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Abstract

We introduce I-RAVEN-X, a symbolic benchmark designed to evaluate generaliza-
tion and robustness in analogical and mathematical reasoning for Large Language
Models (LLMs) and Large Reasoning Models (LRMs). I-RAVEN-X extends
I-RAVEN by increasing operand complexity, attribute range, and introducing per-
ceptual uncertainty. Compared to LLMs, empirical results on I-RAVEN-X show
that LRMs achieve improved productivity and systematicity on longer reasoning
relations and wider attribute ranges, respectively. For instance, LRMs experience a
significantly smaller degradation on arithmetic accuracy (80.5% → 63.0%) com-
pared to LLMs (59.3% → 4.4%). However, LRMs are still significantly challenged
by reasoning under uncertainty (−61.8% in task accuracy) and cannot effectively
explore multiple probabilistic outcomes in superposition.

1 Introduction

Abstract reasoning is often regarded as a core feature of human intelligence. A wide range of
benchmarks to assess abstract reasoning has been proposed in the past decade [1–4]. Raven’s
Progressive Matrices (RPM) [5, 6], a task associating vision with relational and analogical reasoning
in a hierarchical representation, is one of the most prominent of them thanks to its extensive use to
benchmark for abstract reasoning, analogy-making, and out-of-distribution (OOD) testing [7–11].
RAVEN [11] represented the first attempts to build an automatically-generated dataset of RPM
samples, enabling large-scale training of ML methods. I-RAVEN [8] improved RAVEN, proposing
a new generation algorithm to avoid shortcut solutions that were possible in the original dataset.
However, RAVEN and I-RAVEN exhibit some limitations that hinder their reliability as benchmarks
for reasoning proficiency in LLMs and LRMs. Firstly, most of the problems involve only a few
operands, representing an overly simplistic subset of analogical and mathematical relations. Most
importantly, the test problems and their corresponding solutions are openly available online, increasing
the risk of potential data leakage from the model’s pre- and post-training stages as previously observed
in other settings [12]. Furthermore, assuming the availability of an oracle perception has become
a standard practice in their translation from visual to textual (symbolic) tasks (necessary to test
language-only models) [13–15]. This assumption is reasonable when the scope of the investigation
is limited to the reasoning component; however, it falls short when we zoom out to more complex,
end-to-end systems, as it bypasses crucial steps of the original visual analogical reasoning, such as
filtering irrelevant attributes and accounting for the uncertainty of the perception module.
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To tackle these problems, this paper makes the following contributions:

1. introduces I-RAVEN-X, an enhanced, symbolic version of the standard I-RAVEN benchmark
that enables testing the generalization and robustness to simulated perceptual uncertainty in
text-based language and reasoning models (see Figure 1),

2. highlights that LRMs consistently generalize better than LLMs in terms of productivity and
systematicity, but significantly fail to reason under uncertainty.

2 Methods

2.1 I-RAVEN-X: testing generalization and robustness of reasoning in LLMs and LRMs

We propose a fully-symbolic, parametrizable dataset to evaluate LLMs and LRMs, dubbed I-RAVEN-
X. Some examples from the dataset are included in Figure 1. I-RAVEN-X enhances the original
I-RAVEN (more extensively described in Appendix A) over different dimensions:

1. Productivity: we parametrize the number of operands in the reasoning relations (e.g., using
3×10 matrices instead of 3×3, in Figure 1);

2. Systematicity: we introduce larger dynamic ranges for the operand values (e.g., 1000
attribute values instead of 10, in Figure 1);

3. Robustness to confounding factors: we augment the set of original attributes in RPM with
randomly sampled values, which do not contribute to the reasoning ( in Figure 1);

4. Robustness to non-degenerate value distributions: we smoothen the distributions of the
input values corresponding to the generative factors ( in Figure 1).

Practically speaking, 1. and 2. enable testing the generalization of LLMs and LRMs to longer
reasoning chains and an increased number of concepts. On the other hand, 3. and 4. allow to loosen
the strong assumption of an oracle perception, simulating an imperfect sensory front-end while
operating with text-only language models, hence providing an additional focus on the robustness of
reasoning under uncertainty. More details on the design of 1 − 4 are included in Appendix B. In
addition, the original I-RAVEN was narrowed down to a single constellation (center, containing a
single object per panel), which was observed to be simultaneously a strong test for a wide range of
logical and arithmetic skills and unexpectedly challenging.

Figure 1: This figure highlights all the different axes of generalization and robustness to uncertainty,
which I-RAVEN-X stresses. Compared to standard I-RAVEN (a), I-RAVEN-X (b) involves more
panels per row (10 vs. 3) and larger attribute dynamic ranges (up to 100× more values per attribute).
In addition, it is possible to introduce uncertainty in the reasoning process through confounders (such
as panels’ background and color patterns within objects) and smoothening the attribute values’ distri-
butions (displayed on the right for the panel in position (1, 10)) (c). We adopt a visual representation
of the panels and their attributes for clarity of explanation; in practice, however, our dataset is purely
symbolic and has not been extended yet to the visual domain.
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2.2 Models and prompting techniques

We focus our study on two state-of-the-art (SOTA) LRMs (the closed-source OpenAI o3-mini model
and the open-source DeepSeek R1 model [16], together with its distilled version based on Llama
70B) and LLMs (the proprietary GPT-4 [17] and the open-source Llama-3 70B [18]). A more
precise accounting of the version of the model used, along with additional details on the prompting
engineering techniques adopted in our experiments, is presented in Appendix C. In Appendix D, we
include an additional comparison between o3-mini and its predecessor, o1.

3 Results

In this section, we evaluate the generalization and robustness of the analogical and arithmetic
reasoning capabilities of LRMs and LLMs using I-RAVEN and I-RAVEN-X. In particular, we aim to
answer the following research questions: How well do the analogical and mathematical capabilities
of LLMs and LRMs generalize in terms of productivity and systematicity (Q1)? How robust are
LLMs and LRMs when confronted with reasoning under uncertainty (Q2)?

3.1 LRMs are stronger analogical and mathematical reasoners than LLMs

To answer Q1, we benchmark the productivity and systematicity of the models introduced in Section
2.2 on I-RAVEN and I-RAVEN-X. Table 1 reports the results of the evaluation. We observe that
LRMs are much stronger reasoners than LLMs when challenged with the longer reasoning rules
and attribute ranges in I-RAVEN-X, especially when we consider mathematical reasoning (additive
relations). While LLMs show a massive drop in arithmetic accuracy on I-RAVEN-X, nearing 0%
for comparable prompt complexity, LRMs are affected by a much smaller arithmetic degradation on
average. These marked gains in arithmetic reasoning performance, with improvements reaching up
to 65.4% in certain settings, suggest that LRMs can more comfortably identify and generalize (in
productivity and systematicity) mathematical rules compared to LLMs.

Moreover, we can also see that LRMs achieve reasoning accuracy on par with LLMs despite using
significantly less engineered prompts; when the prompt complexity is comparable, on the other hand,
LRMs consistently outperform LLMs on the investigated benchmarks. o3-mini, for instance, shows
no drops in accuracy on I-RAVEN-X and a 6% drop on I-RAVEN compared to GPT-4 while using
only 1⁄21 of the prompts. When we compare the same two models on similar prompt complexities
(that is, using entangled prompting in both settings, but still retaining a 1:7 ratio between LRMs and
LLMs due to self-consistency), o3-mini emerges as a clear winner, showing an average 6.5% increase
in accuracy. These results suggest that LRMs do not require incorporating as much inductive bias
(through prompt engineering) as LLMs do, and that the production of “thinking” tokens generally
makes the reasoning process more robust.

Model ICL Prompts

I-RAVEN (3×3) I-RAVEN-X (3×10)

Range 10 Range 100 Range 1000
Task Arithm. Tok. Task Arithm. Tok. Task Arithm. Tok.

Llama-3 70B ✓ 21 85.0 45.0 21 73.0 2.6 21 74.2 0.4 21
GPT-4 ✗ 21 93.2 73.6 21 79.6 25.1 21 76.6 8.4 21
Llama-3 70B ✓ 7 79.0 31.0 21 72.6 0.0 21 74.0 0.4 21
GPT-4 ✗ 7 74.8 27.2 21 72.8 2.7 21 74.0 1.1 21

OpenAI o3-mini (med.) ✗ 1 86.6 74.4 5445 77.6 53.2 7884 81.0 60.8 7209
OpenAI o3-mini (high) ✗ 1 92.6 86.1 9867 82.4 63.5 19041 80.6 60.1 19449
DeepSeek R1 ✗ 1 80.6 74.8 4486 84.0 67.7 5550 82.8 65.8 5505
DeepSeek R1 dist. ✗ 1 78.4 69.4 5192 67.0 52.9 6690 72.0 54.4 6324

Table 1: Full task accuracy (% of test examples correctly predicted) and arithmetic accuracy (% of
the attributes in the test examples governed by an arithmetic relation correctly predicted) of LLMs
and LRMs on I-RAVEN and I-RAVEN-X. We report if In-Context Learning (ICL) examples of the
task were added to the prompt, the number of total prompts fed into the model (some techniques,
such as self-consistency and disentangled prompting require querying the model multiple times), and
the number of tokens generated by the model. “Range” indicates the dynamic range of the attributes’
values. “Tok.” indicates the average number of output tokens of the model.
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3.2 LRMs are significantly challenged by reasoning under uncertainty

The results in Section 3.1 show that LRMs can solve analogical and mathematical reasoning tasks
more accurately than LLMs. However, would they be capable of retaining the same robustness in
scenarios where uncertainty is introduced (Q2)? To answer this question, we benchmark two LRMs
with I-RAVEN-X with uncertainty as proposed in Section 2.1. Due to the failures shown in the
previous section, we do not consider LLMs for these experiments. The empirical results of this study
are reported in Table 2.

Firstly, we observe that LRMs perform significantly worse when noise factors that simulate percep-
tual uncertainty are integrated into the experiments. For instance, o3-mini’s accuracy dropped by
11.2% and 15.2% on task and arithmetic accuracy, respectively, when evaluated with 10 additional
confounding attributes. R1, on the other hand, is more robust to confounders (5.8% and 12.2% drops
on task and arithmetic accuracy), but it performs much worse when the attribute values’ distributions
are smoothened, losing up to 19.8% of task accuracy in the harshest scenario. o3-mini shows a much
smaller degradation (5.4%) in this setting.

When both the confounders and distribution smoothening are evaluated together at their maximum
level, we observe a sharp drop in task accuracy for both o3-mini (to 17.0%) and DeepSeek R1 (to
22.8%), bringing them close to random chance (12.5%). Different causes could play a role in this
significant degradation: an increasing complexity of the prompts, which might impair the model’s
ability to detect and mimic patterns in the input, or a more general limitation in modeling probabilistic
reasoning that requires maintaining coherence across multiple uncertain variables.

OpenAI o3-mini DeepSeek R1
Experiment Confounders (SNR) pL Task Arith. Tokens Task Arith. Tokens

0 (∞) 1.00 81.0 60.8 7209 82.8 65.8 6324

(a)

1 (4.77) 1.00 76.0 53.2 11521 78.2 55.2 8919
3 (0.00) 1.00 75.6 51.7 11669 80.2 58.2 8429
5 (−2.22) 1.00 71.2 48.3 12640 78.6 55.9 8681
10 (−5.23) 1.00 69.8 45.6 13709 77.0 53.6 8912

(b) 0 (∞) 0.70 75.0 51.7 13112 67.4 44.9 6995
0 (∞) 0.51 75.6 53.2 13028 63.0 46.4 7518

(c) 10 (−5.23) 0.51 17.0 41.1 18482 23.2 45.3 7147

Table 2: Task and arithmetic accuracy (%) on I-RAVEN-X (range [0,1000]) with different numbers
of confounders, from 0 (no confounders, SNR=∞) to 10 (SNR=−5.23 dB), and different attributes’
distribution smoothening (bin-smoothening strategy, with different probabilities assigned to the
correct value bin pL). We show experiments with: a) only confounders; b) only the attributes’
distribution smoothing; c) both confounders and distribution smoothing. We report the number of
output tokens to quantify the reasoning effort adopted on average by the model to find a solution.

4 Conclusion

This work presents I-RAVEN-X, a novel, symbolic benchmark for testing the generalization and
robustness of analogical and mathematical reasoning. I-RAVEN-X is then used to evaluate these
capabilities in LLMs and LRMs. Compared to LLMs, LRMs achieve improved productivity and
systematicity on longer reasoning relations and wider attribute ranges, respectively. For instance,
LRMs experience a significantly smaller degradation on arithmetic accuracy (80.5% → 63.0%)
compared to LLMs (59.3% → 4.4%). However, LRMs are still significantly challenged by reasoning
under uncertainty (−61.8% in task accuracy) and cannot explore multiple probabilistic outcomes
at the same time. One limitation of our work consists of exploring the causal relationship between
reasoning under uncertainty, prompt efficiency, and reasoning accuracy; further investigating this
relation is left for future work. The dataset and the experiments’ code will be released upon
acceptance.
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A I-RAVEN dataset

Raven’s progressive matrices (RPM) is a visual task that involves perceiving pattern continuation and
elemental abstraction as well as deducing relations based on a restricted set of underlying rules in
a process that mirrors the attributes of advanced human intelligence. In this work, we focus on the
I-RAVEN dataset. Each RPM test in I-RAVEN is an analogy problem presented as a 3× 3 pictorial
matrix of context panels. Every panel in the matrix is filled with several geometric objects based
on a certain rule, except the bottom-right panel, which is left blank. Figure 2 includes an I-RAVEN
example test. The task is to complete the missing panel by picking the correct answer from a set
of (eight) candidate answer panels that match the implicit generation rule on every attribute. The
object’s attributes (color, size, shape, number, position) are governed by individual underlying rules:

• constant, the attribute value does not change per row;

• arithmetic, the attribute value of the third panel corresponds to either the sum or the
difference of the first two panels of the row;

• progression, the attribute value monotonically increases or decreases in a row by 1 or 2;

• distribute three, the set of the three different values remains constant across rows, but the
individual attribute values get shifted to the left or to the right by one position at every row;
it also holds column-wise.

Each panel contains a variable number of objects (minimum one, maximum nine) arranged according
to one of seven different constellations (center, distribute-four, distribute-nine, left-right, up-down,
in-out-center, and in-out-four).

Figure 2: RPM example from I-RAVEN.

B I-RAVEN-X implementation details

B.1 Productivity and Systematicity

Our new benchmark maintains I-RAVEN’s four rules and three attributes but allows for a pa-
rameterizable number of columns (g) and a dynamic range of attribute values (m). When gen-
erating a new RPM example, we uniformly sample from one of the available rules (constant,
progression, arithmetic, and distribute three). Note that the attribute shape does not
incur the arithmetic rule.

In the following, we describe the generation process of the RPM context matrix of size 3× g for the
individual rules. The overall goal is that the values stay in the range [0,m− 1].

• constant: For each row, we uniformly sample an integer from the set {0, 1, ...,m − 1},
and duplicate along the row.
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• progression: First, we uniformly sample the progressive increment/decrement (δ) from
the set {−2,−1,+1,+2}. In case of a positive increment, we first define the values of the
right-most columns, by uniformly sampling from the set {(g−1) ·δ, ...,m−1} for each row.
Then, the rest of the matrix is completed by applying the progression rule. The sampling for
a negative δ is done specularly from the first column.

• arithmetic: The attribute values of the first g − 1 panels are either added (arithmetic
plus) or subtracted (arithmetic minus), yielding the attribute value of the last panel
in the row. In arithmetic plus, we sequentially sample the values from the first g − 1
panels in the row. For each panel, we set the sampling range to {0, ...,m − s}, where s
is the sum of the already sampled panels in the row. Afterward, the first g − 1 panels are
shuffled. Finally, the values of the last panels are the sum of the first g − 1 ones, applied
row-wise. For arithmetic minus, we apply the same sampling strategy but leave the first
column empty. The value of the first column is then defined as the sum of the other columns.

• distribute-n: We uniformly sample distinct values for the first row from {0, ...,m− 1}.
The content of the remaining rows is defined by applying a circular shift per row (either
right or left).

Finally, we generate the candidate answers using I-RAVEN’s attribute bisection tree [8]. The original
RAVEN dataset had a flaw in the generation of the answer set. Each distractor in the answer set (i.e.,
a wrong answer candidate) was generated by randomly altering one attribute of the correct answer.
As a result, one could predict the correct answer by taking the mode of the answer candidates without
looking at the context matrix, therefore bypassing the actual reasoning task. As a remedy, the attribute
bisection tree generates unbiased answers that are well-balanced.

B.2 Confounding attributes

Confounding attributes represent properties and patterns that can be extracted from the visual inputs
by a front-end perception module but are not relevant to the reasoning process. This could be the case,
for instance, when the attributes are extracted by unsupervised vision models such as Variational
Autoencoders [19] or even a multi-modal LLM that is prompted to extract the attributes. In Figure 1,
confounding attributes are represented by the background of the input panels and the color patterns,
which sometimes appear inside the objects. In I-RAVEN-X, we integrate confounders by extending
the set of original attributes of each panel with an arbitrary number of additional attributes uniformly
sampled in the interval [0,m− 1], where m is the range of the attributes’ values. For large enough
m, the probability of sampling values that fit a valid rule is negligible, and hence, confounders do
not introduce ambiguities in the choice of the answer panel. However, they linearly reduce the
signal-to-noise ratio (SNR) in the reasoning process, requiring models to implement strategies to
filter out noisy input components.

B.3 Smooth attribute values’ distributions

We deviate from the original I-RAVEN degenerate attributes’ distributions and introduce variance,
which allows us to test the robustness of the models when reasoning with uncertain attribute values.
In practice, we smoothen the original attributes’ distributions using a three-bins strategy, where
the probability of the true value T is p(T ) ∼ U(pL, 1), pL > 0.5 and the probabilities of its two
neighboring values are p(N1) ∼ U(0, 1 − p(T )) and p(N2) = 1 − p(T ) − p(N1). Note that the
motivation behind the three-bins strategy is to introduce variance with minimal additional cost for
LRMs’ prompt complexity.
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C Models and prompting details

LLMs We focused our evaluations on text-only LLMs. There exist attempts [20–24] that leverage
vision support of some multi-modal LLMs (e.g., GPT-4V) directly feeding the models with visual
RPM data; however, they achieve consistently lower reasoning performance than with text-only
prompting. The SOTA LLM-based abstract reasoning approach [14] relied on reading out GPT-3’s
(text-davinci-002) token probabilities. However, this model is no longer accessible to users and
its successive iterations do not allow the retrieval of prediction logits. Hence, we considered discrete
classification approaches that are based on output strings rather than distribution over tokens. In
particular, we investigated two SOTA LLMs: the proprietary GPT-4 [17]1 (gpt-4-0613) and the
open-source Llama-3 70B [18]2. During initial tests, GPT-4o yielded worse results than GPT-4, hence
we focused on GPT-4. Different prompting engineering techniques were integrated to improve the
overall accuracy of these models:

• Disentangled prompting, a compositionally structured approach that queries the LLM for
individual attribute prediction. Disentangled prompting simplifies the task, but increases
the number of queries by 3× (where 3 is, in this case, the number of attributes). In
our experiments, disentangled prompts were only used for some experiments in LLMs,
increasing the number of prompts from 7 to 21.

• Self-consistency [25, 26], which consists in querying the model multiple times (n = 7
times), sampling the next token from the distribution with a non-zero soft-max temperature.
We find the optimal soft-max temperature for GPT-4 (T = 0.5) and Llama-3 70 B (T = 0.4)
via a grid search on a subset of 50 I-RAVEN problems. We did not explore the effect of other
parameters, such as top-k or top-p, and set them to the default values. The final prediction is
determined by a majority vote over the sampled outputs. The selection of an odd number of
samples (i.e., n = 7) helps to prevent potential ties.

• In-context learning: for a better understanding of the RPM task, we optionally prefix 16
in-context examples to the prompt [27]. In the predictive classification approach (where no
answer candidates are provided), we simply provide complete example RPM matrices. The
in-context samples are randomly selected from I-RAVEN’s training set. Examples that had
the same context matrix as the actual task are discarded and re-sampled to prevent shortcut
solutions.

LRMs For the OpenAI o3-mini model, we use the o3-mini-2025-01-31 via the OpenAI API.
By default, reasoning efforts were set to medium and the number of reasoning tokens to 25,000.
For DeepSeek R1 model, the full model with 671B parameters was serviced by www.together.ai,
whereas the distilled version was run locally on 8 NVIDIA A100 GPUs. The maximum number of
reasoning tokens was set to 25,000, the temperature to 0.6, and top-p to 0.7. Self-consistency [25, 26]
and attributes’ scaling [14] were not used in experiments with LRMs. Moreover, no in-context
examples of the tasks [27] were provided since they were previously observed to be hurtful for
LRMs [16]. We also restrict the investigation to a subset of 500 randomly sampled RPM tests in
both I-RAVEN and I-RAVEN-X (due to budget constraints), which we observed to be representative
enough of the entire test set [14]. We report some examples of the prompts used in our experiments
in Tables 3, 4, 5, and 6. The prompting style for embracing CoT was inspired by [28]. For automatic
retrieval of the model’s answer, we prompt it to provide its answer in the format “My Answer: Answer
#<your answer>”. By default, answer panel #0 is predicted if no answer can be retrieved. Contrary to
LLMs, all the empirical results reported for LRMs are obtained using entangled prompts.

1GPT-4 was accessed between 07/03/2024–10/30/2024.
2The model weights were downloaded and evaluated locally. Unless stated otherwise, we use the base model

without instruction tuning.
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Some examples of I-RAVEN and I-RAVEN-X prompts used for LRMs are reported in the following
Tables.

Complete the Raven’s progressive matrix. Your task is to select the correct Answer from the Answer
set. Please decide carefully. Take a deep breath and think step-by-step. Finally, give your answer in
the following format: My Answer: Answer #<your answer>
row 1: (3,5,5), (6,5,5), (4,5,5);
row 2: (4,3,1), (3,3,1), (6,3,1);
row 3: (6,1,7), (4,1,7),
Answer set:

Answer #0: (3,2,7)
Answer #1: (7,1,5)
Answer #2: (7,2,5)
Answer #3: (7,2,7)
Answer #4: (7,1,7)
Answer #5: (3,1,7)
Answer #6: (3,2,5)
Answer #7: (3,1,5)

Table 3: Example prompt for an I-RAVEN task.

Complete the Raven’s progressive matrix. Your task is to select the correct Answer from the Answer
set. Please decide carefully. Take a deep breath and think step-by-step. Finally, give your answer in
the following format: My Answer: Answer #<your answer>
row 1: (6,16,9), (7,15,9), (70,14,9), (93,13,9), (88,12,9), (77,11,9), (83,10,9), (22,9,9), (39,8,9), (27,7,9);
row 2: (7,12,24), (70,11,24), (93,10,24), (88,9,24), (77,8,24), (83,7,24), (22,6,24), (39,5,24), (27,4,24), (6,3,24);
row 3: (70,35,52), (93,34,52), (88,33,52), (77,32,52), (83,31,52), (22,30,52), (39,29,52), (27,28,52), (6,27,52),

Answer set:
Answer #0: (7,26,52)
Answer #1: (83,55,52)
Answer #2: (7,26,37)
Answer #3: (83,55,37)
Answer #4: (7,55,52)
Answer #5: (83,26,37)
Answer #6: (7,55,37)
Answer #7: (83,26,52)

Table 4: Example prompt for an I-RAVEN-X task.
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Complete the Raven’s progressive matrix. Your task is to select the best matching Answer from the Answer set. Please decide carefully. Take a deep breath and think
step-by-step. Finally, give your answer in the following format: My Answer: Answer #<your answer>
row 1: (917,854,889,837,449,40,616,988,225,603,813,154,860), (290,853,889,310,920,885,291,416,926,503,379,786,859), (532,852,889,336,540,95,33,182,41,215,990,859,625),
(25,851,889,948,465,970,253,795,956,622,323,735,535), (31,850,889,846,149,643,802,187,413,101,300,378,181), (43,849,889,700,975,580,488,662,820,977,189,160,955),
(574,848,889,484,18,951,173,279,247,567,639,939,730), (761,847,889,971,245,547,175,991,94,306,976,778,188), (576,846,889,547,182,955,995,410,545,537,859,368,146),
(291,845,889,544,515,965,647,155,660,835,167,363,578);
row 2: (290,898,875,416,729,621,255,121,775,992,332,824,69), (532,897,875,617,602,91,626,959,328,566,572,496,129), (25,896,875,507,14,482,3,638,723,822,326,152,311),
(31,895,875,551,141,165,894,867,142,856,245,396,325), (43,894,875,645,712,987,788,382,795,149,295,457,63), (574,893,875,269,762,290,698,804,252,56,328,850,702),
(761,892,875,621,590,319,785,4,122,627,517,924,88), (576,891,875,268,299,764,678,718,860,626,845,523,1), (291,890,875,860,69,712,754,590,214,674,171,773,227),
(917,889,875,802,908,433,515,585,256,102,529,939,585);
row 3: (532,497,831,73,406,82,149,646,932,466,196,966,172), (25,496,831,76,880,109,467,76,845,392,673,736,51), (31,495,831,79,825,847,494,174,270,472,649,164,234),
(43,494,831,39,960,182,917,180,643,977,698,321,467), (574,493,831,553,583,258,422,840,680,109,870,539,289), (761,492,831,481,548,81,43,180,359,410,733,702,708),
(576,491,831,882,329,883,287,624,816,453,120,316,349), (291,490,831,398,434,521,426,600,224,181,827,281,512), (917,489,831,611,791,841,260,28,125,408,122,577,903),
Answer set:
Answer #0: (290,488,875,657,175,669,825,660,980,305,71,297,764)
Answer #1: (851,488,875,785,95,663,714,937,607,543,958,80,215)
Answer #2: (290,451,831,808,72,151,7,665,312,920,665,806,177)
Answer #3: (290,488,831,340,114,819,129,10,922,744,948,540,925)
Answer #4: (851,451,875,714,337,713,987,115,520,218,644,222,463)
Answer #5: (851,488,831,948,251,490,394,977,846,124,951,827,501)
Answer #6: (290,451,875,761,816,59,950,670,732,542,237,552,272)
Answer #7: (851,451,831,9,552,304,979,949,86,118,847,82,575)

Table 5: Example prompt for the I-RAVEN-X task with confounders.

Complete the Raven’s progressive matrix. You are given a context matrix of 3 rows and 10 colums. Each element in the matrix has multiply attributes, embedded in
round brackets (). Each attribute is described with a probability distribution, e.g., <p_a::v_a, p_b::v_b> describes that the attribute has value v_a with probability p_a and
value v_b with probability p_b. Your task is to select the best matching Answer from the Answer set. Please decide carefully. Take a deep breath and think step-by-step.
Finally, give your answer in the following format: My Answer: Answer #<your answer>
row 1: (<0.21::916,0.53::917,0.26::918>, <0.02::853,0.62::854,0.36::855>, <0.24::888,0.64::889,0.12::890>), (<0.09::289,0.75::290,0.16::291>,
<0.12::852,0.74::853,0.14::854>, <0.11::888,0.85::889,0.04::890>), (<0.44::531,0.55::532,0.01::533>, <0.36::851,0.63::852,0.01::853>,
<0.24::888,0.74::889,0.02::890>), (<0.09::24,0.88::25,0.03::26>, <0.03::850,0.97::851,0.00::852>, <0.04::888,0.76::889,0.20::890>), (<0.08::30,0.58::31,0.34::32>,
<0.02::849,0.97::850,0.01::851>, <-0.00::888,0.91::889,0.09::890>), (<0.20::42,0.51::43,0.29::44>, <0.01::848,0.97::849,0.02::850>, <0.25::888,0.70::889,0.05::890>),
(<0.12::573,0.87::574,0.01::575>, <0.06::847,0.78::848,0.16::849>, <0.01::888,0.99::889,0.00::890>), (<0.04::760,0.82::761,0.14::762>,
<0.08::846,0.70::847,0.22::848>, <0.04::888,0.77::889,0.19::890>), (<0.04::575,0.54::576,0.42::577>, <0.46::845,0.54::846,-0.00::847>,
<0.01::888,0.91::889,0.08::890>), (<0.15::290,0.85::291,0.00::292>, <0.04::844,0.78::845,0.18::846>, <0.30::888,0.66::889,0.04::890>);
row 2: (<0.01::289,0.81::290,0.18::291>, <0.19::897,0.59::898,0.22::899>, <0.20::874,0.72::875,0.08::876>), (<0.07::531,0.82::532,0.11::533>,
<0.37::896,0.54::897,0.09::898>, <-0.00::874,0.77::875,0.23::876>), (<0.12::24,0.72::25,0.16::26>, <0.01::895,0.78::896,0.21::897>, <0.34::874,0.66::875,-0.00::876>),
(<0.19::30,0.74::31,0.07::32>, <0.20::894,0.61::895,0.19::896>, <0.00::874,0.99::875,0.01::876>), (<0.20::42,0.77::43,0.03::44>, <0.02::893,0.95::894,0.03::895>,
<0.08::874,0.73::875,0.19::876>), (<0.05::573,0.85::574,0.10::575>, <0.08::892,0.91::893,0.01::894>, <0.06::874,0.81::875,0.13::876>),
(<0.14::760,0.53::761,0.33::762>, <0.15::891,0.65::892,0.20::893>, <0.13::874,0.66::875,0.21::876>), (<0.05::575,0.65::576,0.30::577>,
<0.01::890,0.82::891,0.17::892>, <0.12::874,0.66::875,0.22::876>), (<0.00::290,0.94::291,0.06::292>, <0.02::889,0.95::890,0.03::891>,
<0.12::874,0.86::875,0.02::876>), (<0.14::916,0.84::917,0.02::918>, <0.02::888,0.95::889,0.03::890>, <0.01::874,0.54::875,0.45::876>);
row 3: (<0.21::531,0.77::532,0.02::533>, <0.01::496,0.88::497,0.11::498>, <0.07::830,0.62::831,0.31::832>), (<0.20::24,0.79::25,0.01::26>,
<0.19::495,0.62::496,0.19::497>, <0.06::830,0.92::831,0.02::832>), (<0.17::30,0.56::31,0.27::32>, <0.27::494,0.64::495,0.09::496>, <0.02::830,0.98::831,0.00::832>),
(<0.00::42,0.98::43,0.02::44>, <0.38::493,0.58::494,0.04::495>, <0.19::830,0.53::831,0.28::832>), (<0.07::573,0.52::574,0.41::575>, <0.01::492,0.99::493,0.00::494>,
<0.01::830,0.81::831,0.18::832>), (<0.26::760,0.55::761,0.19::762>, <0.13::491,0.83::492,0.04::493>, <0.05::830,0.82::831,0.13::832>),
(<0.47::575,0.52::576,0.01::577>, <0.15::490,0.59::491,0.26::492>, <0.16::830,0.81::831,0.03::832>), (<0.03::290,0.82::291,0.15::292>,
<0.29::489,0.52::490,0.19::491>, <0.03::830,0.85::831,0.12::832>), (<0.08::916,0.81::917,0.11::918>, <0.05::488,0.83::489,0.12::490>,
<0.09::830,0.64::831,0.27::832>),
Answer set:
Answer #0: (<0.06::289,0.83::290,0.11::291>, <0.00::487,1.00::488,0.00::489>, <0.03::874,0.82::875,0.15::876>)
Answer #1: (<0.01::850,0.78::851,0.21::852>, <0.00::487,0.99::488,0.01::489>, <0.08::874,0.85::875,0.07::876>)
Answer #2: (<0.03::289,0.57::290,0.40::291>, <0.15::450,0.75::451,0.10::452>, <0.15::830,0.62::831,0.23::832>)
Answer #3: (<0.06::289,0.52::290,0.42::291>, <0.03::487,0.92::488,0.05::489>, <0.31::830,0.61::831,0.08::832>)
Answer #4: (<0.02::850,0.95::851,0.03::852>, <0.16::450,0.63::451,0.21::452>, <0.20::874,0.52::875,0.28::876>)
Answer #5: (<0.02::850,0.86::851,0.12::852>, <0.18::487,0.80::488,0.02::489>, <0.14::830,0.79::831,0.07::832>)
Answer #6: (<0.01::289,0.96::290,0.03::291>, <0.38::450,0.59::451,0.03::452>, <0.08::874,0.68::875,0.24::876>)
Answer #7: (<0.08::850,0.62::851,0.30::852>, <0.15::450,0.82::451,0.03::452>, <0.09::830,0.87::831,0.04::832>)

Table 6: Example prompt for the I-RAVEN-X task with smooth distributions.
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D Comparison between OpenAI o3-mini and o1

This Appendix presents a small ablation study on two different closed-source LRMs, OpenAI o1
and OpenAI o3-mini. The goal of these experiments was to measure the difference, if any, in the
reasoning capabilities of the o3-mini model compared to its bigger, more expensive predecessor. We
restricted the size of the test set to 100 test examples for both I-RAVEN and I-RAVEN-X. The results,
presented in Table 7, show that the two models achieve roughly comparable performance on both
I-RAVEN and I-RAVEN-X, with o3-mini being consistently slightly less accurate than o1. However,
o1 is also considerably more expensive compared to o3: o1 is priced at $15 and $60 per million input
and output tokens, respectively, while o3-mini costs only $1.1 and $4.4 per million input and output
tokens (approximately 14× less expensive). Hence, we opt to use only o3-mini in the full evaluation.

Model Setting

I-RAVEN I-RAVEN-X
Range 10 Range 100 Range 1000

Task Arithm. Task Arithm. Task Arithm.

OpenAI o1 Entangled 88.0 79.7 86.0 68.2 86.0 68.2
OpenAI o3-mini Entangled 86.6 81.4 84.0 63.6 81.0 60.8

Table 7: Task and arithmetic accuracy (%) comparison of two different LRMs on a subset of 100 test
examples of I-RAVEN and I-RAVEN-X.
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