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Abstract: This study proposes a new method based on sensitivity analysis to solve a series of sequential parametric linear
programmings (LPs) such as that those arise in l1 model predictive control l1 (MPC). The main idea is to find a relationship
between each of the two successive parametric LPs by using sensitivity analysis strategy. Tolerance analysis-based MPC (TA-l1
MPC) and sensitivity analysis-based MPC (SA-l1 MPC) are introduced for reducing computational complexity and runtime. TA-l1

MPC takes O(Nn2) operations per step time, where N and n are the prediction horizon and the number of states, respectively.
This approach is very faster than generic optimisation methods but it can be applied only for initial conditions that are near to
steady-state values. SA-l1 MPC has not any limitation in usage and it reduces the runtime significantly compared with common
solvers. Finally, numerical results indicate the potential of the proposed algorithms.

1 Introduction
Model predictive control (MPC) is a practical method to achieve
optimal performance in industrial processes that has been based on
online optimisation [1]. To obtain control input u(k) at step time k,
a constrained optimisation problem dependent on states and
disturbance at step time k is solved for a finite horizon [2, 3]. The
objective function is usually expressed as quadratic (l2 norm) or
linear (l1 norm) form, which leads to quadratic programming (QP)
or linear programming (LP), respectively [4]. Quadratic MPC is the
oldest and most used type of MPC and has been investigated in
many kinds of research [5–9]. MPC based on LP (l1 MPC) with all
its aspects including stability, multiple optima, ideal control, and
dead-beat control has been investigated in [4, 10].

l1 MPC could be used in some problems such as traffic control
[11]. But restrictions on the storage memory space and the runtime
limit the application of MPC in many real problems such as fast or
large scale systems [12]. To date, many suitable algorithms and
packages for QP and LP are available which are able to solve l1
MPC problem. Explicit MPC is a method to compute the optimal
controller by using multi-parametric LP [10]. The computational
complexity and storage space in the explicit MPC approach grows
exponentially with the dimension of the system. Therefore, this
method is suitable for small dimension systems [13]. Some studies
such as [12, 14, 15] have been tried to overcome the weakness of
the explicit method. Also, currently there are various methods to
solve LP by using fast online optimisation algorithms such as the
fast gradient method [16–18], active set method [19] and interior
point method [20]. These methods decrease runtime but the
computational complexity of them is O(N3n3) and in some special
case is O(Nn3) [13, 21].

Although various methods and effective strategies have been
represented to solve the MPC problem fast, the MPC controller is
not used in many fast or large scale problems yet. Also, by
reducing computational complexity and runtime, the cost of
implementation of MPC reduces, too. Therefore, the research to
explore new strategies for reducing computational complexity or
runtime of the MPC problem is very important, particularly for fast
or large scale systems.

In this paper, a new approach based on the sensitivity analysis
in the simplex method is introduced to solve l1 MPC. The
sensitivity analysis is used to investigate the robustness of optimal

solution of LP with respect to uncertainties in objective function
coefficients, the constraint matrix and right-hand side (RHS)
parameters of constraints [22]. Also, if variations in coefficients
and parameters lead to a variation of the optimal solution,
sensitivity analysis can be applied to compute new optimal solution
[23]. This capability of sensitivity analysis helps us to represent a
new very fast solver for l1 MPC.

l1 MPC formulation is converted to a parametric LP so that
coefficients of objective function and constraint matrix in the
simplex table are constant, but RHS parameters are a linear
combination of the state, disturbance signal and reference signal
[10, 24]. Therefore, tolerance analysis and sensitivity analysis of
RHS parameters can be applied to establish a correlation between
the solutions of the consecutive LPs. In other words, the optimal
solution at step k + 1 can be calculated by using RHS tolerance or
sensitivity analysis and the optimal solution at step k.

Tolerance analysis-based l1 MPC, namely TA-l1 MPC, is
developed for the initial conditions close to the steady-state values
of the system. It is proved that computational complexity of the
proposed method is O(Nn2). So runtime would be reduced
significantly compared with fast online optimisation algorithms
mentioned before. Of course, application of TA-l1 MPC would be
limited with initial conditions and therefore it could be used in
fine-tuning online optimisation.

Sensitivity analysis-based l1 MPC, namely SA-l1 MPC, would
be developed to remove the restrictions on the initial conditions.
Sensitivity analysis algorithm can be applied to solve a perturbed
LP by using the solution of the nominal LP. So, if LP in step k + 1
considered as a perturbed LP in step k, the solution of LP in step
k + 1 can be calculated by using the solution of LP in step k. The
correlation between the two consecutive parametric LPs is
dependent on the changes in states, disturbance, and reference
signals. Hence, by choosing suitable sampling time (sufficiently
small), the correlation between two consecutive parametric LPs
would be increased and consequently, the runtime could be reduced
compared with fast online optimisation methods significantly.

Sections of this paper are as follows. In Section 2, sensitivity
analysis for LP is reviewed and the procedure of conversion l1
MPC problem to a parametric LP is presented. In Section 3, two
algorithms based on tolerance analysis and sensitivity analysis are
proposed to reduce the complexity and the runtime of l1 MPC.
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Numerical results and analysis of the proposed methods are
explained in Section 4 and Section 5 concludes the paper.

2 Problem formulation
2.1 Sensitivity analysis

Sensitivity analysis, whose basic role in LP is well known, is a
fundamental tool to investigate the uncertainties in costs, prices,
resource availabilities, demands and other elements of LP models
[25].

Consider the standard LP

max z = cTy
s . t . My ≤ b

y ≥ 0
(1)

in which, c = [c1 c2 … cn]T ∈ Rn is the objective function
coefficients vector, M is a m × n full row rank matrix which is
named constraint matrix, b = [b1 b2 … bm]T ∈ Rm represents the
values of RHS terms so that bi ≥ 0 , i = 1, 2, …, m and
y = [y1 y2 … yn]T ∈ Rn is decision variable. The vector inequalities
are element-wise. Also, let S denote an optimal basis matrix of (1).
In other words

b∗ = S−1b (2)

in which b∗ is optimal solution of LP (1). S can be obtained by
multiplying the elementary matrices used in the simplex procedure
and it can be extracted from the simplex table [23].

Sensitivity analysis in LP by the tolerance approach considers
simultaneous and independent changes in the objective function
coefficients and RHS terms [25]. In particular, for the RHS terms,
tolerance analysis finds the largest changes in these terms
simultaneously and independently while the optimal basis does not
vary.

To address the perturbations of the RHS terms, the tolerance
approach focuses on the following perturbed problem:

max z = cTy
s . t . My ≤ b + Δb

y ≥ 0
(3)

where Δb = [Δb1 Δb2 … Δbm]T ∈ Rm, and Δbi i = 1, 2, …, m is
arbitrary amount of perturbation on bi. Now, consider the interval
li, ui  with the property that the same basis is optimal in (3) as long

as the value of each Δbi belongs to li, ui . In other words, the same
basis is optimal in (3) as long as each Δbi satisfies the condition
li ≤ Δbi ≤ ui. This interval has been determined in [25].

It is well known that b∗ ≥ 0 is the sufficient condition for
feasibility of LP in the simplex method. In the result, by attention
to (2) and feasibility condition, the optimal solution of perturbed
LP (3), denoted by bΔ

∗ , can be calculated as

bΔ
∗ = b∗ + S−1Δb (4)

so that

S−1Δb + b∗ ≥ 0 . (5)

Consequently, allowable changes of each Δbi will be computed by
solving the linear matrix inequality (5).

In addition, if feasibility condition does not establish for
perturbed LP (3), i.e. some elements of bΔ

∗  be negative, then new
LP

max z = cΔ
Ty

s . t . S−1My ≤ bΔ
∗

y ≥ 0
(6)

will be obtained and dual simplex method (see [23]) can be applied
for finding the optimal solution of (6). In (6), cΔ is the objective
function coefficients vector in the final table of the simplex method
to solve LP (1). In other words, when LP (1) is solved by simplex
method, objective function coefficients vector is converted from c
in initial LP (1) to cΔ in final table.

Algorithm 1 (see Fig. 1) describes the main steps of solving
perturbed LP by sensitivity analysis. 

2.2 l1 MPC formulation

Consider the discrete-time LTI system

x(k + 1) = Ax(k) + Bu(k) + Ed(k) (7)

in which x ∈ Rn is state, u ∈ Rp is input, d ∈ Rm is disturbance and
A,B,E are fixed matrices. Also, let xr(k) be reference signal to be
tracked. So, the tracking error is defined e(k) = x(k) − xr(k), and
we have

e(k + 1) = Ae(k) + Bu(k) + Ed(k) + Axr(k) − xr(k + 1) (8)

The MPC problem for (8) with measured disturbance can be
defined as the following way:

min
u(k + i k)

J = ∥ Pe(k + N k) ∥1 + ∑
i = 1

N − 1
∥ Qe(k + i k) ∥1

+ ∑
i = 0

N − 1
∥ Ru(k + i k) ∥1

s . t .
e(k k) = e(k)
e(k + i k) = Ae(k + i − 1 k) + Bu(k + i − 1 k)

+Ed(k + i − 1 k) + Axr(k + i − 1 k)
−xr(k + i k)

xmin − xr(k + i k) ≤ e(k + i k) ≤ xmax − xr(k + i k)
umin ≤ u(k + i − 1 k) ≤ umax , i = 1, 2, …, N

(9)

where Q = diag(q) and R = diag(r) are diagonal matrices in which
qT = [q1, q2, …, qn] ≥ 0, rT = [r1, r2, …, rp] ≥ 0 are vectors with
non-negative elements, P is the terminal cost matrix, xmin and xmax
are the lower and upper bounds of states, respectively, umin and umax
are the lower and upper bounds of inputs, respectively, and N is the
prediction horizon. The vector inequalities are element-wise.

In [4, 10], the closed-loop stability of l1 MPC (9) has been
investigated. A sufficient condition to guarantee closed-loop
stability for (9) is

−∥ Pw ∥1 + ∥ PAw ∥1 + ∥ Qw ∥1 ≤ 0 (10)

Fig. 1  Algorithm 1: Solution of perturbed LP (3) by sensitivity analysis
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for all w ∈ Rn [10]. Therefore the stability of (9) is guaranteed by
suitable choice of the terminal cost matrix P. Also, [4] has
proposed a terminal cost matrix P to guarantee the closed-loop
stability of (9).

Measured disturbance d(k) can be included in the prediction
model so that d(k + i − 1) is prediction of disturbance at time
k + i − 1 based on the measured value d(k). Usually, d(k + i − 1) is
a linear function of d(k), for instance d(k + i − 1) ≡ d(k) where it is
assumed that the disturbance is constant over the prediction
horizon [6].

We may transform the MPC problem (9) to a LP by introducing
auxiliary variables and the following standard approach. The
decision variable y could be defined as
yT = [ᾱ1

T … ᾱN
T β̄1

T … β̄N
T η̄0

T … η̄N − 1
T μ̄0

T … μ̄N − 1
T ] where the non-

negative auxiliary variables ᾱi ∈ Rn, β̄i ∈ Rn, η̄i − 1 ∈ Rp, μ̄i − 1 ∈ Rp,
f or i = 1, 2, …, N are defined such that

e(k + i k) = ᾱi − β̄i

e(k + i k) = ᾱi + β̄i

Pe(k + N k) = ᾱN − β̄N

Pe(k + N k) = ᾱN + β̄N

u(k + i − 1 k) = η̄i − 1 − μ̄i − 1

u(k + i − 1 k) = η̄i − 1 + μ̄i − 1

u(k + N − 1 k) = η̄N − 1 − μ̄N − 1

u(k + N − 1 k) = η̄N − 1 + μ̄N − 1

(11)

By defining

c = − [qT …qT

2(N − 1)
1n

T 1n
T rT … rT

2N
]T .

where 1n is a column vector in Rn that all its elements are 1, the
performance index J in (9) can be expressed as J = − cTy. The
constraints in (9) can be expressed in the matrix inequality form

My ≤ bk

with

M =

−InN InN B̄ −B̄
InN −InN −B̄ B̄
0 0 −B̄ B̄
0 0 B̄ −B̄
0 0 −IpN IpN

0 0 IpN −IpN

where

B̄ = P̄

B 0n × p ⋯ 0n × p 0n × p

AB B ⋯ 0n × p 0n × p

⋮ ⋮ ⋱ ⋮ ⋮
AN − 2B AN − 3B ⋯ B 0n × p

AN − 1B AN − 2B ⋯ AB B

in which

P̄ =
I(N − 1)n 0(N − 1)n × n

0n × (N − 1)n P

and

bk = Γe(k) + Φd̄(k) + Φ1x̄r(k) + Φ2x̄r(k + 1) + L

=

− Ā
Ā
Ā

− Ā
02N p × n

e(k) +

−Ē
Ē
Ē

−Ē
02Nm × Nm

d̄(k)

+

−X̄
X̄
X̄

−X̄
02Nn × Nn

x̄r(k) +

Z̄
−Z̄

I − Z̄
Z̄ − I

02Nn × Nn

x̄r(k + 1)

+

02Nn × 1

− x̄min

x̄max

−ūmin

ūmax

(12)

in which

d̄(k) = d(k k)T d(k + 1 k)T … d(k + N − 1 k)T T

x̄r(k) = xr(k k)T xr(k + 1 k)T … xr(k + N − 1 k)T T

Ā = P̄ AT A2T … ANT T

and

Ē = P̄

E 0n × m ⋯ 0n × m 0n × m

AE E ⋯ 0n × m 0n × m

⋮ ⋮ ⋱ ⋮ ⋮
AN − 2E AN − 3E ⋯ E 0n × m

AN − 1E AN − 2E ⋯ AE E

X̄ = P̄

A 0n × n ⋯ 0n × n 0n × n

A2 A ⋯ 0n × n 0n × n

⋮ ⋮ ⋱ ⋮ ⋮
AN − 1 AN − 2 … A 0n × n

AN AN − 1 ⋯ A2 A

Z̄ = P̄

I 0n × n ⋯ 0n × n 0n × n

A I ⋯ 0n × n 0n × n

⋮ ⋮ ⋱ ⋮ ⋮
AN − 2 AN − 3 … I 0n × n

AN − 1 AN − 2 ⋯ A I

Also, x̄max = 1N ⊗ xmax, x̄min = 1N ⊗ xmin, ūmax = 1N ⊗ umax and
ūmin = 1N ⊗ umin. 1N is a column vector in RN with all entries being
one and ⊗ is Kronecker product.

Therefore, the l1 MPC formulation (9) is converted to the LP

max
y

cTy

s . t . My ≤ bk

y ≥ 0

(13)

for k = 0, 1, 2, …. Note that the minimisation problem (9) has been
converted to a maximisation problem by multiplying −1 in
objective function coefficients. In (13), M and c are constants and
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bk is a linear combination of error e(k) at step time k and
disturbance and reference signals at the prediction horizon
[k, k + 1, …, k + N]. In other words, l1 MPC problem at each step
time leads to a parametric LP. Therefore, by finding a relationship
between bk + 1 and bk, we can find a relationship between solutions
of the parametric LPs at two step times k + 1 and k. Consequently,
we can obtain an optimisation algorithm with less computational
complexity than existing approaches.

3 Proposed fast l1 MPC
In this section, we propose two algorithms to solve l1 MPC problem
by tolerance and sensitivity analysis approaches (Algorithm 1 (Fig.
1)) for reducing computational complexity and runtime.

In the first algorithm, we have used RHS tolerance analysis to
reduce the computational complexity for small variations in
tracking error e, disturbance signal d and reference signal xr around
initial values at step time k = 0. For this method, it is proved that
computational complexity to solve l1 MPC is O(Nn2).

In the second approach, we represent an algorithm to solve l1
MPC by using sensitivity analysis. In this method, there is no
limitation on signals and initial conditions and the runtime is
reduced significantly compared with interior-point, active set, and
simplex methods.

3.1 Tolerance analysis-based l1 MPC

Tolerance analysis is a powerful method in the simplex algorithm
for finding permissible variations in RHS so that the optimal basis
does not change [22]. Considering (13) and (12), coefficients
vector c and constraint matrix M are constant and RHS vector bk is
a linear combination of e, d and xr. Therefore, due to the tolerance
analysis, there exist variations in e, d and xr which optimal basis
matrix S do not change.

Notation: (Y) j denotes jth row of matrix Y. e0(k) ≡ e(0),
d̄0(k) ≡ d̄(0), x̄r0(k) ≡ x̄r(0) and x̄r1(k) ≡ x̄r(1) for k ≥ 0 are constant
vector sequences.

 
Definition 1: Infinity norm of the discrete-time signal x(k) for

k = 0, 1, 2, … denoted by ∥ . ∥∞ is defined as

∥ x ∥∞ = sup
k

∥ x(k) ∥

where ∥ . ∥ is Euclidean norm.
 
Proposition 1: Consider l1 MPC (9) which is formulated as the

parametric LP (13). Let S is the optimal basis matrix and b0
∗ is the

optimal solution of LP (13) at the initial time k = 0. If

(b0
∗) j ≥ ∥ e − e0 ∥∞ ∥ (S−1Γ) j ∥

+ ∥ d̄ − d̄0 ∥∞ ∥ (S−1Φ) j ∥
+ ∥ x̄r − x̄r0 ∥∞ ∥ (S−1Φ1) j ∥
+ ∥ x̄r − x̄r1 ∥∞ ∥ (S−1Φ2) j ∥

(14)

for j = 1, 2, …, 2N(2n + p), then optimal basis for all the times
k = 0, 1, 2, … is same. Moreover, optimal solution of LP (13) at
each step time k is computable with O(N2n2).

 
Proof: Using tolerance analysis and (5), there exists Δb so that

S−1Δb + b0
∗ ≥ 0 . (15)

Therefore, we must derive conditions on

Δbk = bk − bk − 1

= Γ e(k) − e(k − 1)
+Φ d̄(k) − d̄(k − 1)
+Φ1 x̄r(k) − x̄r(k − 1)
+Φ2 x̄r(k + 1) − x̄r(k)

for k = 1, 2, 3, …,

(16)

such that (15) is satisfied. By assuming feasibility condition and
same basis for (13) at each step time k and using (4) and (16), we
have

bk
∗ = S−1(Γ(e(k) − e(0))

+Φ(d̄(k) − d̄(0))
+Φ1(x̄r(k) − x̄r(0))
+Φ2(x̄r(k + 1) − x̄r(1))) + b0

∗

(17)

Therefore, to establish a feasibility condition, the inequality

bk, j
∗ = (S−1Γ) j(e(k) − e(0))

+(S−1Φ) j(d̄(k) − d̄(0))
+(S−1Φ1) j(x̄r(k) − x̄r(0))
+(S−1Φ2) j(x̄r(k + 1) − x̄r(1)) + b0, j

∗ ≥ 0
for j = 1, 2, …, 2N(2n + p)

k = 1, 2, 3, …

(18)

must be satisfied. Using the Cauchy–Schwarz inequality, sufficient
condition to achieve the feasibility condition is as follows:

b0, j
∗ − ∥ (S−1Γ) j ∥∥ e(k) − e(0) ∥

−∥ (S−1Φ) j ∥∥ d̄(k) − d̄(0) ∥
−∥ (S−1Φ1) j ∥∥ x̄r(k) − x̄r(0) ∥
−∥ (S−1Φ2) j ∥∥ x̄r(k + 1) − x̄r(1) ∥ ≥ 0

for j = 1, 2, …, 2N(2n + p)
k = 1, 2, 3, …

(19)

Now, for worst case if

b0, j
∗ − sup

k
(∥ (S−1Γ) j ∥∥ e(k) − e(0) ∥

−∥ (S−1Φ) j ∥∥ d̄(k) − d̄(0) ∥
−∥ (S−1Φ1) j ∥∥ x̄r(k) − x̄r(0) ∥

−∥ (S−1Φ2) j ∥∥ x̄r(k + 1) − x̄r(1) ∥) ≥ 0
for j = 1, 2, …, 2N(2n + p)

that is the equivalent to (14), then feasibility condition is
established and as a result, optimal basis S will be same at all step
times.

Also, by (17) optimal solution can be computable at each step
time k. In (17), S−1 is 2N(2n + p) × 2N(2n + p), Γ is
2N(2n + p) × n, Φ is 2N(2n + p) × mN, Φ1 is 2N(2n + p) × nN
and Φ2 is 2N(2n + p) × nN. Consequently computational order can
be derived at each step time as
2N(2n2 + np) + 2N2m(2n + p) + 4N2(2n2 + np) flops. Assuming
n ≥ p, m computational complexity can be written as O(N2n2). □

Using Proposition 1, we propose Algorithm 2 to solve l1 MPC
problem (9) by tolerance analysis as follows:
 

Algorithm 2 (Solution of l1 MPC (9) by tolerance analysis):
Offline mode for k = 0

Inputs x(0), d̄(0), x̄r(0)
Output S−1, b0

∗, u(0)
1. Solve (12) by simplex method
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2. Extract S−1, b0
∗, u(0) from simplex table

Online mode for k = 1, 2, …
Inputs S−1, b0

∗, x(0), d̄(0), x̄r(0), x(k), d̄(k), x̄r(k)
Output u(k k)
1. Compute e(k) − e(0), d̄(k) − d̄(0), x̄r(k) − x̄r(0)
2. Compute bk

∗ by (17)
3. Compute u(k k) = η̄0 − μ̄0
The features of the proposed TA-l1 MPC algorithm are as

follows:

1. Complexity: According to Algorithm 2 and proof of
Proposition 1, the computational complexity to solve MPC
problem (9) at each step time k = 1, 2, … can be earned as
O(pn + pmN + 2pnN) that can be written as O(Nn2). Because
by (11) we need to obtain η̄0 and μ̄0 for computing u(k k) and
by (18) for computing η̄0 and μ̄0, we use only the p number of
the elements of bk

∗. Therefore, complexity grows linearly with
N to solve l1 MPC.

2. Parallel computing: Because S, Γ, Φ, Φ1 and Φ2 are constant
matrices, we could obtain minimum usage communication
links for solving MPC as centralised. The required
information, such as x(k k), d̄(k) and x̄r, for computing u(k k)
would be determined by (17). Therefore, LP (13) can be
divided to smaller dimension problems and be solved by
parallel computing. As a result, large scale systems could be
controlled with distributed processors with performance such
as centralised approach. In this approach by (11), η̄0, s and μ̄0, s
which are the sth elements of η̄0 and μ̄0, respectively, are used
for computing each element of u(k k), that be represented as
us(k k). On the other side, only one of η̄0, s or μ̄0, s is in the basis
and another has zero value. So each us(k k) for s = 1, 2, …, p
can be computed with O(n + mN + 2nN) which can be written
as O(Nn). Consequently, p numbers of distributed processors
can control large scale system with O(Nn) flops for each
processor.

3. Proposition 1 and Algorithm 2 introduce an approach for
solving MPC locally. In other words, this approach is valuable
for initial conditions close to steady-state values. Also, the
variations of the steady-state values must be sufficiently small.
If variations of e, d and xr respect to their values at initial time
k = 0 be sufficiently small such that (14) satisfied, then
computational order at each step time will be O(Nn2).

4. In this approach the optimal basis and the optimal basis matrix,
S, should be same for all the times. On the other side, in the
stability problem where d is zero and error vector e vanishes to
zero, the optimal basis cannot be the same for all the times.
Because in this case initial error e(0) begin from non-zero
values and accordingly they are in the basic variables. But all
the elements of the error vector e exit from basis when they are
vanishing to zero in infinity time. Therefore, the optimal basis
and the optimal basis matrix S change at some step times. So
this approach does not use for tracking problem. But this
approach is useful for online optimisation problems with
disturbance signals such as traffic control.

3.2 Sensitivity analysis-based l1 MPC

As mentioned, TA-l1 MPC could not be used for some applications
and its application is restricted for some initial conditions and
disturbance signals by attention to (14). So we pursue to find an
algorithm without these limitations. Sensitivity analysis can be
applied to achieve this goal. In TA-l1 MPC, it is proven that
complexity is O(Nn2), but in this approach reducing of the runtime
is illustrated by numerical simulation and is compared with
common solvers for l1 MPC. Consider LP (13) and let Sk be optimal
basis matrix for k = 0, 1, 2, …. For Δbk + 1 = bk + 1 − bk, bk + 1

Δ  can be
computed by (4) as follows:

bk + 1
Δ = bk

∗ + Sk
−1Δbk + 1 (20)

If feasibility condition is satisfied, i.e. bk + 1
Δ ≥ 0, the optimal

solution bk + 1
∗  is equal to bk + 1

Δ  and therefore SA-l1 MPC is converted
to TA-l1 MPC and its complexity will be O(Nn2). Otherwise, i.e.
some elements of bk + 1

Δ  is negative, new LP (21) must be solved by
dual simplex method.

max
y

ck
Ty

s . t . Sk
−1Mky ≤ bk + 1

Δ

y ≥ 0

(21)

In (21) Mk = Sk − 1
−1 Mk − 1 for k = 1, 2, … and M0 = S0

−1M. Also ck is
objective function coefficients in final table in step k. To solve (21)
by dual simplex method, some elementary row operations are
applied on Sk

−1 that can be represented with elementary matrices
Ek1, Ek2,…, Ekl and as a result

Sk + 1
−1 = Ekl…Ek2Ek1Sk

−1 (22)

where l is the number of iterations to solve dual simplex. In (22)
Eki = I − wkiev

T for i = 1, 2, …, l where wki ∈ R2N(2n + p) is
constructed in the final simplex table at step time k and
ev ∈ R2N(2n + p) is the standard basis vector which all of its elements
are zero except vth element that is '1'. So, optimal solution at step
time k + 1 can be obtained by

bk + 1
∗ = Ekl…Ek2Ek1bk + 1

Δ (23)

The above derivation is summarised in Algorithm 3 (see Fig. 2). 
By attention to the special form of Eki, complexity of

calculation of Ek1Sk
−1 is O(N2(2n + p)2). Thus complexity of

computing (22) is O(N2(2n + p)2 l). Therefore, the complexity of
step 4 in Algorithm 3 (Fig. 2) is O(N2(2n + p)2 l), too. And as a
result, by assuming n ≥ p, m complexity of Algorithm 3 (Fig. 2) is
O(N2n2 l). The number of iterations, l, is dependent to quantity of
closeness bk + 1

Δ  to bk + 1
∗  that is related to quantity of Δbk + 1.

Fig. 2  Algorithm 3: Solution of l1 MPC (9) by sensitivity analysis
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Optimal basis matrix Sk has all information about solved LP
(13) at step time k. Therefore, if the variations of e, d and xr are
small between two consecutive step times k and k + 1, bk + 1

Δ  will be
very close to optimal solution bk + 1

∗ . In other words, smallness of
Δe(k), Δd̄(k) and Δx̄r(k) causes smallness of Δbk and so the
number of iterations to solve (21) by the dual simplex would be
small. And smallness of the number of iterations causes to reduce
the runtime of the algorithm.

By choosing suitable sampling time, Δe(k), Δd̄(k), and Δx̄r(k)
would be small and thus the number of iterations and runtime can
be reduced significantly. Therefore, choosing the sampling time is
an important issue to increase the performance of sensitivity
analysis to solve l1 MPC. Of course, the suitable sampling time is
dependent on the behaviour of system and type of discretisation of
the continuous-time system. This problem will be investigated in
numerical results.

3.3 Offline mode considerations

In the offline mode of proposed algorithms, one LP dependent on
initial conditions is solved by the simplex method. Therefore,
disturbance and state vectors at k = 0 must be available that can be
measured or estimated before the starting of the algorithms. The
computational complexity of the simplex method is O(2v), in which
v is the size of the problem, but in practice, it is linearly
proportional to v (O(v)) (see pp. 163–169 of [23]).

If x(0) and d̄(0) are not accessible before the starting of the
proposed algorithms, those would be measured at the beginning of
the operation of the system and the simplex method will be solved.
Therefore, if it is impossible to solve offline the simplex problem at
k = 0, online solving would be led to a constant delay (equal to
runtime) in computations. The amount of destruction of this delay
is related to the dynamics of the system and sampling time. If the
system is very fast and the sampling time is very small maybe, this
delay reduces the performance and could even be caused
instability. But it does not usually reduce the performance of the
algorithms significantly. Because the runtime of the simplex and so
the delay is usually small compared with sampling time. Thus it
seems this situation must be investigated in each problem
individually.

4 Numerical results
In this section, two examples are represented to investigate and to
indicate properties of proposed methods for fast l1 MPC. Also, we
compare proposed methods with interior-point, active set, and
simplex methods. The computations are done by an Intel (R)
Core(TM) i5-4200M CPU 2.5 GHz processor and MATLAB
software has been used by ‘linprog’ command for interior-point,
active set and simplex methods.
 

Example 1: Consider LTI discrete-time system

x(k + 1) = Ax(k) + Bu(k) + Ed(k)

where

A =

0.97 0 0.02 0
0 0.96 0 0.02
0 0.03 0.97 0

0.01 0.04 0 0.98

, B =

24.6 0.5
−0.2 32.8
0.5 49.5

−19.8 −0.5

E = 0.1 0.1 0.1 − 0.1 T

and d(k) = 0.1 + 0.02sin(0.1k). This is obtained from a continuous-
time LTI system by zero-order hold (ZOH) method and sampling
time Ts = 5 s. Lower and upper bounds for states and control inputs
are as follows:

umin = [−0.001 −0.001]T, umax = [0.001 0.001]T

xmin = [−1 −1 −1 −1]T

xmax = [1 1 1 1]T

Also, let xr(k) = 0 and Q = diag([0.5 0.1 0.05 0.2]T),
R = 0.1I2 and P = 20 Q. For x0 = [0.03 − 0.1 0.35 − 0.9]T that
satisfies (14) and N = 5, the runtime of TA-l1 MPC method is
compared with the active set, interior-point and simplex methods.
The runtime of the Algorithm 2 in offline mode is 80 ms and
runtime in online mode has been illustrated in Table 1. 

Because the complexity of TA-l1 MPC method is O(Nn2), and
the complexity of active set and interior-point is O(N3n3) and for
the simplex method is O(2Nn), the runtime of TA-l1 MPC is very
less than other methods. Fig. 3 illustrates runtime of tolerance
algorithm for all step times. Runtime is about 0.1 ms in most of the
step times. Of course, as seen in Fig. 4, the initial state is close to
the steady state for the fulfilment of (14). 

For initial state x0 = [0 0 0 0]T, the runtime is indicated by
using SA-l1 MPC method in Fig. 5. In this case, since the initial
state is not close to steady state and therefore (14) cannot be
satisfied, TA-l1 MPC method cannot be applied. The runtime of the
offline mode is 75 ms that is very small compared with sampling
time and so cannot reduced the performance of the Algorithm 3
(Fig. 2). By attention to Fig. 5, the runtime is between 4 and 10 ms
for initial step times from zero until 250 s. In the other side, the

Table 1 Comparison of runtime
Method Max runtime, ms Mean runtime, ms
active set 212 160
interior-point 105 78
simplex 125 90
TA-l1 MPC 0.3 0.1

 

Fig. 3  Runtime of TA-l1 MPC with N = 5 and Ts = 5 s
 

Fig. 4  States for x0 = [0.03 − 0.1 0.35 − 0.9]T,
d(k) = 0.1 + 0.02sin(0.1k) and Ts = 5 s
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behaviour of the system is in the transient mode in interval time
[0, 250] (see Fig. 5). According to Figs. 5 and 6, at the end of the
transient mode and by approaching the states of the system to
steady-state, from 250 to 2000 s, runtime decreases to less than 0.3 
ms. In other words, in this example by approaching behaviour of
the system to the steady- state, SA-l1 MPC method with the
complexity of O(N2n2 l) is converted to TA-l1 MPC method with the
complexity of O(Nn2) and this is the reason of reducing the
runtime. But this result is not valid for all problems. For example if
d(k) = 0.1 + 0.2sin(0.1k), runtime obtains as Fig. 7. In this case,
due to large variations of d, (14) cannot be satisfied and so the
number of iterations to solve dual simplex does not decrease in
steady state.

Table 2 and Fig. 8 show comparison between SA-l1 MPC and
interior-point methods to solve above problem for x0 = [0 0 0 0]T. 

The runtime of SA-l1 MPC method reduces in steady state but the
runtime of the interior-point method is almost fixed in all step
times. This advantage in SA-l1 MPC method stems from sensitivity
strategy to solve consecutive LPs and its reason is the reducing the
number of iteration l and as a result, the conversion of the
complexity from O(N2n2 l) to O(Nn2). For d(k) = 0, xr(k) = 0 and
x0 = [ − 1 1 − 1 1]T, the effect of sampling time and prediction
horizon (N) on runtime in SA-l1 MPC method has been
investigated. As seen in Table 3, it seems that maximum and mean
runtime is proportional to N2 approximately. 

Also, Table 4 shows the effect of sampling time on runtime. By
choosing a small sampling time, the runtime is reduced
significantly. Mean runtime is proportional to sampling time as
linearly, but two jumps occur in maximum runtime by changing

Fig. 5  Runtime of SA-l1 MPC for N = 5 and Ts = 5 s
 

Fig. 6  States for x0 = [0 0 0 0]T, d(k) = 0.1 + 0.02sin(0.1k) and Ts = 5 s
 

Fig. 7  Runtime of SA-l1 MPC for d(k) = 0.1 + 0.2sin(0.1k), N = 5 and
Ts = 5 s

 

Table 2 Comparison of runtime between SA-l1 MPC
method and interior-point method
Method Max runtime, ms Mean runtime, ms
interior-point 102 75
SA-l1 MPC 9.7 0.1

 

Fig. 8  Comparison of runtime between SA-l1 MPC and interior-point
methods for N = 5 and Ts = 5 s

 
Table 3 Effect of prediction horizon (N) on runtime in SA-l1
MPC for Ts = 5 s
N Max runtime, ms Mean runtime, ms
5 10 0.1
10 28 0.8
15 49 1.7
20 75 3
25 105 4.1
30 255 7.5

 

Table 4 Effect of sampling time (Ts) on runtime in SA-l1

MPC for N = 10
Ts, s Max runtime, ms Mean runtime, ms lmax

0.1 3 0.1 1
0.5 14 0.3 3
1 19 0.4 4
2.5 24 0.45 4
5 28 0.8 5
10 46 1.7 8
20 40 4.1 8
30 43 7.1 8
50 61 9.5 11
70 59 10 11
100 64 14 11
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sampling time from 5 to 10 s and from 30 to 50 s. Maximum
runtime can be divided into three segments that is constant in each
segment approximately. For example, sampling time between 1and
5 s is suitable to achievement runtime about 25 ms or between 10
and 30 s for about 45 ms runtime. Also, the maximum runtime is
proportional to the maximum number of iteration (lmax).
 

Example 2: Consider the continuous-time model of the four-
tank plant that has been investigated in [16]. Using the ZOH
method with a sampling period of 100 ms, the discrete-time model
is obtained in the following:

x(k + 1) = Ax(k) + Bu(k)

where

A =

0.94 0 0.04 0
0 0.93 0 0.04
0 0 0.96 0
0 0 0 0.96

, B =

0.32 0.03
0.03 0.4

0 1.22
1.31 0

Lower and upper bounds for states and control inputs are as
follows:

umin = [−0.01 −0.01]T, umax = [0.01 0.01]T

xmin = [−1 −1 −1 −1]T

xmax = [1 1 1 1]T

and Q = 0.5 I4, R = 0.1 I2 and P = 25 I4. By using SA-l1 MPC,
the runtime of the offline mode is 56 ms and the maximum runtime
and mean runtime in online mode are 7 and 0.3 ms, respectively,
for N = 10 and x0 = [ − 1 1 − 1 1]T. Also, by attention to Fig. 9
and the time constant of this system, Ts = 100 ms is suitable. As a
result, by using SA-l1 MPC, the performance of the control does
not decrease significantly in practice. However, Table 5 shows that
the runtime of the interior-point method is about 50% of sampling
time and for the simplex method it is around 40%. Thus, these
methods decrease the performance of the MPC significantly. Also,
the active-set method has the runtime around 170 ms that is greater
than the sampling time and so this method can not be used for this
system.

Fig. 10 illustrates the runtime and the number of iteration. As
seen in Section 3.2, the computational complexity of SA-l1 MPC
for l > 0 is O(N2n2 l), and so the runtime is proportional to the
number of iteration (l) for l > 0. Also, for l = 0, SA-l1 MPC is
converted to TA-l1 MPC with O(Nn2). As seen in Fig. 10, because
the number of iterations are small so the runtime is very less than
other methods and at each step time that l = 0 the runtime is very
small even in comparison with l > 0.

5 Conclusions
In this study, two new algorithms based on sensitivity analysis are
proposed to solve l1 MPC. The complexity of TA-l1 MPC method is
O(Nn2) and so this algorithm is very fast in comparison with
common methods. Also, this approach would be faster by using
parallel computing that had been explained in Section 3. Despite of
the limitations of TA-l1 MPC approach, this approach is suitable for
fine tuning of large scale systems such as urban traffic control. SA-
l1 MPC method has not any limitations and can be applied for a
wide range of problems but is slower than TA-l1 MPC method. Of
course, it is very faster from common solvers such as interior-point
and active set methods.
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