The red arrows represent our method: L2L transformation guarantees
I’:G{ - G, and 27 o T : GY — G, given the encoder equivariance condition = : G; — Gr.

matrices. We show that 1) a group with symmetric and invertible matrices guarantees equivariance of ¥ (-) over
the specific group Gg, 2) this ¥(-) being equivariant over subset of symmetries between the input space and

transformed latent vector space to show the connection between two spaces, and 3) @ the invertible

and symmetric matrix (symmetric matrix exponential) increases the probability of ¥(-) to be in the group
(equal to be equivariant over the subset of symmetries).

We particularly call the transformations as symmetries (Higgins et al., |2022) to distinguish them from IPE-
and I2L-transformations. For the generality of our method, we consider an arbitrary VAE model that has no
restriction on creating intersections to any set as Figure [2]

Proposition 3.1. Any (-) € Gg, notated as g (-), is equivariant to group Gg.

Proof. The group Gg is closed to matrix multiplication, and its element is always a symmetric matrix by
definition. Then, any two elements in Gg are commutative because if matrix multiplication of two symmetric
matrices is symmetric then both are commutative. As a result, ¢g,(-) and group elements of Gg are
commutative (Gg is an abelian group). Because of the commutativity, ¥g4(gs 0 z) = e5gsz = g;e52 =
gs 0. (z) for gs € Gg if the group action o is set to matrix multiplication, where 9g, € Gs. This equation
satisfies the general definition of an equivariant function that a function f(-) is equivariant if f(goz) = go f(2)
for all g in a group G' by matching f, ¢, and G to g, gs, and Gg, respectively. B

Proposition 3.2. If g4 is equivariant over defined on group of symmetries G| and Gy, then ¥4 (qs(-))
s equivariant to symmetries in G corresponding to Gg N G and Gr corresponding to Gs N Gy, by the
equivariance of qg.

Proof. The function 9, (-) is an equivariant function over group elements in Gg N G, by Proposition
Then, the composite function, ¢ (-) and g, is an equivariant function of Gy corresponding to Gg N Gy,
and Gt corresponding to Gs N Gp. Let gf be a group element in Gs N Gy, and g7 is a group element in G
corresponding to G N Gr. More details are in Appendix [C.1] B

Therefore, the invertible and symmetric matrix is a partial-equivariant function between the data space and
transformed latent vector space.

Proposition 3.3. Pr(¢yg,(-) € Gs) > Pr(¢g,, (:) € Gs) > Pr(¢¥m(-) € Gg).

Proof. All € € Eg are in Ej; since Sym,(R) C M,(R). However, Ey; ¢ Es because e is always
symmetric, but e can be an asymmetric matrix. Therefore Ey; ¢ Eg. Therefore, the probability
Pr(¢yps(-) € Gg) = iggig is greater than Pr(yg,, (-) € Gs) = 1133((12“;;)) In the same way, Pr(vg,, (-) € Gg) >

Pr(yy(-) € Gs) = % because Ey C M, (R) and non-invertible functions are only in M, (R). B
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Figure 3: Equivariant map: X, Z, and Z are input space, latent vector space, and transformed latent vector
space by L2L transfomration function v (-) : R™ — R™. respectively. € € X, z € Z, and 2 € Z.

Therefore, g clearly increases the probability of preserving a certain type of equivariance compared to
unrestricted 1 functions. @ It implies that symmetric and invertible properties for a matrix are necessary
to preserve partial equivariance.

The conditional probability Pr(¢g,(-) € Gg), Pr(ve, () € Gs), and Pr(¢yy(-) € Gg) is changed by the
distribution of the observation of #(-), which depends on the model parameters. However, the inequality
Pr(ypgs(-) € Gg) > Pr(¥e, () € Gs) > Pr(¢¥u(-) € Gg) is not changed regardless of the distribution
of observation of i(-). We empirically validate the impact of equivariance with the uncertain P(-) to
disentanglement in Section [D.4]

This correspondence of decomposition is expected to transfer the independence between dimensions of z to
the space of 2 (Higgins et al., |2018)).

3.1.3 Invertible Property by Using Matrix Exponential

To guarantee the invertible property of IPE-transformation, we use a function ¥(-) = eM x - for the
transformation, where M is in n X n real number matrix set M, (R) (Xiao & Liul |2020). The operator x* is
matrix multiplication, and eM = > A,/CI—,R Our motivation is to use the benefits of injecting explicit inductive
bias for disentanglement (Locatello et al.l [2019; Miao et al |2022). InteL-VAE effectively extracts hierarchical
representation, which includes low-level features (affect to a specific factor) and high-level features (affect to
complex factors) with an invertible transformation function (Miao et al., [2022)).

3.2 Exponential Family Conversion for Unknown Prior

In VAE frameworks, the Gaussian normal distribution is applied as a prior. However, a prior from data
is usually unknown and may not follow the Gaussian distribution (Miao et al. |[2022). As a solution, we
present a training procedure for VAEs to build an exponential family distribution from a latent variable of
an arbitrary distribution. Then, we introduce training losses obtained from the unit IPE-transformation
function and EF-conversion.

3.2.1 Elements of Exponential Family Distribution Settings

First, we set sufficient statistics T'(-), log-normalizer A(-), and carrier or base measure B(-) are deterministic
functions by maximizing conjugate prior for parameter £&. To determine the natural parameter of posterior and
prior 8 , and é€,,, we use a natural parameter generator (NPG) designed by multi-layer perceptron (Charp;
entier et al., 2022)). As introduced in [Bishop| (2006); |(Charpentier et al.| (2022), we assume exponential family
always admits a conjugate prior:

q(0]¢,v) = exp(vOTE — vA(0) + B'(€,v)), (1)

where B'(-) is a normalize coefficient and v is evidence, and it is expressed by prior natural parameter .
However, generated natural parameter 6z, is not guaranteed as the appropriate parameter of the exponential
family corresponds to conjugate prior. To satisfy this condition, we assume observation is a set of independent
identically distributed, then Eq. [13|is modified: p(X|0) = [T"_, h(x,)exp(8T N T(x,,) — A(8)) (Bishop,

n=1 n=1
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2006)), where observation X = {x1,---xy}. In the next, we multiply the modified formation by the prior
Eq. [1| to obtain the posterior distribution (Bishop, [2006) as Eq.

3.2.2 Distribution Approximation As an Exponential Family

The procedure represents a posterior distribution in the exponential family by adopting the following form:

N
p(OIX, &, v) o exp(67 Z (xn) +v€) — A(9)), (2)
where sufficient statistics T(-) and log-normalizer, A(-) are known functions, samples X = {x1,X3,...,X,}

from distribution, and natural parameter of posterior 8 and of prior £ (Bishop), 2006). The functions T'(+), and
A(+) are deterministic functions to maximize posterior distribution. The evidence is implemented as learnable
parameters v € R™*™. The natural parameter is generated by a multi-layer perceptron as |Charpentier et al.
(2022)). This general form approximating an exponential family distribution with learnable parameters can
extend VAEs to use a wider distribution for latent variables by simply matching X to generated latent
variables. After IPE-transformation, we can apply the form by using the 2,,, 6, , and .  for X, 6, and &,
respectively.

3.2.3 EF Similarity Loss

We added a loss to converge the unrestricted distributions of 2 to the power density function of the exponential
family by constraining the posterior maximization as:

maximize logp(0s,,|2m,Oc,,,Vm) s-t. DxL(fe(2|0z,, )| f=(x(0c,,)) >0 (3)
= Ls(Zm, €m) = logp(0s,,12m, 0¢,,, Vm) + A DL (fo(2(0z,,)]| fx(x]0e,,)) (4)
= Lo = [|Vz, e anLsll5 = 0. (5)

The notation 8y, is a generated natural parameter by a given k € {2, é}, and f(x|0) is a power density
function of the exponential family. Moreover, A,, is a trainable parameter for optimizing the Lagrange
multiplier, and Dkr,(fz(2]03z,, )||f«(x]0¢,,)) is a KL divergence of the exponential family.

3.2.4 KL Divergence for Evidence of Lower Bound

The KL divergence of Gaussian distribution (Kingma & Welling, 2013)) is computed using mean and variance,
which are the parameters of a Gaussian distribution. To introduce a loss as the KL divergence of Gaussian
distribution, we compute KL divergence of the exponential family in Eq. [2| using the learnable parameter T'(-)
and A(-) with given natural parameter 83 and 6, expressed as:

Ly = Dxr(f=(x]0z,,)|| fz(z|6e,,)) (©)
= A(@g) — A(Hﬁ) + 0£V92A(9£) — OEVQéA(eg).

3.2.5 KL Divergence Calibration Loss

To reduce the error between the approximation and true matrix for the matrix exponential (Bader et al.,
2019), we add a loss to minimize the difference of their KL divergence measured by mean squared error (MSE)
as:

Leari = MSE(Dkw(gs(2|2)[|po(2)), DxL(fz(2105,, )| f2(]6e,,))), (7)

which is the KL divergence calibration loss (Lcqi;)-
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3.2.6 Implicit Semantic Mask

We propose an implicit semantic mask to improve disentanglement learning. We apply mask matrix M which
consists of 0 or 1 element to log-normalizer to prevent less effective weight flow as:
1if (Wi;| > 1= Ao,
M, = Wi | = Hwi; | [Wij| (8)
0 otherwise
where W is the weight of log-normalizer, A is a hyper-parameter, p)yy,;|, and oy, are the mean, and
standard deviation of weight respectively. Previous work (Yang et al., 2020) utilizes a semantic mask in input
space directly, but we inject the semantic mask implicitly on the latent space.

3.3 Integration for Multiple IPE-Transformation and EF-Conversion

We mathematically extend IPE-transformation to MIPE-transformation, which is the equivalent process of
B-VAE to enhance disentanglement. Each IPE-transformation function operates independently, then the
reconstruction error for objective function is defined as:

k k
1
Lyee i= m Z [/ql 2i|x) log pg(x|2;)d2; H q;(25|x) dzjl = EZ 40,0, (z12) l0g Do (Z(i(2)),  (9)
=L i=1
where 2; = 1;(z). Therefore, we define ELBO as:
k k
L6, Vici0 ) = 1 2 By o 108 0(l6:(2) = Y Dic s (1)l (). (10

i=1 i=1
However, following Eq. [I0} k samples are generated, and each sample is disentangled for different factors.
We implement the output as the average of the sum of the k samples to obtain a single sample with a
superposition effect from k samples. Moreover, the KL divergence term in Eq. [10] represents that increasing
number of MIPE-transformation is equal to an increasing 3 hyper-parameter in S-VAE (Higgins et al.| 2017)

and more details are in Appendix

The VAEs equipped with MIPE-transformation (MIPET-VAESs) can be trained with the following loss:
L($,0,%icii 1)) = Lree — Lrt — Lot — Leali- (11)

4 Experiment Settings

4.0.1 Models

As baseline models, we select VAE (Kingma & Welling, 2013)), 5-VAE (Higgins et al., 2017), 3-TCVAE (Chen
et al.l [2018]), Factor-VAE (Kim & Mnih} 2018, Control-VAE (Shao et al.l 2020)),and CLG-VAE (Zhu et al.|
2021)). These models are compared to their extension to adopt MIPET, abbreviated by adding the MIPET
prefix. We apply the proposed method to S-TCVAE only with the EF similarity loss term because 5-TCVAE
penalizes the divided KL divergence terms. We set the same encoder and decoder architecture in each model
to exclude the overlapped effects. Also, we follow the same model architecture which are introduced in
previous works (Kim & Mnih| 2018) and model details are in Table |74

4.0.2 Datasets

We compare well-known VAEs to MIPET-VAEs on the following data sets with 1) dSprites (Matthey et al.
2017) which consists of 737,280 binary 64 x 64 images of dSprites with five independent ground truth
factors(number of values), i.e. shape(3), orientation(40), scale(6), x-position(32), and y-position(32). 2) 3D
Shapes (Burgess & Kiml |2018) which consists of 480,000 RGB 64 x 64 x 3 images of 3D Shapes with six
independent ground truth factors: shape(4) orientation(15), scale(8), wall color(10), floor color(10), and
object color(10). 3) 3D Cars (Reed et all [2015) which consists of 17,568 RGB 64 x 64 x 3 images of 3D Shapes
with three independent ground truth factors: car models(183), azimuth directions(24), and elevations(4).
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Table 2: Performance (mean =+ std) of four metrics on dSprites, 3D Shapes, and 3D Cars.

FVM 1 MIG 1 SAP 1 DCI 1
original MIPET original MIPET original MIPET original MIPET
B-VAE 69.15(+5.88) 74.19(£5.62) 9.49(£8.30) 19.72(4+11.37) 2.43(£2.07) 5.08(£2.90) 18.57(+12.41) 28.81(+10.19)
B-TCVAE 78.50(+7.93) 79.87(£5.80) 26.00(£9.06)  35.04(+4.07) 7.31(+0.61) 7.70(£1.63) 41.80(+8.55) 47.83(45.01)
Factor-VAE 67.78(+7.48) 68.38(+8.55) 14.67(£10.40) 19.31(£13.46) 2.35(+2.32) 4.24(£3.36) 22.58(+8.50) 30.18(+12.99)
CLG-VAE 79.06(+6.83) 81.80(+3.17) 23.40(£7.89) 36.34(+£5. 55) 7.37(£0.96) 8.03(+0.83) 37.68(£7.83) 44.73(+5.11)
Control-VAE 62.36(+8.62) 67.71(+£6.41) 4.36(+2.86) 7. 34(i4 10) 2.11(+1.88) 1.93(+1.63) 10.40(+£3.42) 15.18(+4.61)
FVM 1 MIG 1 SAP T DCIL T
original MIPET original MIPET original MIPET original MIPET
B-VAE  T7L76(+12.26) 75.19(£8.16) 37.33(£22.34) 47.37(£10.13) 7.48(+4.12) 9.20(+2.44) 52.07(+17.92) 54.95(+8.99)

)
B-TCVAE  76.62(+10.23) 80.59(+8.57) 52.93(420.5) 54.49(4+9.44) 10.64(£5.93) 11.58(+3.32) 65.32(£11.37) 66.22(£7.32)
Factor-VAE  77.43(£10.71) 78.34(+8.35) 24.23(+26.13) 48.59(£10.58) 4.99(+4.46) 9.84(+2.73) 68.68(+£12.92) 60.23(+9.90)
)
)

dSprites

3D Shapes

CLG-VAE  77.04(+8.22) 80.17(+8.43) 49.74(+8.18)  53.87(£7.41) 9.20(+2.44) 12.83(4£3.01) 57.70(£8.60) 60.74(&7.77)
Control-VAE 71.05(£14.35) 71.89(4+8.33) 24.88(+13.68) 32.28(£10.74) 6.60(£3.59) 7.14(£2.09) 40.08(+13.45) 43.06(-:8.68)

FVM 1 MIG 1 SAP 1 DCI 1
original MIPET original MIPET original MIPET original MIPET
B-VAE 89.48(£5.22) 88.95(£5.94) 6.90(£2.70) 7.27(£1.99) 1.30(£0.48) 1.88(+1.12) 19.85(+4.87) 18.90(+4.49)
B-TCVAE  95.84(+3.40) 96.43(+2.42) 11.87(+2.90) 10.80(£1.22) 1.55(+0.38) 1.88(+1.12) 27.91(+4.31) 26.08(+2.47)
Factor-VAE  89.64(%+2.62) 93.66(+3.83) 10.63(+1.30)  9.43(£+1.12) 2.51(+0.37) 3.28(+0.83) 26.27(+3.17) 23.13(£0.72)

)
) (
CLG-VAE  86.11(£7.12) 91.06(£5.09) 6.19(£2.42)  8.51(£2.11) 2.06(20.60) 1.99(£0.93) 16.91(+4.01) 18.31(+£2.83)
Control-VAE 88.76(+7.66) 89.10(+6.90) 4.68(+2.67)  5.08(42.68) 1.16(+0.74) 1.45(+0.86) 14.70(£3.84) 15.22(+4.15)

3D Cars

Table 3: p-value of t-test for original vs MIPET results of Table [2] which are averaged over models (bold:
positive and significant, italic: positive but insignificant, normal: lower performance).

VAEs CLG-VAE B-TCVAEs
FVM MIG SAP DCIT FVM MIG SAP DCI FVM MIG SAP DCI
dSprites 0.000 0.000 | 0.000 | 0.000 0.030 0.000 | 0.005 0.000 0.281 0.000 0.170 0.009
3D Shapes 0.080 0.007 | 0.016 0.191 0.085 0.029 0.000 0.088 0.111 0.383 0.277 0.390
3D Cars 0.659 0.250 0.003 0.583 0.003 0.000 0.630 0.071 0.278 0.923 0.119 0.933

p-value

4.0.3 Training

We set 256 mini-batch size in the datasets (dSprites, 3D Shapes, and 3D Cars), Adam optimizer with learning
rate 4 x 1074, 31 = 0.9, B2 = 0.999, and epochs from {30, 67,200} as a common setting for all the comparative
methods. For the comparison, we follow training and inference on the whole dataset. We train each model for
30, 67, and 200 epochs on the dSprites, 3D Shapes, and 3D Cars, respectively, as introduced in [Kim & Mnih
(2018); [Ren et al.| (2022)). We tune 3 from {1,2,4,10} and {4,6} for 5-VAE and S-TCVAE, respectively. The
a=1and v =1 of B-TCVAE as|Chen et al|(2018). We set the dimension size of the latent vectors from
{6, 10} for 10 on dSprites and 3D Cars datasets and 6 for 3D Shapes, but we set 10 for CLG-VAE because
it sets 10 dimensions size on 3D Shapes in |Zhu et al| (2021). Regarding the CLG-VAE, we fix Adecomp
Ahessian, and forward group features as 40, 20, and 0.2, respectively. Because the hyper-parameters showed
the best result in [Zhu et al| (2021)). We set group reconstruction from {0.2,0.5,0.7}. For Control-VAE,
we set the maximum KL divergence value from {10,12,...,20}. In addition, we set masking ratio A from
{0.0,0.5,...2.0,00}. To check the impact of MIPE-transformation, we do not consider the Groupified VAE
because the latter is implemented with an extended decoder (different capacity).

4.0.4 Evaluation

We conduct experiments on NVIDIA A100, RTX 2080 Ti, and RTX 3090. We set 100 samples to evaluate
global empirical variance in each dimension and run it a total of 800 times to estimate the FVM score
introduced in Kim & Mnih| (2018). For the MIG (Chen et all 2018), SAP (Kumar et al., [2018), and
DCI (Eastwood & Williams|, 2018)), we follow default values introduced in Michlo| (2021)), training and
evaluation 100 and 50 times with 100 mini-batches, respectively. We evaluate four disentanglement metrics
for a less biased understanding of the actual states of disentanglement.
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dSprites

3D Shapes

lm B N
Sl B B = m
SH = B m

ST gae MIPET-B.VAE B-VAE " MIPET-B-VAE
Figure 4: Each square represents a value in the DCI matrix, which describes the relationship between the "
latent dimension and each factor. The size of each square is relative to the values within each row. The ideal
case resembles a sparse matrix. The y-axis represents the factors of each dataset, while the x-axis corresponds
to the latent vector dimensions. The number shown in each row of the matrix indicates the maximum value
and standard deviation of that row. Higher maximum and standard deviation values suggest greater sparsity,
indicating closer alignment with the ideal case. More details in Appendix

Table 4: Impact of the number of MIPE-transformation function on the S-TCVAE and 5-VAE with dSprites,
3D Shapes, and 3D Cars datasets in terms of the four metrics. The blue and red box plots represent
each model’s single and multiple IPE-transformation cases, respectively. (A-n: MIPET-3-TCVAE (4), B-n:
MIPET-S-TCVAE (6), C-n: MIPET-S-VAE, n: the number of MIPE-transformation).

Metrics
dataset
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5 Results and Discussion

5.1 Quantitative Analysis
5.1.1 Disentanglement Metrics

We set the number of IPE-transformation functions to be equal to balancing hyper-parameter § on -VAE
because of Eq. The number of IPE-transform functions of 5-TCVAE is 3. However, in the case of
CLG-VAE, we set it to 1 because its approach is based on the group theory, not directly controlling a KL
divergence term such as 5-VAE. We average each model performance value with 40, 20, 60, 10, and 30 cases
in VAEs, -TCVAESs, Control-VAE, Factor-VAE and CLG-VAEs, respectively.
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Table 5: Impact of the mask (mean+std.) and its ratio A in Eq. [8on 3D Cars. (co: no masking case, gray
box: the best setting over all metrics, bold text: the best in each metric.) Each model runs with ten random
seeds.

ratio B-VAE (1) CLG-VAE (0.5)
A FVM T MIG T SAP T DCI T FVM T MIG T SAP T DIC T
0.0 90.46(£6.50) 4.84(£2.32) 1.29(£0.81) 16.76(£4.68)
0.5 91.35(+5.52) 5.37(£2.74) 1.17(40.67) 16.65(+3.76) 88.69(+4.78) 6.90(£1.96) 1.85(40.67) 17.52(+£3.16)
1.0 91.78(+£6.20) 4.99(£2.27) 1.36(40.81) 16.50(+2.53) 83.60(£11.48) 8.12(43.66) 2.37(£1.50) 17.07(+£3.89)
1.5 84.76(+6.86) 7.70(£2.11) 2.05(£0.73) 17.06(£2.77)
2.0 87.79(%8.88) 4.75(£2.49) 1.01(4+0.99) 16.64(£3.75) 85.78(+4.18) 7.83(£1.79) 1.91(40.96) 17.26(£2.07)
oo | 89.43(£11.72) [ 38.74(£2.32) [ 0.77(£0.39) [ 15.45(£4.59) || 82.96(£11.84) 8.07(£2.52) 2.32(+1.02) 17.46(£4.07)

Table 6: Ablation study for the equivariant property (w/o E), and EF-conversion (w/o EF). Each metric is

averaged over 40 and 20 settings of S-VAE and g-TCVAE, respectively.

B-VAE B-TCVAE
3D Shapes MIPET MIPET MIPET MIPET
MIPET (w/o E) (w/o EF) MIPET (w/o E) (w/o EF)
FVM 75.19(£8.16)| 74.91(E£10.46)] 22.27(F1.29) || 80.59(L8.57)| 77.90(£8.66) | 66.38(L7.57)
MIG 47.37(£10.13)| 47.45(+8.98)| 0.28(:£0.09) || 54.49(+9.44)| 51.37(£11.54) 36.08(+17.42)
SAP 9.20(£2.44) | 9.43(£2.59) | 0.26(£0.07) || 11.58(£3.32)| 10.23(£3.13) | 7.13(%3.09)
DCI 54.95(+8.99)| 54.23(£9.05) | 0.10(£0.02) || 66.22(+7.32)| 61.18(+8.87) | 56.85(+£11.72)

As shown in Table 2] MIPET-VAEs disentanglement performance is broadly improved with four metrics on
each dataset. In particular, most FVM results significantly affect the model performance and stability on all
datasets. Therefore, our proposed method obtains a specific dimension that corresponds to a specific single
factor. These results imply that applied to MIPE-transformation functions on VAEs elaborate disentangled
representation learning.

p-Value We additionally estimate the p-value of each metrics over models in Table [3| Previous work shows
the average case of each models (Yang et al., 2022). We divide each case into four categories: 1) Positive &
Significant, 2) Positive & Insignificant, 3) Negative & Insignificant, and 4) Negative & Significant, where
positive is when the mean value is higher than baseline and significant is statistically significant. We estimate
the probability of each category: 1) 50%, 2) 36.11%, and 3) 13.89%. As shown in Table [3| and the results,
half of the cases are statistically significant, and 86.11% of cases are improved model performance. Even
though our method shows a lower value than the baseline, it is not significantly decreased (13.89%). In
addition, averaged results show that our method impacts to model itself without hyper-parameter tuning.
B-TCVAEs is partially using our method (paragraph Models in Section , so it does not show the whole
effect of MIPET, but it improves model performance in many cases.

Relation Between Factors and Latent Vector Dimensions. As shown in Fig. [4 the MIPET model
shows the larger maximum value and standard deviation of each row except for the scale factor in the dSprites
dataset. Our model shows a close to sparse matrix compared to the 8-VAE result in 3D Shapes, also the
maximum value and standard deviation of each row are larger than S-VAE. It indicates that the result of our
model is close to the sparse matrix (ideal case). More details are in Appendix

5.1.2 Sensitivity to the Number of IPE-transformation and EF-conversion

We analyze the impact of the MIPE-transformation function. As presented in Table 4l MIPE-transformation
outperforms IPE-transformation in disentanglement learning across all datasets. Indeed, the results of
MIPET-5-VAESs more generally and clearly demonstrate the impact of the MIPE-transfomation function.
Our derivation in Section [C.] clearly explains the impact of MIPE-transformation. This result shows the
impact of the multiple uses of IPE-transformation and EF-conversion.

5.1.3 Impact of Implicit Semantic Mask

We set masking hyper-parameter A from {0.0,0.5,---,2.0,00}, and each model has different A for best case.
In Table [5, VAE and CLG-VAE with masked log-normalizer show better and well-balanced results than the
models without masking, which implies improvement of disentanglement.
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5.1.4 Ablation Study

We conduct an ablation study to evaluate the separate impact of equivariant property and the EF-conversion.
We have already presented the impact of the multiple uses of IPE-transform and EF-conversion in the previous
paragraph. We evaluate the impact of the other properties by setting MIPE-transformation 1) without
equivariant (w/o E), which is implemented as an asymmetric matrix, and 2) without EF-conversion (w/o EF).
To exclude group theory interference with other methods, we select S-VAE and S-TCVAE. As the results are
shown in Table [6] most of the results show that MIPET-VAEs performance is better than other cases. In
particular, MIPET (w/o EF) results are lower than MIPET (w/o E) results and are clearly shown in all cases.

5.2 Qualitative Analysis

5.2.1 Does IPE-transformation map the Gaussian Distribution to Diverse Exponential Family?

@ As shown in Fig. |5 the posterior of VAE is a Guassian distribution. Also, the posterior of MIPET-VAE

(w/o semantic mask) is close to a Gaussian distribution rather than a beta distribution. Even though
IPE-transformation is a linear transformation, our model approximates the beta distribution because of the
semantic mask. As we define the decoder as a single linear layer, the posterior of MIPET-VAE is close to a
beta distribution. Because the linear transformation of a beta distribution is also a beta distribution. Also,
MIPET-VAE preserves the dataset structure better than VAE. More details are in the Appendix

Beta Distribution

Dataset o Dataset
outputs " outputs

@® Dataset
® Posterior
® Output

VAE MIPET-VAE MIPET-VAE (w/o semantic mask)

Figure 5: A toy test compares VAE, MIPET-VAE, and MIPET-VAE without semantic mask to investigate
whether the model approximates the beta distribution. We construct the VAE with a 4-layer Multi-Layer
Perceptron (MLP) as the encoder and a single linear layer as the decoder. Blue plots are randomly sampled
from a two-dimensional beta distribution, red plots are the posterior, and black plots are the output results.

2D beta distribution 2D Dirichlet distribution

00 02 04 06 08 o 2 4 6 8 00 02 04 06 08 10 o 2 4 6 8 10

® Dataset @ Output @ Posterior 1 ® Posterior 2

Figure 6: A toy test with two-dimensional exponential family distribution (beta and Dirichlet distribution).
We set the number of IPE-transformation as 2. Green and red plots refer to latent vectors (posterior) from
each IPE-transformation.

5.2.2 Does Each IPE-transformation map into a Different Distribution?

We demonstrate how each IPE-transformation represents the exponential family. As shown in Fig.

each IPE-transformation represents a different distribution because the green and red plots are distributed in
different posteriors, even though all IPE-transformations share the same decoder weights.
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5.2.3 Image Generation
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Figure 7: Qualitative results on dSprites. The left-side grids are input images and their variants by changing
activations of each dimension of latent vectors. The first row shows input images. The right-side table shows
matching pre-defined factors of the dataset (red: MIPET, blue: no MIPET).

We randomly sample an image for each dimension of the latent vector space and creates 10 variants of its
generated latent vector by selecting values from {-2, 2} with 10 intervals for the dimension, then generate
their corresponding output images. For the generation, we select S~-TCVAE (6), which shows the best FVM
scores in dSprites dataset. Thereafter, we evaluate the semantic roles of each dimension before and after
applying MIPE-transformation function.

In Figure B-TCVAE struggles with y-position and rotation, as shown on the 6! row, and with scale and
shape represented on the 7" row. On the contrary, MIPET-S-TCVAE separates y-position and rotation
factor (10", and 7** rows), also the activated dimensions of MIPET-B-TCVAE are not overlapped with
each factor. Applied our method on S-TCVAE shows better disentangled representation on dSprites dataset.
These results also show that our proposed method improves disentangled representation learning.

As shown in the Figure CLG-VAE struggles with shape and wall color factors in 4" dimension, and
shape and object color factors in 7*" dimension. In particular, it struggles with tree factors in 9*" dimension.
On the other hand, MIPET-CLG-VAE separates shape, wall, and object color factors.

The qualitative analysis with 3D Cars dataset, as show in Figure the left side is the S-TCVAE result, and
it struggles with body, and azimuth factors shown in the 7" row. However, MIPET-3-TCVAE separates
azimuth (6" row) and body (1%* row). In particular, MIPET-3-TCVAE learns color factor (3"¢ row) which
does not exist on S-TCVAE.

Furthermore, our model shows slight improvement on the CelebA (Liu et al., [2015) dataset, as shown in
Fig. The overlapping dimensions between the baseline and our model are 6 and 4, respectively.

6 Conclusion

In this paper, we address the problem of injecting inductive bias for learning unsupervised disentangled
representations. To build the bias in VAE frameworks, we propose MIPE-transformation composed of 1)
IPE-transformation for the benefits of invertibility and partial-equivariance for disentanglement, 2) a training
loss and module to adapt unrestricted prior and posterior to an approximated exponential family, and 3)
integration of multiple units of IPE-transformation function and EF-conversion for more expressive bias.
The method is easily equipped on state-of-the-art VAEs for disentanglement learning and shows significant
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improvement on dSprites, 3D Shapes, and 3D Cars datasets. We expect that our method can be applied to
more VAEs, and extended to downstream applications. Although our model does not show sufficiently

improved results on complex datasets such as CelebA or beyond, we anticipate that utilizing architectures like
CLIP (Radford et all|2021)), which directly train symmetry (transformation) information through language
and vision datasets, would enable more efficient injection of inductive bias compared to unsupervised learning
approaches. Our work is limited to holding partial equivariance of I12L transformation, so more direct methods
to induce it can be integrated in the future.
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A Appendix

B Preliminaries

B.1 Group Theory

Binary operation: Binary operation on a set S is a function that % : § x S — S, where x is a cartesian
product.

Group: A group is a set G together with binary operation *, that combines any two elements g, and g3 in
G, such that the following properties:

e closure: g4, gy € G = go *x gp € G.

o Associativity: Vga, gb, g € G, 5.t. (ga * gb) * ge = ga * (b * gc)-

Identity element: There exists an element e € G, s.t. Vg€ G,exg=g*e=g.

o Inverse element: Vg € G, g1 € G: gxg =g txg=e.

Group action: Let (G, *) be a group and set X, binary operation - : G x X — X, such that following
properties:

o Identity: e-z =x, where e € G, x € X.

o Compatibility: Vg, g5 € G,z € X, (ga * gb) - T = ga - (g - T).

Equivariant map: Let G be a group and X3, X5 be two sets with corresponding group action of G in each
sets: Tgxl,TgX?7 where g € G. Then a function f: X; — Xs is equivariant if f(TgX1 - X)) = TgX2 - f(Xq).

Partial EquivariancejRomero & Lohit| (2022): Let subset of G be T C G, then f is a partially equivariant
map to G:

F(TX - X,) =T - f(X;), where Vv € Y. (12)

Homomorphsim: Let (G,-), (H,0) be two groups. If mapping function h : G — H, s.t. h(g;-g;) =
f(gi) o f(gj), then f is called homomorphism.

B.2 Exponential Family

Power density function of the exponential family (PDF) generalized formulation:

fa(2]0) = h(x)exp(0TT(x) — A(0))

= exp(67T(z) — A(6) + B(x)), (13)

where sufficient statistics T(-), log-normalizer A(-), and carrier or base measure B(-) are known functions,
samples  from distribution, and natural parameter 6.
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C Proof

Proposition C.1. If g4 is equivariant over defined on group of symmetries G{ and G, then ¥4 (qs(+))
s equivariant to symmetries in Gy corresponding to Gg N G and G corresponding to Gs N G by the
equivariance of qe.

Proof. The function 9, (-) is an equivariant function over group elements in Gg N G, by Proposition
Then, the composite function, ¢ (-) and g4, is an equivariant function of Gy corresponding to Gg N Gy,
and G corresponding to Gs N Gpr. Let gf be a group element in Gs N Gy, and g7 is a group element in G
corresponding to Gg N G, and g3 is a group element where corresponding to Gs N G, on the latent vector
space transformed from the original latent vector space. Then, group element g7, is equal to g7:

21 = Ygs(21),and (14)
22 =Yg (22) = Yas(9721) = 97¥6s(21) (. Prop. Bd), (15)
then g7 vas(21) = 91v¥as(z1) (7 22 = g721)
= (91 — 97)¥cs(z1) =0,

where 0 is a zero vector. Eq.[16]is defined when Vz € Z by the equivariance definition. In other words, Eq.

is satisfied only if the kernel (linear algebra) of g¢ — g%, notated as ker(¢¢ — ¢%), includes the basis of R™
vector space. If the standard basis of R™ vector space is in ker(g¢ — g%), then (g% — g%) = Oy, where 0,,,,

is an n by n zero matrix. Other bases of R™ vector space are expressed by the standard basis. Therefore
g% - g’(ll“ = On,n'

(16)

Then, ¥as(9¢21) = g%¥as(21) = g4as(2z1). The encoder is an equivariant function over input space X
as ¢s(9%e1) = g%gs(x1). Mixing two equivarience property, we can derive another equivariance relation
95%as(ge(x1)) = Yas(gs(gFa1)) This result implies that the equivariance between input space and a latent
space is preserved for Gig N G, if the latent vector z is transformed by ¢¥g,.H

We show that 1c preserves equivariance between G and G7. If there exists equivariant function between
input and latent vector space, there should be a group Gy, for a latent space and its corresponding group G
in an input space by definition of equivariance (g4(g97z) = gr.ge(2)).

In other words, ¥, (-) guarantees to preserve the equivariance of I2L-transformation to certain symmetries
in Gg N Gy, after IPE-transformation as shown in Figure [2|

Let P(B) be the probability of ¢(-) € B for a subset B C M, (R) after VAE training, and Pr(yp € B’) be
the conditional probability of ¢(-) € B’ given ¢ (-) € B.

Then,

Proposition C.2. Pr(¢p,() € Gg) > Pr(vg,, (-) € Gs) > Pr(¢¥m(-) € Gs).

Proof. All €5 € Eg are in E); since Sym,(R) C M,(R). However, E\; ¢ Eg because e is always symmetric,
but e can be an asymmetric matrix. All elements of Eg are symmetric because of the matrix exponential
property that eM’ = (eM)T. If M is a symmetric matrix then eM’ = eM = (eM)T. Therefore, if M is
symmetric then the exponential of M is also symmetric. We show a counter example to Fy; C Eg. When

11
el )

=1
M _ k
k=0
I+{1 1}+1{1 1]2 L1 [1 T””Jr
0 1] "21(0 1 (n—1)10 1 (17)
o 1 [e%¢) 1
_ I+ |:Zn—0 n! 1 + Z&:O (]n—l)l:|
0 Zn:OF
_|1+e 1+e
0 1+e
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The matrix eM is asymmetric and not in Eg. Therefore Ejy; ¢ Eg. Therefore, the probability Pr(ig.(-) €

Gg) = ];Egig is greater than Pr(yg,,(-) € Gg) = If((g;)) In the same way, Pr(¢yg,, () € Gg) > Pr(¢nm(-) €
Gs) = % because Fy; C M, (R) and non-invertible functions are only in M, (R). B

C.0.1 KL Divergence for Evidence of Lower Bound

The KL divergence of Gaussian distribution |[Kingma & Welling| (2013) is computed using mean and variance,
which are the parameters of a Gaussian distribution. To introduce a loss as the KL divergence of Gaussian
distribution, we compute KL divergence of the exponential family in Eq. [2| using the learnable parameter T'(-)
and A() with given natural parameter 8; and 0, expressed as:

Ly = Dx1(fo(2|0z,,)|| f=(z|0e,,))

— A(02) — A(62) + 0TV, A(B2) — 07V, A(0,). (18)
Because Dx1,(fe(]02)|| fo(]0e)) is followed as:
Dic(a(@10:)1fa(@16e)) = [ fo(al6:) l0g fo(al6:)da
(19)
_/_ fm(w|62)10gfw(w oé)dw
We designed sufficient statistics as matrix multiplication (multi-layer perceptron). Then,
| tataloyios fatelpsyie = [ fute
OIT(x) — A(6:) + B(x)|dz
(60:) /_ fol@]02)dz
+ [ fa(w0)07T@) + Bade 20
=40+ 07 [ T(@)fu(al0)d
+ [ B@)a(elosa
and
| sutalo)tog fulaloois = —ace0)
+ 6] /00 T(x) fo(z|0c)dx (21)
+ [ B@)a(alo)ae
o Dke(fz(x]0z)|| f2(x]0e)) = A(Be) — A(6z)
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The mean of the sufficient statistic is followed as:

/ " (@) fu (2]0)de — a,agge) ~ 3‘;(90) - A*(0) = 07 A, (23)

— o0
where A*(+) is a true log-partition function of the exponential family (ideal case of A(-)). However, estimating
A* is difficult, and there is no direct method without random samplings, such as mini-batch weighted sampling
or mini-batch stratified sampling |Chen et al.| (2018). Then, we approximate A* to A, and train A to be close
to A*. Consequently, we obtain KL divergence of the exponential family as:

o 0A(0;
[ ra(xi6:) g f(el6:) = ~A0:) + 615
- 00 ) (24)
—|—/ fa(x|02)B(x)dx,
e 0A(6,
| ralalos) s fu(x100) = ~2000) + 072502
- 00 - (25)
—l—/ fa(x]|0z)B(x)de.
Therefore, the final Kullback-Leibler divergence of exponential family is followed as:
0A(0z 0A(0:
Dict (2102 o (216)) = A(80) — A(6) + 0170 %) _ 7 0410), (26)

C.1 Integration for Multiple IPE-Transformation and EF-Conversion

We mathematically extend IPE-transformation to MIPE-transformation, which is the equivalent process of
B-VAE to enhance disentanglement. Each IPE-transformation function operates independently, then the
reconstruction error for objective function is defined as:

k
1 > > o A A
Lyec = Ez [/%;(Zikl?) log pg(x|2;)d2; H /qj(zj|w)dzj]
k e (27)
1
% Y By (21 log po(®[1i(2)),

k
togp(e) = [ [[a(zilo) ogpu(a)dz (28)
k polx, 21,2 )
A 0 gy 21y <2y "y <~k N
= z;|x) lo — — dz 29
/]':‘[ql( | ) gpe(zl,zm“',zk\w) ( )
k
- [Tl
i (30)
|:10 pe(va’%lvéQf'; 7216) _logpa(;éla/'\éZa"' 7;2k|x)i|d£/
q(21, 22, , Z|x) q(21, 22, , 2| x)
k A A N
A p@(w7z17z27"' ,Zk) ol
> ; I dz 31
= q1(=Z;|) 10 ~ A S
/ﬂ1<'>g«%@w»%m (31)
k
- [Tl
i (32)
N A A 2 72 5 " y R ~
|:10gp9($|217Z27"' 7zk)+10g p(A 1/\ 2 k) d /a
q(zlvz27" ,Zk|213)
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where d2’ = d2;d2,---d2;. Each IPE-transformation function operates
log pg (|21, 22, -+ , 2¢) = —(k — 1) log pg(x) + II}_ pe (x| 2;). Then,

A 2 N 92 2o, .. ﬁkw o (L
p0(-’13|z17z27~--7zk):p(1, ?’A’ |A)p( )
pe(Z17Z27~-~,Zk)

_ @I, po(El)
[Iipe(z)
k

Hp zzlw pe (z*)

p@ zl

= po(a)~ D HIM

o1 pe(Z)

_pG —(k—1) Hp@ ZB|Z2

5 o ~k 5
where 2;s = N7_; ;;2;. Therefore,

k

[ st ozmalan, 22,0+ 2002

i=1

k

:/HQi(£i|m)[_ — 1) log po( +Hp9 mlzz]
i=1

=—(k—1)logpe(x /qu Zi|x) Hpg (z]2;)d

Then,

log pg(x) >
Jj=1,5#1i
k .
0 (2o log s 55012) 4
Hi:l p(2i)
By |2) log po(x|2;)

k
- Z [DKL(Q¢(Zz|fB)||P (1)) H /‘IJ za|5'3)dza}
i Jj=1,j#i
1t k
i=1 i=1
k

El e

1

7

Therefore, we define ELBO as:

k
L'(),0,Vien ;) Z 10,0, (z:]2) 108 Po (x| ¥i(2))—

wm—t

k

Y Dxw(as.: (212)|lpy, (2)).

i=1

21

k
Z [/ql(zlkc) log po(x|2;)d2; H /q] (2j]z)d2;

=%Z g, (2,/2) logpo(®|2:) = > Dkr(gs(2i|®)|Ip(2:))

{Z Eq, (2:]a) log po(x[2:) — kDKL(q¢(2i|w)Hp(2i))} :

independently,

|

then
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However, following Eq. k samples are generated, and each sample is disentangled for different factors.
We implement the output as the average of the sum of the k samples to obtain a single sample with a
superposition effect from k samples. Moreover, the KL divergence term in Eq. [36| represents that increasing
number of MIPE-transformation is equal to increasing 5 hyper-parameter in 5-VAE Higgins et al.[ (2017).

The VAEs equipped with MIPE-transformation (MIPET-VAESs) can be trained with the following loss:

L(9,0,Yicin); @) = Lrec — Lyt — Lot —

D Details of Experimental Environment

D.1 Model Architecture

Table 8: VAE architecture for 3D Shapes, and 3D Cars datasets. For exceptional case, CLG-VAE, we ues ten
dimension size on 3D Shapes dataset [Zhu et al.| (2021]).

Ecali-

Table 7: VAE architecture for dSprites dataset.

Encoder Decoder
Input 64 X 64 binary image input € R0
4 x 4 conv. 32 ReLU. stride 2 FC. 128 ReLU.

4 x 4 conv. 32 ReLU. stride 2

FC. 4 x 4 x 64 ReLU.

4 x 4 conv. 64 ReLU. stride 2

4 x 4 upconv. 64 ReLU. stride 2.

4 x 4 conv. 64 ReLU. stride 2

4 x 4 upconv. 32 ReLU. stride 2.

FC. 128. FC. 2 x 10

4 X 4 upconv. 32 ReLU. stride 2.

4 X 4 upconv. 1. stride 2

Encoder

Decoder

Input 64 x 64 x 3 RGB image

input € R® (3D Shapes), RT? (3D Cars)

4 x 4 conv. 32 ReLU. stride 2

FC. 256 ReLU.

4 x 4 conv. 32 ReLU. stride 2

FC. 4 x 4 x 64 ReLU.

4 x 4 conv. 64 ReLU. stride 2

4 X 4 upconv. 64 ReLU. stride 2.

4 X 4 conv. 64 ReLU. stride 2

4 x 4 upconv. 32 ReLU. stride 2.

FC. 256. FC. 2 x 10

4 x 4 upconv. 32 ReLU. stride 2.

4 X 4 upconv. 3. stride 2

D.2 Details of Setting

Table 9: Hyper-parameters for dSprites, 3D Cars, and 3D Shapes. The epochs for dSprites and 3D cars are 30
and 200, respectively. Ir is learning rate, latent dim is latent vector size, group reconst is group reconstruction,

and forward group is forward group pass.

(a) Hyper-parameters for dSprites and 3D Cars

models

[ hyper-parameters | values
batch size 256
epoch {30,200}
optim Adam
common Ir 4e-4
Ir for MIPET 4e-4
weight decay le-4
latent dim 10
B-VAE # of IE and EF {1,2,4,10}
5 1467
B-TCVAE # of IE and EF {1,3}
o,y 1.0
idecomp 40
hessian 40
CLG-VAE forward group 0.2
group reconst {0.2,0.5,0.7}

22

(b) Hyper-parameters for 3D Shapes

models [ hyper-parameters [ values
batch size 256
epoch 67
common optim Adam
Ir 4e-4
Ir for MIPET 4e-4
# of IE and EF {1,2,4,10}
B-VAE weight decay 0.0
latent dim 6
3 {4,6]
# of IE and EF {1,3}
B-TCVAE a, 7y 1.0
weight decay le-4
latent dim 6
>\decomp 40
>\he:;sian 40
forward group 0.2
CLG-VAE group reconst {0.2,0.5,0.7}
weight decay 0.0
latent dim 10
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3

MIPET-3-VAE

Figure 8: 3D Car Dataset: Azim. refers to the azimuth factor, and Elev. refers to the elevation factor.

D.3 Additional Result of Relation Between Factors and Latent Vector Dimensions

In the 3D Car dataset, a trade-off was observed. While the maximum value across models and evaluation
factors showed a slight decrease, the azimuth factor exhibited a notable improvement compared to the declines
seen in other factors.

D.4 Impact of Symmetric Matrix Exponential

Table 10: The ratio of seeds to show better performance with symmetric matrix

dSprites | 3D Shapes | 3D Cars
0.58 0.56 0.67

We empirically show the benefit of using a symmetric matrix for 1. Table [10] shows the ratio of runs with a
symmetric matrix, which shows better performance than unrestricted matrices, to the total 240 (60 models x
4 metrics) runs for each dataset. All results are higher than 0.5, which implies that the constraint enhances
I2L equivariance even with uncertain factors.

D.5 Additional Experiment of Computing Complexity

Table 11: Training complexity.

# of IE | Complexity
0 x 1.00
1 x 0.75
3 x 0.50
4 x 0.33

We additionally estimate the computing complexity depending on the number of IPE-transformation. The
results are in Table [11] and represent the training time complexity compare to baselines (when the number of
IE is equal to 0).

D.6 Semantic Mask: Mapping Gaussian Distribution to Diverse Exponential Family

As shown in Fig. [0 MIPET-VAE with semantic mask preserves the dataset structure compared to VAE. Also,
EF conversion with semantic mask maps the Gaussian distribution to the exponential family compared to
MIPET without the semantic mask and VAE cases.

D.7 Qualitative Analysis
We randomly sample an image for each dimension of the latent vector space and creates 10 variants of its

generated latent vector by selecting values from {-2, 2} with 10 intervals for the dimension, then generate
their corresponding output images. For the generation, we select S-TCVAE (6), which shows the best FVM

23



Under review as submission to TMLR

Gamma Distribution

@ Dataset
” @ Posterior
@® Output
VAE MIPET-VAE MIPET-VAE (w/o semantic mask)
(a) 2d gamma distribution dataset.
Dirichlet Distribution

@® Dataset
@ Posterior

oz ® Output

VAE MIPET-VAE MIPET-VAE (w/o semantic mask)
(b) 2d Dirichlet distribution dataset.

Figure 9: 2d exponential family distribution dataset.

scores in dSprites dataset. Thereafter, we evaluate the semantic roles of each dimension before and after
applying MIPE-transformation function.

In Figure B-TCVAE struggles with y-position and rotation, as shown on the 6! row, and with scale and
shape represented on the 7% row. On the contrary, MIPET-S-TCVAE separates y-position and rotation
factor (10", and 7" rows), also the activated dimensions of MIPET-S-TCVAE are not overlapped with
each factor. Applied our method on S-TCVAE shows better disentangled representation on dSprites dataset.
These results also show that our proposed method improves disentangled representation learning. As shown
in the Figure B-VAE struggles with rotation and scale factors in 4**dimension. Also, it struggles with
x-position and scale factors in 8" dimension, and x-position and rotation factors in 9** dimension. However,
MIPET-3-VAE only struggles with rotation and shape factors in 5! dimension. As shown in the Figure
CLG-VAE struggles with rotation and shape factors in 2" dimension, and shape and scale factors in 7t"
dimension. However, MIPET-CLG-VAE separates rotation and shape factors in 10*", and 1% dimensions
respectively.

The qualitative analysis with 3D Shapes dataset, as shown in the Figure B-TCVAE struggles with shape
and scale in 5" dimension. However MIPET-3-TCVAE As shown in the Figure CLG-VAE struggles
with shape and wall color factors in 4** dimension, and shape and object color factors in 7*" dimension. In
particular, it struggles with tree factors in 9*” dimension. On the other hand, MIPET-CLG-VAE separates
shape, wall, and object color factors.

The qualitative analysis with 3D Cars dataset, as show in Figure the left side is the S-TCVAE result, and
it struggles with body, and azimuth factors shown in the 7" row. However, MIPET-3-TCVAE separates
azimuth (6! row) and body (1*! row). In particular, MIPET-B-TCVAE learns color factor (3" row) which
does not exist on S-TCVAE.
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Figure 10: Qualitative results on dSprites. The left-side grids are input images and their variants by changing
activations of each dimension of latent vectors. The first row shows input images. The right-side table shows
matching pre-defined factors of the dataset (red: MIPET, blue: no MIPET).
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Figure 11: Qualitative analysis result of S-VAE and MIPET-5-VAE.
Factors
Commutative VAE (0.2) MIPET-Commutative VAE X-pos | YV-pos |Rotation| Shape | Scale |# of factor
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Figure 12: Qualitative analysis result of CLG-VAE (0.2) and MIPET-CLG-VAE (0.2) with dSprites.
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Figure 13: The Shape is object shape, Orien is an orientation of object, Scale is a scale factor of object, Wall
is wall color factor, Floor is floor color, and Object is object color factors. It represents the 5-VAE (8 = 2)
results.
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Figure 14: Qualitative analysis result of CLG-VAE (0.2) and MIPET-CLG-VAE (0.2) with 3D Shapes.
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Figure 15: Qualitative analysis result of 5-VAE (4.0) with 3D Cars.
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