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ABSTRACT

One of the core problems of supervised few-shot classification is adapting gen-
eralized knowledge learned from substantial labeled source data to rarely labeled
novel target data. What makes it a challenging problem is how to eliminate un-
desirable inductive bias introduced by labels when learning generalized knowl-
edge during pre-training or adapting the learned knowledge during fine-tuning.
In this paper, we propose a purely self-supervised method to bypass the label-
ing dilemma, focusing on an extreme scenario where a few-shot feature extractor
is learned without fine-tuning. Our approach is built on two key observations
from recent advancements in style transfer learning and self-supervised learn-
ing:1) high-order statistics of feature maps in deep nets encapsulate distinct in-
formation about input samples, and 2) high-quality inputs are not essential for
obtaining high-quality representations. Accordingly, we introduce a variant of
the vector quantized variational autoencoder (VQ-VAE) that incorporates a novel
coloring operation, which conveys statistical information from the encoder to the
decoder, modulating the generation process with these distinct statistics. With
this design, we find that the statistics derived from the encoder’s feature maps
possess strong discriminative power, enabling effective classification using sim-
ple Euclidean distance metrics. Through extensive experiments on standard few-
shot classification benchmark. We show that our fine-tuning-free method achieves
competitive performance compared to fine-tuning-based and meta-learning-based
approaches.

1 INTRODUCTION

Just like human beings born with few-shot recognition ability, the large-scale self-supervised pre-
training model demonstrates extraordinary “few-shot ability” in computer vision recognition tasks
(Radford et al., 2021 [Jia et al.| 2021} |Chen et al., [2023) and natural language understanding tasks
(Brown et al.,2020). High-capacity models combined with large-scale training data seem to provide
a straightforward solution to few-shot learning. However, the “few-shot” is ill-posed in the context of
recent large-scale pre-training paradigms because of the possibility of information leakage between
the training and testing stage (Pham et al.| [2023)). Specifically, it is hard to tell to what extent the
few-shot ability comes from a large model’s memorization. As the training data scales to hundreds
of millions (e.g. 400 million image-text pairs for CLIP (Radford et al., [2021)), the dataset partition
of training and testing becomes ambiguous. This ambiguity offers the high-capacity model more
opportunities to disguise its memorization as a few-shot recognition ability. Thus, we concentrate
on learning a few-shot feature extractor under low-data settings in a self-supervised manner without
fine-tuning.

Recently, several works show that a simple supervised pre-trained feature extractor fine-tuned with
limited novel data performs well in a few-shot classification task (Chen et al.,[2020b; Dhillon et al.,
2020). Along with this two-staged approach, self-supervised learning can either be used as an aux-
iliary task to boost the performance of both stages (Gidaris et al.,|2019; |Yang et al., 2022} [Liu et al.,
2021} |Su et al} |2020) or be a substitution of the pre-training strategy in the first stage (Poulakakis-
Daktylidis & Jamali-Rad, |2024a; Medina et al., 2020; |Lu et al.,|2022a; |Chen et al., [2021a)). All of
these works alleviate the over-confident inductive bias introduced by labels of source classes with
self-supervised learning. Specifically, the latter method called unsupervised few-shot learning(U-
FSL) removes the label dependency from source data completely and still demonstrates surprisingly
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Figure 1: Model overview. As shown on the left side, we use an encoder-decoder architecture for
our denoising VQ-VAE. The coloring operations between encoder-decoder pairs make our model
different from existing VAE models. On the right side, we detailed our configuration of coloring
operations between encoder-decoder pairs. We incorporate vector quantization operation into the
coloring operation and display its detailed architecture in Figure[2] We omit weight standardization,
normalization, and activation layers for brevity.

few-shot recognition performance with a supervised fine-tuning stage. However, considering the
scarcity of data in the fine-tuning stage, the supervised fine-tuning under few-shot settings may lead
to other problems (Poulakakis-Daktylidis & Jamali-Rad, [2024a). We follow this line of work on
U-FSL and take a pioneering step to remove the label dependency in the fine-tuning stage.

Most U-FSL methods take contrastive learning as the unsupervised pre-training approach in source
classes (Poulakakis-Daktylidis & Jamali-Rad, [2024a}; [Medina et al., [2020; |Lu et al., [2022a; (Chen
et al., [2021a). As we all know, strong data augmentation plays a significant role in contrastive
learning (He et al., 2020; |Chen et al.| 2020a; |Caron et al., 2021; [Zbontar et al., 2021; Bardes et al.
2022)). This is also true for the pre-training stage in U-FSL as observed in (Lu et al., 2022a). Intu-
itively, strong data augmentation destroys the object semantic information of input images in source
datasets. This destruction makes the learned representations less biased towards objects in source
classes, and thus can easily transfer to novel target classes with limited-data fine-tuning. Addition-
ally, recent mask-based image models (MIM) (Feichtenhofer et al.,|2022;|He et al., 2021} |Tong et al.,
2022; [Xie et al., [2022) show that highly masked input combined with self-reconstruction tasks can
force the model to learn meaningful representations. Thus, we believe that high-quality images are
unnecessary for generalizable representations.

What’s more, recent style(domain)-transfer literature (Huang & Belongie, 2017; L1 et al.l 2017
Ulyanov et al.|, |2016; |Li et al., 2016) show that high-order statistics calculated from feature maps
of deep nets contain “style(domain)” information about the input image. We can transport these
“style(domain)” information to another image with these statistics. The styleGANs (Zheng et al.,
2020; [Karras et al., 2020; 2021} 2019) further show that we can perform fine-grained semantic
control of a generative process with these statistics. Notably, the semantic control signals(i.e. the
statistics) of StyleGANSs can be learned directly from white noises. It’s reasonable to infer that we
can also form these distinct statistics from destructive inputs so that we can use them as discrim-
inative representations. Furthermore, the feature maps are discretized at spatial dimensions when
calculating these statistics. t’s natural to vector quantize the latent space as (van den Oord et al.,
2018; Razavi et al.,|2019) when design the architecture.

With all these observations, we propose a denoising VQ-VAE model with statistical conveyers from
encoder to decoder as shown in Fig[l] Similar to the styleGANSs, the encoder takes as input a
corrupted image and provides modulating signals for the decoder and the decoder to reconstruct
the original input in pixel space. The corrupted input of the encoder makes it concentrate more on
abstract information about the input instead of the object itself or some shortcut attributes(e.g. color,
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background). The pixel reconstruction task of the decoder determines what modulating signals
are the principal components of the original image. In general, the contributions of this paper are
summarized as follows:

* We design a coloring operation that transmits a high-order statistical signal from the en-
coder to the decoder of a VQ-VAE model. With this design, we empirically show that these
high-order statistics benefit both the pre-training and evaluation stages.

* We augment our VQ-VAE with noisy input during pre-training i.e., denoising task. Sur-
prisingly, we find that these noisy-adding procedures can even boost few-shot recognition
performance during evaluation without any fine-tuning.

* We empirically demonstrate effectiveness of our method in mini-ImageNet (Vinyals et al.,
2017)) and show prospects of fine-tuning-free U-FSL.

2 RELATED WORK

2.1 UNSUPERVISED FEW-SHOT LEARNING

Recently, the pre-training method in source classes shifts from supervised learning to unsupervised
learning. U-FSL is a promising direction that can advance few-shot learning to a new era of high-
capacity models pre-trained with large-scale unlabeled data. Existing research on U-FSL can be
roughly divided into two categories:meta-learning approaches (Lee et al [2020; [Ye et al.| 2022}
Khodadadeh et al.l [2019; Jang et al.| [2023)) and contrastive learning approaches (Lu et al., [2022b;
Chen et al.| [2021b} [Poulakakis-Daktylidis & Jamali-Rad}, 2024b). Both of them have an unsuper-
vised pretraining stage in source classes followed by a supervised fine-tuning stage in novel target
classes. As demonstrated in (Tian et al., 2020), good representations are significant for few-shot
learning. All these works try to learn more generalizable representations in the unsupervised pre-
training stage. The former inherits motivation from traditional meta-learning (Finn et al.| 2017;
Nichol et al., 2018) but collects meta-training episodes in a heuristic manner(e.g. augmentation
views (Khodadadeh et al.| 2019)) while the latter employs contrastive learning as the unsupervised
pre-training strategy. As we have observed, high-order statistics are significant, and high-quality
inputs are unnecessary. We replace contrastive learning with a VQ-VAE-based self-reconstruction
paradigm, which is consistent with the discretized nature when we calculate the statistics. We take
an exploratory step to remove label dependency in the fine-tuning stage by utilizing these high-order
statistics as discriminative representations and directly performing nearest-neighbor classification
with them just like (Snell et al.| 2017).

2.2  SEMANTIC DISENTANGLEMENT WITH STATISTICS

Many recent style transfer algorithms show that we can disentangle the style and content of an image
by some statistics(e.g. gram matrix (Gatys et al.,|2015;|Ulyanov et al.,[2017)), variance (Huang & Be-
longie, 2017;(Dumoulin et al.,2017), covariance (Li et al.,[2018c;|2017;|Cho et al.,[2019)) calculated
from feature maps of a pre-trained deep network(e.g. VGG-19). Thus, the style of an image can be
transferred by these statistics. Furthermore, several works demonstrate that these statistics not only
can disentangle distinct semantics such as style and content but also can disentangle fine-grained
semantics(e.g. hair, pose, freckles) in a portrait (Zheng et al.| 2020; Karras et al.,|2019), categorical
semantics of different classes (Siarohin et al.l [2019), or domain semantics of different datasets (Li
et al., |2016; [Chen et al) 2019). More importantly, some of these works show that statistics com-
puted across the deep neural network provide a high-to-low semantic abstraction (Gatys et al.,[2015j
Karras et al., 2019). This discriminative ability of statistics is also demonstrated in general vision
classification task (L1 et al.l [2018bga)), even in fine-grained classification task (Lin et al.| 2017)). All
of these works show us an intuitive belief that statistics of feature maps in deep neural networks
contain distinct information. They can be used to represent discriminative semantics and they are
hierarchically distributed across the deep nets. This line of research motivates us in the architectural
design of coloring operation and the vector quantization of latent space.
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3 METHOD

3.1 PROBLEM DEFINITION

We follow the commonly used definition of U-FSL in (Lu et al., 2022bj [Chen et al., [2021b;
Poulakakis-Daktylidis & Jamali-Rad, [2024b)). Generally, the U-FSL is divided into two stages: an
unsupervised pre-training in source classes(also called base classes) followed by a supervised fine-
tuning in disjoint novel classes. In the pre-training stage, all we need are unlabeled data and some
augmentations to add noise for our denoising VQ-VAE. We denote the source classes as D = {x;},
the novel classes as D,, = {x;}. Both of them are unlabeled since we do not re-train our model.
And a; ~ A is an augmentation for x; randomly selected from a set of pre-defined augmentation
operations(e.g. random crop, random color jitter, random flip) just like the augmentation strategy
used in contrastive learning (He et al., 2020; (Chen et al., [2020a). Instead of re-training our model
in fine-tuning stage, we directly evaluate our model with some statistics calculated from the pre-

trained model using episodes constructed from novel classes. We denote an episode 1" = S U Q,
where S, @Q are the support set and query set respectively. S = {(znx, ynk)}ﬁgf x—1 1s constructed
by randomly sampling N classes from novel classes and each class contains /K randomly selected
samples; ) = {mn7,L}T]:[’:]¥[)m:1 have N classes same as S and each class contains M randomly
selected samples. This is called N-way K-shot in few-shot learning.

3.2 DENOISING VQ-VAE FOR U-FSL

In this section, we detailed our pre-training architecture and pre-training strategy for U-FSL. Both
the architecture and strategy are fairly simple and almost the same as hierarchical VQ-VAE (Razavi
et al., 2019) except that we use high-order statistics as a lateral connection. As shown in the left
part of FiglI] we use a pre-defined random augmentation strategy to add noises to a batch of clean
images sampled from source classes Dy so that the content information of objects in Dy are blurred.
Then we reconstruct these clean images by a denoising VQ-VAE. Our core innovation lies in the
lateral connection between the encoder and decoder pair(the details for one pair of encoder-decoder
connections are shown in the right part of Fig[T). For the few-shot classification task, the encoder
should not concentrate on content information in source classes as the source classes and novel
classes are disjoint. Thus, we leave the contents to the decoder and suppose that the whole source
dataset is generated from a content codebook in a latent space like (Razavi et al.l [2019). What the
encoder does is pass distinct semantic information to modulate the generative process like (Karras
et al., |2019). Thus, there should be an information conveyer between the encoder and decoder
through which the distinct information from the encoder can be transmitted. As mentioned above,
several related works empirically demonstrate that the statistics of feature maps in deep nets can
serve as such a tool. We utilize the coloring operation, commonly used in image generation (Cho
et al., 2019;[Siarohin et al., 2019), as the information conveyer in this work. Suppose Shwxe ChwXe
are feature maps from the encoder and decoder respectively. The coloring operation is defined as
follows:

G =S2(C - o) + s + (C — po) + B (1)
_ 1 T4
Y= %(5 - ,us) (S - MS) @)
hw A hw
ps=> 8 pe=>»C 3)
=1 =1

where § = M LP(S) and v § € R are learnable parameters. Broadcast rules are used where
needed. The usage of the coloring operation in our model is shown in Fig[2] We insert this operation
right after instance normalization layer (Ulyanov et al., 2017) in decoder such that the statistics(i.e.
3 ws) can compensate the non-contents information that has been whitened out by the instance
normalization layer in the generative process.

In practice, we discretize the feature maps across spatial dimensions when we calculate >, pg
in Eq[2] and Eq[3] for coloring operation. It’s natural to discretize the latent space in architectural
design. We follow the idea in (van den Oord et al.,|2018; Razavi et al., 2019)) to learn a discretized
codebook using vector quantization. The discretized codebook serves as content information for
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the generative process. To avoid the “codebook collapse” problem (Huh et al., [2023}; Takida et al.,
2022), we use the Gumbel-softmax trick (karpathy, 2021) to sample the codebook for our self-
reconstruction task. As we devise the codebook for every decoder block(i.e. a hierarchical manner),
we compute logits for the Gumbel-softmax trick in an attention style. Since the query signal is
exported from our encoder and the Gumbel-softmax trick is differentiable, there is no need to use
straight-through gradient estimation or add any regularization loss to the codebook. The complete
vector quantization operation is shown in algorithm|[I]

Algorithm 1 Attention-style vector quantization with Gumbel-softmax trick

Input:feature maps S € R"X¢ from encoder;feature maps C € R"X¢ from decoder; trainable
codebook matrix T € R*¢;
Parameter: temperature coefficient 7 for Gumbel-softmax

Output: vector quantized feature maps C € Rhwxe

1. Q=MLPs(S+C)

2T = GroupW hitening(T') > Avoid dimension correlation Huang et al.
3. K, V = Proj(T), Proj(T)

4: K = LayerNorm(K) > Without scale and shift
5: V = LayerNorm(V) > Wihtout scale and shift
6: logits = matmul(Q, K)

7: gmat = gumbel_so ftmaz(logits, T)

8: C' = matmul(gmat, C)

9: Return C

Technically, the architecture of our model is very similar to styleGAN (Karras et al., 2019) except
that our encoder takes as input a corrupted version of the target instead of some kind of random
noise (e.g. gaussian noise). Since we are not looking for high-quality generators, we also replace
the GAN-style loss with a much simpler discretized logistic mixture likelihood on pixels space like
(Salimans et al.,2017) as our loss function. Suppose a subpixel value v in an input image, the target
of our model can be formulated as:

arg min — log P(v|m, u, 5) “4)
0

L

1=1
where 6 represents the trainable parameters of our model; 7 1 s are decoded by our decoder and

ZzL:1 m; = 1 are the mixture indicators. Different from (Salimans et al.,[2017)’s implementation,
we remove the pixel condition settings due to different contexts.

As mentioned above, statistics in deep nets can serve as the basis for distinguishing different inputs.
To evaluate our model, we directly perform nearest-neighbor classification between these statistics
of samples in ) and S using Euclidean distance as a metric. The prediction under N-way K-shot
settings can be simply formulated as:

e_d(svgi)

Prob(s,3;) = ————— 6
( ’ l) ZN e—d(s,3:) ©)
i=1

where s is statistics calculated from feature maps of a query sample; $; is the prototype of statistics
for the i-th support set. And d(-,-) is the Euclidean distance function. Notably, we do not per-
form any fine-tuning during evaluation. Instead, we calculate statistics from the pre-trained model
directly.

4 EXPERIMENTS

4.1 DETAILS OF ARCHITECTURE AND DATASETS
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Datasets: The commonly used few-shot dataset minilma-

geNet (Vinyals et al., |2017) is employed to demonstrate the Linear
effectiveness of our method. This dataset is constructed from % liansfonn
subsets of ImageNet. It contains 100 classes with exactly 600 Prog

images in each class. We follow the previous work (Ren et al., Mat’Mul

2018)) to randomly select 64, 16, and 20 classes for training, curbet :
validation, and testing, respectively. For training data, we first Sofgmax z
resize all images to a resolution of 448 x 448. Then we fol- Neflea MatMul >
low the practice in constru(;tive learning to add noise Wit.l.l pre- N . e wen e
defined random augmentations(e.g. random crop, color jitter). " '

The noised images are resized to the resolution of 256 x 256 s @*1
for resnet-18, and 128 x 128 for Conv4 since it is designed

for extremely low-resolution input. To ease the computational o1 gt
burden, the reconstruction resolution is half of the input reso-

lution. Figure 2: The coloring operation is

Architecture: Our VQ-VAE adopts encoder-decoder architec- 2 linear transformation formulated
ture as its framework. We use resnet-18 (He et al., 2015) or °Y Eq[f] This transformation is
Conv4 (Vinyals et al., 2017) as encoder backbones for different 1mplemented with components on
experimentations. We make one modification for our encoder both sides above. We incorporate
backbones. To remove inter-sample correlation, we replace a0 ©ptional attention-style vector
batch normalization (loffe & Szegedy, [2015) in our encoder quantization(circled by the hg},lt
backbones with group normalization(Wu & Hel [2018)) and yellow rounded rectangle) into this
weight standardization (Qiao et al.,[2020) just like (Richemond transfolrmatlon .for our YQ'VAE'
et al.| [2020). The architecture of our decoder is very similar to More. 1nform§1t10n on th1§ vector
styleGAN except that the convolution layers in the decoder are duantization is detailed in algo-
wrapped up by weight standardization. We use the nearest in- “thmm

terpolation followed by a 3x3 convolution layer for upsampling; After that several residual blocks
are followed to construct an upsampling block for the decoder. In every decoder block, a coloring
operation and an activation layer are employed in sequence after each convolution layer. The dis-
cretized codebook for VQ-VAE is incorporated into our coloring operations as shown in Fig. 2| The
general structural diagrams are shown in the right part of Fig[I] Apart from the difference in number
of blocks, the decoder structure is identical for both resnet-18 and Conv4.

Other settings:We export four lateral connections of coloring operation for both resnet-18 and
Conv4. The export points are located at the end of the last four stages of resnet-18 and the end of the
pooling operation of Conv4. During evaluation, we extract feature maps from these export points
for statistics estimation. We insert a MLP block for every lateral connection of Conv4 so that its
generative process is as similar as possible to that of resnet-18. We use an iterative method as (L1
et al| [2018alb) for matrix square root in Eq[I]

4.2 HIGH-ORDER STATISTICS MATTER

As discussed above, statistics in deep nets play a significant role in distinct information representa-
tion. In this section, we empirically demonstrate that these statistics do benefit both the training and
testing stages of our VQ-VAE in the context of few-shot recognition. To show the benefits of high-
order statistics in the pre-training stage, we instantiate two versions of coloring operation according
to Eq[T} 1) full version; 2) mean only. As shown in Fig[3a] the model trained without ¥ converges
more slowly and gets stuck at a suboptimal state during pre-training. Since the ¥ in Eq[I] gives a
linear combination across channel dimension, we take a further look into the eigenvalues of 3. As
shown in Figl] we find that eigenvalues of 3 are more divergent, and some of them even tend to
zero when td with mean only. This means that ¥ in Eq[I|can help the model distribute information
across channels more stably and evenly, making the model converge faster and better. This better
convergence is also shown in Fig[3b] The “full” model outperforms the “mean only” in all represen-
tation forms. It is understandable that the mean and covariance perform well in the “mean only” and
“full model” respectively. Interestingly, the content of the “full model” outperforms that of “mean
only” by a large margin. This is consistent with belief shown in Fig[] that 3 can help the model
distribute discriminative information across the nets.
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Figure 3: We training 2 versions of Conv4 nets with mini-ImageNet for 800 epochs. We plot the
training curves for first 500 epochs with accuracy of content as indicator. On the right side, we plot
average few-shot recognition accuracy over 2000 test episodes for different representations

Since we do not retrain our model during the testing stage, the straightforward way to show the
benefits of high-order statistics in this stage is to use them as the discriminative basis for the few-
shot recognition task directly. Thus, we first pre-train our modified resnet-18 and Conv4 with mini-
ImageNet and then perform few-shot classification using feature maps(we term it as “content”)
and the corresponding statistics calculated from them. As shown in Fig. [5] high-order statistics
perform best for different backbones(Fig[5a) and different stages of the same backbone(Fig[5b).
Interestingly, the best-performing high-order statistic is covariance for Conv4 and standard deviation
for resnet-18. We believe this is due to insufficient samples for estimating covariance in the last
stage of resnet-18. As shown in Fig. [5b] since there are enough samples for Conv4 to estimate
covariance stably, covariance is consistently better than standard deviation across all stages. All
in all, high-order statistics contain more discriminative information for few-shot recognition. This
fine-tuning-free superior discriminative power of high-order statistics during evaluation also gives a
supplementary explanation of why we shouldn’t remove X in Eq[T|during pre-training.

—— FULL —— MEAN
|

S — N,

100 0 50 100 0 100 200 0 200 100

Figure 4: We randomly select a test episode and calculate the corresponding covariance of feature
maps at all 4 export points of the 2 pre-trained Conv4 nets. We calculate covariance for each sample
as Eq[2] and decompose it to get their eigenvalues. Then, we calculate the mean of the eigenvalues
over all samples in this test episode. From left to right, there are plots of export points 1-4 respec-
tively. The horizontal axis represents “dimension” and the vertical axis represents “eigenvalues”.
We zoom in last several dimensions of Ex-Point3 and Ex-Point4 for a better view.

4.3 POST-PROCESSING MATTERS

As mentioned above 1) high-quality inputs are not necessary for high-quality representations; 2) the
feature maps are vector quantized in the latent space; 3) statistics are better discriminative represen-
tations for few-shot recognition tasks. Accordingly, it’s reasonable to provide sufficient samples in
the latent space for stable statistics estimation so that better performance can be achieved. Surpris-
ingly, simple augmentations and resolution extension in pixel space work well. The augmentations
used can be found in Appendix [A:T] To demonstrate the effectiveness of these strategies, we first re-
size every image in a test episode to a specific resolution and then the resized images are augmented
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128 x 128 160 x 160 192 x 192 224 x 224 256 x 256
w/o augs(cov) 39.96 £0.141 41.12+0.139 41.144+0.144 42.55+£0.147 41.86 +0.147
_ Waugs(coy) 4545 0.153_ 46.41£0.153 465120151 46.320.149  46.38 £0.145
w/o augs(std) 41.03 £0.153 42.124+0.144 41.63 £0.147 43.09 +0.143 42.37 £0.153
w/ augs(std)  44.15+0.150 44.88 +0.155 45.26 +0.150 45.40+0.155 45.32 +0.152

Table 1: We train a Conv4 model with mini-ImageNet for 800 epochs. We adopt the conventional
settings that report accuracy in (% =+ std) over 2000 test episodes, each with M = 15 query shots
per class. The worst accuracy is underlined while the best is in bold. The resolution of input image
is 128 x 128

with pre-defined augmentations to produce several augmented views. After that, both the clean im-
age and those augmented views are fed to our encoder to get augmented representations. Finally, The
statistics for one sample are calculated from all those augmented representations in the latent space.

60 5
g Content M Mean M Cov M Std 50

45
50 40
15 35
| ol ol
35 25
Convd —Poin ~Po.

ResNet-18
(a) Ex-Point4 of defferent backbones

Content M Mean M Cov M Std

Ex-Pointl Ex: 12 Ex-Point3 Ex intd

(b) Different stages of Conv4

Figure 5: Test accuracy of resnet-18 and Conv4. We calculate classification accuracy with different
statistics according to Eq[6]and report average accuracy over 2000 test episodes, each with M = 15
query shots per class.

As shown in Table [T} The best performance is improved by
about 6 percent for covariance and 4 percent for standard de-
viation when post-processing is used properly. This is rea- 1°
sonable since both augmentations and resolution extension in- g
crease samples in latent space so that a better-estimated co-

. . . - 6 — R_128x128
variance can be obtained. We plot the eigenvalues in Fig. [0 W/ Augs
. . . . - W Uugs

the rank of covariance is improved by post-processing. These 4 P

— K_ DOXZ00

improved ranks provide extra discriminative information for
better recognition. Another interesting finding in TabldT] is
that augmentation is more efficient than resolution extension.  °
We believe this is due to group normalization used in our
encoder, and better normalization operations deserve further
study. More disscusion can be found in Appendix[A22]

0 200 400

Figure 6: Eigen values of covari-
ance with/without post-processing

4.4 COMPARISON WITH BASELINES

In this section, we compare our method with several two-staged baselines including fine-tuning-
based and meta-learning-based methods. First of all, it is worth noting that our method not only
pre-training in a purely unsupervised manner but also no fine-tuning done during evaluation. In one
word, our method is a one-staged U-FSL. From this point of view, our method is competitive when
compared with those fine-tuning methods on U-FSL shown in Table 2] This slightly lagging behind
in performance is reasonable since our denoising self-reconstruction task relies on high-capacity
architecture. As we increase the model capacity, our method outperforms all those representative
methods in FSL shown in[3] Whether it is locally supervised fine-tuning (Chen et al.l 2020b) or
overall fast adaptation 2017), or global supervised fine-tuning (Snell et al., 2017), our
method demonstrates its superiority with simple post-processing. What’s more, our method shows
a very low variance in interval estimation. With all these comparisons, our method shows that
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Method backbone settings 5-way-1-shot
C3LR |Shirekar & Jamali-Rad conv4 un-pt+sup-ft  47.92 4+ 1.20
ProtoTransfer Medina et al. conv4 un-pt+sup-ft = 45.67 +0.97
Meta-GMVAE |Lee et al. conv4 un-pt+sup-ft  42.82 £ 0.45
PsCo [Khodadadeh et al. conv5 un-pt+sup-ft ~ 46.70 4 0.42

~ Ours(std+augs+256) ~ conv4  un-pt+no-ft 4532+ 0.15
Ours(cov+augs+256) conv4 un-pt+no-ft ~ 46.38 = 0.15

Table 2: Comparisons on mini-ImageNet with Conv4 and unsupervised pretraining strategy. We use
a resolution of 256x256 for the input images. The augmentations used are detailed in the Appendix.
We adopt the conventional settings that report accuracy accuracies in (% =+ std) over 2000 test
episodes, each with M = 15 query shots per class. sup-ft means supervised fine-tuning, un-pt
means unsupervised pre-training, no-ft means no fine-tuning is used.

good representations with extremely simple post-processing may be sufficient for few-shot learning.
These representations can be obtained from the source data in an unsupervised manner. These
findings are consistent with (Tian et al., [2020; Raghu et al., 2020). And we take a further step to
show that high-order statistics with simple post-processing is a better option than fine-tuning the
pre-trained network. Notably, we do not intend to propose a method with SOTA performance, but
to show the possibility of fine-tuning-free U-FSL.

Method backbone settings 5-way-1-shot
MatchingNet" resnet-18  sup-pt+no-ft  52.91 + 0.88
ProtoNet" resnet-18  sup-pt+sup-ft  54.16 £ 0.82
Baseline’ resnet-18  sup-pt+sup-ft  51.75 4+ 0.80
Baseline++" resnet-18  sup-pt+sup-ft  51.87 £ 0.77
RelationNet" resnet-18  sup-pt+sup-ft  52.48 + 0.86
MAML' resnet-18  sup-pt+sup-ft ~ 49.61 £ 0.92

~ Ours(cov+augs+512) ~ resnet-18  un-pt+no-ft ~ 54.25 +0.16
Ours(std+augs+512)  resnet-18 un-pt+no-ft  55.43 +0.16

Table 3: Comparisons with several baselines on mini-ImageNet with resnet-18. The evaluation
settings are almost the same with Conv4 except that the input image resolution is 512x512. sup-pt
means supervised pre-training. Data marked with “” are borrowed from (Chen et al.,[2020b) which
are improved versions of original methods.

5 CONCLUSION

Recently, there have been many works demonstrating the effectiveness of two-staged few-shot learn-
ers including both supervised and unsupervised pre-training methods. In this paper, we propose a
new method that directly uses high-order statistics calculated from pre-trained deep nets as discrim-
inative representations so that we do not need any fine-tuning stage. We first design a denoising
VQ-VAE and augment it with coloring operations such that high-order statistics residing in the deep
nets are discriminative. Then we find that simple post-processing can boost the few-shot recognition
performance with these high-order statistics. We also provide some empirical insight into how high-
order statistics benefit the training end evaluation of deep nets. Our method has unique advantages
in simplicity and adaptability to larger-scale unsupervised pre-training. In summary, we have taken
an exploratory step towards fine-tuning-free few-shot learning in a purely unsupervised manner. We
hope our research can shed new light on one-staged unsupervised few-shot learning.
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A APPENDIX

A.1 IMAGE AUGMENTATION

The noisy-adding procedure for pre-training is basically inherited from contrastive learning(He et al.,
2020; (Chen et al.| 2020a)) except that we add two random channel shuffle and random solarize
operations to it. We list them in Tablf] in the order in which they are used. Where p means
the augmentation proportion in a batch. During evaluation, we use one determined augmentation
operation to get one augmented view. There are 11 augmentations for evaluation, which means
there are 12 views for one sample during evaluation. We list all the augmentations used during in
Table[5] Interestingly, even though some augmentations are not used in pre-training, they can
improve few-shot recognition performance during evaluation.

random_crop_resize(size=size,area=(0.2, 1.0))
random_solarize(p=0.2)
random_channel_shuffle(p=0.2)
random_rgb_to_grayscale(p=0.2)
random_gaussian_blur(p=0.5)
random_flip_left_righ(p=0.5)
random_flip_up_down(p=0.5)

Table 4: Random augmentations in pre-training

Identity() invet()

rgb_to_gray_scale() autocontrast()

color _jitter() posterize(bit=4)
gaussian_blur(sigma=1.0) equalize()

solarize() sharpness(factor=0.5)
channel_shuffle() gaussian_noise(stddev=0.1)

Table 5: augmentations in post-processing

A.2 DISSCUSION ON POST-PROCESSING

In Table [6] we list the test accuracy of resnet-18 with different configurations of post-processing.
The trends presented in this table are basically the same as those in Table|l} except that the standard
deviation is the best representation of the few-shot recognition of resnet-18. More notably, even
when we use post-processing to increase the number of samples in the latent space, the standard de-
viation representations consistently outperform the covariance representation by a large margin. We
speculate that the covariance estimation of resnet-18 is not as stable as conv4 due to an insufficient
number of latent space samples during training. As a result, resnet-18 cannot effectively utilize the
sample increment provided by post-processing during evaluation like Conv4. Thus, improving the
stability of covariance estimation during pre-training deserves further study.

256 x 256 320 x 320 384 x 384 448 x 448 512 x 512 576 x 576

w/o augs(cov) 46.20 48.46 50.51 51.51 52.38 52.72
w/ augs(cov) 48.70 51.63 53.15 53.63 54.04 54.25

~ wloaugs(std)  50.51 5254  53.34  54.07 5470 5455
w/ augs(std) 50.82 53.81 54.65 54.93 55.10 55.43

Table 6: The resnet-18 is trained with ImageNet for 1600 epochs. We report average accuracy over
2000 test episodes. The resolution of the input image is 256 x 256

In Table [/} We give a preliminary exploration of the impact of the normalization layer on post-
processing. When we replace group normalization with layer normalization (Ba et al., 2016), the
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sensitivity of the covariance representation to resolution extension increases, but the sensitivity to
augmentation decreases significantly, and the overall few-shot recognition performance also de-
creases.

128 x 128 160 x 160 192 x 192 224 x 224 256 x 256

In w/o augs(cov) 38.69 40.24 42.19 43.04 42.85

In w/ augs(cov) 43.18 44.35 44.71 45.13 44.82
“gnw/oaugs(cov)  39.96 41.12 4114 42555 41.86

gn w/ augs(cov) 45.45 46.41 46.51 46.32 46.38

Table 7: The training and testing processes are exactly the same as in Tableexcept that we replace
the group normalization in the Conv4 encoder with layer normalization.
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