
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

RETHINKING PARETO FRONTIER: ON THE OPTIMAL
TRADE-OFFS IN FAIR CLASSIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Fairness has become an arising concern in machine learning with its prevalence
in decision-making processes, and the trade-offs between various fairness notions
and between fairness and accuracy has been empirically observed. However, the
inheritance of such trade-offs, as well as the quantification of the best achievable
trade-offs, i.e., the Pareto optimal trade-offs, under varied constraints on fairness
notions has been rarely and improperly discussed. Owing to the sub-optimality of
fairness interventions, existing work fails to provide informative characterization
regarding these trade-offs. In light of existing limitations, in this work, we propose
a reformulation of the model-specific (MS) Pareto optimal trade-off, where we
frame it as convex optimization problems involving fairness notions and accuracy
w.r.t. the confusion vector. Our formulation provides an efficient approximation
of the best achievable accuracy under dynamic fairness constraints, and yields
systematical analysis regarding the fairness-accuracy trade-off. Going beyond
the discussion on fairness-accuracy trade-offs, we extend the discussion to the
trade-off between fairness notions, which characterizes the impact of accuracy
on the compatibility between fairness notions. Inspired by our reformulation, we
propose a last-layer retraining framework with group-dependent bias, and we prove
theoretically the superiority of our method over existing baselines. Experimental
results demonstrate the effectiveness of our method in achieving better fairness-
accuracy trade-off, and that our MS Pareto frontiers sufficiently quantify the two
trade-offs.

1 INTRODUCTION

As machine learning becomes increasingly integrated into various societal domains, growing concerns
have emerged regarding fairness issues (De-Arteaga et al., 2022; Barocas et al., 2023; Chen et al.,
2023a), where models can potentially reflect or perpetuate real-world discrimination without proper
regularization. Work has shown that fairness cannot be achieved simply through unawareness
of sensitive information (Pessach & Shmueli, 2022; Mehrabi et al., 2021), owing to the implicit
correlation between input features and sensitive information. Consequently, multiple fairness criteria
and fairness interventions (Hort et al., 2022; Li et al., 2023a; Pessach & Shmueli, 2023) have been
proposed to quantitatively measure and rectify the disparities between sensitive groups.

Empirical observations indicate that improvements in fairness may be accompanied by a deterioration
in utility, leading to the fairness-accuracy trade-off (Zliobaite, 2015; Menon & Williamson, 2018;
Zafar et al., 2019). It has been shown that there exists an inherent trade-off between demographic
parity (DP) (Dwork et al., 2012) and accuracy, under the variations in base rates of different groups
(Zhao & Gordon, 2022). Recent work demonstrates the intrinsic trade-off in fair representation
learning, where the removal of sensitive information can be detrimental owing to its correlation
with downstream tasks (Li et al., 2023b). Despite the insight of such theoretical analysis, it fails to
quantify such phenomena under a dynamical setting, i.e., how the accuracy changes as the constraint
on fairness changes. In addition, existing work has not yet theoretically characterized the trade-offs
between fairness and accuracy for error-based fairness notions, including equal opportunity (EOp)
and equalized odds (EOd) (Hardt et al., 2016). Dutta et al. (2020) suggests that there is no necessary
trade-off between error-based fairness notions and accuracy; however, the analysis requires strong
assumptions regarding data and the classifier, hindering the generalizability to real-world scenarios.
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Furthermore, existing work has pointed to the tension in enforcing different fairness notions simul-
taneously, resulting in the trade-off between fairness notions. Different notions of fairness have
been shown to conflict with each other, given the variations in base rates (Kleinberg et al., 2016;
Chouldechova, 2017). Such conflict is also known as the ‘impossibility results’. Going beyond
the impossibility, more recent work (Reich & Vijaykumar, 2021; Gultchin et al., 2022) states the
possibility of achieving various fairness notions concurrently, albeit with certain levels of fairness
violations. Nonetheless, existing discussion has yet to quantitatively characterize the inherency of
the trade-off between fairness notions. Moreover, while the correlation between such trade-offs and
accuracy has been recognized in existing literature, it remains unclear how the trade-off changes as
the accuracy values differ, impeding the discussion on balancing between fairness notions.

Following existing literature (Martinez et al., 2020; Wei & Niethammer, 2022), for a specific network
structure, we seek to find the best achievable accuracy under different fairness notions and under
varied fairness constraints, also referred to as the model-specific (MS) trade-off. For instance, when
choosing ResNet-50 as baseline, the ‘model-specific’ refers to all fairness interventions applied to
ResNet-50. We refer to Section 3 for a detailed discussion. This concept is also known as the Pareto
optimality (Hochman & Rodgers, 1969), where no action or allocation is available that makes one
individual better off without making another worse off. And the corresponding fairness-accuracy
curve by varying the fairness constraints is referred to as the Pareto frontier. Work including (Kim
et al., 2020; Jang et al., 2022) first addresses such topics by solving the MS optimization problem
based on a post-processing framework (Hardt et al., 2016) to approximate the MS Pareto frontier.
Curves of methods that are located in the upper right region under the frontier correspond to higher
values in accuracy and lower values in fairness discrepancy, i.e., a better fairness-accuracy trade-off,
as shown in Fig. 2.

Although it provides realistic quantification regarding the fairness-accuracy trade-off, there are several
issues with the analysis. First, due to the potential suboptimality of post-processing, the obtained
frontier can be suboptimal, with accuracy values along the curve falling below the best achievable.
This leads to a troublesome usage of the MS frontier, as the curves of different methods can go
beyond the frontier. We refer to Fig. 2 for the demonstration. Second, since the post-processing
framework is constructed by random flipping, the feasible regions are empirically determined by the
confusion matrix of each sensitive group. This makes post-processing on testing data problematic
(Kim et al., 2020; Jang et al., 2022): owing to the discrepancy between training and testing data, the
performance on training data and testing data may exhibit variations, leading to infeasible solutions
for post-processing on training data, as shown in Fig. 1. Consequently, the obtained frontier does not
lead to a meaningful upper bound regarding either the post-processing method or alternative fairness
interventions. Recent work characterize the MS Pareto frontier via an in-processing intervention
(Dehdashtian et al., 2024). However, as pointed out by the author, the corresponding MS frontier
is suboptimal, leading to improper assessment in the Pareto optimal trade-off. Wang et al. (2024)
proposes to approximate the model-agnostic (MA) Pareto frontier by directly optimizing the confusion
matrix, corresponding to the Bayesian optimal classifier. However, obtaining the Bayesian optimal
classifier can be very challenging, and the dependence on the estimation of joint posterior probability
can lead to large variations owing to the uncertainty involved. Furthermore, existing work on the
Pareto optimality has been limited to the fairness-accuracy trade-off, whereas the Pareto optimal
trade-off between fairness notions has not been properly addressed.

In this work, we propose a unified framework to obtain the MS Pareto optimal frontiers regarding
both the fairness-accuracy trade-off and the trade-off between fairness notions. We theoretically
discuss the suboptimality in (Kim et al., 2020; Jang et al., 2022), where we show the existence of a
better MS frontier under mild assumptions. Following the discussions, we reformulate the Pareto
optimal trade-offs as constrained optimization problems w.r.t. the confusion vector without reliance
on specified fairness interventions or exterior estimation tools, bypassing the problem of algorithmic
optimality. Based on our reformulation, we propose fair retraining for the last layer by adjusting the
last linear layer using group-dependent bias. We summarize our contribution as follows:

• We theoretically discuss the suboptimality of the existing MS frontier and propose a refor-
mulation of the MS Pareto frontier.

• We extend our formulation to the trade-off between fairness notions, where we show the
dependence of the compatibility of fairness notions on accuracy.
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• We propose a novel framework for retraining the last layer, and we prove theoretically the
superiority of our method over post-processing baselines. Moreover, we show theoretically
how our method deviates from the Pareto frontier, validated on real-world datasets.

• We validate from experiments the optimality of our MS Pareto frontier, as well as the
superiority of our fair retraining framework in terms of fairness-accuracy trade-off on four
benchmark datasets for both binary and multi-class classification tasks.

2 RELATED WORK

Figure 1: Demonstration of the infeasibility of
post-processing on testing data. The feasible re-
gions for post-processing on training and testing
data are specified by the triangles of different col-
ors. When the solutions on testing space fall into
the non-overlapping parts between training regions
and testing regions (the gray regions in the fig-
ure), they cannot be achieved by the same post-
processing techniques on training data.

Fairness Notions and Trade-offs in Fair Clas-
sification. There are three widely adopted fair-
ness notions in the community: individual fair-
ness (Kusner et al., 2017; Ilvento, 2019; Mukher-
jee et al., 2020), group fairness (Chouldechova,
2017; Bellamy et al., 2018; Narayanan, 2018),
and mini-max fairness (Martinez et al., 2020;
Diana et al., 2021; Abernethy et al., 2022; Yang
et al., 2023). In this study, we explore group fair-
ness criteria, specifically focused on DP (Dwork
et al., 2012) and EOd (Hardt et al., 2016). DP is
defined as ŷ ⊥⊥ a, where ŷ is the prediction of
a classifier and a denotes the sensitive attribute,
and EOd is defined by ŷ ⊥⊥ a | y, where y is the
ground truth label.

Existing work empirically observes that achiev-
ing a certain level of fairness typically comes at
the cost of accuracy degradation (Calders et al.,
2009; Zafar et al., 2017; Menon & Williamson,
2018; Barlas et al., 2021), and achieving cer-
tain fairness notion comes at the cost of another
fairness notion (Kleinberg et al., 2016; Choulde-
chova, 2017). In response, Kim et al. (2020);
Jang et al. (2022); Dehdashtian et al. (2024); Wang et al. (2024) use the Pareto frontier to characterize
this trade-off. Xian et al. (2023) states the inherent trade-off in achieving DP in fair classification.
Contrasting with these findings, some studies argue that enforcing fairness in machine learning
models does not necessarily reduce utility (Wick et al., 2019; Dutta et al., 2020), and the possibility
of improving several fairness notions simultaneously (Reich & Vijaykumar, 2021; Gultchin et al.,
2022).

Post-Processing and Last-Layer Retraining in Fair Classification. Fairness through post-
processing is a prevalent approach in addressing bias in machine learning models. This method
involves adjusting the predictions of a pre-trained network to meet specified fairness constraints,
typically through random flipping (Hardt et al., 2016) and adjusting thresholds (Corbett-Davies et al.,
2017; Menon & Williamson, 2018; Jang et al., 2022; Xian et al., 2023).

Recent work (Menon et al., 2020; Kirichenko et al., 2022) observes that re-training the last linear
layer could efficiently correct bias learned by an ERM model. Building on this, LaBonte et al.
(2023) suggests that retraining the last linear layer with misclassified data could correct biases
inherent in the network. Following this line of research, Chen et al. (2023b) proposes a strategy that
leverages machine unlearning, specifically applied to the last linear layer, to effectively eliminate the
learned biases. Mao et al. (2023) proposes a last-layer retraining framework incorporating fairness
regularizations and reweighting.

3 PROBLEM FORMULATION

Let {(xi, yi, ai), 1 ⩽ i ⩽ N} be the training set where xi ∈ Rd is the input feature, yi ∈ {0, 1} the
label and ai ∈ {0, 1} the sensitive information, let fθ : Rd → [0, 1] be the function of classifier with
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θ the parameters, a fair classification problem can be formulated as

argmin
θ

L̄cls, s.t. L̄fair ⩽ ϵ, (1)

where L̄cls = 1
N

∑N
i=1 Lcls(xi, yi; θ) is the average classification loss and L̄fair =

1
N

∑N
i=1 Lfair(xi, yi, ai; θ) is the fairness constraint. Let {(xt

i, y
t
i , a

t
i), 1 ⩽ i ⩽ n} be the test-

ing set, when Lcls is chosen as the classification error and Lfair is chosen as a fairness notion,
given a fixed classifier structure f and its associated feasible hypothesis space H′ ⊂ H specified by
the training data, the following reformulation of equation 1 corresponds to the MS Pareto optimal
fairness-accuracy trade-off:

argmin
θ∈H′

L̄t
cls, s.t. L̄t

fair ⩽ ϵ, (2)

where L̄t
cls =

1
n

∑n
i=1 Lcls(x

t
i, y

t
i ; θ) and L̄t

fair = 1
n

∑n
i=1 Lfair(x

t
i, y

t
i , a

t
i; θ). We defer the exten-

sion to multi-class classification to Appendix 13. The MS trade-off between fairness notions can be
similarly formulated based on equation 2. Given the feasible hypothesis space H′ and two fairness
notions Lfair and L′

fair, we aim to find the best achievable measure w.r.t. one fairness notion under
the designated sacrifice in the other fairness notion and in accuracy on the testing set:

argmin
θ∈H′

Lt
fair, s.t.L

′t
fair ⩽ ϵ, Lt

cls ⩽ η. (3)

4 CHARACTERIZING TRADE-OFFS IN FAIR CLASSIFICATION

4.1 PRELIMINARIES

Inspired by (Kim et al., 2020), we observe that accuracy, as well as various notions of fairness, can be
represented as linear transformations of the confusion matrix, allowing us to rewrite the intractable
problem in equation 2 into simple convex optimization problems. Let Ma be the confusion matrix of
group a and z = [TPR0,TNR0,TPR1,TNR1]

T be the corresponding confusion vector by vectorizing
Ma, Let αa := Pr[Y = 1|A = a] be the base rate of group a and β := Pr[A = 1] be the marginal
distribution of sensitive information, we show below reformulations of standard concepts of group
fairness and accuracy:

Accuracy can be written as Acc = Acz, where Ac = [α0(1− β), (1−α0)(1− β), α1β, (1−α1)β]
encodes the marginal distribution of data.

DP can be expressed as DP = |ADPz+A′
DP(1− z)|, where ADP = [α0, 0,−α1, 0] and A′

DP =
[0, (1− α0), 0,−(1− α1)].

EOd can be formulated as EOd = ∥AEOdz∥1, where AEOd =

[
1 0 −1 0
0 1 0 −1

]
.

Owing to the intractability of 0− 1 loss, it is hard to directly obtain the Pareto optimal trade-off in
equation 2. Alternatively, Kim et al. (2020) reduces the Pareto optimal problem in equation 2 to
post-processing a pre-trained classifier on testing data:

argmin
z̃∈K̃

(1−Acz̃)
2 + λ ∥AEOdz̃∥22 , (4)

where K̃ corresponds to the group-dependent parallelograms on the FPR-TPR plane constructed by
random flipping (Hardt et al., 2016) and λ is the tunable hyperparameter. While such relaxation
provides tractable solutions for quantifying the EOd-accuracy trade-off, it fails to quantify the Pareto
optimal trade-off between fairness and accuracy, as discussed in the following lemma:
Assumption 1. The group-dependent ROC curves are concave.

Lemma 1. Under assumption 1, let K̂ be the feasible region constructed by combining random
flipping and threshold adjustment, let Φa : FPRa(τ) → TPRa(τ) be the function of ROC curve for
group a where τ ∈ [0, 1] is the decision threshold, for any z̃ obtained by equation 4, there always
exists a strictly better solution ẑ within K̂:

Acz̃ < Acẑ, ∥AEOdz̃∥1 = ∥AEOdẑ∥1, ẑ = z̃+ [0, δ, 0, δ]T ,

where δ = min{|Φ−1
0 ([1, 0, 0, 0]z̃)− (1− [0, 1, 0, 0]z̃)|, |Φ−1

1 ([0, 0, 1, 0]z̃)− (1− [0, 0, 0, 1]z̃)|}.
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We defer full proof to Appendix 14. Regarding Assumption 1, we make this assumption out of the
property that the optimal ROC curves of a classifier are expected to be concave (Bradley, 1997).
In practice, when the ROC curves are not strictly concave, we still observe a better trade-off under
such construction. We refer to Fig. 2 for the empirical validation. Consequently, the MS frontier by
equation 4 does not provide an accurate approximation of the MS Pareto optimal fairness-accuracy
trade-off, where curves of different fairness interventions can possibly go beyond the frontier, and
therefore shall not be thought of as a proper baseline for evaluating the fairness-accuracy trade-offs.

4.2 PARETO OPTIMALITY IN FAIRNESS-ACCURACY TRADE-OFF

The MS fairness-accuracy trade-off in equation 2 can be rewritten as
argmaxθ∈H′ Acz, s.t. ∥AEOdz∥1 ⩽ ϵ, argmaxθ∈H′ Acz, s.t. |ADPz+A′

DP(1− z)| ⩽ ϵ,
where Ac, AEod, ADP and A′

DP are determined by the marginal distributions on the testing set,
rather than the training set. Owing to the non-linearity between z and θ, we instead seek to find
the supremum of the MS Pareto optimal trade-off. We first state observations that help tighten the
upper-bound:

Optimality of accuracy in vanilla training. Regarding fairness interventions, imposing non-trivial
constraints ϵ shall result in no better classification loss compared with vanilla training. Consequently,
let zb be the the confusion vector obtained from the baseline model, we have the following upper-
bound regarding z: Acz ⩽ Aczb(θ̂), θ̂ = argminθ

1
N

∑N
i=1 Lcls (xi, yi).

Optimality of group-dependent accuracy. The classification accuracy within each sensitive group
shall be upper-bounded by the accuracy under vanilla training, and imposing fairness interventions
on sensitive groups shall not lead to improved in-group accuracy. Owing to the potential overlap
of information between different sensitive groups, we consider two different strategies for upper-
bounding group-dependent accuracy, where the supremum is taken over the resulting accuracies:
1. vanilla training on the corresponding group alone; 2. vanilla training on the whole training data.
Let zab = [TPRa,TNRa, 0, 0] be the confusion vector of group a and Aa

c = [αa, (1 − αa), 0, 0],
we have the following upper-bound regarding group-wise accuracy: Aa

cz ⩽ Aa
cz

a
b , A

a
cz

a
b =

max{Aa
cz

a
b (θ̂),A

a
cz

a
b (θ̂

a)} where θ̂a = argminθ
1

|{i|ai=a}|
∑

{i|ai=a} Lcls (xi, yi).

Based on the constraints on group-wise accuracy and overall accuracy, we reformulate the optimiza-
tion problem w.r.t. θ into the convex optimization problem w.r.t. z as follows:

argmax
z∈K

Acz, s.t. ∥AEOdz∥1 ⩽ ϵ,

argmax
z∈K

Acz, s.t. |ADPz+A′
DP(1− z)| ⩽ ϵ,

(5)

where K := {z|0 ⩽ z ⩽ 1;Aczb ⩾ Acz;A
a
cz

a
b ⩾ Aa

cz} specifies the feasible region of z. Since we
do not impose any specific fairness relaxations on f , our formulation naturally corresponds to the
supremum of the Pareto optimal fairness-accuracy trade-off. The values of zb and zab are determined
under multiple randomized initializations of f to approximate the best achievable testing accuracy
within H′ specified by training, rather than testing data.

The reformulation in equation 5 provides us with a quick estimation regarding z due to the low-
dimensionality. Specifically, under each inequality constraint ϵi ∈ E := { i

T |0 ⩽ i ⩽ T} uniformly
sampled within the interval [0, 1] where 1

T is the sampling interval, we solve the convex optimization
problem in equation 5 to approximate the best-achievable accuracy Aczi under such fairness violation.
The corresponding (ϵi,Aczi)’s then form the Pareto optimal frontier on the fairness-accuracy plane.

4.3 PARETO OPTIMALITY IN THE TRADE-OFF BETWEEN FAIRNESS NOTIONS

Following our discussion on the fairness-accuracy trade-off, we reformulate the optimization problem
in equation 3 w.r.t. z. Specifically, regarding the trade-off between DP and EOd, we characterize the
problem as follows:

argmin
z∈K

|ADPz+A′
DP(1− z)| , s.t. ∥AEOdz∥1 ⩽ ϵ, Acz ⩾ η.

By varying ϵ and η, we are able to approximate the best-achievable trade-off between fairness notions
under different accuracy values, corresponding to a set of contours on the EOd-DP plane. Owing to

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

the dependence on Acz, one natural question is, under what accuracy does the trade-off between DP
and EOd vanish? The following lemma states the incompatibility of achieving both fairness notions
simultaneously:

Lemma 2. If α0 ̸= α1, the optimal classifier that achieves both DP and EOd will always have the
same accuracy as a constant predictor.

We defer full proof to Appendix 15. Lemma 2 points to the inherence in the EOd-DP trade-off;
consequently, when evaluating fairness interventions, instead of expecting small violations in both DP
and EOd, a more reasonable evaluation can be based on the Pareto optimality in the EOd-DP trade-off,
where curves of methods that lie closer to their Pareto optimums indicate better improvement in
fairness. We refer to Section 6.3 for the detailed discussion.

5 FAIR RETRAINING

5.1 OPTIMIZATION PROBLEM

Inspired by our formulation of the MS Pareto frontier, we seek to directly optimize over the fairness
notions so as to achieve better trade-offs. Specifically, the Lagrangian function of equation 5 can be
written as

LEOd(z, λ) = Acz− (λ ∥AEOdz∥1 − λϵ),

LDP(z, λ) = Acz− (λ |ADPz+A′
DP(1− z)| − λϵ).

For a chosen classifier structure f , we may think of it as the composition of two separate models: the
encoder g : Rd → Rm, which maps the input feature to the latent space, and a linear classification
head h : Rm → [0, 1], which maps the latent representation to the soft prediction. For a pre-trained
fixed encoder g, the optimization objective becomes much simpler owing to the linearity of the
last layer. Nonetheless, the density estimations in high-dimensional latent space could still be
challenging. We therefore consider the following two-layer reformulation of h: a linear projection
head h1 : Rm → Rdim, which projects the latent representation to a low-dimensional space, and
a linear classification head h2 : Rdim → [0, 1]. During retraining, we only update the linear
classification head h2, while the projection head remains frozen.

Inspired by work on threshold adjustment (Jang et al., 2022), we seek to further increase the degree
of freedom when updating the classification head. Let [x̂0

i , x̂
1
i ] = h1 ◦ g(xi) be the output of h1 and

x̂ be the input feature of h2, We consider the alternative modelling of the projected data:

x̂i = [x̂0
i , x̂

1
i ,1[ai = 0],1[ai = 1]].

Such formulation allows us to apply group-dependent bias terms, which correlates with tuning group-
dependent thresholds. Correspondingly, let [w, b0, b1] be the parameters of h2 where ba represents the
group-dependent bias, let pya be the estimated distribution of x̂ in the subgroup {i|yi = y, ai = a},
we can approximate z as the integral form: TPRa =

∫
wT x̂+ba⩾0

p1a, TNRa =
∫
wx̂+ba<0

p0a. And
the optimization problem regarding h2 can be formulated as

argmax
w,b0,b1

Acc(fya;w, b0, b1)− λEOd(fya;w, b0, b1), (6)

argmax
w,b0,b1

Acc(fya;w, b0, b1)− λDP(fya;w, b0, b1). (7)

Let {w∗, b∗} be the parameters of classification head by the baseline model, when the normal
vector of h2 is chosen as w∗, our formulation is equivalent as thresholding (Jang et al., 2022):
h2(xi) = σ(w∗xi + ba) = σ(h∗

2(xi) + ca), where ca = ba − b∗ is the group-dependent threshold
and σ(x) is the sigmoid function.

5.2 THEORETICAL ANALYSIS

While our retraining framework naturally includes thresholding, its connection with post-processing
under random flipping (Kim et al., 2020) remains unclear. We ’ll focus on the EOd optimum, which
quantifies the best achievable accuracy under zero EOd:

6
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Definition 1. The EOd optimum r∗ of a fairness intervention corresponds to the between-group
intersectional point in FPR − TPR plane with the optimal accuracy (e.g., the red star in Fig. 1):

max
r∗∈Rf

Acc, s.t.EOd = 0,

where Rf is the feasible region of the fairness intervention in FPR − TPR plane determined by the
training data.

And the following theorem states the superiority of our EOd optimum over alternative baselines:

Theorem 1. Under assumption 1, the EOd optimum z∗ by our method achieves strictly better
accuracy compared with the EOd optimum z′∗ by random flipping.

We defer full proof to Appendix 16. Theorem 1 establishes that, under mild assumptions, our method
achieves superior performance compared to the average performance of flipping, i.e., random flipping.
Specifically, our method attains not only better near-optimality, as proved in (Jang et al., 2022), but
also strictly better accuracy in terms of EOd optimum compared with random flipping.

Comparison with thresholding. Owing to the group-dependent bias, when choosing w = w∗, our
method recovers the same ROC curves as the threshold adjustment (Jang et al., 2022), indicating a
better or comparable EOd optimum.

We move on to discuss the optimality of our retraining framework compared with the Pareto frontier.
Following conventional modelling (Sagawa et al., 2020; Yao et al., 2022; Wang & Wang, 2024), we
make the following assumption regarding logits l of each subgroup:

li ∼ N (µya, s
2), i ∈ {i|yi = y, ai = a}

where the logits of different subgroups share same variance s2 and differ only in group mean µya.
While the assumption on equal variance seems a bit strong, recent work has pointed to the convergence
of group variance under vanilla training (Lu et al., 2024). The following theorem quantifies the
accuracy drop of our method where the EOd optimum is attained:

Lemma 3. Let γ := α0 + α1β − α0β, under fixed µya and s, the group-dependent threshold c∗a of
EOd optimum can be written as

c∗0 =
s2

µ11 − µ01
log

(
1− γ

γ

)
+

2µ10 − µ11 + µ01

2
, c∗1 =

s2

µ11 − µ01
log

(
1− γ

γ

)
+

µ11 + µ01

2
.

Theorem 2. Let k = argmink
∫∞
−∞ || erf(x) − tanh(kx)||2 and µ′

y := k
c∗1−µy1√

2s
, let zb be the

confusion vector under vanilla training and z∗ be the confusion vector of EOd optimum under our
method, we have the following estimation of accuracy drop when attaining EOd optimum:

|Aczb −Acz
∗| = 2Aczb − 1

2
−

(
e2(µ

′
0+µ′

1) − 1
)
+ (1− 2γ)

(
e2µ

′
0 − e2µ

′
1

)
(
e2µ

′
0 + 1

) (
e2µ

′
1 + 1

) .

We defer full proof to Appendix 17. Theorem 2 enables us to empirically estimate the decrease
in accuracy when achieving the EOd optimum. Specifically, since our method achieves an EOd
optimum no worse than thresholding, by estimating µya and s using the latent representation and the
classification head w∗, we can readily apply Theorem 2 to our retraining framework to obtain the
supermum of the accuracy drop on different datasets, without calculating h2. We refer to Appendix
12 for detailed discussion.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETUP

We validate our method on four benchmark datasets: COMPAS (Larson et al., 2016), Adult (Dua
& Graff, 2017), CelebA (Liu et al., 2015) and Drug (Dua & Graff, 2017). The Drug dataset is for
multi-class classification. We use accuracy as utility measure, DP and EOd as fairness measures. We
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(a) Adult (b) COMPAS (c) CelebA

Figure 2: EOd-accuracy trade-off on three datasets. ‘Ours-EOd-frontier’ corresponds to the MS
EOd-accuracy Pareto frontier by equation 5, and ‘Ours-EOd’ corresponds to our framework in
equation 6.

(a) Adult (b) COMPAS (c) CelebA

Figure 3: DP-accuracy trade-off on three datasets. ‘Ours-DP-frontier’ corresponds to the MS DP-
accuracy Pareto frontier by equation 5, and ‘Ours-DP’ corresponds to our framework in equation 7.

(a) Adult (b) COMPAS (c) CelebA

Figure 4: EOd-DP trade-off on three datasets under different accuracy values. The Pareto optimums
form a decaying curve on the EOd-DP plane, and the triangles correspond to the Pareto optimums
under various accuracy values (tan for the baseline, and the others for our method).

defer details of experimental setup (9), detailed results (10), ablation study (11), empirical validation
of theoretical results (12) and the extension to multi-class classification (13) to the Appendix.

We compare our method with the following related methods on post-processing and last-layer
retraining: Baseline: Neural network without fairness regularization. FACT: Post-processing by
random flipping (Kim et al., 2020). This method focuses on the EOd-accuracy trade-off. Eq. Odds:
Post-processing by finding the EOd optimum (Hardt et al., 2016). This method focuses on the
EOd-accuracy trade-off. DFR: Deep feature reweighting by last-layer retraining (Kirichenko et al.,
2022). This method focuses on the EOd-accuracy trade-off and is applied for both binary and
multi-class classification. SELF: Last-layer retraining by selective fine-tuning (LaBonte et al., 2023).
This method focuses on the EOd-accuracy trade-off and is applied for both binary and multi-class
classification. G-STAR: Post-processing by thresholding (Jang et al., 2022). This method focuses on
both the EOd-accuracy trade-off and the DP-accuracy trade-off. FOC: Post-processing based on the
score functions (Xian et al., 2023). This method focuses on the DP-accuracy trade-off.

8
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We consider two different approaches in comparison with our MS Pareto frontier for EOd-accuracy
trade-off: FACT: The objective is optimized over training, rather than testing data. FACT + G-STAR:
The boundaries of feasible regions are determined by the group-dependent ROC curves, as discussed
in Lemma 1. We do not include other frontiers for DP-accuracy trade-off or EOd-DP Trade-off as
neither FACT nor G-STAR includes such discussion.

6.2 FAIRNESS-ACCURACY TRADE-OFF

Results on EOd-accuracy trade-off are shown in Fig. 2. The objective of our method is chosen as
equation 6 in this part. Compared with the frontiers by FACT and by FACT + G-STAR, our MS Pareto
frontier shows an almost flat curve, without dramatic decrease in accuracy. Such counter-intuitive
results point to the non-inherency of EOd-accuracy trade-off: since the disparities are measured by
error rates, instead of the predictions alone, eliminating between-group disparities does not necessarily
result in decrease in accuracy. On the contrary, neither FACT nor FACT + G-STAR provides proper
approximation of the Pareto optimal EOd-accuracy Trade-off, as curves of several methods go beyond
their frontiers. Compared with alternative methods, the curve of our retraining framework lies closer
to the MS Pareto frontier, indicating a better EOd-accuracy trade-off. This validates the effectiveness
of our group-dependent formulation for bias: compared with last-layer retraining and post-processing,
our method obtains better flexibility during the fine-tuning, thereby leading to better or comparable
performance in both fairness and accuracy.

Results on DP-accuracy trade-off are shown in Fig. 3. The objective of our method is chosen as
equation 7 in this part. Compared with the EOd-accuracy frontier, the DP-accuracy frontier shows a
noticeable decrease in accuracy as constraints on DP become more stringent, in line with previous
work on the inherent trade-off between DP and accuracy (Zhao & Gordon, 2022). In comparison, our
formulation ensures us to quantify the trade-off under dynamic scenarios, rather than under perfect
DP only. Compared with other methods on DP, our method shows better or comparable trade-off in
terms of both fairness improvement and accuracy, which validates the effectiveness of our method.

6.3 EOD-DP TRADE-OFF

Results on EOd-DP trade-off are shown in Fig. 4. When the accuracy is greater than that of a constant
predictor, there is a clear trade-off between the two fairness notions, and as the accuracy decreases,
the EOd-DP frontiers gradually approach the EOd-axis, indicating that the fairness measures become
aligned and no longer present a trade-off when the constraints on accuracy are sufficiently relaxed.
Moreover, under each accuracy value, we observe an Pareto optimum (i.e., the inflection point along
the curve), where no other points achieves both better DP and better EOd under the same accuracy.

Our observation of such Pareto optimums also indicates a novel quantification for fairness inter-
ventions taking into account both fairness notions. Specifically, regarding the EOd-DP curve of
certain fairness intervention, we identify its Pareto optimums based on the corresponding accuracy
values, and the curve lying closer to its Pareto optimums implies better improvement in fairness. We
accordingly modify the objective of our fair retraining framework to take into account both DP and
EOd, and compared with the baseline, the curve of our method lies closer to its Pareto optimums,
indicating an improvement in fairness.

7 CONCLUSION

The trade-off problem in fair classification is important yet less studied. In this paper, we prove
theoretically the non-optimality of existing work on the Pareto optimal trade-off, and we propose
a novel formulation of MS Pareto optimal trade-off regarding both fairness-accuracy and between
fairness notions, which sufficiently approximates the upper-bound of the best achievable trade-off.
Based on our formulation, we propose a last-layer retraining framework under group-dependent
bias, and we show theoretically the superiority of our retraining framework over post-processing
baselines, as well as the deviation of our retraining framework from the Pareto frontier. We validate
from experiments that our formulation leads to meaningful and informative quantification of the
potential trade-offs for a given classifier, and we show from experiments that our proposed retraining
framework achieves better trade-offs compared with state-of-the-art alternatives. Future direction
includes model-agnostic Pareto optimal trade-off and extension to the fairness-accuracy trade-off
under distribution shift.
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8 APPENDIX

You may include other additional sections here.

9 EXPERIMENTAL SUPPLEMENT

9.1 DATASETS

COMPAS: The COMPAS dataset (Larson et al., 2016) contains 7,215 samples with 11 attributes.
Following previous works on fairness (Chouldechova, 2017), we only select black and white defen-
dants in COMPAS dataset, and the modified dataset contains 6,150 samples. The goal is to predict
whether a defendant reoffends within two years, and we choose race as sensitive attributes.

Adult: The Adult dataset (Dua & Graff, 2017) contains 65,123 samples with 14 attributes. The goal
is to predict whether an individual’s income exceeds 50K, and we choose sex as sensitive attributes.

CelebA: The CelebA dataset (Liu et al., 2015) contains 202,599 face images, each of resolution
178× 218, with 40 binary attributes. We choose attractiveness as labels and sex as sensitive attributes.

Drug: The Drug Consumption dataset (Dua & Graff, 2017) contains 1,885 samples with 12 attributes.
The goal is to predict whether an individual has consumed Meth within one year, over one year ago or
has never consumed Meth, and we choose race as sensitive attributes. This dataset is for multi-class
classification.

9.2 IMPLEMENTATION

The network structure is chosen as MLP for Adult, COMPAS and Drug datasets and ResNet-50 for
CelebA dataset with a 80%-20% training-testing partition of data. We repeat experiments on each
dataset three times and report the average results. The input dimension dim of h2 is set as 2 during
retraining, and the hyperparameters of compared methods are tuned as suggested by the authors.

We implement our method in PyTorch 2.0.0 on one RTX-3090 GPU. The optimizer for ResNet-50 is
chosen as SGD with learning rate 10−3 and weight decay 10−3. For MLP, the optimizer is chosen as
SGD with learning rate 10−2 and momentum 0.8. The hyperparameter range for our method is set as
(0, 10).

10 AUXILIARY EXPERIMENTAL RESULTS

We include the detailed results in terms of EOd, DP and accuracy in Tab. 1 - 6.

Method Accuracy EOd
Baseline 65.58±1.21% 38.89±2.72%
FACT (Kim et al., 2020) 62.35±0.65% 7.34±1.15%
Eq. Odds (Hardt et al., 2016) 62.34±0.56% 9.92±1.14%
DFR (Kirichenko et al., 2022) 63.73±0.39% 3.34±1.52%
SELF (LaBonte et al., 2023) 63.68±0.82% 4.95±1.29%
G-STAR (Jang et al., 2022) 63.62±0.46% 2.18±0.55%
Ours 63.91±0.53% 1.04±0.52%

Table 1: Experimental results of EOd-accuracy trade-off on COMPAS dataset.
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Method Accuracy EOd
Baseline 85.16±0.30% 20.72±1.81%
FACT (Kim et al., 2020) 82.87±0.86% 10.29±1.56%
Eq. Odds (Hardt et al., 2016) 82.12±0.77% 10.75±1.56%
DFR (Kirichenko et al., 2022) 83.18±1.28% 5.44±1.28%
SELF (LaBonte et al., 2023) 83.51±1.51% 7.14±0.91%
G-STAR (Jang et al., 2022) 82.13±1.25% 2.95±0.75%
Ours 83.47±0.53% 3.11±0.54%

Table 2: Experimental results of EOd-accuracy trade-off on Adult dataset.

Method Accuracy EOd
Baseline 82.67±0.63% 26.42±1.61%
FACT (Kim et al., 2020) 80.87±1.18% 12.29±1.12%
Eq. Odds (Hardt et al., 2016) 79.56±0.59% 11.76±1.44%
DFR (Kirichenko et al., 2022) 81.24±0.81% 4.79±1.67%
SELF (LaBonte et al., 2023) 81.68±1.26% 4.14±0.85%
G-STAR (Jang et al., 2022) 80.84±1.27% 5.45±0.86%
Ours 81.53±0.77% 3.04±0.85%

Table 3: Experimental results of EOd-accuracy trade-off on CelebA dataset.

Method Accuracy DP
Baseline 65.58±1.21% 22.89±1.54%
FOC (Xian et al., 2023) 63.96±0.75% 1.06±0.55%
G-STAR (Jang et al., 2022) 64.08±0.62% 2.31±0.32%
Ours 64.24±0.64% 1.31±0.46%

Table 4: Experimental results of DP-accuracy trade-off on COMPAS dataset.

Method Accuracy DP
Baseline 85.16±0.30% 17.67±1.44%
FOC (Xian et al., 2023) 83.25±0.69% 3.17±1.17%
G-STAR (Jang et al., 2022) 82.20±0.44% 3.16±0.93%
Ours 83.64±0.72% 3.03±0.76%

Table 5: Experimental results of DP-accuracy trade-off on Adult dataset.

Method Accuracy DP
Baseline 82.67±0.63% 18.62±1.34%
FOC (Xian et al., 2023) 81.27±0.36% 3.14±0.65%
G-STAR (Jang et al., 2022) 81.13±0.39% 5.16±0.84%
Ours 81.17±0.55% 2.93±0.53%

Table 6: Experimental results of DP-accuracy trade-off on CelebA dataset.

11 ABLATION STUDY

Regarding our retraining framework, the input dimension of h2 can vary based on the linear projection
head h1. Results of varying the input dimension are shown in Tab. 7-8. Compared with other choices
(dim = 4, dim = 6), dim = 2 in general provides better or comparable performance in terms of
fairness and accuracy, which validates the feasibility of our framework.

Moreover, it is possible to use multiple classification heads h2 for different groups. The optimization
problem then becomes

argmax
w0,w1,b0,b1

Acc(fya;w0, w1, b0, b1)− λEOd(fya;w0, w1, b0, b1),
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Method Accuracy DP EOd
Ours (dim=2) 64.67±0.77% 3.31±0.59% 1.04±0.52%
Ours (dim=4) 64.24±0.40% 3.79±0.62% 1.59±0.49%
Ours (dim=6) 64.72±0.63% 4.45±0.67% 1.33±0.56%

Table 7: Experimental results on COMPAS dataset. The distribution of each subgroup is approximated
by multivariate normal distribution.

Dataset Method Accuracy DP EOd
Adult Baseline 85.16±0.30% 17.67±1.44% 20.72±1.81%
Adult Ours (dim=2) 83.36±0.51% 4.43±1.28% 3.54±1.59%
Adult Ours (dim=4) 83.40±0.31% 5.28±1.78% 4.41±1.44%
Adult Ours (dim=6) 83.16±0.83% 5.32±1.36% 6.23±1.86%

Table 8: Experimental results on Adult dataset. The distribution of each subgroup is approximated by
multivariate normal distribution.

Results of using multiple classification heads are shown in Tab. 9. Compared with using single
classification head, using group-dependent classification head achieves marginal improvement in
fairness.

Dataset Method Accuracy DP EOd
COMPAS Baseline 65.58±1.21% 22.89±1.54% 38.89±2.72%
COMPAS Ours (w) 64.67±0.77% 3.31±0.59% 1.04±0.52%
COMPAS Ours (wa’s) 64.74±0.64% 3.24±0.32% 1.02±0.57%
Adult Baseline 85.16±0.30% 17.67±1.44% 20.72±1.81%
Adult Ours (w) 83.36±0.51% 4.43±1.28% 3.54±1.06%
Adult Ours (wa’s) 83.47±0.53% 4.12±1.46% 3.11±0.54%

Table 9: Experimental results on COMPAS and Adult dataset. The distribution of each subgroup is
approximated by 2D Gaussian. Experiments are repeated three times.

12 EMPIRICAL VERIFICATION OF THEORETICAL RESULTS

We estimate the accuracy drop relative to vanilla training when attaining the EOd optimum using
our method. Following the discussion in Theorem 2, we leverage the pre-trained encoder and linear
classifier w∗ to estimate the values of µ′

y. Results are shown in Tab. 10. Compared to the results on
the COMPAS and CelebA datasets, our method on the Adult dataset exhibits a larger accuracy drop
when attaining the EOd optimum under retraining, consistent with our empirical observation that fair
retraining on Adult dataset leads to larger deviation from the Pareto frontier compared with the other
two datasets.

Dataset Acz
∗ |Aczb −Acz

∗|
COMPAS 64.5% 1.3%
CelebA 79.73% 2.94%
Adult 80.87% 4.36%

Table 10: Estimations of accuracy drop when achieving EOd optimums on three datasets. Acz
∗ is

estimated by ω(µ′
0, µ

′
1) +

1
2 in Theorem 2.

13 EXTENSION TO MULTI-CLASS CLASSIFICATION

We move on to discuss the extension to non-binary classification. Given y ∈ [k] the class label, let
Accya := Pr[f(x) = y|y, a] be the classification accuracy in the subgroup {i|yi = y, ai = a} and
z := [Acc10, . . . ,Acck0,Acc11, . . . ,Acck1] the corresponding confusion vector, let {α1a, . . . , αka}

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

(a) EOd-Acc (b) DP-Acc

Figure 5: EOd-accuracy trade-off and DP-accuracy trade-off on Drug dataset. We extend our
discussion to multi-class setting compared with existing works on fairness-accuracy trade-off.

be the marginal distribution of label in group a, the DP and EOd constraints under multi-class
classification (Denis et al., 2021) can be formulated as

EOd : max
k′∈[k]

|AEOd,k′z| ⩽ ϵ,

DP : max
k′∈[k]

|ADP,k′z−A′
DP,k′(1− z)| ⩽ ϵ,

(8)

where AEOd,k′ = [0, . . . ,1[y = k′, a = 0], . . . ,1[y = k′, a = 1], . . . , 0], ADP,k′ =
[0, . . . , αk′01[y = k′, a = 0], . . . , αk′11[y = k′, a = 1], . . . , 0] and A′

DP,k′ = 1[y ̸=
k′][α10, . . . , αk0, α11, . . . , αk1]. Regarding multi-class classification, the disparities are quanti-
fied by the largest discrepancy amongst all the subgroups. Accordingly, the MS Pareto optimal
fairness-accuracy trade-off can be formulated as

argmax
z∈K

Acz, s.t. |AEOd,k′z|1 ⩽ ϵ,∀k′ ∈ [k],

argmax
z∈K

Acz, s.t.
∣∣ADP,k′z+A′

DP,k′(1− z)
∣∣ ⩽ ϵ,∀k′ ∈ [k],

where Ac = [(1−β)α10, . . . , (1−β)αk0, βα11, . . . , βαk1], and the fairness constraints are taken over
all the subgroups to accommodate with the maximum notions in equation 8. Let ba = [b1a, . . . , bka]
be the bias vector for group a, we similarly formulate our fair retraining framework as follows:

argmax
w,b0,b1

Acc(fya;w, b0, b1)− λEOd(fya;w, b0, b1),

argmax
w,b0,b1

Acc(fya;w, b0, b1)− λDP(fya;w, b0, b1),

Regarding multi-class classification, we do not consider the post-processing baselines for comparison
as neither includes a direct extension to such tasks. We consider two benchmarks:

• DFR: Deep feature reweighting by last-layer retraining (Kirichenko et al., 2022).

• SELF: Last-layer retraining by selective fine-tuning (LaBonte et al., 2023).

Results on EOd-accuracy trade-off and DP-accuracy trade-off for multi-class classification are shown
in Fig. 5. Compared with alternative methods for last-layer retraining, our method achieves better
EOd-accuracy trade-off. Moreover, compared with the baseline, our method shows improvement
in DP with relatively small degradation in accuracy. This validates the effectiveness of our method
under multi-class classification. Detailed results are in Tab. 11-12.
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Method Accuracy EOd
Baseline 70.63±0.79% 22.57±1.96%
DFR (Kirichenko et al., 2022) 67.64±0.55% 6.17±1.11%
SELF (LaBonte et al., 2023) 68.13±0.58% 6.34±0.87%
Ours 68.76±0.73% 5.04±0.95%

Table 11: Experimental results of EOd-accuracy trade-off on Drug dataset.

Method Accuracy DP
Baseline 70.63±0.79% 26.34±2.25%
Ours 66.48±0.67% 5.67±0.78%

Table 12: Experimental results of DP-accuracy trade-off on Drug dataset.

14 PROOF FOR LEMMA 1

Proof. Let ŷ be the original prediction and ỹ be the flipped prediction, let m̃eaa be the measures
under flipping and meaa be the measures without flipping, we have

P [ỹ = 1|y, a] = P [ỹ = 1|ŷ = 1, a]P [ŷ = 1|y, a] + P [ỹ = 1|ŷ = 0, a]P [ŷ = 0|y, a].

Therefore, for y = 1, we have

T̃PRa = P [ỹ = 1|y = 1, a] = P [ỹ = 1|ŷ = 1, a]TPRa + P [ỹ = 1|ŷ = 0, a]FNRa.

And for y = 0, we have

F̃PRa = P [ỹ = 1|y = 0, a] = P [ỹ = 1|ŷ = 1, a]FPRa + P [ỹ = 1|ŷ = 0, a]TNRa.

Consequently, the feasible region of (Kim et al., 2020) is determined by the group-dependent
parallelograms in the FPR − TPR plane with the vertices as

{(0, 0), (FPR0,TPR0), (TNR0, FNR0), (1, 1)}, for group 0,

{(0, 0), (FPR1,TPR1), (TNR1, FNR1), (1, 1)}, for group 1,

where {FPRa,TPRa,TNRa, FNRa} are obtained from the baseline model. We first make a few
simplifications regarding the feasible regions of the parallelograms.

Proposition 1. The ( ˜FPRa, ˜TPRa) solution pair under random flipping always fall into the upper-half
of the parallelograms.

For any {r0, r1} := {( ˜FPRa, ˜TPRa), 0 ⩽ a ⩽ 1} pair in the lower-half of the parallelograms, since
the solutions lie below the line segment TPR = FPR, we have

˜FPRa > ˜TPRa, ∀a. (9)

Consider the symmetric point rsa of ra about the line segment TPR = FPR, we have rsa =
( ˜TPRa, ˜FPRa). Consequently, by equation 9 we have

EOd(rsa) = | ˜TPR0 − ˜TPR1|+ | ˜FPR0 − ˜FPR1| = EOd(ra),

Acc(rsa) = (1− β)(α0
˜FPR0 + (1− α0)(1− ˜TPR0)) + β(α1

˜FPR1 + (1− α1)(1− ˜TPR1))

> (1− β)(α0
˜TPR0 + (1− α0)(1− ˜FPR0)) + β(α1

˜TPR1 + (1− α1)(1− ˜FPR1)) = Acc(ra).

This shows the existence of strictly better solutions in the upper-half of the parallelograms under the
symmetric construction, leading to the same EOd but better accuracy, as demonstrated in Fig. 6.

Proposition 2. At least one of the ( ˜FPRa, ˜TPRa) solution fall on the boundary of the parallelograms.
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Figure 6: Demonstration of the ( ˜FPRa, ˜TPRa) solution. The solution pair in the upper-half regions
indicates better accuracy (higher TPR and lower FPR) and same EOd owing to the symmetry.

Figure 7: Demonstration of translation along the FPR-axis. The solution pair after translation obtains
better accuracy (same TPR and lower FPR) and same EOd owing to the equidistant translations.

For any {r0, r1} := {( ˜FPRa, ˜TPRa), 0 ⩽ a ⩽ 1} pair where both r0 and r1 lie within the group-
dependent parallelograms, we consider the following equidistant translation along the FPR-axis:

r′a = ( ˜FPRa−ξ, ˜TPRa), ξ = min
a

{
˜FPRa −

FPRa

TPRa

˜TPRa, ˜FPRa −
1− FPRa

1− TPRa
( ˜TPRa − TPRa)− FPRa

}
.

Under such translation, at least one of the solution r′a touches the boundary of its parallelogram. This
leads to the same EOd but better accuracy, owing to the decrease in FPR. Therefore, any solution pair
that lie within the group-dependent parallelograms will be sub-optimal, as shown in Fig. 7.
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Figure 8: Considering the combination of random flipping and threshold adjustment, for any solution
pair obtained by random flipping, there always exist a strictly better solution under equidistant
translation along FPR-axis, where at least one of the new solution points touches the group-dependent
ROC curve.

By Prop. 1 and 2, we may simplify the discussion to the boundary of different fairness interventions.
Since the ROC curve of each sensitive group is concave, let ROCa be the ROC curve of group a,
consider the combination of group-dependent thresholding and random flipping, the feasible region
for each sensitive group now becomes a convex hull with its boundary the ROC curves, rather
than line segments. Moreover, since both the ROC curves and the group-dependent parallelograms
pass {(FPRa,TPRa), (TNRa, FNRa)}, owing to the concavity of ROC curves, for any solution pair
( ˜FPRa, ˜TPRa) obtained from FACT (Kim et al., 2020), we can always translate them along the
direction of the negative half of the FPR axis up to distance δ such that at least one of the solution
touches the ROC curve, as shown in Fig. 8:

δ := min{|Φ−1
0 ( ˜TPR0)− ˜FPR0|, |Φ−1

1 ( ˜TPR1)− ˜FPR1|}.

Consequently, regarding EOd, we have

| ˜TPR0 − ˜TPR1|+ | ˜FPR0 − ˜FPR1| = | ˜TPR0 − ˜TPR1|+ |( ˜FPR0 − δ)− ( ˜FPR1 − δ)|.

And regarding the accuracy, we have

(1− β)(α0
˜TPR0 + (1− α0)(1− ˜FPR0)) + β(α1

˜TPR1 + (1− α1)(1− ˜FPR1))

< (1− β)(α0
˜TPR0 + (1− α0)(1− ˜FPR0 + δ)) + β(α1

˜TPR1 + (1− α1)(1− ˜FPR1 + δ)).

Therefore, such translation preserves the EOd gap but improves accuracy, thereby indicating a strictly
better EOd-accuracy trade-off than (Kim et al., 2020).

15 PROOF FOR LEMMA 2

Proof. Consider the confusion vector z = [TPR0,TNR0,TPR1,TNR1]
T . Under zero violation in

EOd, we have
TPR0 = TPR1 = TPR, TNR0 = TNR1 = TNR.

Correspondingly, let αa := Pr[Y = 1|A = a] be the base rate of group a, under zero violation in DP,
we have

α0TPR0 + (1− α0)(1− TNR0) = α1TPR1 + (1− α1)(1− TNR1). (10)
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Since α0 ̸= α1, we can further simplify equation 10 as

TPR + TNR = 1.

Let α := Pr[Y = 1] be the base rate of testing data, we have the accuracy under zero violation of DP
and EOd as

Acc = αTPR + (1− α)(1− TPR) = (2α− 1)TPR + (1− α).

This shows that under zero violation of DP and EOd, the accuracy can be written as a linear function
w.r.t. TPR. When α ⩾ 0.5, the best accuracy will be α, which corresponds to an all-positive predictor.
When α < 0.5, the best accuracy will be (1− α), corresponding to an all-negative predictor.

16 PROOF FOR THEOREM 1

Figure 9: Demonstration of the feasible regions by random flipping. The line segment l0 passes
through (0, 0) and (FPR0,TPR0), and line segment l1 passes through (FPR1,TPR1) and (1, 1).

Proof. Let α := Pr[y = 1] be the base rate of training data, the EOd optimums under different
accuracy values can be expressed as line segments in the FPR − TPR plane:

TPR =
1− α

α
FPR +

Acc − (1− α)

α
.

We denote such line segment passing through the EOd optimum by random flipping as l2. When
α ⩽ 1

2 , so long as the EOd optimum by random flipping achieves better accuracy than constant
prediction, i.e., Acc ⩾ (1 − α), the intercept of l2 will be strictly positive, and the slope of l2 is
strictly smaller tham l0. When α > 1

2 , when setting FPR = 1, we have TPR = Acc
α > 1, which

indicates that the slope of l2 shall be strictly greater than l0 as shown in Fig. 9. Consequently, l2
always fall within the region between l0 and l1, where the slopes of line segments passing through the
EOd optimum by random flipping are smaller than l0 but greater than l1. Regarding the EOd optimum
by threshold adjustment, since it always fall within the upper-left region of the EOd optimum by
random flipping, i.e., the shady region in Fig. 9, as proved in Theorem 5 of (Jang et al., 2022), it
always lead to better accuracy compared with the EOd optimum by random flipping as α remains
constant. Moreover, as the EOd optimum achieves no better accuracy than our method, we thereby
conclude that the EOd optimum r∗ by our method achieves strictly better accuracy compared with
r′∗ by random flipping.
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17 PROOF FOR LEMMA 3 AND THEOREM 2

Proof. Given group mean µya and variance s2, under group-dependent thresholding, we have the
group-wise accuracy as

Ãccya =


1

2
+

1

2
erf
(
−ca − µya√

2s

)
, for y = 0

1

2
− 1

2
erf
(
−ca − µya√

2s

)
, for y = 1

Since s remains constant before and after thresholding, to achieve zero EOd, we have

c0 − µ10 = c1 − µ11,

c0 − µ00 = c1 − µ01,

which simplifies to µ10 − µ11 = µ00 − µ01. Let αa := P [y = 1 | A = a] be the base rate within
group a and let β := P [A = 1], we have the accuracy under post-processing as

Ãcc =α1βÃcc11 + (1− α1)βÃcc01 + α0(1− β)Ãcc10 + (1− α0)(1− β)Ãcc00

=α1β

(
1

2
− 1

2
erf
(
−c1 − µ11√

2s

))
+ (1− α1)β

(
1

2
− 1

2
erf
(
−c1 − µ01√

2s

))
+ α0(1− β)

(
1

2
− 1

2
erf
(
−c1 − µ10√

2s

))
+ (1− α0)(1− β)

(
1

2
− 1

2
erf
(
−c1 − µ00√

2s

))
.

Since Ãcc11 = Ãcc10 and Ãcc01 = Ãcc00, we can further simplify Ãcc as

Ãcc =αβ

(
1

2
− 1

2
erf

(
c1 − µ11√

2s

))
+ (1− α1)β

(
1

2
+

1

2
erf

(
c1 − µ01√

2s

))
+ α0(1− β)

(
1

2
− 1

2
erf

(
c1 − µ11√

2s

))
+ (1− α0) (1− β)

(
1

2
+

1

2
erf

(
c1 − µ01√

2s

))
.

Taking derivative of Ãcc w.r.t. c1, we have

∂Ãcc
∂c1

=− α1β exp

(
−
(
c1 − µ11√

2s

)2
)

+ (1− α1)β exp

(
−
(
c1 − µ01√

2s

)2
)

− α0(1− β) exp

(
−
(
c1 − µ11√

2s

)2
)

+ (1− α0) (1− β) exp

(
−
(
c1 − µ01√

2s

)2
)
.

Setting ∂Ãcc
∂c1

= 0, we have

(α0 − α0β + α1β) exp

(
−
(
c∗1 − µ11√

2s

)2
)

= (1− α0 + α0β − α1β) exp

(
−
(
c∗1 − µ00√

2s

)2
)
,

which simplifies to c∗1 = s2

µ11−µ01
log
(

1−α0+α0β−α1β
α0−α0β+α1β

)
+ µ11+µ01

2 . Since c∗0 = c∗1 + µ10 − µ11,

we have c∗0 = s2

µ11−µ01
log
(

1−α0+α0β−α1β
α0−α0β+α1β

)
+ 2µ10−µ11+µ01

2 , and (c∗0, c
∗
1) gives us the optimal

threshold pair under post-processing.

Accordingly, let zb be the confusion vector by vanilla training, we have the change in accuracy under
(c∗0, c

∗
1) as

Aczb − Ãcc(c∗0, c
∗
1)

=Aczb +
1

2

(
α1β erf

(
c∗1 − µ11√

2s

)
− (1− α1)β erf

(
c∗1 − µ01√

2s

)
+α0(1− β) erf

(
c∗0 − µ10√

2s

)
− (1− α0) (1− β) erf

(
c∗0 − µ00√

2s

))
− 1

2
.

(11)
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Owing to the intractability of error function, we instead consider the following second-order Pade
approximation (Baker Jr & Gammel, 1961) of error function for quantitative analysis, which yields a
maximum absolute error of 0.013:

erf(x) ≈ tanh(kx),

where k = argmink
∫∞
−∞ || erf(x)− tanh(kx)||2.

Let µ′
y := k

c∗1−µy1√
2s

and γ := α0+α1β−α0β, let z∗ be the confusion vector of EOd optimum under
group-dependent thresholding, we can rewrite Eq. equation 11 as

Aczb −Acz
∗ = Aczb − γ · e

µ′
1 − e−µ′

1

eµ
′
1 + e−µ′

1

+ (1− γ)
eµ

′
0 − e−µ′

0

eµ
′
0 + e−µ′

0

− 1

2
.

which simplifies to

Aczb −Acz
∗ =

2Aczb − 1

2
−

(
e2(µ

′
0+µ′

1) − 1
)
+ (1− 2γ)

(
e2µ

′
0 − e2µ

′
1

)
(
e2µ

′
0 + 1

) (
e2µ

′
1 + 1

) .
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