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ABSTRACT

We propose the Transformer with Multiresolution-head Attention (MrsFormer),
a class of efficient transformers inspired by the multiresolution approximation
(MRA) for approximating a signal f using wavelet bases. MRA decomposes
a signal into components that lie on orthogonal subspaces at different scales.
Similarly, MrsFormer decomposes the attention heads in the multi-head attention
into fine-scale and coarse-scale heads, modeling the attention patterns between
tokens and between groups of tokens. Computing the attention heads in MrsFormer
requires significantly less computation and memory footprint compared to the
standard softmax transformer with multi-head attention. We analyze and validate
the advantage of MrsFormer over the standard transformers on a wide range of
applications including image and time series classification.

1 INTRODUCTION

The transformer architectures (Vaswani et al., 2017) is popularly used in natural language process-
ing (Devlin et al., 2018; Al-Rfou et al., 2019; Dai et al., 2019; Child et al., 2019; Raffel et al., 2020;
Baevski & Auli, 2019; Brown et al., 2020; Dehghani et al., 2018), computer vision (Dosovitskiy
et al., 2021; Liu et al., 2021; Touvron et al., 2020; Ramesh et al., 2021; Radford et al., 2021; Arnab
et al., 2021; Liu et al., 2022; Zhao et al., 2021; Guo et al., 2021; Chen et al., 2022), speech process-
ing (Gulati et al., 2020; Dong et al., 2018; Zhang et al., 2020; Wang et al., 2020b), and other relevant
applications (Rives et al., 2021; Jumper et al., 2021; Chen et al., 2021; Zhang et al., 2019; Wang
& Sun, 2022). Transformers achieve state-of-the-art performance in many of these practical tasks,
and the results get better with larger model size and increasingly long sequences. For example, the
text generating model in (Liu et al., 2018a) processes input sequences of up to 11,000 tokens of text.
Applications involving other data modalities, such as music (Huang et al., 2018) and images (Parmar
et al., 2018), can require even longer sequences. Lying at the heart of transformers is the self-attention
mechanism, an inductive bias that connects each token in the input through a relevance weighted
basis of every other tokens to capture the contextual representation of the input sequence (Cho et al.,
2014; Parikh et al., 2016; Lin et al., 2017; Bahdanau et al., 2014; Vaswani et al., 2017; Kim et al.,
2017). The capability of self-attention to attain diverse syntactic and semantic representations from
long input sequences accounts for the success of transformers in practice (Tenney et al., 2019; Vig
& Belinkov, 2019; Clark et al., 2019; Voita et al., 2019a; Hewitt & Liang, 2019). The multi-head
attention (MHA) extends the self-attention by concatenating multiple attention heads to compute the
final output as explained in Section 2.1 below.

In spite of the success of the MHA, it has been shown that attention heads in MHA are redundant and
tend to learn similar attention patterns, thus limiting the representation capacity of the model (Michel
et al., 2019; Voita et al., 2019b; Bhojanapalli et al., 2021). Furthermore, additional heads increase the
computational and memory costs, which becomes a bottleneck in scaling up transformers for very
long sequences in large-scale practical tasks. These high computational and memory costs and head
redundancy issues of the MHA motivates the need for a new efficient attention mechanism.

1.1 CONTRIBUTION

Levaraging the idea of the multiresolution approximation (MRA) (Mallat, 1999; 1989; Crowley, 1981),
we propose a class of efficient and flexible transformers, namely the Transformer with Multiresolution-
head Attention (MrsFormer). At the core of MrsFormer is to use the novel Multiresolution-head
Attention (MrsHA) that computes the approximation of the outputs Hh, h = 1, . . . ,H , of attention
heads in MHA at different scales for saving computation and reducing the memory cost of the
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model. The MRA has been widely used to efficiently approximate complicated signals like video
and images in signal and image processing (Mallat, 1999; Taubman & Marcellin, 2002; Bhaskaran &
Konstantinides, 1997), as well as to approximate solutions of partial differential equations (Dahmen
et al., 1997; Qian & Weiss, 1993). While existing works have been proposed to approximate the
attention matrices using the MRA (Zeng et al., 2022; Fan et al., 2021; Tao et al., 2020; Li et al., 2022),
our MrsHA is the first method that approximates the output of an attention head, resulting in a better
approximation scheme compared to other works that try to approximate the attention matrices. Our
contribution is three-fold:

1. We derive the approximation of an attention head at different scales via two steps: i) Directly
approximating the output sequence H, and ii) approximating the value matrix V, i.e. the
dictionary that contains bases of H.

2. We develop MrsHA, a novel MHA whose attention heads approximate the output sequences
Hh, h = 1, . . . ,H , at different scales. We then propose MrsFormer, a new class of
transformers that use MrsHA in their attention layers.

3. We empirically verify that the MrsFormer helps reduce the head redundancy and achieves
better efficiency than the baseline softmax transformer while attaining comparable accuracy
to the baseline.

Organization: We structure this paper as follows: In Section 2, we derive the approximation for
the output sequence Hh, h = 1, . . . ,H , at different scales and propose the MrsHA and MrsFormer.
In Section 3 and 4, we empirically validate and analyze the advantages of the MrsFormer over
the baseline softmax transformer. We discuss related work in Section 5. The paper ends up with
concluding remarks. More experimental details are provided in the Appendix.

2 TRANSFORMER WITH MULTIRESOLUTION-HEAD ATTENTION

2.1 BACKGROUND: SELF-ATTENTION

The self-attention mechanism learns long-range dependencies via parallel processing of the input
sequence. For a given input sequence X := [x1, · · · ,xN ]⊤ ∈ RN×Dx of N feature vectors, the
self-attention transforms X into the output sequence H := [h1, · · · ,hN ]⊤ ∈ RN×Dv as follows

H = softmax
(QK⊤

√
D

)
V := AV, (1)

where Q := [q1, · · · , qN ]⊤,K := [k1, · · · ,kN ]⊤, and V := [v1, · · · ,vN ]⊤ are the projections of
the input sequence X into three different subspaces spaned by WQ,WK ∈ RD×Dx , and WV ∈
RDv×Dx , i.e. Q = XW⊤

Q,K = XW⊤
K ,V = XW⊤

V . Here, in the context of transformers, Q, K,
and V are named the query, key, and value matrices, respectively. The softmax function is applied to
row-wise. The matrix A = softmax

(
QK⊤
√
D

)
∈ RN×N is the attention matrix, whose component aij

for i, j = 1, · · · , N are the attention scores. The structure of the attention matrix A after training
from data determines the ability of the self-attention to capture contextual representation for each
token. Eqn. (1) is also called the scaled dot-product or softmax attention. In our paper, we call a
transformer that uses this attention the softmax transformer.

Multi-head Attention (MHA). In MHA, multiple heads are concatenated to compute the final output.
Let H be the number of heads and Wmulti

O =
[
W

(1)
O , . . . ,W

(H)
O

]
∈ RDv×HDv be the projection

matrix for the output where W
(1)
O , . . . ,W

(H)
O ∈ RDv×Dv . The multi-head attention is defined as

MultiHead({H}Hh=1) = Concat(H(1), . . . ,H(H))Wmulti⊤
O

=

H∑
h=1

H(h)Wh⊤
O =

H∑
h=1

A(h)V(h)W
(h)⊤
O . (2)

The MHA enables transformers to capture more diverse attention patterns.

2.2 BACKGROUND: WAVELET TRANSFORM AND MULTIRESOLUTION APPROXIMATIONS

The wavelet transform uses time-frequency atoms with different time supports to analyze the structure
of a signals. In particular, it decomposes signals over dilated and translated copies of a fixed function
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Figure 1: Illustration of Eqn. 11 (Left) and Eqn. 14 (Right).

φ. A dictionary of time-frequency atoms is obtained by scaling φ by s and translating it by t:

B =

{
φs
t =

1√
s
φ

(
x− t

s

)}
t∈R,s∈R+

. (3)

Here, s controls the dilation, i.e., the scale, and t controls the location, e.g., the time. Using this
dictionary of time-frequency atoms, a signal f ∈ L2(R) can be expanded in the following form:

f =

∫ +∞

0

∫ +∞

−∞
αs
tφ

s
t (x) dtds. (4)

The wavelet transform then maps the signal f to the coefficient αs
t as follows

αs
t = ⟨f, φs

t ⟩ =
∫ +∞

−∞
f(x)(φ∗)st dx, (5)

where φ∗ is the complex conjugate of φ. The coefficient αs
t captures the measurement of the signal f

at scale s and location t (Mallat, 1999).

2.3 TRANSFORMER WITH MULTIRESOLUTION-HEAD ATTENTION

2.3.1 FIRST LEVEL APPROXIMATION: APPROXIMATING THE OUTPUT SEQUENCE H AT
DIFFERENT SCALES

Let Bs = {φs
t ∈ RN} be a set of orthogonal expansion functions for possible translations at scale

s where s = 1, 2, 4, . . . , N . For simplicity, we assume that the sequence length N = 2k. The
expansion functions φs

t are chosen to be the boxcar functions as follows

φs
t [i] =

{
1 if st− s < i ≤ st

0 otherwise
(6)

for s ∈ {1, 2, 4, . . . , N} and t ∈ {1, . . . , N/s}. At each scale s, we approximate the columns H[:, d],
d = 1, . . . , Dv , of the output sequence H as follows

H[:, d] ≈ Hs[:, d] =
∑

φs
t∈Bs

αs
tdφ

s
t , (7)

where the coefficient αs
td is computed as follows

αs
td =

1

s
⟨φs

t ,H[:, d]⟩. (8)

Plug Eqn. (1) and Eqn. (8) into Eqn. (7), we obtain

H[:, d] ≈ Hs[:, d] =
∑

φs
t∈Bs

1

s
⟨φs

t ,H[:, d]⟩φs
t =

N/s∑
t=1

(
1

s

st∑
i=st−s+1

H[i, d])

)
φs

t

=

N/s∑
t=1

((
1

s

st∑
i=st−s+1

A[i, :]

)
V[:, d]

)
φs

t (9)

=↑s,1 ((↓s,1 A)V[:, d]). (10)
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Here, we employ the notations for downsampling and upsampling from signal processing. In
particular, ↓s,ℓ denotes the average pooling by the factor s along the ℓth dimension, and ↑s,ℓ denotes
the nearest-neighbor interpolation by the factor s along the ℓth dimension. Applying Eqn. (10) for
d = 1, . . . , Dv , we achieve the approximation of H at scale s as follows:

H ≈ Hs =↑s,1 ((↓s,1 A)V). (11)
An illustration of Eqn. 11 is given in Figure. 1 (Left).

Remark 1 (Approximating the columns of H independently) As pointed out in (Nguyen et al.,
2022), the features H[:, d] in the ouput sequence H, as well as the features V[:, d] in the value matrix
V, d = 1, . . . , Dv, in the softmax attention are independent due to the use of the unnormalized
Gaussian kernels with the isotropic covariance. This finding justifies our approach of approximating
the columns of H independently.

Remark 2 (Group-to-token attention) The downsampling ↓s,1 A of the matrix A in Eqn. (11)
computes the attentions between groups of tokens and individual tokens in the sequence.

2.3.2 SECOND LEVEL APPROXIMATION: APPROXIMATING THE HEAD BASES V AT
DIFFERENT SCALES

In Eqn. (11) that approximates the output sequence H at scale s by Hs, we can further approximate
the bases V, i.e., the value matrix, by its approximation at scale s′. Following the derivation in
Section 2.3.1 above, we can derive the approximation Vs′ [:, d] for the dth columns of V as follows

V[:, d] ≈ Vs′ [:, d] =

N/s′∑
t′=1

 1

s′

s′t′∑
j=s′t′−s′+1

V[j, d])

φs′

t′ . (12)

Plugging Eqn. (12) into Eqn. (9), we obtain the second level approximation of the head output H:

H[:, d] ≈ Hs,s′ [:, d]

=

N/s∑
t=1

(1

s

st∑
i=st−s+1

A[i, :]

)
N/s′∑
t′=1

 1

s′

s′t′∑
j=s′t′−s′+1

V[j, d])

φs′

t′

φs
t

=

N/s∑
t=1

N/s′∑
t′=1

(
1

s′s

st∑
i=st−s+1

A[i, :]φs′

t′

) s′t′∑
j=s′t′−s′+1

V[j, d])

φs
t

=

N/s∑
t=1

N/s′∑
t′=1

 1

s′s

st∑
i=st−s+1

s′t′∑
j=s′t′−s′+1

A[i, j]

 s′t′∑
j=s′t′−s′+1

V[j, d])

φs
t

=↑s,1 ((↓s,1↓s′,2 A)(↓s′,1 V[:, d])). (13)
Same as above, by applying Eqn. (13) for d = 1, . . . , Dv , we achieve the full approximation of H at
scale s of H and scale s′ of V as follows:

H ≈ Hs,s′ :=↑s,1 ((↓s,1↓s′,2 A)(↓s′,1 V)). (14)

An illustration of Eqn. 14 is given in Figure. 1 (Right). Given the approximation Hs,s′ of the attention
matrix H, we have the following upper bound on the approximation error.

Theorem 1 Assume that δ > 0 is chosen such that the attention matrix A satisfies the following
inequalities |Ai,j −Ai±1,j | ≤ δ, |Ai,j −Ai,j±1| ≤ δ for all 1 ≤ i, j ≤ N . Then, we obtain that

∥H−Hs,s′∥F ≤ (s+ s′ − 2)Nδ√
ss′

∥V∥2,

where ∥.∥F denotes the Frobenius norm and ∥.∥2 denotes the spectral norm of a matrix.

Proof of Theorem 1 is in Appendix B. The result of Theorem 1 shows that the approximation
matrix Hs,s′ approximates H exactly when s = s′ = 1, which is true. In the coarsest scale when
s = s′ = N , the upper bound achieves the maximum value (N − 1)δ∥V∥2.

Remark 3 (Group-to-group attention) The downsampling ↓s,1↓s′,2 A of the matrix A in Eqn. (14)
computes the attentions between groups of tokens and groups of tokens in the sequence.
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Figure 2: Illustration of Eqn. 17.

2.3.3 EFFICIENT DOWNSAMPLING OF THE ATTENTION MATRIX A

As shown in Eqn. (1), A = softmax
(

QK⊤
√
D

)
. Since the softmax function needs access to the full

matrix QK⊤
√
D

, downsampling A via average pooling still requires to compute the full product QK⊤
√
D

first. In order to avoid this redundant computation, we propose to compute the lower bound of this
average pooling (due to the convexity of the exponential in the softmax function). In particular, we
approximate the downsampling of A as follows:

↓s,1↓s′,2 A ≈ softmax
(↓s,1↓s′,2 (QK⊤)√

D

)
= softmax

( (↓s,1 Q)(↓s′,1 K)⊤√
D

)
. (15)

2.3.4 TRANSFORMER WITH MULTIRESOLUTION-HEAD ATTENTION: EACH HEAD
APPROXIMATES THE ATTENTION AT A DIFFERENT SCALE

In this section, we formally define our Multiresolution-head Attention (MrsHA) and Transformer
with Multiresolution-head Attention (MrsFormer). MrsHA combines Eqn. (14) and (15) to implement
the approximation of the output sequences H(h), h = 1, . . . ,H , at different scales s and s′.

Definition 1 (Multiresolution-head Attention) Let H be the number of heads and Wmulti
O =[

W
(1)
O , . . . ,W

(H)
O

]
∈ RDv×HDv be the projection matrix for the head outputs where

W
(1)
O , . . . ,W

(H)
O ∈ RDv×Dv . Given a set of scales {s(h), s′(h)}Hh=1 for the output H(h) and the

value matrix V(h), h = 1, . . . ,H , at each head, the MrsHA is an efficient attention mechanism that
computes the approximation of H(h) at scale s(h) using an approximation of V(h) at scale s′(h) by
the following attention formula:

MrsHA({H}Hh=1) =

H∑
h=1

↑s(h),1

(
softmax

( (↓s(h),1 Q)(↓s′(h),1 K)⊤
√
D

)
(↓s′(h),1 V(h))

)
W

(h)⊤
O .

(16)
The MrsFormer is the class of transformers that use the MrsHA in their attention layers.

Remark 4 (Downsampling Q, K, and V) Downsampling Q, K, and V can be efficiently imple-
mented by downsampling the input sequence X before projecting it into the query matrix Q, the key
matrix K, and the value matrix V via the linear transformations WQ, WK , and WV , respectively.
Eqn. (16) of the MrsHA then becomes
MrsHA({H}Hh=1)

=

H∑
h=1

↑s(h),1

(
softmax

( (↓s(h),1 XW
(h)⊤
Q )(↓s′(h),1 XW

(h)⊤
K )⊤

√
D

)
(↓s′(h),1 XW

(h)⊤
V )

)
W

(h)⊤
O .

(17)
An illustration of Eqn. 17 is given in Figure. 2.
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Remark 5 (Choosing s(h) and s′(h)) s(h) and s′(h) are hyperparameters that can be tuned for each
head. In our experiments, we use s(h) = s′(h) = 2k

(h)

, where k(h) is an integer.

Remark 6 (Choosing the expansion functions φs
t and 1-D convolution) In order to derive the

MrsHA in Eqn. (16), we have chosen the expansion functions φs
t to be the boxcar functions. Other

expansion functions, such as the wavelet bases or the triangular functions, can be used to derive
different forms of the MrsHA. In a general case, the average pooling and the nearest-neighbor
interpolation in Eqn. (16) and (17) can be replaced by the 1-D convolution operators with φs

t as the
corresponding filters.

3 EXPERIMENTAL RESULTS

In this section, we empirically justify the advantages of our propsed MrsFormer model. We compare
the performance of the MrsFormer with the baseline softmax transformer, the MRA-2 (Zeng et al.,
2022), and the MRA-2-s (which is the sparse version of the MRA-2) on various benchmarks. Unlike
our method, the MRA-2 and MRA-2-s perform multiresolution analysis for each head by approximat-
ing the attention matrix by blocks of different scales, while the MrsHA in our MrsFormer computes
the approximation of each head Hh at a specific scale. The benchmarks studied in our experiments
include 10 tasks from the UEA time series classification dataset (Bagnall et al., 2018), 3 tasks
from Long Range Arena (Tay et al., 2021b) (LRA) benchmark, and ImageNet image classification
task (Russakovsky et al., 2015). In addition, we also study the performance of the MrsHA when
being combined with other attention mechanism such as the linear attention (Katharopoulos et al.,
2020), the MRA-2 attention, and the MRA-2-s attention (Zeng et al., 2022). We aim to show that: (i)
the MrsFormer can achieve better or comparable accuracy over the baseline softmax, MRA-2, and
MRA-2-s transformers; (ii) the MrsFormer saves significant amount of FLOPs and memory compared
to the baseline softmax transformer, and this advantage grows with the sequence length; (iii) the
MrsHA can be combined with other attentions to achieve similar or better performance with better
efficiency; and (iv) the MrsFormer reduces redundancy between heads comparing to the softmax
baseline.

In our experiment, we keep the hyperparameters the same for all models for fair comparisons. All of
our results are averaged over 5 runs with different seeds.

3.1 UEA TIME SERIES CLASSIFICATION

Models and baselines. We adapt code from (Wu et al., 2022; Zerveas et al., 2021) for our experiments.
Following the same setting from these papers, we set the number of heads and layers to 8 and 2,
respectively. For the MrsFormers, we use the same set of scales at each layer, which is given by s =
[1, 1, 2, 2, 4, 4, 8, 8]. For MRA-2 and MRA-2-s models (Zeng et al., 2022), each head is approximated
by blocks of scales [1, 32] as suggested in their paper. The percentage of blocks with scale 1 in these
MRA-2 models is set to 25% of the full attention matrix. Other hyperparameters have the same
values as in (Wu et al., 2022) (for the PEMS-SF, SelfRegulationSCP2, and UWaveGestureLibrary
tasks) and (Zerveas et al., 2021) (for other tasks).

Results. We summarize the results in Table 1. The MrsFormer achieves bettter test accuracy than
the baseline softmax transformer for 5 out of 10 tasks while being much more efficient. Among
these tasks, the MrsFormer outperforms the baseline by at least 1% accuracy. For the remaining
tasks, besides Handwriting, our model maintains an accuracy gap less than 0.8% compared to the
baseline. Our model gets the best accuracy for 4 out of the 10 tasks. In addition, it achieves second
best accuracy for 4 out of the remaining tasks. The MrsFormer achieves the average accuracy across
all tasks. Note that among 8 heads at each layer, our model computes 6 of them with the size of only
1
4 , 1

4 , 1
16 , 1

16 , 1
64 and 1

64 of the size of the corresponding heads in the baseline softmax transformer.
Thus, the MrsFormer has a significant smaller FLOPS and memory usage compared to the baseline.

3.2 LONG RANGE ARENA

Models and baselines. We follow the same settings and adapt code for LRA task from (Zeng et al.,
2022), which uses transformer with 2 heads and 2 layers. We choose the same set of scales s = [1, 2]
for all the layers in MsFormer.

Results. Table 2 summarizes our results. Although being an approximation of the softmax attention, it
is evidently from Table 2 that MrsFormer can consistently achieve better than or comparable accuracy
as the baseline softmax attention on the LRA tasks. The MRA-2 and MRA-2-s models (Zeng et al.,
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Table 1: Accuracy (%) of the MrsFormer vs. the baseline softmax transformer on the UEA Time Series
Classification task averaged over 5 seeds. The best model for each task is highlighted in bold, while the second
best one is underlined. We also include the reported results for the softmax transformer from (Wu et al., 2022)
and (Zerveas et al., 2021) (in parentheses). The MrsFormer attains the best average accuracy across all tasks
while being much more efficient than the baseline softmax transformers.

DATASET / MODEL BASELINE SOFTMAX MRSFORMER MRA-2 MRA-2-S

ETHANOLCONCENTRATION 32.08 (33.70) 35.87 34.35 34.48
FACEDETECTION 68.70 (68.10) 68.23 68.28 68.24
HANDWRITING 32.08 (30.50) 30.24 29.49 29.68
HEARTBEAT 75.77 (77.60) 78.86 77.24 78.05
JAPANESEVOWELS 99.46 (99.40) 99.10 99.01 99.01
PEMS-SF 82.66 (82.10) 84.2 86.13 82.85
SELFREGULATIONSCP1 91.46 (92.50) 91.81 91.70 92.04
SELFREGULATIONSCP2 54.72 (53.90) 56.85 55.56 56.29
SPOKENARABICDIGITS 99.33 (99.30) 98.73 98.60 98.62
UWAVEGESTURELIBRARY 84.45 (85.60) 86.67 86.67 86.56

AVERAGE ACCURACY 72.07(72.27) 73.06 72.70 72.58

Table 2: Accuracy (%) of the MrsFormer vs. the baseline softmax transformer averaged over 5 seeds. The best
model for each task is highlighted in bold, while the second best one is underlined. The MrsFormer attains the
best average accuracy across all tasks while being much more efficient than the baseline softmax transformers.

DATASET / MODEL BASELINE SOFTMAX MRSFORMER MRA-2 MRA-2-S

LISTOPS 36.84 (37.10) 37.52 37.10 (37.2) 37.05 (37.4)
RETRIEVAL 79.52 (79.6) 80.22 78.88 (79.6) 79.76 (80.3)
TEXT 64.93 (65.2) 65.05 65.09 (65.4) 64.43 (64.3)

AVERAGE ACCURACY 60.43 (60.63) 60.93 60.36 (60.73) 60.41 (60.67)

Table 3: Accuracy (%) of the MrsFormer DeiT vs. the baseline softmax DeiT and the MRA-2-s DeiT on the
ImageNet image classification task. The MrsFormer DeiT outperforms the MRA-2-s DeiT and yields comparable
accuracy to the softmax DeiT.

MODEL NAME TOP-1 ACCURACY TOP-5 ACCURACY

SOFTMAX DEIT 72.178 91.126
MRA-2-S DEIT 70.784 90.154

MRSFORMER DEIT 71.342 90.566

2022) are also included for comparison. Our MrsFormer’s performance is comparable with these
MRA baselines. Overall, the MrsFormer yields the best average accuracy across the LRA tasks.

3.3 IMAGENET

Models and baselines: In this section, we apply the MrsFormer to the Deit model (Touvron et al.,
2020) with 4 heads. Since Deit uses special class token [CLS] for the classification, we do not
downsample this token along with other tokens in the sequence. For our MrsFormers, we use the
set of scales s = [1, 2, 2, 4] at each layer. We also study the MRA-2-s attention on this task. As
reported in (Zeng et al., 2022), the MRA-2-s is a better model than the MRA-2 on the ImageNet
image classification task since its sparse attention structure is more effective for modeling images.

Results: We present our results in Table 3. The MrsFormer DeiT’s top-1 accuracy is about 0.5%
higher than MRA-2-s DeiT and is the closest model to the performance of the softmax DeiT baseline.
The performance gap of less than 1% of MrsFormer DeiT is very promising for applying the
MrsFormer-based model in large scale tasks to reduce the computational and memory cost while
maintaining comparable performance with the baseline transformer.

4 EMPIRICAL ANALYSIS

In this section, we use the models trained on the LRA retrieval task for our analysis.

4.1 EFFICIENCY ANALYSIS

We study the efficiency of MrsFormer over the baseline softmax transformer. Figure 3 demonstrates
the reduction ratio of train and test flops of the MrsFormer over the softmax transformer. Although
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Figure 3: Training (A) and inference (B) FLOP ratios between the MrsFormer and the baseline softmax
transformer across different model dimensions D (dim) and sequence lengths N on the LRA retrieval task. The
MrsFormer requires fewer FLOPs compared to the baseline, and this advantage grows with the sequence length
for very long sequences. The efficient advantage of the MrsFormer holds for large-scale models with the large
D.

Figure 4: Training (A) and inference (B) memory ratios between the MrsFormer and the baseline softmax
transformer across different model dimensions D (dim) and sequence lengths N on the LRA retrieval task.

Table 4: Layer-average mean and standard deviation of L2 distances between heads of the MrsFormer vs. the
softmax transformer trained on the retrieval task. The MrsFormer obtains greater L2 distances between heads
compared to the baseline, indicating that the MrsFormer captures more diverse attention patterns.

MetricModel Baseline Softmax MrsFormer

Mean 2.01 2.68
Std 0.39 0.54

in this experiment, we only approximate one head with scale s = 2 and preserve the other head the
same as in the baseline, the FLOP saving ratio over softmax attention still ranges from 18% up to
more than 36% and grows with sequence length in both the training and testing phases. Figure 4
presents the memory saving ratio of the MrsFormer over the softmax transformer. This figure shows
a similar trend of more memory saving when the sequence length increases. Our model achieves up
to 49% and 31% decrease in memory usage in the training and testing phases, respectively. This
indicates that our model scales well with long sequences and takes significantly less resource than the
baseline softmax attention in both training and testing.

4.2 MRSFORMER HELPS REDUCE HEAD REDUNDANCY

To show that the MrsFormer captures more diverse attention patterns, we compare the average L2

distances between the heads of our trained MrsFormer model (on the retrieval task) and the softmax
baseline. Table 4 reports the layer-average mean and standard deviation of distances between heads.
Since the MrsFormer attains higher L2 distances, it reduces the risk of learning redundant heads
compared to the softmax baseline.

4.3 BEYOND THE SOFTMAX ATTENTION: COMBINING MRSHA WITH OTHER ATTENTIONS

The MrsHa is complementary to many other types of attentions. Therefore, a natural question arises
is whether we can combine the MrsHa with other attentions besides the softmax attention? To answer
this question, we combine the MrsHA with the MRA attention (Zeng et al., 2022) and the linear
attention (Katharopoulos et al., 2020) and train these combined models for the LRA tasks (Tay et al.,
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Table 5: Accuracy (%) of the models that combined MrsHa with the MRA and linear attentions vs. the original
MRA and linear transformers on the LRA tasks. The combined models are indicated by the prefix “Mrs”, results
are averaged over 5 seeds (In this experiment, we use the set of scales s = [1, 2]).

DATASET / MODEL MRSMRA-2 (MRA-2) MRSMRA-2-S (MRA-2-S) MRSLINEAR (LINEAR)

LISTOPS 37.05 (37.10) 37.17 (37.05) 36.97 (36.90)
RETRIEVAL 79.24 (78.88) 80.05 (79.76) 81.36 (81.13)
TEXT 64.92 (65.09) 65.21 (64.43) 66.57 (65.69)

AVERAGE ACCURACY 60.40 (60.36) 60.81 (60.42) 61.63 (61.24)

2021a) as in Section 3.2. The results are presented in Table 5. It is interesting to see from Table 5 that
all combined models gain an improvement in average test accuracy over the original models despite
being an approximation. This observation suggests that the MrsHa can be applied to other attention
mechanisms besides softmax to reduce computation and memory while maintaining the accuracy of
the original models.

5 RELATED WORK

Efficient Transformers. To reduce the quadratic computational cost and memory usage of transform-
ers, many efficient transformer models have been developed (Roy et al., 2021). Sparse transformers
are a line of works in this branch, which explore and design the sparsity structure of attention matrix,
resulting in more efficient models (Parmar et al., 2018; Liu et al., 2018b; Qiu et al., 2019; Child et al.,
2019; Beltagy et al., 2020). Another class of efficient transformers is patterns integration, combining
different attention patterns to cover a diverse and wide range of dependencies (Child et al., 2019;
Ho et al., 2019). These patterns can be set as pre-specified or learnable during training, along with
model parameters (Kitaev et al., 2020; Roy et al., 2021; Tay et al., 2020). In another attempt, multiple
tokens can be accessed simultaneously with a side memory module, saving the cost of computing and
memory storage(Lee et al., 2019; Sukhbaatar et al., 2019; Asai & Choi, 2020; Beltagy et al., 2020).
In a different approach, observing that the attention matrices are low-rank, kernelization and low-rank
approximation methods have been proposed to replace the softmax attention with more efficient
attentions (Tsai et al., 2019; Wang et al., 2020a; Katharopoulos et al., 2020; Choromanski et al., 2021;
Shen et al., 2021; Nguyen et al., 2021; Peng et al., 2021; Jaegle et al., 2021). From a signal processing
perspective, wavelet-based and multiscale methods has been used lately to learn a multiresolution
approximation of self-attention (Zeng et al., 2022; Fan et al., 2021; Tao et al., 2020; Li et al., 2022),
which flexibly discover the coarse and fine attention patterns. Our approach decomposes the attention
heads into coarse- and fine-scale heads, diversely modeling the dependencies between tokens and
between group of tokens to reduce the computational and memory costs of the model in both training
and testing.

Redundancy in Transformers. Pre-trained transformers contain redundant neurons and heads which
can be pruned away for downstream tasks (Dalvi et al., 2020; Michel et al., 2019; Durrani et al., 2020).
Studying the contextualized embeddings in these pre-trained networks shows the anisotropicity of the
learned representation from these models under this redundancy (Mu & Viswanath, 2018; Ethayarajh,
2019). Multiple approaches have been proposed to reduce this redundancy and improve the efficiency
of transformers, such as the knowledge distillation and sparse approximation (Sanh et al., 2019; Sun
et al., 2019; Voita et al., 2019b; Sajjad et al., 2020). Our MrsHA/MrsFormer represent the attention
heads at different scales and are complementary to these methods.

6 CONCLUDING REMARKS

In this paper, we propose the MrsFormer, a class of efficient transformers that calculates the approxi-
mation of the attention heads at different scales using the Multiresolution-head Attention (MrsHA).
The MrsFormer achieves better computational and memory cost than the corresponding softmax
transformers baseline. Furthermore, the MrsFormer helps reduce the redundancy between attention
heads and can be easily combined with other attention mechanisms. In the MrsFormer, we use the
boxcar function to form a set of orthogonal expansion functions. It is natural to further develop the
MrsFormer using other basis functions including the popular wavelets. Furthermore, in our derivation
of the MrsHA and MrsFormer in Section 2.3, we employ the observation from (Nguyen et al., 2022)
that the features H[:, d] in the output sequence H are independent. We leave the extenson of the
MrsHA and MrsFormer to capture dependent output features as future work.
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Ankur Parikh, Oscar Täckström, Dipanjan Das, and Jakob Uszkoreit. A decomposable attention
model for natural language inference. In Proceedings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pp. 2249–2255, Austin, Texas, November 2016. Association for
Computational Linguistics. doi: 10.18653/v1/D16-1244. URL https://www.aclweb.org/anthology/
D16-1244.

Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer, Alexander Ku, and
Dustin Tran. Image transformer. In Jennifer Dy and Andreas Krause (eds.), Proceedings of
the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pp. 4055–4064. PMLR, 10–15 Jul 2018. URL http://proceedings.mlr.press/
v80/parmar18a.html.

Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy Schwartz, Noah Smith, and Lingpeng Kong.
Random feature attention. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=QtTKTdVrFBB.

Sam Qian and John Weiss. Wavelets and the numerical solution of partial differential equations.
Journal of Computational Physics, 106(1):155–175, 1993.

Tao Qin and Tie-Yan Liu. Introducing letor 4.0 datasets. ArXiv, abs/1306.2597, 2013.

Jiezhong Qiu, Hao Ma, Omer Levy, Scott Wen-tau Yih, Sinong Wang, and Jie Tang. Blockwise
self-attention for long document understanding. arXiv preprint arXiv:1911.02972, 2019.

Dragomir R Radev, Pradeep Muthukrishnan, Vahed Qazvinian, and Amjad Abu-Jbara. The acl
anthology network corpus. Language Resources and Evaluation, 47(4):919–944, 2013.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International Conference on Machine Learning, pp.
8748–8763. PMLR, 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of Machine Learning Research, 21(140):1–67, 2020. URL
http://jmlr.org/papers/v21/20-074.html.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. In International Conference on Machine
Learning, pp. 8821–8831. PMLR, 2021.

Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo,
Myle Ott, C Lawrence Zitnick, Jerry Ma, et al. Biological structure and function emerge from
scaling unsupervised learning to 250 million protein sequences. Proceedings of the National
Academy of Sciences, 118(15), 2021.

Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David Grangier. Efficient content-based sparse
attention with routing transformers. Transactions of the Association for Computational Linguistics,
9:53–68, 2021. doi: 10.1162/tacl a 00353. URL https://www.aclweb.org/anthology/2021.tacl-1.4.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. International Journal of Computer Vision, 115(3):211–252, 2015.

Hassan Sajjad, Fahim Dalvi, Nadir Durrani, and Preslav Nakov. Poor man’s bert: Smaller and faster
transformer models. arXiv e-prints, pp. arXiv–2004, 2020.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

Zhuoran Shen, Mingyuan Zhang, Haiyu Zhao, Shuai Yi, and Hongsheng Li. Efficient attention:
Attention with linear complexities. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pp. 3531–3539, 2021.

14

https://www.aclweb.org/anthology/D16-1244
https://www.aclweb.org/anthology/D16-1244
http://proceedings.mlr.press/v80/parmar18a.html
http://proceedings.mlr.press/v80/parmar18a.html
https://openreview.net/forum?id=QtTKTdVrFBB
http://jmlr.org/papers/v21/20-074.html
https://www.aclweb.org/anthology/2021.tacl-1.4


Under review as a conference paper at ICLR 2023

Sainbayar Sukhbaatar, Edouard Grave, Guillaume Lample, Herve Jegou, and Armand Joulin. Aug-
menting self-attention with persistent memory. arXiv preprint arXiv:1907.01470, 2019.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. Patient knowledge distillation for bert model
compression. arXiv preprint arXiv:1908.09355, 2019.

Andrew Tao, Karan Sapra, and Bryan Catanzaro. Hierarchical multi-scale attention for semantic
segmentation. arXiv preprint arXiv:2005.10821, 2020.

David Taubman and Michael W Marcellin. JPEG2000 Image Compression: Fundamentals, Standards
and Practice. Springer, 2002.

Yi Tay, Dara Bahri, Liu Yang, Donald Metzler, and Da-Cheng Juan. Sparse Sinkhorn attention.
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Supplement to “MrsFormer: Transformer with
Multiresolution-head Attention”

A ADDITIONAL DETAILS ON THE EXPERIMENTS

A.1 UEA TIME SERIES CLASSIFICATION

Datasets and metrics The benchmark (Bagnall et al., 2018) consists of 30 datasets. Following (Wu
et al., 2022), we choose 10 datasets, which vary in input sequence lengths, the number of classes, and
dimensionality, to evaluate our models on temporal sequences.

Models and baselines We adapt code from (Wu et al., 2022; Zerveas et al., 2021) for our
experiments. Following the same setting from these papers, we set the number of heads and layers
to 8 and 2, respectively. For the MrsFormers, we use the same set of scales at each layer, which
is given by s = [1, 1, 2, 2, 4, 4, 8, 8]. For MRA-2 and MRA-2-s models (Zeng et al., 2022), each
head is approximated by blocks of scales [1, 32] as suggested in their paper. The percentage of
blocks with scale 1 in these MRA-2 models is set to 25% of the full attention matrix. Other
hyperparameters have the same values as in (Wu et al., 2022) (for the PEMS-SF, SelfRegulationSCP2,
and UWaveGestureLibrary tasks) and (Zerveas et al., 2021) (for other tasks). Hyperparameters for
these tasks are presented in Table 6.

A.2 LONG RANGE ARENA BENCHMARK

Datasets and metrics We adopt the tasks: Listops (Nangia & Bowman, 2018), byte-level IMDb
reviews text classification (Maas et al., 2011), and byte-level document retrieval (Radev et al., 2013)
in the LRA benchmark for our experiments. They consist of long sequences of length 2K, 4K, and
4K, respectively. The evaluation protocol and metric are the same as in (Tay et al., 2021b).

Models and baselines We follow the same settings and adapt code for LRA task from (Zeng et al.,
2022), which uses transformer with 2 heads and 2 layers. We choose the same set of scales s = [1, 2]
for all the layers in MsFormer. Hperparameters for these tasks are presented in Table 7.

A.3 IMAGE CLASSIFICATION ON IMAGENET

Dataset and metric: We perform classification task on ILSVRC-2012 ImageNet dataset to validate
the performance of our model on large dataset. This dataset has 1000 classes and about 1.28 million
images.

Models and baselines In this section, we apply the MrsFormer to the Deit model (Touvron et al.,
2020) with 4 heads. Since Deit uses special class token [CLS] for the classification, we do not
downsample this token along with other tokens in the sequence. For our MrsFormers, we use the
set of scales s = [1, 2, 2, 4] at each layer. We also study the MRA-2-s attention on this task. As
reported in (Zeng et al., 2022), the MRA-2-s is a better model than the MRA-2 on the ImageNet
image classification task since its sparse attention structure is more effective for modeling images.

B PROOF OF THEOREM 1
Recall from Eqn. (14) that

H ≈ Hs,s′ =↑s,1 ((↓s,1↓s′,2 A)(↓s′,1 V)).

Let Ts be the down-sampling operator (matrix multiplication) on the first dimension of a matrix
corresponding to the scale s. Ts is the Kronecker product (or outer product) between an identity
matrix I and the row vector 1

si

−→
1 of size 1 × s, i.e. Ts = I ⊗ 1

s

−→
1 . Under this notation, the

up-sampling operator is the transpose of Ts. In addition, the down-sampling operator on the second
dimension of a matrix is also TT

s but with the right multiplication instead. Then, we can rewrite the
approximation Hs,s′ as follows:

Hs,s′ = TT
s ((TsATT

s′)(Ts′V)) = (TT
s TsATT

s′Ts′)V.

From the above equation, we have

H−Hs,s′ =
(
A− (TT

s TsATT
s′Ts′)

)
V.
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Dataset dim. model dim. feedforward learning rate batchsize
SelfRegulationSCP2 512 2048 0.001 16

PEMS-SF 512 2048 0.001 16
UWaveGestureLibrary 512 2048 0.001 16
EthanolConcentration 64 256 0.001 128

Handwriting 128 256 0.001 128
Heartbeat 64 256 0.001 128

JapaneseVowels size 128 256 0.001 128
SelfRegulationSCP1 size 128 256 0.001 128
SpokenArabicDigits size 64 256 0.001 128

FaceDetection size 128 256 0.001 128
Table 6: Hyperparameter configuration for UEA time series classification task.

Dataset embedding dim hidden dim head dim learning rate
listops 64 128 32 0.0001

retrieval 64 128 32 0.0001
text 64 128 32 0.0001

Table 7: Hyperparameter configuration for LRA task.

From the inequality with the Frobenius norm, we have

∥H−Hs,s′∥F ≤ ∥A−TT
s TsATT

s′Ts′∥F ∥V∥2.

Therefore, it suffices to approximate the upper bound ∥A − TT
s TsATT

s′Ts′∥F . Let As,s′ =

TT
s TsATT

s′Ts′ and obviously As,s′ contains blocks matrices of the same values. We can rewrite
A and As,s′ as block matrices of size s × s′: A = [Am,n]m,n and As,s′ = [As,s′

m,n]m,n where
m = 0, 1, ..., qlen/s, and n = 0, 1, ..., klen/s′. Note that all elements of As,s′

m,n have an identical
value to the average of all elements of the sub-matrix Am,n.
Now we can decompose the above quantity into a sum of Frobenius norms:

∥A−TT
s TsATT

s′Ts′∥2F =
∑
m,n

∥Am,n −As,s′

m,n∥2F .

Recall that from the hypothesis, we have

|Ai,j −Ai±1,j | ≤ δ, |Ai,j −Ai,j±1| ≤ δ. (18)

Then, by applying Popoviciu’s inequality, we have

Var [X] ≤ (M −m)2

4
,

where m = infX and M = supX . Since matrix is finite, the infimum and the maximum become
the maximum and minimum respectively. By Assumption 18, we can approximate the upper bound
of M −m as follows:

(M −m)2 ≤ (s+ s′ − 2)2δ2.

Integrate the sum, we find that

∥A−As,s′∥2F ≤ qlen
s

klen
s′

(s+ s′ − 2)2
δ2

4
.

When we plug in klen = qlen = N , we obtain a simpler version:

∥A−As,s′∥F ≤ s+ s′ − 2√
ss′

Nδ

2
.

As a consequence, we obtain the conclusion of the theorem.

C ADDITIONAL EXPERIMENTS

C.1 COMBINING MRSHA WITH OTHER EFFICIENT ATTENTIONS

In this section, we combine the proposed MrsHA architecture with other efficient attention mech-
anisms to demonstrate MrsHA can be combined with other efficient transformer to reduce mem-
ory and computation requirements. We run our experiments on 5 efficient transformer including
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Table 8: Accuracy (%) of the models that combined MrsHa with other efficient transformers versus the accuracy
of the original efficient transformers on the UEA Time Series Classification task. The combined models are
indicated by the prefix ”Mrs”, results are averaged over 5 seeds (In this experiment, we use the set of scales
s = [1, 1, 2, 2, 4, 4, 8, 8]).

DATASET / MODEL MRSLINFORMER (LINFORMER) MRSLINEAR (LINEAR) MRSFMM (FMM) MRSPERFORMER (PERFORMER) MRSLUNA (LUNA)

ETHANOLCONCENTRATION 32.70 (32.95) 35.49 (34.35) 34.47 (34.22) 33.21 (33.59) 33.71 (33.59)
FACEDETECTION 68.83 (68.53) 68.91 (68.46) 69.53 (68.97) 68.90 (68.96) 68.64 (68.92)
HANDWRITING 32.55 (32.47) 32.98 (33.29) 33.02 (31.57) 30.51 (30.47) 32.94 (32.32)
HEARTBEAT 75.12 (75.12) 75.45 (76.75) 76.42 (75.77) 75.61 (75.93) 75.61 (75.77)
JAPANESEVOWELS 98.56 (98.65) 99.46 (99.28) 99.64 (99.64) 99.01 (99.19) 99.46 (99.46)
PEMS-SF 87.67 (86.51) 83.43 (79.96) 86.9 (82.47) 84.59 (84.59) 81.31 (81.12)
SELFREGULATIONSCP1 92.61 (91.47) 91.13 (91.24) 93.06 (92.26) 91.13 (91.01) 91.24 (90.78)
SELFREGULATIONSCP2 55.19 (57.41) 54.26 (53.33) 54.82 (54.44) 54.44 (55.19) 55.74 (55.37)
SPOKENARABICDIGITS 98.91 (98.88) 98.76 (98.86) 99.48 (99.38) 99.02 (98.84) 99.03 (99.06)
UWAVEGESTURELIBRARY 86.25 (85.62) 82.19 (80.63) 86.46 (85.73) 85.10 (85.00) 86.25 (87.08)

AVERAGE ACCURACY 72.84 (72.76) 72.21 (71.61) 73.38 (72.45) 72.15 (72.28) 72.39 (72.35)

Table 9: Accuracy (%) of models that combined MrsHa with other efficient transformers versus accuracy of
the original efficient transformers (in the parentheses) in LRA task. The combined models are indicated by the
prefix ”Mrs”, results are averaged over 5 seeds (In this experiment, we use the set of scales s = [1, 2]).

DATASET / MODEL MRSLINFORMER (LINFORMER) MRSLINEAR (LINEAR) MRSFMM (FMM) MRSPERFORMER (PERFORMER) MRSLUNA (LUNA)

LISTOPS 36.93 (36.59) 36.97 (36.90) 37.77 (30.67) 37.12 (36.41) 37.03 (37.02)
RETRIEVAL 78.38 (78.17) 81.36 (81.13) 81.65 (80.91) 78.93 (78.67) 74.54 (69.55)
TEXT 57.39 (56.50) 66.57 (65.69) 68.39 (68.57) 65.20 (65.17) 64.51 (66.13)

AVERAGE ACCURACY 57.57 (57.09) 61.63 (61.24) 62.60 (60.05) 60.42 (60.08) 58.69 (57.57)

Table 10: The resutls of the comparison between MrsFT-Transformer and FT-Transformer. The
↑ symbol denotes that the metric being reported is accuracy (the higher the better), the ↓ symbol
denotes that the metric being reported is root mean square error (the lower the better).

DATASET / MODEL FT-TRANSFORMER MRSFT-TRANSFORMER

CALIFORNIA HOUSING ↓ 0.4671 0.468
ADULT INCOME ↑ 85.76 85.87
HELENA ↑ 37.99 38.23
JANNIS ↑ 72.46 72.54
HIGGS ↑ 72.50 72.44
ALOI ↑ 95.48 95.52
EPSILON ↑ 89.65 89.58
YEAR ↓ 8.905 8.904
COVERTYPE ↑ 96.67 96.84
YAHOO ↓ 0.7567 0.7586
MICROSOFT ↓ 0.7474 0.7468

Linformer (Wang et al., 2020a), Linear transformer (Katharopoulos et al., 2020), FMM trans-
former (Nguyen et al., 2021), Performer (Choromanski et al., 2021) and Luna transformer (Ma et al.,
2021). All experiments settings in this section follows directly from subsections 3.1 and 3.2 unless
stated otherwise.

C.1.1 UEA TIME SERIES CLASSIFICATION

Results in Table 8 presents the accuracy of the combined and original models on the UEA Time
Series Classification task. All the efficient transformers in this experiment either maintain comparable
performance or experience a boost in average accuracy when combined with MrsHA.

C.1.2 LONG RANGE ARENA

In Listops experiments, we increase the number of training step from 5000 to 15000 to ensure
convergence for all models. Table 9 further consolidates the advantage of the proposed MrsHA
architecture. In fact, all the combined models obtain better average accuracy than the original models
in the LRA task.
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C.2 TABULAR DATA

We include a diverse set of 11 tabular dataset for our benchmarking: California Housing (Kelley
Pace & Barry, 1997), Adult (Kohavi, 1996), Helena (Guyon et al., 2019), Jannis (Guyon et al., 2019),
Higgs (Baldi et al., 2014), ALOI (Geusebroek et al., 2005), Epsilon (EP, simulated physics experi-
ments), Year (Bertin-Mahieux et al., 2011), Covertype (Blackard & Dean, 1999), Yahoo (Chapelle
& Chang, 2011), Microsoft (Qin & Liu, 2013). We follow all the train settings and use the default
set of hyperparameters used in paper (Gorishniy et al., 2021) for all models. For simplicity, we
omit the ensemble step from paper (Gorishniy et al., 2021). We report average accuracy over 5
random seed for both FT-Transformer (Gorishniy et al., 2021) and the combined model of MrsHA
and FT-Transformer, which we denote MrsFT-Transformer.

Table 10 evidently shows that our combined model obtained better results in 7 over 11 tasks, while
other tasks maintain comparable performance. This result consolidates the benefit of combining
MrsHA with other transformer models in a diverse set of tasks.

C.3 EFFICIENCY WHEN COMBINING MRSHA WITH OTHER EFFICIENT TRANSFORMER

For illustration, we present FLOP and memory reduction ratios of train and test phases of our
MrsFMM transformer comparing to the original FMM transformer for LRA retrieval task in Figure 5.
Our model saves up to 35% of the original FLOP and has lower memory footprint, less than 65% and
85% of the original model for training and testing phases, respectively.

Figure 5: Training-inference FLOP ratios (A-B) and memory ratios (C-D) between the MrsFMM transformer
and FMM transformer across different model dimensions and sequence lengths on the LRA retrieval task
(s = [1, 2]).
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Figure 6: Scatter-plots for the relations between the memory usage and accuracy of the MrsHA-based efficient
transformers vs. the baseline efficient transformers (s = [1, 2]) trained for the LRA retrieval task.

C.4 SCATTER-PLOTS FOR THE RELATIONS BETWEEN THE MEMORY USAGE AND ACCURACY
OF THE MRSHA-BASED EFFICIENT TRANSFORMERS VS. THE BASELINE EFFICIENT
TRANSFORMERS

We have included the scatter-plots for the relations between the memory usage and accuracy of
the MrsLuna, MrsLinformer, MrsPerformer, MrsLinear, and MrsFMM vs. the Luna, Linformer,
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Performer, Linear, and FMM baselines trained for the LRA retrieval task in Figure 6. We observe
that in both train and test cases, the scatter-plots of our MrsHA-based models are above and on the
left of the scatter-plots of the baselines, suggesting that our MrsHA-based models are more memory
efficient while achieving comparable or better accuracies than the baseline models.
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