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Abstract

In this work, we study few-shot domain adaptive ob-
ject detection (FSDAOD), where only a few target labeled
images are available for training in addition to sufficient
source labeled images. Critically, in FSDAOD, the data
scarcity in the target domain leads to an extreme data
imbalance between the source and target domains, which
potentially causes over-adaptation in traditional feature
alignment. To address the data imbalance problem, we pro-
pose an asymmetric adaptation paradigm, namely AsyFOD,
which leverages the source and target instances from differ-
ent perspectives. Specifically, by using target distribution
estimation, the AsyFOD first identifies the target-similar
source instances, which serves to augment the limited tar-
get instances. Then, we conduct asynchronous alignment
between target-dissimilar source instances and augmented
target instances, which is simple yet effective for allevi-
ating the over-adaptation. Extensive experiments demon-
strate that the proposed AsyFOD outperforms all state-of-
the-art methods on four FSDAOD benchmarks with var-
ious environmental variances, e.g., 3.1% mAP improve-
ment on Cityscapes-to-FoggyCityscapes and 2.9% mAP in-
crease on Sim10k-to-Cityscapes. The code is available at
https://github.com/Hlings/AsyFOD.

1. Introduction
Object detection [4, 18, 47–50], which aims to localize

and classify objects simultaneously, is widely used in real-
world applications such as video surveillance [29,42,67,70]
and autonomous driving [57, 69]. Unfortunately, detec-
tors suffer a significant performance drop when deployed in
an unseen domain due to the domain discrepancy between
training and test data [36,37,43,63,66,68]. And usually, re-
peatedly collecting a large amount of labeled data in new
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Figure 1. A few target instances are biased to represent the over-
all target data distribution, i.e., many light orange target instances
are not observed, as shown in the top left. And, the data scarcity
in the target domain leads to a data imbalance between the source
and target domains. Therefore, traditional symmetric adaptation
(such as MMD [38, 40, 41, 56]) easily causes over-adaptation, i.e.,
the detector concentrates on a small area for observed target in-
stances but ignores many other unobserved ones, as shown in the
top right. By contrast, our proposed asymmetric adaptation alle-
viates the over-adaptation via source instance division and asyn-
chronous alignment.

domains requires expensive labor and time cost. In this
work, we explore the Few-Shot Domain Adaptive Object
Detection (FSDAOD) [16, 61, 72], which attempts to gen-
eralize detectors with minor cost. In addition to adequate
labeled source images, the FSDAOD assumes that only a
few (usually eight) labeled target images are available for
adapting a detector in the target domain.

A critical challenge of the FSDAOD is the data scarcity
in the target domain, which leads to an extreme data im-
balance between the source and target domains. As shown
in Figure 1, it is difficult to comprehensively describe the



overall target data distribution by only a few target in-
stances. Usually, in standard unsupervised domain adap-
tation [22, 24, 38, 53, 71, 73], alignment-based methods,
e.g., Maximum Mean Discrepancy (MMD) [38, 40, 41, 56],
conduct synchronous feature alignment to mitigate the do-
main discrepancy, which is termed the symmetric adapta-
tion paradigm in our work. However, without consideration
of imbalanced distributions in FSDAOD, simply conduct-
ing synchronous feature alignment easily causes the over-
adaptation problem, i.e., the detector is prone to concentrate
on limited observed target instances but hardly generalizes
well on other unobserved ones [61]. Typically, existing FS-
DAOD methods attempt to alleviate the imbalance problem
by reusing the same target samples, which yet overlooks the
leverage of source samples [61, 72].

To address the extreme data imbalance problem, in this
work, we propose a novel asymmetric adaptation paradigm,
named AsyFOD, which leverages the source and target in-
stances from different perspectives. The AsyFOD first di-
vides the source instance set into two parts, namely target-
similar and target-dissimilar instance sets. Such a division
strategy is inspired by an observation that, some source in-
stances are visually similar to the target instances (see Fig-
ure 5 for empirical verification). Accordingly, we identify
the target-similar source instances by formulating a uni-
fied discrepancy estimation function, which serves to aug-
ment the limited target instances to alleviate the imbalanced
amounts of data. The remaining source instances are re-
garded as target-dissimilar after identifying target-similar
source instances. To further alleviate the data imbalance
between domains, we propose conducting asynchronous
alignment between the target-dissimilar source instances
and augmented target instances. Unlike traditional meth-
ods, the AsyFOD aligns feature distributions in an asym-
metric way, with a stop-gradient operation applied on target
instance features when optimizing the detector. In this way,
the proposed asynchronous alignment can better align the
unobserved target samples.

The AsyFOD obtains the state-of-the-art performance
on mitigating various types of domain discrepancy, such
as background variations [9, 17], natural weather [54] and
synthetic-to-real [1, 26, 35]. Also, the AsyFOD generalizes
well on various few-shot settings of domain adaptive ob-
ject detection, i.e., FSDAOD with weak or strong augmen-
tation [16] and Few-Shot Unsupervised Domain Adaptive
Object Detection (FSUDAOD).

2. Related Work
General Domain Adaptation. Unsupervised domain adap-
tation (UDA) [14] aims to transfer the recognition power
from a label-sufficient source domain to a label-free tar-
get domain. Typically, UDA methods mitigate the do-
main discrepancy via domain-invariant feature learning.

Specifically, some adversarial-based works [15,39,58] learn
domain-invariant features by confusing an auxiliary domain
discriminator. Also, some methods align feature distri-
butions between different domains via minimizing well-
defined statistical distances [20, 25, 38, 40, 41, 56], such as
Maximum Mean Discrepancy (MMD). Considering the pri-
vacy or data protection issues, source-free domain adapta-
tion (SFDA) assumes that the source data are not accessi-
ble during training. Previous methods are usually based on
clustering samples in the target domain [12, 31]. In con-
trast, A2Net [64] utilizes the target samples discriminatively
and performs intra-domain alignment in the target domain.
While most previous works assume a label-free target do-
main, some works consider supervised domain adaptation.
One of the most representative settings is supervised few-
shot domain adaptation (FDA) [44]. In FDA, only a few
labeled target images are available, with the absence of any
unlabeled target samples. Saeid et al. [44] construct pairs
of samples using source and target samples for FDA.

Unsupervised Domain Adaptive Object Detection. Sim-
ilar to general recognition, a source pre-trained detector
suffers a performance drop when applied in the target do-
main. To address this problem, Unsupervised Domain
Adaptive Object Detection (UDAOD) investigates the un-
supervised domain adaptation problem in object detection.
Existing UDAOD works can mainly be summarized into
four types. The first one is pseudo labeling [27, 30, 46],
which exploits pseudo labels of the target images. The sec-
ond one uses an auxiliary model strategy, which trains an
auxiliary model [7, 21, 27, 65] to assist the detector dur-
ing the adaptation process, e.g., mean teacher [3, 11, 33].
The third one utilizes data generation [28, 60], which aims
to transfer the style of source and target images using a
generative model [74]. The final one is domain align-
ment [6, 8, 22, 28, 53, 71, 75], which aligns different types
of features at multiple levels [73].

Few-Shot Domain Adaptive Object Detection. Similar to
FDA, some works study Few-Shot Domain Adaptive Object
Detection (FSDAOD). In this scenario, adequate labeled
source samples and only a few labeled target samples are
available for bridging the domain gap. Therefore, the imbal-
anced data distributions between source and target domains
easily cause over-adaptation. Wang et al. [61] adopt the
pairing mechanism, which pairs source samples with tar-
get samples for multi-level alignment. PICA [72] exploits
pixel-wise instance-level alignment coupled with moving
average class centroids. In contrast, our work proposes an
asymmetric adaptation paradigm that leverages source and
target instances differently to address the data imbalance
problem. In addition to alignment-based methods, recent
work [16] shows the effectiveness of the domain-mix aug-
mentation to augment limited target images, which is or-
thogonal to the work presented in this paper.
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Figure 2. A brief description of the AsyFOD. After extracting the feature map of the input images via the backbone, the instance-level
feature embeddings are extracted by the projection module and ground truths. Then, the AsyFOD divides the source instances into target-
similar (dark blue ones) and target-dissimilar sets (light blue ones). The target-similar source instances are used to augment the target
instances. With the above division, the asynchronous alignment is conducted between target-dissimilar source and augmented target
instances, alleviating the premature over-adaptation due to extremely imbalanced data distributions. Also, the AsyFOD performs task-
oriented supervised training for classification and localization tasks separately. Best viewed in color.

3. AsyFOD

The overall training pipeline is illustrated in Figure 2.
We first recap the problem formulation and general super-
vised detector training in Section 3.1. Then, we present the
proposed asymmetric adaptation paradigm in Section 3.2,
including source instance division (Section 3.2.1) and asyn-
chronous distribution alignment (Section 3.2.2). Finally,
Section 3.3 summarizes the whole adapting process.

3.1. Preliminaries

Problem Formulation. Given labeled source data
Ds = {(xs

i , y
s
i , b

s
i )}

Ns
i=1 and labeled target data Dt =

{(xt
j , y

t
j , b

t
j)}

Nt
j=1, Few-Shot Domain Adaptive Object De-

tection (FSDAOD) aims to adapt detector from the data-
sufficient source domain to the data-scarce target domain
(i.e., Ns ≫ Nt). Specifically, xs

i , x
t
j ∈ X denote the

ith, jth images and (ysi , b
s
i ), (y

t
j , b

t
j) ∈ Y are correspond-

ing labels consisting of object categories ysi , y
t
j and posi-

tion coordinates bsi , b
t
j . We focus on transfer scenarios with

domain discrepancy between the source distribution Ps :
X×Y → R+ and the target distributionPt : X×Y → R+.
Without loss of generality, we assume that the source and
target domains share identical label space but with different
data distributions (Ps(x) ̸= Pt(x)).

General supervised object detection. Modern detec-
tors [2, 13, 18, 47–50] consist of a backbone network f and
a detect head h. To pre-train the detector in Ds, the overall
loss function is as follows:

LDet = E(xs,ys,bs)∈DsLReg + LCls, (1)

where LReg and LCls denote the bounding box regression
and classification loss, respectively. Our proposed AsyFOD
aims to transfer the detector h ◦ f with limited labeled im-
ages available in the target domain.

3.2. The Asymmetric Adaptation Paradigm

The data scarcity in FSDAOD leads to inherent imbal-
anced distribution between the source and target domains.
If performing traditional feature alignment (e.g., Maximum
Mean Discrepancy (MMD) [38, 40, 41, 56]), the detector is
prone to concentrate on limited observed target instances
but hardly generalizes well on other unobserved ones.

To this end, we propose an asymmetric adaptation
paradigm to leverage a large amount of source instances and
a few target instances from different perspectives. Firstly,
we divide the source instance set into target-similar/-
dissimilar sets and use the former to augment limited target
instances. Secondly, we propose to conduct asynchronous
alignment between the target-dissimilar source instance set



and augmented target instance set, which is a simple yet ef-
fective method specific to FSDAOD. Furthermore, we pro-
pose task-oriented supervised training to alleviate the ex-
treme data imbalance in the supervised training scheme.

3.2.1 Source Instances Division

We first extract the feature embeddings of instances from
Ds

⋃
Dt. The feature map is produced by the projection

module g and backbone network f , zsi = g ◦ f(xs
i ), z

t
j =

g ◦ f(xt
j). The instance-level embedding otj of jth in-

stance in Dt is extracted via average pooling, otj =
AvgPooling(S(ztj , b

t
j)). The S denotes the function that

slices the ztj according to the bounding box btj [5]. With
zsi , b

s
i , the embeddings of source instances osi are also ob-

tained in a similar way.
Then, we estimate the target instances distribution via

observed ot = {otj}. Specifically, we design a discrepancy
estimation function for getting the target-conditional prob-
ability density function I(γt) parameterized by γt through
ot. Without loss of generality, the γt is determined by max-
imizing the log likelihood over all the instances otj ∈ ot:

γt = argmax
γ

∑
otj∈ot

log(I(otj |γ)), (2)

where I(otj |γt) denotes the probability of otj in I(γt).
Due to imbalanced distributions between domains, the

number of target instances |ot| is relatively small, so the
γt is hard to represent the overall target domain. Inspired
by the observation that some source instances partially de-
scribe the Pt, we augment ot with osi that are close to
Dt with minimal introduced target risk. The set of such
source instances is denoted as target-similar instance set
os
t′ . Specifically, we use I(γt) to estimate the target dis-

tribution Pt. Then, we identify os
t′ in os = {osj} via the

reciprocal of probability that osi belongs to Dt ∼ Pt as the
distance dsi :

dsi = 1/p(osi |ot, γt) = 1/I(osi |γt). (3)

According to the increasing order of dsi , we select the top
|os

t′ | = β ∗ |os| source instances with the proportion β.
The β controls the introduced estimation error of os

t′ . The
remaining source instances belong to the target-dissimilar
instances set os

s′ .
We provide three discrepancy estimation functions for

estimating I(γt), including the L2 distance with average
pooling, K-means and Gaussian Mixture Model (GMM).
- L2 distance. We first calculate the target prototype via av-
erage pooling γt =

∑|ot|
j=1 o

t
j . Then, we use the L2 distance

as dsi in Eq. (3). For each osi ∈ os, the dsi is as follows:

dsi = ||osi − γt||2. (4)

- K-means. We first cluster ot by K-means and use the
clustered centers γt = {γt

n} to represent I. Then, we utilize
the distance between osi and its nearest neighbor in γt as dsi :

dsi = min{||osi − γt
n||2}

|γt|
n=1. (5)

- Gaussian Mixture Model (GMM). GMM assumes that
I(γt) is a weighted mixture of M multivariate Gaussian
distributions {N (µm,Σm)}Mm=1. µm and Σm denote the
mean vector and covariance matrix of component m. γt

is optimized by Expectation-Maximization [10] algorithm.
The Eq. (3) is rewritten as follows:

dsi = 1/
∑M

m=1
πmN (osi ;µm,Σm), (6)

where πm is the weight of N (µm,Σm) constrained to∑M
m=1 πm = 1 and γt = {πm, µm,Σm}Mm=1. We com-

pare and discuss Eqs (4)-(6) in Section 4.3.

3.2.2 Asymmetric Adaptation

The optimization objective of detector adaptation is to
bridge the cross-domain discrepancy betweenDs ∼ Ps and
Dt ∼ Pt. To this end, we develop asymmetric adaptation
from two aspects: asynchronous distribution-level align-
ment and task-oriented supervised training.
Asynchronous Alignment. Previous methods [61, 72]
adopt the pairing mechanism to reuse the target instances
ot and align with the source instances os. Generally, if us-
ing such a technique, the instance-level distribution feature
alignment can first be defined by minimizing the loss LSym

as follows:
LSym = JAli(o

s,ot), (7)

whereJAli is the metric function that measures the distribu-
tion discrepancy, e.g., mean maximum discrepancy [20,38].
The LSym performs in a symmetric way for aligning os and
ot. Unfortunately, such optimization objective meets obsta-
cle if there exists an extreme imbalance between ot and os.
Due to limited observed target instances otj in Dt, simply
aligning the feature distributions of os and ot (|os| ≫ |ot|)
easily causes over-adaptation [61], i.e., the detector is prone
to concentrate on the limited observed target instances ot

but hardly generalizes well on other unobserved ones.
To this end, we propose the instance-level asynchronous

distribution alignment. Specifically, we first detach the gra-
dient of ot in the optimization process. As a result, we for-
mulate a new alignment criterion as follows:

LAsy = JAli(o
s, sg(ot)), (8)

where sg(·) denotes the stop-gradient operation. The few
target instances otj ∈ ot are biased to represent the target
distribution Pt (shown in Figure 1). With LAsy, we rel-
atively stabilize the feature alignment process between os

and ot to alleviate the interference caused by the data bias.



Moreover, we adopt target-similar source instances os
t′

(obtained via Eq. (2)-(3) in Section 3.2.1) to augment the
ot, which alleviates the imbalanced amounts of data. As
a result, the asynchronous instance-level distribution align-
ment is given as follows:

L
′

Asy = JAli(o
s
s′ , sg(o

s
t′ ∪ ot)). (9)

Task-oriented Supervised Training. Object detection re-
quires spatially different activated areas in the feature map
for regression and classification tasks [55]. Specifically,
models are prone to focus on some salient areas for clas-
sification, while they should be aware of the boundary areas
for localization [55]. Motivated by this, we propose to ex-
ploit different instance sets to optimize classification and
localization tasks separately.
Classification. Due to the domain shift between the source
and target domains, classification supervision of target-
dissimilar instances negatively affects target-specific fea-
ture learning. Therefore, we propose to force the classifier
to focus on target-specific information. Specifically, in the
source domain, we use the target-similar instance data Ds

tar
for classification supervision. With the observed target data
Dt, the loss is given as follows:

L
′

Cls = E(x,y)∈Ds
tar

⋃
DtJCls(hCls ◦ f(x),y), (10)

where JCls is the loss function for classification such as
cross-entropy and focal loss [34], and hCls is the classifica-
tion head in detect head h.
Localization. For better awareness of boundary informa-
tion, we utilize all the bounding boxes for localization with-
out filtering. The regression objective is given as follows:

L
′

Reg = E(x,b)∈Ds
⋃

DtJReg(hReg ◦ f(x),b), (11)

where JReg is the loss function that serves for bounding
box regression, e.g., GIoU [52], and hReg is the localization
head in detect head h.

3.2.3 The Optimization Objective

The AsyFOD performs asymmetric adaptation via source
instances division following both asynchronous distribution
alignment and task-oriented supervised training perspec-
tives. The detector hθ2 ◦ fθ1 and additional projection mod-
ule gθ3 parameterized by θ = {θ1, θ2, θ3} are encouraged
to overcome the domain gap between Dt and Ds:

min
θ
L

′

Reg + L
′

Cls + αL
′

Asy, (12)

where α is the trade-off hyperparameter for balancing the
asymmetric feature alignment and supervised losses.

Algorithm 1 The training pipeline of the AsyFOD

Input: Initialized detector with the additional projection
module θini, the source domain Ds, the target domain
Dt, total epochs T , amount of steps for every epoch N ,
discrepancy estimation function F , proportion 0 < β ≤
1, localization/classification loss function JReg/JCls.

Output: Domain Adaptive Detector h ◦ f consists of the
backbone fθ1 and detect head hθ2

Initialize projection module gθ3
Initialize θ = {θ1, θ2, θ3} ← θini

for epoch← 1, ..., T do
for step← 1, ..., N do

Sample batch Bs = {(xs
i , y

s
i , b

s
i )}

ns
i=1 ∈ Ds

Sample batch Bt = {(xt
j , y

t
j , b

t
j)}

nt
j=1 ∈ Dt

Get source and target instance sets os,ot of
Bs, Bt with gθ3 ◦ fθ1

Divide os to os
s′ and os

t′ via F ,β and Eq. (2)-(3)
Predictions p = hθ2 ◦ fθ1({xs

i}
ns
i=1

⋃
{xt

j}
nt
j=1)

Asynchronous alignment loss L′

Asy between os
s′

and (os
t′ ∪ ot) in Eq. (9)
Task-oriented supervised training L′

Reg + L′

Cls
with JReg and JCls, p and Ds

tar
⋃
Dt in Eq. (10)-(11)

Update θ to minimize Eq. (12)
fθ1 , hθ2 , gθ3 ← θ

3.3. The Overall Training Pipeline

The detailed training pipeline of our AsyFOD is summa-
rized in Algorithm 1. After feature extraction, the target-
similar source instances os

t′ will be identified according to
the discrepancy estimation function. All parameters used
for training will be updated after every iteration. After train-
ing, the projection module g can be dropped. Therefore,
the AsyFOD does not introduce additional inference costs
when applying the adapted detector.

4. Experiments
We present the main results of the proposed AsyFOD for

addressing the Few-shot Domain Adaptation Object Detec-
tion (FSDAOD) task in various scenarios in Section 4.2.
Then, we analyze multiple parts of the AsyFOD in Sec-
tion 4.3. Furthermore, we conduct a qualitative analysis, in-
cluding the instance-level feature distribution and retrieved
target-similar source instances in Section 4.4.

4.1. Datasets and Experimental Details

- Cityscapes→ Foggy Cityscapes. The Cityscapes [9] con-
tains 3,475 real urban images, with 2,975 images used for
training and 500 for validation. Based on the Cityscapes,
the Foggy Cityscapes [54] is a synthesized dataset with
hand-crafted foggy modification. The highest fog intensity



Setting Method Architecture person rider car truck bus train mcycle bicycle mAP50 SO/GAIN

UDAOD

DA-Faster [8] F-RCNN V 25.0 31.0 40.5 22.1 35.3 20.2 20.0 27.1 27.6 19.9/7.7
FAFRCNN [61] F-RCNN V 29.1 39.7 42.9 20.8 37.4 24.1 26.5 29.9 31.3 19.9/11.4
ViSGA [51] F-RCNN R 38.8 45.9 57.2 29.9 50.2 51.9 31.9 40.9 43.3 22.8/20.5
SIGMA [32] F-RCNN R 44.0 43.9 60.3 31.6 50.4 51.5 31.7 40.6 44.2 24.2/20.0

FSDAOD

FAFRCNN [61] F-RCNN V 27.9±0.6 37.8±0.6 42.3±0.7 20.1±0.5 31.9±1.1 13.1±1.5 24.9±1.3 30.6±0.9 28.6±0.5 19.9/8.7
PICA [72] F-RCNN V 28.3±2.2 41.3±0.3 43.0±0.4 23.8±2.2 38.1±1.5 24.3±0.8 25.4±1.4 33.7±0.4 32.2±0.8 20.3/11.9
SimRoD [46] YOLOv5 X 34.3±1.3 35.8±0.3 55.9±0.8 9.6±1.8 18.0±0.6 5.9±0.3 10.6±0.2 29.2±0.8 24.9±0.2 21.9/5.0
FsDet [62] YOLOv5 X 32.3±1.2 29.8±1.2 44.0±1.7 14.1±2.2 24.2±1.4 8.4±1.2 22.9±1.6 26.2±2.2 25.2±1.1 21.9/3.3
AcroFOD [16] YOLOv5 X 46.2±0.5 47.3±0.6 63.5±0.4 20.1±1.6 41.5±0.8 34.2±1.8 36.1±0.7 39.6±0.9 41.1±0.8 21.9/19.2
AsyFOD YOLOv5 X 46.9±0.7 48.7±1.1 66.8±0.7 26.3±1.8 45.1±1.2 40.6±0.9 40.6±0.6 39.2±1.3 44.3±1.0 21.9/22.4

Table 1. Results (%) on Cityscapes → Foggy Cityscapes. “V”/“R” stand for VGG16/ResNet50 backbone networks. “X” stands for a type
of yolov5 model. SO denotes the source-only results, and GAIN represents gains after adaptation compared with the source-only model.

Setting Method S→ C SO/GAIN K→ C SO/GAIN

UDAOD
SWDA [53] 44.6 31.9/12.7 43.2 32.5/10.7
SSAL [45] 51.8 38.0/13.8 45.6 34.9/10.7
SIGMA [32] 53.7 39.8/13.9 45.8 34.4/11.4

FSDAOD

FAFRCNN [61] 41.2±0.6 33.5/7.7 - -
PICA [72] 42.1±0.7 34.6/7.5 - -
FsDet [62] 52.9±1.2 49.0/3.9 52.9±1.2 47.4/5.5
SimRoD [46] 54.2±0.5 49.0/5.2 55.8±0.6 47.4/8.4
AcroFOD [16] 62.5±1.6 49.0/13.5 62.6±2.1 47.4/15.2
AsyFOD 65.4±0.9 49.0/16.4 64.1±1.1 47.4/16.7

Table 2. Comparison results (%) on Sim10K → Cityscapes (S →
C) and KITTI →Cityscapes (K → C).

images of 8 classes are used in our experiments.
- SIM10k→Cityscapes and ViPeD→COCO. SIM10k
[26] is a simulated dataset from a video game, which con-
tains 10k synthetic images and 58,701 car bounding boxes.
The ViPeD [1] contains 200K frames of the person class.
We select one frame per 10 frames and a total of 20K frames
during training. The subset of the COCO [35] containing
only person annotations is chosen as the target domain.
- KITTI→Cityscapes. We use the KITTI [17] as our
source data in this scenario. The KITTI contains 7,481 im-
ages of the car class, which exists the cross-camera domain
discrepancy with Cityscapes (on-board cameras).
Implementation details. We adopt single-stage detector
YOLOv5 [13] as the baseline and compare with both Unsu-
pervised Domain Adaptive object detection (UDAOD) and
Few-Shot Domain Adaptive object detection (FSDAOD)
methods. For the UDAOD setting, the results are based on
all target data. For the FSDAOD setting, we randomly se-
lect 60/8 fully labeled target images on ViPeD→COCO/the
other three scenarios [16].

The projection module g is applied by a 3x3 convolu-
tion layer following ReLU [19] and batchnorm [23]. The
α/β are set to 1/0.2 by default. In the main results, we use
strong augmentation [16] by default for a fair comparison.
We report average precision with an IoU threshold of 0.5 as

Method AP50 SO/GAIN AP SO/GAIN

Pre+FT 43.2±0.8 30.4/13.2 21.0±0.5 13.0/8.0
SimRoD [46] 42.8±1.0 30.4/12.4 19.5±0.7 13.0/6.5
AcroFOD [16] 45.8±0.6 30.4/15.4 22.5±0.4 13.0/9.5
AsyFOD 47.4±0.7 30.4/17.0 23.1±0.5 13.0/10.1

Table 3. Results (%) on ViPeD → COCO with YOLOv5 X.

AP50/mAP50 for single/multi classes, and AP or mAP for
10 averaged IoU thresholds of 0.5:0.05:0.95 [35]. We re-
port the mean and deviation of three random rounds for all
results.

4.2. Comparisons with State-of-the-arts

Results on Cityscapes→ Foggy Cityscapes. As summa-
rized in Table 1, our AsyFOD performs better than other
compared FDA methods in almost all categories. Besides,
the AsyFOD obtains 44.3% in terms of mAP50, which is
3.2% higher than previous state-of-the-art AcroFOD [16]
by a large margin. Figure 3 presents some detection results.
It can be observed that the AsyFOD helps the detector to
detect more targets accurately.
Results on other three scenarios. As shown in Table 2,
the proposed AsyFOD performs better than previous meth-
ods on synthetic-to-real and cross-camera scenarios. In Ta-
ble 3, our AsyFOD outperforms the pretrain-then-finetune
paradigm (Pre+FT) about 3.8% AP50 and 2.1% AP on
ViPeD → COCO. In summary, the performance improve-
ments shown by our model across three scenarios demon-
strate that our AsyFOD alleviates the domain discrepancy
with very limited target data.

4.3. Ablation Studies

In this part, we conduct ablation studies on Sim10K
→ Cityscapes and Cityscapes → Foggy Cityscapes with
YOLOv5 X.
Stop-gradient operation. To verify the effectiveness of the
proposed asynchronous alignment, we compare Eq. (7) and



(a) Source-only (b) AsyFOD (Ours) (c) Ground-truth

Figure 3. Qualitative results on Cityscapes → Foggy Cityscapes adaptation scenario among (a) the source-only model, (b) the proposed
AsyFOD, and (c) Ground-truth. Please zoom in and view it in color.

Method FSDAOD FSDAOD* FSUDAOD*

AP50 AP AP50 AP AP50 AP

Baseline 62.5 38.1 54.1 27.7 44.1 21.7
JAli(o

s,ot) 62.2 37.9 55.5 29.1 48.6 24.4
JAli(sg(o

s),ot) 61.7 37.4 54.8 28.3 48.0 23.6
JAli(o

s, sg(ot)) 63.4 38.6 56.3 29.8 49.5 24.9

Table 4. Analysis of the asynchronous alignment on Sim10K →
Cityscapes in terms of AP50 and AP (%). * denotes results without
strong data augmentation.

(os,ot) (os
s′ ,o

s
t′ ∪ ot) (os

s′ ,o
t) (os

t′ ,o
t) (os

s′ ,o
s
t′)

56.3±1.1 57.4±0.5 56.9±0.6 56.6±0.4 55.9 ±0.4

Table 5. Ablation study of the source division on Sim10K →
Cityscapes in terms of AP50 (%). (os,ot) means L

′
Asy =

JAli(o
s, sg(ot)).

Eq. (8) on various settings in Table 4, including the default
FSDAOD setting, FSDAOD setting without strong aug-
mentation and an unsupervised setting where only 8 unla-
beled target images available (FSUDAOD). The results are
evaluated without the proposed source instances division
and task-oriented supervised training. Our proposed asyn-
chronous alignment obtains consistent improvements on all
of the settings. With the strong augmentation, the traditional
synchronous alignment (JAli(o

s,ot)) causes worse results
than the baseline. Also, the detector suffers from an obvi-
ous performance drop if stopping the gradient of os, due to
the effect of the imbalanced data distributions. We use stop-
gradient operation by default in the following experiments.
Discrepancy estimation function and source instance di-
vision for L′

Asy. We analyze the effect of source instance
division in Table 5. Augmenting the target instance set

Scenario Baseline L2 distance K-means GMM

S→ C* 56.3±1.1 57.1±0.6 57.4±0.3 57.0±0.4

S→ C 62.5±1.6 64.5±0.7 65.4±0.9 65.1±1.1

C→ F 41.1±0.8 43.0±0.9 43.6±0.7 44.3±1.0

Table 6. Comparison results (%) on Sim10K → Cityscapes (S →
C) and Cityscapes → Foggy Cityscapes (C → F) with different
estimation functions. * denotes results without strong data aug-
mentation.

Type LReg LCls AP50 AP

Source-only Ds Ds 49.0 26.5
Baseline Ds ⋃Dt Ds ⋃Dt 62.5±1.6 38.1±1.8

Strategy A (Ours) Ds ⋃Dt Ds
tar
⋃

Dt 64.2±1.1 39.3±0.8

Strategy B Ds
tar
⋃

Dt Ds
tar
⋃

Dt 63.4±0.9 38.7±0.7

Table 7. Ablation study of the task-oriented supervised training
on Sim10K → Cityscapes in terms of AP50 or AP (%). The Ds,
Dt and Ds

tar denote using source instances, target instances, and
target-similar source instances, respectively.

ot with the target-similar source instance set os
t′ for asyn-

chronous alignment performs best. It demonstrates that ap-
propriately utilizing source instances can help the detector
generalize better.

In Table 6, we show the results of different discrepancy
estimation functions. We find that simply using L2 dis-
tance obtains improvement over the baseline while the K-
means or GMM usually obtains further improvement. On
the complex scenario Cityscapes→ Foggy Cityscapes, the
GMM gets the best results. We notice that the strong aug-
mentation [16] may produce target instances in the training
batch of the source dataset, which affects the analysis of the
division process. Therefore, we also compare the estima-
tion strategies without strong augmentation on Sim10K→
Cityscapes.



(c) Stop-gradient(a) Source Only (b) No Stop-gradient

Figure 4. Instance-level feature visualization by t-SNE on the Sim10K→Cityscapes scenario (Blue: Source instances; Deep orange:
Observed target instances; Light orange: Unobserved target instances): (a) Features of source-only detector; (b) Features of the proposed
AsyFOD with the stop-gradient operation; (c) Features of the proposed AsyFOD without the stop-gradient operation. Please zoom in and
view it in color.

Task-oriented supervised training. As shown in Table 7,
the source-dissimilar instance set os

s′ is crucial for localiza-
tion regression loss LReg, while causing performance drop
in LCls. Therefore, it is necessary to consider the relation-
ship between source instances and limited target instances
on LReg and LCls separately.

4.4. Qualitative Analysis

Feature distribution visualization. We visualize by t-
SNE [59] in Figures 4 (a)-(c) the instance-level repre-
sentations of the source-only detector and the AsyFOD
with/without the stop-gradient operation. In Figure 4 (a),
some source instances are very close to some target in-
stances, partially representing the target distribution, and
such observation verifies our motivation. If conducting
synchronous alignment between the limited observed tar-
get instances (deep orange points) and adequate source in-
stances (blue points), many observed target instances would
be pushed closer to the source instances. In contrast, the
unobserved target instances (light orange points) are not
aligned. In contrast, as shown in Figure 4 (c), the unob-
served target instances are better aligned than those in a
traditional alignment, which is attributed to our proposed
asynchronous alignment method with the stop-gradient op-
eration.
Visualization of target-similar source instances. For each
target instance, we retrieve the top-3 nearest source in-
stances as target-similar instances by L2 distance, whose re-
sults are shown in Figure 5. We find that the retrieved target-
similar source instances (dark blue rectangles) are relatively
blurred compared with those target-dissimilar source in-
stances (light blue rectangles), which is similar to the blur
caused by fog in the target domain. The results verify our
assumption that some source instances are similar to target
instances, which are used for augmenting the data-scarce
target domain in our method.

Target-similar 

Source

Target-dissimilar 

Source
Target

Figure 5. Visualization of the top-3 nearest target-similar source
instances for the corresponding target instance on Cityscapes →
Foggy Cityscapes. Also, we show target-dissimilar source in-
stances for comparison. Best viewed in color.

5. Conclusion

This paper presents the AsyFOD, an asymmetric adap-
tation paradigm for alleviating the over-adaptation problem
due to the imbalanced data distribution on Few-Shot Do-
main Adaptive Object Detection (FSDAOD). Extensive ex-
periments verify the effectiveness of the AsyFOD in miti-
gating the domain discrepancy with only a few labeled tar-
get images. We find insights into how the proposed asym-
metric adaptation paradigm works in the FSDAOD task
through ablation studies and visualizations. We hope the
study will further inspire the community to address the FS-
DAOD problem.
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