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ABSTRACT

Multi-agent systems, inspired by biological collective intelligence, can deal with
complex tasks that far exceed the capability of single agents, which is based upon
the interactions between agents and the environment. As an instantiate of a multi-
agent system, connected vehicles supported by smart infrastructure have been
considered the next generation of road mobility and attract significant attention
given its potential in terms of safety enhancement, fuel efficiency improvement,
and environmental sustainability. As the core of connected vehicle technology,
multi-agent perception is to achieve the complete situational awareness of the
complicated environment and serve as the foundation for collective intelligence.
However, the effectiveness of multi-agent perception has been compromised in
real-world scenarios due to the multi-agent heterogeneous feature extraction meth-
ods and the high communication cost. To bring the connected vehicles into real
roads by addressing these fundamental challenges, this paper presents Memory-
Informed Multi-Agent Perception (MI-MAP), which can overcome the hetero-
geneity of feature extraction and leverages the shared memory in a computation-
and-communication-light method for enhanced situational awareness. Drawing
inspiration from human inference, our approach employs a memory-informed
mechanism that uses an attention-driven memory module to capture multi-agent
semantic interactions and motion dynamics from temporal data, thereby enhanc-
ing cooperative perception capabilities. Extensive experiments conducted on var-
ious benchmark tasks show the superior scalability of our approach, particularly
in addressing the fundamental problems of the multi-agent perception, thereby
establishing its potential as a practical solution for resilient Al systems.

1 INTRODUCTION

Recent advances in single-agent autonomous systems, such as deep learning-based autonomous
navigation and reinforcement learning frameworks in robot controllers, have achieved significant
milestones. However, their isolated intelligence and limited sensing capabilities hinder their ability
to handle complex environmental dynamics and inter-agent interactions. In contrast, multi-agent au-
tonomous systems, mirroring the seamless communication and adaptability observed in biological
collective ecosystems, improve the single-agent system through information sharing and collabora-
tive interactions, enabling comprehensive situational awareness and holistic decision-making.

One such domain is multi-agent perception, which aims to synergize the shared information Vaswani
et al.| (2017) to provide enhanced situational awareness by detecting the inclusive road users based
on supervised learning process Meng et al.|(2024).

Such cooperative perception algorithms usually consist of a feature extraction backbone, generating
the abstract features for each connected agent, and a multi-agent feature fusion module, aggregating
the multi-agent perception features to detect the objects. However, existing approaches simplify
the cooperative reasoning process by prototyping feature extraction as a homogeneous process that
utilizes the same feature extraction backbone and directly shares the abstract features for global
reasoning. In complex and large-scale multi-agent perception scenarios, different types of agents
usually adopt different feature extraction neural networks generating heterogeneous features and
may use different fusion strategies, significantly impeding the multi-agent reasoning process and
following downstream tasks. More critically, in complex multi-agent cooperation perception, di-
rectly communicating with other agents through the features extracted from the homogeneous back-
bone leads to fragile multi-agent systems. Such feature sharing method only supports single-frame
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communication in real deployment and easily exceeds bandwidth limitations when memory infor-
mation are shared among multiple agents. The limited memory sharing capability make cooperation
and advanced reasoning ability infeasible in real-world. In other words, due to the high commu-
nication and computational cost, existing approaches are only suitable for handling homogeneous
single-frame cooperative perception, which assumes consistent multi-source features, ignores the
inter-agent temporal correlation, and fail to leverage the potential of the multi-agent memory for
scenario understanding. Progress in multi-agent spatiotemporal perception systems—which fuse
heterogeneous observations over time—will thus be pivotal to building the next generation of large-
scale, energy-efficient, adaptive, and robust Al system.
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Figure 1: Overview of the smart intersection and the conceptual Memory-Informed Multi-
Agent Perception (MI-MAP) framework and architecture. (a) Different connected agents share
the collected information. (b) MI-MAP perception is designed to sample the multi-agent temporal
information in each frame through an motion estimation method. A multi-agent temporal attention
and motion enhancement network to fuse the selected temporal information from different agents.

Therefore, we aim to revolutionize existing multi-agent perception systems for deployment across
multiple intelligent robot operating contexts by fully adopting a unique semantic and temporal
attention fusion strategy and mimicking the human memory reasoning process through a unified
communication-efficient procedure designed to accommodate heterogeneous types of agents in real-
world scenarios. To suit for large-scale deployment of the multi-agent perception system, the coop-
eration strategy must address three critical problems: (1) Given the heterogeneous agents reasoning
the situation through different deep neural network, the multi-agent feature fusion should estab-
lish a unified procedure to overcome the heterogeneity of features extracted by connected agents.
Moreover, the shared agent information should be easily utilized by different agent’s learned param-
eters of neural network to complete situational awareness. (2) Traditional multi-agent perception
systems often involve every agent broadcasting entire abstract features, leading to redundant in-
formation sharing, communication overhead, network congestion, and latency of decision-making
processes. However, in complex real-world environments, large multi-agent Al systems require
communication-efficient methodologies to ensure seamless collaboration, making it essential for
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each agent to dynamically share critical information while minimizing bandwidth usage. Therefore,
dynamically selecting and transmitting only the most salient features from raw sensor data is crucial
for enabling efficient and scalable multi-agent cooperation in Al systems.

Motivated by the challenge of real-world deployment of multi-agent systems and the benefit of
using agents’ memory for complete situational awareness through the harmonization of sensing ca-
pability from CVs and smart infrastructure, this work provides the Memory-Informed Multi-Agent
Perception (MI-MAP) framework to address the fundamental challenges including the heterogene-
ity of agent feature extraction and limitation of communication in V2X cooperative perception. The
framework of MI-MAP is illustrated in Fig. [l We propose a multi-agent appearance and motion
enhancement network to aggregate the object’s temporal features across different CVs. By using
the attention mechanism to process the appearance information from both temporal and spatial di-
mensions of each agent, the proposed multi-agent multi-frame appearance enhancement module
explores spatial-temporal dependencies among multi-agent proposal features and fuses them into
global representations for final bounding-box refinement. To effectively sample the historical ap-
pearance information for each connected agent, we design an motion estimation module to sample
the historical information. The historical frames are chosen to be a small portion of the original
point clouds instead of the learned feature to share among the different agents. We choose the origi-
nal point clouds to overcome the heterogeneous issues because the learned representations extracted
from the deep networks can become too domain-specific, making it difficult for them to be used
by heterogeneous agents from different companies Xu et al.| (2023) and generalized to temporal
domains |Kawaguchi et al.[|(2017). Therefore, the contribution can be summarized as below:

* The MI-MAP is the first-of-its-kind framework that balances flexibility, communication efficiency,
and generality. MI-MAP can significantly reduce the volume of historical data from Multi-Agent.
It can be generalized to various frameworks to reduce the size of the multi-agent shared informa-
tion, substantially decreasing the data-sharing load and the computational and memory demands,
while accommodating heterogeneous types of agents to tackle more complex and intricate tasks.
Moreover, the MI-MAP also offers a highly adaptable solution for complete situational awareness
of genetic applications, making it compatible with other multi-agent intelligence applications. The
proposed method for complete situational awareness is verified in real-world environments, proving
the superiority and potential for real-world dataset of our MI-MAP framework.

* We propose the method to sample the most valuable information within the region proposals from
the various kinds of agents, instead of relying on agent extracted deep features, which could be
more beneficial for the heterogeneous settings of the multi-agent systems and the enhanced situa-
tional awareness. Such a method could avoid the complicated multi-agent feature domain adaption,
enhance the comprehensive reasoning process, and at the same time reduce the computational load.
* We introduce a memory-informed spatial-temporal fusion and motion-enhancement module that
samples compact, raw point-cloud “memories” via constant-velocity motion estimation and fuses
them with multi-agent appearance and temporal attention to encode cross-agent, cross-frame depen-
dencies for robust 3D detection.

2 RELATED WORK

A central line of cooperative perception work treats inaccurate poses, time skew, and viewpoint
changes as first-class citizens and aligns collaborator information before fusion. |Yang et al.| (2025))
proposed lightweight, model-agnostic plugins—importance-guided query proposals coupled with
deformable cross-attention—to correct feature-level misalignment in collaborative 3D detection,
showing sizable gains under pose noise. Temporal asynchrony is addressed by estimating mo-
tion/feature flow in BEV and warping collaborator features to non-discrete delays (LRCP), or
by trajectory-aware alignment that predicts feature flow along likely object paths (TraF-Align).
Camera-centric V2I systems, proposed by Wang & Nordstrom| (2025), learn frame-adaptive syn-
chronization in BEVSync, further reducing cross-agent mis-timing.

Beyond one-shot fusion, recent methods, suggested by [Wang & Nordstrom| (2025)), cache histori-
cal BEV features and learn spatio-temporal correspondences so that messages carry motion-aware
updates rather than static features, improving resilience to motion blur and intermittent links. Repre-
sentative designs include asynchronous flow predictors and attention modules that explicitly couple
multi-time with multi-agent fusion.

With realistic bandwidth/latency budgets, Xu et al.| (2025) designed what to send and how to fuse
it. CoSDH formulates supply—demand-aware region selection and hybridizes intermediate- and late-
fusion to preserve accuracy as bandwidth shrinks. |Gan et al.| (2025) proposed task-oriented/semantic
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communication pipelines (e.g., SComCP) to learn end-to-end encoders that transmit only task-
relevant semantics robust to channel impairments, while compact message units such as point clus-
ters decouple sparse structure from high-level semantics to maximize information per bit. Comple-
mentary work, designed by |Qiu et al.| (2025)), prunes background via map-aligned masks to further
cut payloads. To improve interoperability across vendors and protect privacy, |[Fadili et al. (2025)
proposed an late fusion method to aggregate only detections with principled uncertainty handling.
Diffusion-based, designed by [Huang et al.|(2025), method has emerged as a means to hallucinate
clean features and to jointly calibrate pose/time via learned generative priors (CoDiff), pointing to a
promising direction for reconciling heterogeneous partners and noisy links. [Tang et al.[(2025) sug-
gested to integrate multi-agent and multi-time aggregation in one stack using deformable attention
to sample only informative regions across agents and frames, reducing cubic attention costs while
preserving long-range context.

3 METHODS
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Figure 2: Appearance and motion guided multi-agent 3D temporal detection. MI-MAP con-
sists of multi-agent collaboration, multi-agent region proposal generation, multi-agent multi-frame
feature sampling, and the semantic and motion enhancement module. Initially, multi-agent region
proposals are generated by the multi-agent fusion network, serving as inputs to the motion estimation
module for efficient sampling of historical data. Subsequently, the sampled multi-agent temporal in-
formation is taken by the semantic and motion enhancement module to learn the spatial and temporal
interactions to cooperatively detect the objects in 3D space.

Overall Architecture. As outlined in the introduction, when designing large-scale multi-agent per-
ception under diverse and complex scenarios for complete situational awareness, the heterogeneity
of agent-specific features and memory of the sensor data is crucial to achieve the harmonization
of the CVs and smart infrastructure. The heterogeneity of multi-agent features impede the fusion
process and the following scenario understanding. In addition, integrating memory into the cooper-
ative perception algorithm markedly improves performance, particularly in challenging conditions
such as occlusions, targets beyond sensor range, or sparse point clouds. Yet, leveraging multi-agent
historical memory to enhance cooperative perception significantly increases the volume of the multi-
agent shared data and computational burdens. To tackle the above problems, the proposed MI-MAP
is specifically designed to seek a unified and efficient sharing procedure for multi-agent system to
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seamlessly fuse the multi-source data and efficiently utilize multi-agent historical memory to ensure
both streamlined data transmission and optimized computational load.

Fig. [2] presents an overview of multi-agent 3D temporal perception, where each agent collects the
sensor measurements and shares the extracted features (e.g., detection outputs, raw sensory informa-
tion, intermediate deep learning features) from multiple agents (e.g., CVs and smart infrastructure)
are shared for complete situational awareness of the environment. Upon receiving the shared fea-
tures from different agents, each CV can then generate region proposals to indicate the possible
target in their surrounding environment. Subsequently, every CV samples local point cloud features
from the LiDAR for those inclusive roadway objects, which are utilized by the motion estimation
module to infer the possible historical regions of the objects. The predicted temporal regions from
multiple agents will be processed by our proposed memory-informed multi-agent appearance and
motion feature fusion network to enhance cooperative perception. Through such a manner, coop-
erative agents not only could fuse the memory information about nearby roadway objects across
time and space dimensions in an efficient manner but also overcome the heterogeneity feature issues
encountered in large and diverse multi-agent cooperation systems.

Multi-Agent Region Proposal Generation. MI-MAP adopts flexible approaches to generate re-
gion proposals. Each agent possesses the ability to generate region proposals independently, either
through its own sensor measurements or by utilizing shared connected vehicle information. After
region proposals are generated by individual agents using their respective methods, the proposed
framework then integrates the multi-agent temporal data, enabling a robust and adaptable fusion
of region proposals across agents. In the MI-MAP, we leverage either the intermediate features or
preliminary bounding boxes to generate the region proposals, considering the rich information the
intermediate features provide and the efficient transmission of bounding boxes in practice. Specifi-
cally, for the intermediate features, we utilize V2X-ViT Xu et al.| (2022) to generate the multi-agent
features and the region proposals due to its demonstrated effectiveness in multi-agent feature fusion
and its relevance as a representative model in cooperative perception. V2X-ViT first uses the Point-
Pillar [Lang et al.| (2019) backbone to extract features from the LiDAR point cloud in each agent
and then utilizes the transformer to fuse the features from multiple agents. The fused features are
utilized to generate the multi-agent region proposals. In naive late fusion, each CV will predict the
bounding boxes with confidence scores independently and broadcast these outputs to the ego vehi-
cle. Non-maximum suppression (NMS) will be applied to these proposals afterward to generate the
region proposals.

Multi-agent Multi-frame Feature Sampling
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Figure 3: The cooperative object detection performance under challenging scenarios.(a) The
overall memory reasoning process of multi-agent system. (b) The prior memory information of
each agent is used to enhance the scenario understanding.

Fig. 3]a presents an overview of the sampling and reasoning process, which samples memory in-
formation from each agent to reduce the total volume of data. Then each agent exchanges and
fuses the multi-agent memory information to achieve the comprehensive understanding of the sur-
rounding environment. To aggregate multi-agent historical appearance and motion information to
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enhance object detection performance, we propose to leverage the historical features in different
memory timestamp, as shown in Fig. [3|b, to address the occlusion, sparsity, and out-of-range issues
of LiDAR-based object detection. Specifically, after generating the multi-agent region proposals, the
objective of multi-agent multi-frame feature sampling is to sample the points within the historical
regions based on the proposed motion estimation module. The sampling approach focuses on the lo-
cal point cloud data within the region proposals and samples the points from sequential frames. Our
sampling method employs the constant velocity module, motivated by [Weng et al.| (2020)), to predict
and select local features in historical region proposals. The constant velocity model is designed
to infer the historical positions of region proposals and subsequently select the relevant historical
features within these regions. Unlike the explicit cooperative object tracking method, our motion
estimation accelerates the training process by simplifying the 3D association, trajectory update, and
management tasks. This strategy not only accelerates the training process and facilitates the re-
trieval of historical features but also avoids the complex association process typically involved in
cooperative object tracking. We utilize the point cloud information inside the bounding boxes for
two essential considerations: (1) Compared to the features that contain the bias due to the feature
extraction backbone, the sampled point cloud information contains the raw representation of the sur-
rounding objects. (2) Different agent’s point cloud memory could be seamlessly shared with other
agents and directly utilized by the multi-agent fusion module without further finetuned and complex
designs.

Through this process, our method significantly reduces the memory volume and the computational
load required to process multi-agent shared information. Consequently, our results, as visualized in
Fig.[5](d) and (e), attest to the practical deployability of proposed method in real-world settings, as it
effectively improves the multi-agent detection accuracy and balances data volume and computational
efficiency, ensuring its practicality for real-time applications in resource-constrained environments.
After obtaining the predicted proposals, the connected agents could sample the local point cloud
features within their respective sensor output. We adopt a uniform sampling method to pool the
points from the non-empty voxels of the point clouds within the region proposals. Through such a
sampling process, the semantic information for the surrounding objects, including their appearance,
shape, and size information, could be maintained. Each connected agent only needs to transmit the
sampled features instead of the overall point clouds and the shared point cloud can be used by any
agent in the overall multi-agent system.

Multi-Agent Multi-frame Appearance and Motion Enhancement Although the historical multi-
agent proposals and their captured points cloud object provide richer information to estimate the 3D
bounding box more accurately, aggregating the multi-source information from a long sequence of
object points has not been studied and remains challenging. Therefore, we propose the multi-agent
multi-frame appearance and motion enhancement model to learn the historical appearance and mo-
tion interaction between different agents. Fig. 2] provides an overview of network design, where the
multi-agent multi-frame appearance and motion enhancement module encodes the appearance and
motion information and fuses the features to enhance the cooperative perception performance. The
object geometry and motion features are separately encoded through appearance and multi-layer
perceptron (MLP). Then, the encoded multi-agent multi-frame appearance features are processed
by our proposed network to learn the appearance interaction between different agents across dif-
ferent times. The motion features of objects are extracted through MLP and concatenated with the
appearance features to infer the 3D bounding boxes.

The first component of the multi-agent multi-frame appearance enhancement network, as shown in
Fig. 2] aggregates the features of different agents and encodes the transmitted region. Specifically,
for the appearance feature encoding, the multi-agent transmitted point cloud appearance regions
will be aggregated together and then encoded through MLP to extend the dimension of the point
cloud features. After obtaining the transmitted region, we first uniformly sampled N points among
the multi-source points. The sampled multi-agent points are used to calculate the relative offsets
between each point and the nine key points (eight corner points plus one center point) of the region
proposal. The resulting offsets are then converted to spherical coordinates and transformed, via
MLP, to a geometric embedding of dimension D that encodes the spatial correlation between the
sampled point and the proposal box. The encoded features are then formed as the input to the multi-
agent multi-frame appearance enhancement module. The above sampling and encoding approach
aggregates the multi-agent information from the proposal points, which serve as the multi-agent
representations of each frame to facilitate the multi-frame feature interaction.

After generating the multi-agent feature for each frame, MI-MAP employs the attention mechanism
to explore spatial-temporal interaction among multi-source temporal features and process them into
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global representations for final bounding-box refinement. Since the encoded multi-agent features
contain the object features observed by different agents at different timestamps, we propose to uti-
lize the self-attention mechanism [Vaswani et al.|(2017) to enhance the spatial-temporal relationship
and point dependencies in the multi-agent proposals. We propose two attention operations, multi-
agent appearance attention (MAA) and multi-agent temporal attention(MAF). MAA is utilized to
calculate the semantic affinities between different points within a sequence of multi-source data.
After extracting the semantic features, MAF first fuses the global temporal features of the semantic
features and then calculates the temporal affinities among the multi-agent temporal features.
Specifically, MAF leverages the encoded multi-agent temporal feature to focus on the appearance
information among different agents. The selected temporal regions F; € RN:*(PXT)xD from the
agent ¢ will be encoded into the three-dimensional matrix, where NN; represents the multi-agent
points sampled from the agent i*"*, P and T represent the number of region proposals and the number
of frames, and D is the dimension of each point. Then, we aggregate the multi-agent points as
F € RVX(PXT)xD 1o conduct self-attention to learn the spatial interaction between the multi-agent
features as:

M, = MultiHeadAttn(Q(F), K(F), V(F)) (1)

The Q(F), K(F),V (F) represent the learned matrix as query, key, and value. MultiHead Attn is
the multi-head attention mechanism. The attention feature M, is then processed by MLP and MAF
to calculate the temporal affinities among the multi-agent feature M, .

After learning the multi-agent interaction, our MAF attention aims to propagate information of
the multi-agent points across different frames to capture richer whole-sequence information. MAF
aggregates temporal cues across successive timestamps to capture their underlying relationships.
Specifically, we encode the temporal information by usingmean and max operations to M, and
learn a unified representation by using the MLP, which could be formulated as follows:

M(; = Sigmoid(M LP(max(M,), mean(M,))) (2)

The generated feature M, (; encodes the high-level representation of M, for each frame and is con-
catenated with M, shifted forward by one time step. Finally, an MLP then learns the temporal
correlations and outputs the resulting spatio-temporal feature M.

In addition to spatial-temporal features M extracted from the multi-agent point clouds, we also
exploit PointNet |Q1 et al.| (2017) to extract the motion information of the objects. The objects’ tra-
jectories obtained from the motion estimation module are used as the motion information of the FFN.
The network takes the multi-agent trajectory as input to extract the embedding of motion informa-
tion and provides the movement information of the surrounding objects to enhance the cooperative
perception. The extracted motion features are then concatenated with the appearance features in the
detection head.

4 EXPERIMENTS

Dataset To evaluate our approach, we have conducted experiments on the real-world large-scale
cooperative perception dataset V2X-RealXiang et al.|(2024). V2X-Real is a real-world dataset with
diverse sensor data from CVs and smart infrastructure collected at the public intersection. The cam-
era, radar, LIDAR, global navigation satellite system (GNSS), and inertial measurement unit (IMU)
have been adopted to capture the interactions between diverse road users in urban environments
with diverse traffic. Scenarios where objects are far away from the ego vehicle, and occlusion, spar-
sity, and out-of-range issues happen frequently and challenge situational awaress is included in the
dataset. The sensors are mounted on top of each CV and smart infrastructure. Ground-truth data for
inclusive roadway objects with 3D bounding boxes and their unique ID are provided. More details
of dataset can be found in [Xiang et al.[(2024).

Performance In Fig. ] the performance of MI-MAP and V2X-ViT on the V2XSet and V2XReal
dataset is shown. With selected temporal information shared from each agent, our method improves
the overall AP@0.7 by 4.9% and 7.1% separately. As discussed previously, the significant improve-
ment is due to our proposed method MI-MAP which effectively exploits the temporal features to
enhance the cooperative object detection performance except for leveraging the shared features from
multi-agent. The multi-agent temporal features processed by our proposed MI-MAP appearance and
motion enhancement module contribute to the accuracy improvement of cooperative perception and
accordingly situational awareness. Furthermore, effectiveness in real-world scenarios demonstrates
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Figure 4: Overall cooperative perception performance. The Average Precision (AP) on the multi-
agent V2XReal and V2XSet datasets was achieved by existing multi-agent perception methods.

that our design, leveraging a small portion of the temporal information, can significantly improve
the cooperative perception and achieve robust perception performance.

Volume of shared data The proposed MI-MAP has been verified in the real-world V2X-Real dataset
to address the critical challenges when applying the multi-agent perception algorithm in the real
world. (1) In the MI-MAP, the total volume of the temporal data collected by multi-agent system
has been reduced significantly. (2) MI-MAP supports the heterogeneous types of agent using dif-
ferent feature extraction backbone to accomplish the multi-agent perception tasks by seamlessly
sharing both the bounding boxes and semantic information. We investigated the data volume of
the multi-agent temporal information sampled by our method by calculating the number of trans-
mitted points, as depicted in Fig. 5{a). The average and sampled multi-agent points per frame in
both the real-world are calculated. Specifically, we sum the total number of points captured by all
agents across all frames and then calculate the average number of points per frame. For our sampled
multi-agent points, we multiply the number of region proposals for all agents and the sampled points
within each proposal and average the total transmitted points for each frame. As Fig.[5[a) illustrates,
MI-MAP reduces the per-frame multi-agent point-cloud payload by 89 % on V2X-Real and 92 % on
V2X-Set, dramatically trimming the volume of data that connected agents must capture and trans-
mit. This reduction is pivotal for the real-world V2X deployment, where bandwidth, latency, and
compute budgets are tight. By shrinking the data payload per frame, MI-MAP lowers network con-
gestion and end-to-end latency, enabling faster and more reliable inter-agent communication. The
lighter payload also reduces the processing burden of fusing data from multiple agents, so the system
can accommodate larger fleets without exhausting GPU memory or other computational resources,
making the solution more scalable for larger networks and more complex urban environments.
Attention Module Analysis In addition, we further verify the ability of MI-MAP to fuse the multi-
agent point cloud memory information and the proposed multi-agent temporal attention. We eval-
uate the effectiveness of the attention mechanism depicted in Fig. [II We denote our multi-agent
appearance and temporal attention as app and temp attention mechanisms for simplicity in Fig.[5|b).
By comparing the histogram of Fig. [5[b), we observe that the performance drops 0.7 in AP@0.7
after removing the multi-agent temporal attention module. The dropped performance comes from
the disappearance of temporal interaction among the different agents due to the multi-agent tem-
poral attention module. It demonstrates that the interactions among different frames are essential
for achieving accurate detection since the model can better integrate multi-view information from
the whole 3D trajectory. To further demonstrate the effectiveness of the multi-agent temporal in-
teraction, we explore the impact of incorporating historical frames on cooperative object detection
performance.

Motion Module Analysis Furthermore, we investigate the impact of the multi-agent multi-frame
motion enhancement module. We directly remove the multi-agent multi-frame motion enhancement
component and at the same time other components in Fig. [T remain the same. The performance
of cooperative object detection, with and without the motion enhancement module, is illustrated in
Fig.5Jc). We can observe that with motion information, the performance of cooperative object de-
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tection improves by 1.7 % and 1.6 % on the simulation and real-world V2X dataset. The observed
performance improvement indicates that historical motion information offers valuable temporal in-
sights for accurate cooperative object inference, and our method of motion information extraction
effectively integrates with appearance features, thereby enhancing cooperative object detection.
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Figure 5: The decomposed study of each module in the proposed method. (a)(b) The effective-
ness analysis of the sampled historical frame in our proposed cooperative perception framework.
(c) The transmitted points of our proposed method. (d) The effectiveness analysis of the motion
enhancement module. (e) The effectiveness analysis of our attention module.

According to Fig.[5(d) and (e), incorporating an increasing number of historical frames consistently
enhances cooperative perception performance. This confirms that our proposed attention mechanism
effectively captures the temporal interactions as short memory among multi-agent temporal points,
thereby improving detection performance. Notably, upon integrating eight frames of historical infor-
mation from various agents, we observe that performance gains plateau, indicating the saturation of
the amount of historical data that contributes to performance enhancement. In our default setting, we
only incorporate the three historical frames because it is important to balance the length of memory
and the volume of data shared between agents. While incorporating additional multi-agent memory
information enhances detection performance, it also increases the amount of data exchanged, which
can lead to communication overhead and latency. Thus, careful consideration must be given to the
trade-off between the benefits of including more temporal information and the practical constraints
of data transmission in real-time systems. Maintaining this balance is essential for maximizing both
detection accuracy and overall system efficiency.

5 CONCLUSION

In this work, we introduce MI-MAP, a framework that integrates sensing information through col-
lective intelligence to improve situational awareness. Our enhance the multi-agent perception by
sharing lightweight point-cloud memories among heterogeneous vehicles and infrastructure agents,
furnishing a backbone-agnostic common space for bandwidth-efficient cooperative perception. By
communicating raw, geometry-faithful memories rather than heavy intermediate features, MI-MAP
suppresses both communication and computation costs. Our experiments in Fig. [5[c) reveal that the
per-frame payload of transmitted points is reduced by 89 % on V2X-Real and 92 % on V2X-Set,
greatly easing bandwidth and GPU demand in real-time deployments. Extensive experiments on the
real-world V2X-Real benchmark demonstrate that MI-MAP lifts class-average AP@0.7 by 7.1%
over the SOTA while simultaneously reducing the historical shared point clouds by 87 % of the
overall raw points. More importantly, MI-MAP exchanges raw point-cloud memory that constitutes
a backbone-agnostic sharing space, thus resolving feature heterogeneity issues and allowing every
agent to synthesize its neighbors’ historical views into a richer spatiotemporal context, advancing
cooperative perception beyond the limits of single frame fusion.



Under review as a conference paper at ICLR 2026

REFERENCES

Maryem Fadili, Mohamed Anis Ghaoui, Louis Lecrosnier, Steve Pechberti, and Redouane Khem-
mar. A late collaborative perception framework for 3d multi-object and multi-source association
and fusion. arXiv preprint arXiv:2507.02430, 2025.

Jipeng Gan, Yucheng Sheng, Hua Zhang, Le Liang, Hao Ye, Chongtao Guo, and Shi Jin.
Scomcp: Task-oriented semantic communication for collaborative perception. arXiv preprint
arXiv:2507.00895, 2025.

Zhe Huang, Shuo Wang, Yongcai Wang, and Lei Wang. Codiff: Conditional diffusion model for
collaborative 3d object detection. arXiv preprint arXiv:2502.14891, 2025.

Kenji Kawaguchi, Leslie Pack Kaelbling, and Yoshua Bengio. Generalization in deep learning.
arXiv preprint arXiv:1710.05468, 1(8), 2017.

Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and Oscar Beijbom. Point-
pillars: Fast encoders for object detection from point clouds. In Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit, pp. 12697-12705, 2019.

Zonglin Meng, Xin Xia, and Jiagi Ma. Toward foundation models for inclusive object detection:
Geometry-and category-aware feature extraction across road user categories. I[EEE Transactions
on Systems, Man, and Cybernetics: Systems, 2024.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets
for 3d classification and segmentation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 652-660, 2017.

H. Qiu, K. Liu, B. Li, Y. Tang, J. Xiao, and J. Zhou. Mapcooper: A communication-efficient
collaborative perception framework via map alignment. ISPRS Annals of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, X-G-2025:673-680, 2025. doi: 10.5194/
isprs-annals-X-G-2025-673-2025. URL https://isprs—-annals.copernicus.org/
articles/X-G-2025/673/2025/l

Zongheng Tang, Yi Liu, Yifan Sun, Yulu Gao, Jinyu Chen, Runsheng Xu, and Si Liu. Cost:
Efficient collaborative perception from unified spatiotemporal perspective. arXiv preprint
arXiv:2508.00359, 2025.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Junjie Wang and Tomas Nordstrom. Latency robust cooperative perception using asynchronous fea-
ture fusion. In 2025 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV),
pp. 1-10. IEEE, 2025.

Xinshuo Weng, Jianren Wang, David Held, and Kris Kitani. 3D Multi-Object Tracking: A Baseline
and New Evaluation Metrics. IROS, 2020.

Hao Xiang, Zhaoliang Zheng, Xin Xia, Runsheng Xu, Letian Gao, Zewei Zhou, Xu Han, Xinkai
Ji, Mingxi Li, Zonglin Meng, et al. V2x-real: a largs-scale dataset for vehicle-to-everything
cooperative perception. arXiv preprint arXiv:2403.16034, 2024.

Junhao Xu, Yanan Zhang, Zhi Cai, and Di Huang. Cosdh: Communication-efficient collaborative
perception via supply-demand awareness and intermediate-late hybridization. In Proceedings of
the Computer Vision and Pattern Recognition Conference, pp. 6834-6843, 2025.

Runsheng Xu, Hao Xiang, Xin Xia, Xu Han, Jinlong Liu, and Jiaqi Ma. Opv2v: An open benchmark
dataset and fusion pipeline for perception with vehicle-to-vehicle communication. arXiv preprint
arXiv:2109.07644, 2021.

Runsheng Xu, Hao Xiang, Zhengzhong Tu, Xin Xia, Ming-Hsuan Yang, and Jiaqi Ma. V2x-
vit: Vehicle-to-everything cooperative perception with vision transformer. arXiv preprint
arXiv:2203.10638, 2022.

10


https://isprs-annals.copernicus.org/articles/X-G-2025/673/2025/
https://isprs-annals.copernicus.org/articles/X-G-2025/673/2025/

Under review as a conference paper at ICLR 2026

Runsheng Xu, Jinlong Li, Xiaoyu Dong, Hongkai Yu, and Jiaqi Ma. Bridging the domain gap for
multi-agent perception. In 2023 IEEE International Conference on Robotics and Automation
(ICRA), pp. 6035-6042, 2023. doi: 10.1109/ICRA48891.2023.10160871.

Kun Yang, Dingkang Yang, Ke Li, Dongling Xiao, Zedian Shao, Peng Sun, and Liang Song. Align
before collaborate: Mitigating feature misalignment for robust multi-agent perception. In Ale§
Leonardis, Elisa Ricci, Stefan Roth, Olga Russakovsky, Torsten Sattler, and Giil Varol (eds.),
Computer Vision — ECCV 2024, pp. 282-299, Cham, 2025. Springer Nature Switzerland. ISBN
978-3-031-73235-5.

11



Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 EVALUATION ENVIRONMENT

To evaluate our approach, we have conducted experiments on the real-world large-scale cooperative
perception dataset V2X-RealXiang et al.| (2024). V2X-Real is a real-world dataset with diverse
sensor data from CVs and smart infrastructure collected at the public intersection. The camera, radar,
LiDAR, global navigation satellite system (GNSS), and inertial measurement unit (IMU) have been
adopted to capture the interactions between diverse road users in urban environments with diverse
traffic. The intersection is located at a busy intersection on the University of California, Los Angeles
(UCLA) campus, with the sensors capturing very diverse road users, including VRUs, scooters,
wheelchairs, cyclists, emergency vehicles, buses, trucks, and standard vehicles. Scenarios where
objects are far away from the ego vehicle, and occlusion, sparsity, and out-of-range issues happen
frequently and challenge situational awaress is included in the dataset. The sensors are mounted on
top of each CV and smart infrastructure. Ground-truth data for inclusive roadway objects with 3D
bounding boxes and their unique ID are provided. More details of dataset can be found in |Xiang
et al.[(2024).

A.2 SAMPLE DATA VISUALIZATION

The effectiveness of using this information can be seen in both Fig. [6] where the usage of the
sampled multi-agent point cloud memory can significantly enhance the perception performance un-
der challenging detection scenarios. And such process can avoid heterogeneous feature issues and
ensure that the various agents can collaboratively use the information to enhance the scenario un-
derstanding.

Complete observation Infra 1 Infra 2 CAv1 CAV2

Vehicle

Suv

Bus

Figure 6: The decomposed study of each module in the proposed method. We visualize the
temporal observations and shared information across connected agents. The temporal information
is shown by different colors to emphasize its crucial role in constructing the object’s point clouds.
The moving vehicle, along with the sparsely observed sport utility vehicle (SUV) and bus, are sup-
plemented by dense point clouds collected at various timestamps, facilitating cooperative perception
accuracy.

A.3 KINEMATIC MODEL

We employ the constant velocity kinematic model to predict potential positions for each proposal in
a sequence of frames.

Given the region proposals D(t) = {(z,y) | ,y € R} and the center (x, y), the constant velocity
model can be expressed as follows:

’

T;=T;+ Uy 3)

Y; =Y; Ty 4)
, where the subscript j indicates the index of the region proposal and v, v, represents the different
velocities used to update the region proposals.
A.4 THE GENERALIZATION OF OUR METHOD TO LATE FUSION FRAMEWORK

In classical late-fusion pipelines |Xu et al,| (2021), each agent transmits its locally detected 3-D
bounding boxes, and a central module performs geometric alignment and redundancy suppression.

12



Under review as a conference paper at ICLR 2026

To assess the portability of our approach, we augment that pipeline by attaching the MI-MAP sam-
pled memory, which is approximately ten percent of the raw point cloud selected by the region
proposals. Because the selection is performed directly in LIDAR space, the resulting subset is inher-
ently backbone-agnostic and therefore compatible with detectors of arbitrary architecture. Crucially,
Fig.[7|shows that incorporating a small number of points can significantly improve the performance
of the model. Our method utilizing contextual points increases late-fusion performance by 7.7 % on
V2X-Set and 10.6 % on V2X-Real.

Late Fusion Framework Performance

0.7
0.65
0.6
0.55
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0.45
04
0.35

AP@0.7

VaX-Set V2X-Real

®m Late Fusion = Qur Late Fusion

Figure 7: The performance comparison in the late fusion framework.

The improvement comes from the sampled memory that provides fine-grained geometric context.
This geometric context corroborates or refines the coarse hypotheses conveyed by bounding boxes,
thereby suppressing false positives and recovering occluded objects—benefits that are particularly
pronounced on the more viewpoint-diverse V2X-Real data. At the same time, the compactness of the
sampler ensures that accuracy gains do not jeopardize real-time operation. These results demonstrate
that the memory-centric paradigm underlying MI-MAP transfers cleanly from intermediate-fusion
to late-fusion settings, offering a drop-in, resource-aware enhancement that delivers double-digit im-
provements in detection precision without breaching practical V2X bandwidth or compute budgets.
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Figure 8: Overall cooperative perception performance.From left to right, we select different set-
tings including the vehicle-to-vehicle, infrastructure-to-infrastructure, and vehicle-to-everything co-
operation. Our multi-agent object detection framework successfully detects occluded, sparse, and
out-of-range objects in various scenarios and settings.
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A.5 VISUALIZATION OF MODEL PERFORMANCE

The performance of MI-MAP is evaluated in the various scenarios of the V2X-Real dataset. Fig.
[ compares MI-MAP with traditional single-agent perception through different settings of agents,
including the V2V, I2I (infrastructure-to-infrastructure), and V2X. V2V, 12], and V2X mean that
there is harmonization between CVs, between different infrastructure agents, and between CVs and
infrastructure, respectively. Note that the infrastructure can provide a top view of the intersection
through the LiDARs, which will complement the CV in terms of additional situational awareness.
As can be seen in Fig.[8] even in challenging scenarios where objects are occluded, sparsely repre-
sented, and distant from the CV, the MI-MAP framework can still perceive objects accurately. The
predicted red bounding boxes match the ground truth green bounding boxes, meaning the MI-MAP
is able to handle these challenging scenarios. This is because, in our MI-MAP, the sensor data from
multi-agent providing additional views from different angles is integrated by our proposed MI-MAP
even if there are occlusion or point cloud sparsity issues for a specific agent. When no additional
information is available and objects are occluded or far from the CV, the single-vehicle perception
algorithm struggles to detect surrounding objects, as illustrated in Figure Fig. 8] As can be seen,
there are no point clouds or sparse point clouds in the areas marked by the red rectangle, the net-
work has no clues to detect the objects. However, in Fig.[8] those areas are covered by additional
sensors mounted on the cooperative agents. Fig. [0 further compares the model performance under
the challenging perception scenarios.
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Figure 9: The cooperative object detection performance under challenging scenarios. We com-
pare the errors, out-of-range, occlusion, and sparsity scenarios to illustrate our improvements. The
first row gives the detection results of our MI-MAP. The second row is the results from state-of-the-
art (SOTA) work V2X-ViT |Xu et al.| (2022)). The green bounding and red boxes represent the ground
truth and prediction of the objects.
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