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ABSTRACT

Real-world data often violates the equal-variance assumption (homoscedasticity),
making it essential to account for heteroscedastic noise in causal discovery. In
this work, we explore heteroscedastic symmetric noise models (HSNMs), where
the effect Y is modeled as Y = f(X) + σ(X)N , with X as the cause and N as
independent noise following a symmetric distribution. We introduce a novel crite-
rion for identifying HSNMs based on the skewness of the score (i.e., the gradient
of the log density) of the data distribution. This criterion establishes a computa-
tionally tractable measurement that is zero in the causal direction but nonzero in
the anticausal direction, enabling the causal direction discovery. We extend this
skewness-based criterion to the multivariate setting and propose SkewScore, an
algorithm that handles heteroscedastic noise without requiring the extraction of
exogenous noise. We also conduct a case study on the robustness of SkewScore
in a bivariate model with a latent confounder, providing theoretical insights into its
performance. Empirical studies further validate the effectiveness of the proposed
method.

1 INTRODUCTION

Discovering causal relationships among variables from data, known as causal discovery, is of great
interest in many fields such as biology (Sachs et al., 2005) and Earth system science (Runge et al.,
2019). The primary approaches to causal discovery include constraint-based methods (Spirtes &
Glymour, 1991; Spirtes et al., 2001), which rely on conditional independence tests, and score-based
methods (Heckerman et al., 1995; Chickering, 2002; Huang et al., 2018), which optimize a certain
objective function. These methods often identify the causal structure only up to Markov equivalence
(Spirtes et al., 2001; Glymour et al., 2019), since the causal directions in general cannot be determined
without prior knowledge or additional assumptions (Pearl, 2009).

Another line of approaches, based on functional causal models, impose restrictions on the causal
mechanisms to make the causal directions identifiable. The key idea is to show that, under these
restrictions, no forward and backward models that result in independent noise can co-exist, which
leads to an asymmetry that helps identify the causal direction. Examples include linear non-Gaussian
models (Shimizu et al., 2006), nonlinear additive noise models (Hoyer et al., 2008a), and post-
nonlinear causal models (Zhang & Hyvärinen, 2009). Most of these models assume that the noise
terms are homoscedastic, i.e., they have constant variances across different samples. This assumption
may limit their applicability because the noise terms are often heteroscedastic in real-world data, such
as those in environmental science (Merz et al., 2021) and robotics (Kersting et al., 2007).

To address this limitation, there is growing interest in developing more general functional causal
models capable of inferring causal directions despite the presence of heteroscedastic noise. Previous
approaches for handling heteroscedastic noise typically involve extracting noise terms through
nonlinear regressions to estimate conditional means and variances, followed by independence tests
on the residuals (Strobl & Lasko, 2023; Immer et al., 2023). This procedure needs to be repeated for
each variable, which can be computationally intensive. Alternative strategies that avoid extracting
noise terms include the likelihood-based approach, which often requires the noise to follow Gaussian
distributions (Immer et al., 2023; Khemakhem et al., 2021; Duong & Nguyen, 2023), and the
kernel-based criterion proposed by Mitrovic et al. (2018), whose theoretical guarantees for handling
heteroscedastic noise may not be clear.
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In this work, we introduce a novel criterion to address symmetric heteroscedastic noise in causal
discovery. This is motivated by the fact that symmetric noise encompasses a wide range of widely
used assumptions in noise distributions, such as Gaussian, centered uniform, Laplace, and Student’s t
distributions, with applications in, e.g., finance (Anderson & Arnold, 1993), environmental science
(Damsleth & El-Shaarawi, 2018), and psychology (McGill, 1962). Specifically, we leverage the skew-
ness of the score (the gradient of the log density) of the data distribution to establish a measurement
that is zero in the causal direction but positive in the anticausal direction, thereby uncovering the
causal direction. We extend this skewness-based criterion to the multivariate setting and propose
SkewScore, an algorithm that effectively manages heteroscedastic noise without needing to extract
the exogenous noise. This approach adopts the two-phase ordering-based search framework for
DAGs introduced by Teyssier & Koller (2005). First, we estimate the topological order by iteratively
identifying the sink node of the causal graph using the skewness-based criterion. Then, we prune the
directed acyclic graph (DAG) associated with this topological order using classical methods, such
as conditional independence tests (Zhang et al., 2011). This reduces the computational complexity,
lowering the number of conditional independence tests from exponential to polynomial in the number
of vertices.

Furthermore, we conduct a case study to evaluate the robustness of SkewScore in a bivariate model
with a latent confounder. Existing approaches based on functional causal models typically do not
allow latent confounders, as their presence will violate the independent noise condition required for
causal direction identification. However, our theoretical insights show that in this bivariate model with
a latent confounder, when the causal effect between the observed variables dominates that of the latent
confounder, SkewScore can still correctly identify the causal direction. Additionally, our method
enables the quantification of the latent confounder’s impact within this triangular model.

2 RELATED WORK

Heteroscedastic Noise Models (HNMs). Causal discovery with HNMs has gained significant interest
in recent years. HNMs relax the assumption of homoscedastic noise, which was generally assumed in
previous studies. Xu et al. (2022) adopted a modeling choice where the variance of the scaled noise
variable is a piecewise constant function of its parents, which may restrict the possible mechanisms
of the variance. Tagasovska et al. (2020); Strobl & Lasko (2023); Immer et al. (2023) considered
a more general class of HNMs, where the conditional variance is a deterministic function of its
parents. The works by Tagasovska et al. (2020) and Immer et al. (2023) focus primarily on identifying
pairwise causal relationships. Both Strobl & Lasko (2023) and Duong & Nguyen (2023) include a
noise-extraction step to estimate the sink node, with Strobl & Lasko (2023) using mutual information
and Duong & Nguyen (2023) using normality as criteria. Yin et al. (2024) propose a two-phase
continuous optimization framework to learn the causal graph.

Latent Confounder. Causal discovery aims to identify causal relationships from observational data.
However, traditional methods typically assume the absence of latent confounders in the causal graph,
an assumption that often does not hold in real-world scenarios. To address this challenge, extensive
research has focused on learning causal structures that allow latent variables. These approaches
include methods based on conditional independence tests (Spirtes et al., 2001; Colombo et al., 2012;
Akbari et al., 2021), over-complete ICA-based techniques (Hoyer et al., 2008b; Salehkaleybar et al.,
2020), Tetrad condition (Silva et al., 2006; Kummerfeld & Ramsey, 2016), high-order moments
(Shimizu et al., 2009; Cai et al., 2019; Xie et al., 2020; Adams et al., 2021; Chen et al., 2022), matrix
decomposition techniques (Anandkumar et al., 2013), mixture oracles (Kivva et al., 2021) and rank
constraints (Huang et al., 2022; Dong et al., 2023). Nevertheless, these methods either recover the
causal graph only up to a broad equivalence class or assume that each latent confounder has at least
two pure children that are not adjacent, which forbids the existence of triangle structure involving
latent confounders, that is X ← Z → Y and X → Y , where Z is the latent variable.

Causal Discovery with Score Matching. A recent class of causal discovery algorithms employs
constraints on the score, i.e., the gradient of the log density function, to uniquely identify the
causal graph in additive noise models (ANMs). This line of thought determines the topological
order by iteratively identifying sink nodes (i.e., leaf nodes) using the score (Rolland et al., 2022;
Montagna et al., 2023c; Sanchez et al., 2023; Montagna et al., 2023b). Interestingly, Montagna et al.
(2023a) empirically indicates that the presence of latent confounders may not significantly disrupt the
inference of the topological ordering; score-matching-based approaches still provide reliable ordering.
Effective gradient estimation techniques are crucial in connecting the gradient of the log-likelihood to
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successful causal discovery. Various methods have been proposed to estimate the score from samples
generated by an unknown distribution, including score matching (Hyvärinen & Dayan, 2005; Vincent,
2011; Song & Ermon, 2019; Song et al., 2020), and kernel score estimators based on Stein’s methods
(Li & Turner, 2017; Shi et al., 2018; Zhou et al., 2020). These methods have been successfully
applied to generative modeling, representation learning, and addressing intractability in approximate
inference algorithms.

3 PROBLEM SETUP AND PRELIMINARIES

Symbols and notations. Let R+ = (0,∞). We denote by C1(Rk) the set of all continuously
differentiable functions on Rd, and by C1(Rk,R+) the subset of C1(Rk) consisting of functions that
take only positive values. We denote by L∞(Rk) the set of all essentially bounded functions on Rk.
Furthermore, let L∞ := ∪∞k=1L

∞(Rk), and C1 = ∪∞k=1C
1(Rk). For brevity, we write ∂

∂xi
as ∂xi

.
For a random variable X = (X1, X2, . . . , Xd) in Rd, we represent (X1, . . . , Xi−1, Xi+1, . . . , Xd)
as X−i, and similarly, (x1, . . . , xi−1, xi+1, . . . , xd) as x−i. We use pX(x), or simply p(x), to denote
the probability density of X , and pXi|X−i

(xi|x−i) as p(xi|x−i) for conditional densities. We denote
by pa(Xi) the set of parents (direct causes) ofXi in a directed acyclic graph (DAG), and by child(Xi)
the set of children (direct effects) of Xi. A node with no children, i.e., no outgoing edges, is called a
sink or leaf node.

3.1 HETEROSCEDASTIC SYMMETRIC NOISE MODELS (HSNM)
We consider a structural causal model over d random variables {Xi}di=1, where each variable Xi

corresponds to a node in the directed acyclic graph (DAG) G. The Heteroscedastic Symmetric Noise
Model (HSNM) is defined as

Xi = fi(pa(Xi)) + σi(pa(Xi))Ni, i = 1, . . . , d, (1)

where Ni is an exogenous noise variable that follows a symmetric distribution with mean zero, i.e.,
pNi(−ni) = pNi(ni). The noise terms {Ni}di=1 are jointly independent, and each Ni is independent
of pa(Xi) when pa(Xi) ̸= ∅. We assume that pX ∈ C1(Rd,R+), and for each i ∈ {1, 2, . . . , d},
pNi
∈ C1(R,R+), with fi, σi ∈ C1 and σi ∈ L∞. Additionally, all partial derivatives ∂xj

σi ∈ L∞.
We also assume there exists a constant r > 0 such that infi∈{1,...,d} infx σi(x) ≥ r. Furthermore, we
assume that pX , pN , fi, and σi satisfy weak regularity conditions to ensure that the derivatives and
expectations involved in our analysis are well-defined.

It is worth noting that symmetric noise encompasses a wide range of widely used assumptions
in noise distributions, such as Gaussian, centered uniform, Laplace, and Student’s t distributions,
with applications in, e.g., finance (Anderson & Arnold, 1993), environmental science (Damsleth &
El-Shaarawi, 2018), and psychology (McGill, 1962).

3.2 SCORE FUNCTION, SCORE MATCHING, AND SKEWNESS

In this paper, the score function refers to the gradient of the log density, ∇p(x), which can be
estimated using various score matching methods Hyvärinen & Dayan (2005); Vincent (2011); Song
& Ermon (2019); Song et al. (2020); Li & Turner (2017); Shi et al. (2018); Zhou et al. (2020). We
introduce two important properties of the score function and define the skewness of the score.

Facts Let p(x1, x2, · · · , xd) ∈ C1(Rd,R+) be a density function that is strictly postive on Rd. The
following two facts hold for every i = 1, 2 · · · , d:

Fact 1. ∂xi
log p(xi|x1, · · · , xi−1, xi+1, · · · , xd) = ∂xi

log p(x1, x2, · · · , xd).
Fact 2. EX∼p [∂xi

log p(X)] = 0.

The proofs of Fact 1 and Fact 2 are provided in Appendix D. These two facts are crucial for deriving
Theorem 1, a skewness-based criterion for HSNMs. Fact 1 allows us to work with derivatives of the
log joint density rather than directly estimating conditional densities, while Fact 2 shows that the
expectation of the score is a zero vector, when p ∈ C1(Rd,R+).

Skewness measures the asymmetry of a probability distribution. In particular, Pearson’s moment
coefficient of skewness is defined as the normalized third central moment. For a real-valued random
variable W , the unnormalized skewness is given by Skew(W ) = E

[
(W − E[W ])

3
]
. Inspired by

this, we introduce the notion of skewness for the score function.
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Definition 1. Given a probability density p for a random variable X = (X1, X2 · · · , Xd) ∈ Rd
with p(x) ∈ C1(Rd,R+), we define its skewness of the score in the xi-coordinate as:

SkewScorexi
(p) : =

∣∣∣EX∼p

[
(∂xi

log p(X)− EX∼p [∂xi
log p(X)])

3
]∣∣∣

=
∣∣∣EX∼p

[
(∂xi

log p(X))
3
]∣∣∣ , (2)

where the second equality follows from Fact 2.

This measure captures the asymmetry within each coordinate of the score. If the conditional density
p(xi | x−i) is a symmetric function, then SkewScorexi

(p) = 0, as discussed in Appendix A.

4 CAUSAL DISCOVERY WITH THE SKEWNESS-BASED CRITERION

In this section, we focus on identifying causal relationships within heteroscedastic symmetric noise
models (HSNM), as formalized in Eq. (1). We introduce a novel identification criterion, the skewness-
of-score criterion, which captures the asymmetry between the causal and anti-causal directions to
determine the causal order in the infinite sample limit. We begin by providing intuitive explanations
of this criterion, present theoretical guarantees for the bivariate causal model, and extend the results
to multivariate cases. Finally, we present an algorithm based on this criterion in Section 4.2.

4.1 IDENTIFICATION WITH THE SKEWNESS-BASED CRITERION

We begin with the bivariate case to build intuition for the skewness-based criterion. The extension to
multivariate models follows naturally, as shown in Corollary 2.

Consider the following bivariate heteroscedastic symmetric noise model (HSNM):

Y = f(X) + σ(X)N, (3)

whereN is symmetric exogenous noise independent ofX with mean zero, i.e., pn(−n) = pn(n), and
X ⊥⊥ N . We assume the same regularity conditions stated in Section 3.1, specified as Assumption 2
and 3 in Appendix E.

The key insight for the identifiability of the heteroscedastic symmetric noise model (HSNM), as given
in Eq. (3), is that the conditional distribution P (Y | X) is symmetric, while P (X | Y ) is generally
asymmetric under mild assumptions on f and σ. This contrast is illustrated in Figure 1. To quantify
the asymmetry of these conditional distributions, a typical measure is the skewness, defined as the
standardized central third moment. However, directly estimating the skewness of the conditional
distributions from data is challenging due to the complexity of the conditional expectation.

To circumvent this challenge, we instead turn to an auxiliary random variable — the score function
∇ log p(X,Y ), where (X,Y ) follows the data distribution p. Specifically, Fact 1 allows us to convert
the partial derivatives of the log conditional density into the gradient of the log joint density, which is
the score function. This transformation reframes the problem of analyzing the conditional distribution
as one involving the score function, thereby simplifying the estimation process. Consequently, this
leads to the identifiability criterion for heteroscedastic symmetric noise models, formally stated in
Theorem 1, with the model restriction given in Assumption 1.

Assumption 1 (Model Restriction). Denote A(x) = p′x(x)
px(x)

− σ′(x)
σ(x) , B(x) = − f

′(x)
σ(x) , and C(x) =

σ′(x)
σ(x)2 , where p′x, σ′, and f ′ represent the derivatives of px, σ, and f respectively. Assume the
following inequality holds:∫ [(

A(x) + C(x)
p′n(u)u
pn(u)

)3

+ 3
(
B(x)

p′n(u)
pn(u)

)2 (
A(x) + C(x)

p′n(u)u
pn(u)

)]
pn(u)px(x)dxdu ̸= 0.

Assumption 1 excludes the scenario where the skewnesses of the score’s projections are both zero
in the causal and anti-causal directions. In particular, it rules out linear Gaussian additive models.
In Proposition 5 in Appendix B, we demonstrate that Assumption 1 holds generically by showing
that the set of models violating this assumption has a property analogous to having a zero Lebesgue
measure. More discussion is provided in Appendix B.

We now present a key result that shows how skewness of the score of the data distribution provides
useful information that helps uncover the causal direction.

4
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Figure 1: Identifiability of the heteroscedastic symmetric noise model (HSNM). For the causal direction X → Y
(left), the conditional distribution p(y|x) is symmetric for any x (top right), and the variance of p(y|x) varies
with different values of x due to heteroscedasticity. In contrast, p(x|y) is asymmetric for some y (bottom right).

Theorem 1. Let (X,Y ) follows the heteroscedastic symmetric noise model given by Eq. (3). Let
p(x, y) denote the joint distribution of (X,Y ). The following asymmetry holds.

1. The score function’s component in the Y -coordinate (the effect direction) follows an
unskewed distribution:

SkewScorey(p) :=
∣∣∣EX,Y [

(∂y log p(X,Y ))
3
]∣∣∣ = 0. (4)

2. Moreover, under Assumption 1, the score function’s component in the X-coordinate (the
cause direction) follows a skewed distribution:

SkewScorex(p) :=
∣∣∣EX,Y [

(∂x log p(X,Y ))
3
]∣∣∣ ̸= 0. (5)

The proof is provided in Appendix E. The asymmetry in the above theorem can be used to deter-
mine the causal direction between X and Y . Specifically, one could estimate the score function
∇ log p(x, y) and determine the causal direction based on the magnitude of the skewness of its x-
and y-coordinate.

Theorem 1 shows that in bivariate HSNMs, only the score’s component only along the sink-node
coordinate is unskewed, under weak assumptions. This result naturally generalizes to the multivariate
case for d ≥ 2, as stated in the following corollary.

We first clarify the notations: LetX = (X1, X2, · · ·Xd) ∈ Rd follow the multivariate heteroscedastic
symmetric noise model given by Eq. (1), and p(x) = p(x1, x2, · · · , xd) denote the joint distribution
of X . For simplicity, denote dx = dx1dx2 · · · dxd, fi = fi(pai(x)), σi = σi(pai(x)), pi =

pNi

(
xi−fi
σi

)
and p′i = p′Ni

(
xi−fi
σi

)
.

Corollary 2. Assume that the following condition holds for every node k with direct causes (i.e.,
child(k) ̸= ∅):∫

Rd

[
p′k
σkpk

−
∑

i∈child(k)

(
p′i
pi
· σi∂xk

fi + (xi − fi)∂xk
σi

σ2
i

+
∂xk

σi
σi

)]3 d∏
j=1

pj
σj

dx ̸= 0. (6)

Then, for every node j, it is a sink if and only if the score’s component in the xj-coordinate follows
an unskewed distribution, i.e.,

SkewScorexj
(p) = 0,

where SkewScorexj
(p) is defined in Definition 1.

The proof is provided in Appendix F. This corollary enables us to find the sink nodes of a DAG
with the knowledge of the score function. By iteratively applying this process, we can determine the
topological order of the graph. In Section 4.2, we provide a practical algorithm that leverages this
Corollary for identifying the causal order.

5
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4.2 ALGORITHM

We apply Corollary 2 and propose an algorithm to determine the causal ordering, named Skewscore
(Algorithm 1). Our approach follows the topological order search framework of Rolland et al.
(2022), which determines the topological order by iteratively identifying sink nodes. Different from
their method, we identify the node with the minimum skewness of score as the sink node in each
iteration. Compared to existing methods, Skewscore circumvents the need to extract the exogenous
noise (Immer et al., 2023; Duong & Nguyen, 2023; Montagna et al., 2023b) or to estimate the diagonal
of the Hessian of the log density (Rolland et al., 2022; Sanchez et al., 2023). Additionally, after
finding the minimum SkewScorexj

in Line 6 of Algorithm 1, we can check whether SkewScorexj
is

close to zero, where a value not close to zero indicates a violation of the symmetric noise assumption
or other model assumptions.

Once the topological order is obtained using Algorithm 1, the complete DAG can be constructed by
adding edges with conditional independence tests (Zhang et al., 2011) associated with the topological
order. In this order-based search, O(d2) CI tests are performed, compared to exponential complexity
in classical methods (Spirtes & Glymour, 1991) in worst-case scenarios.

Algorithm 1 SkewScore

1: Input: Data matrix X ∈ Rn×d, test odd function ψ(s) = s3, conditional independence test
oracle CI (returns p-value), and significance level α ∈ (0, 1).

2: Initialization: nodes = {1, . . . , d}, topological order π = [], adjacency matrix A ∈ Rd×d (all
zeros).

3: for k = 1, . . . , d do
4: Estimate the score function s(X) = ∇ logPXnodes(X).
5: Estimate SkewScorexj = |EXnodes [ψ(sj(X))]|. ▷ Skewness of the score’s projection on xj
6: ℓ← argminj∈nodes SkewScorexj ▷ Find the sink node
7: π ← [ℓ, π] ▷ Update the topological order
8: nodes← nodes− {ℓ}
9: Remove ℓ-th column of X

10: end for
11: for i = 1, . . . , d− 1 do
12: for j = i+ 1, . . . , d do
13: if CI(Xπi

, Xπj
, Xπ{1,...,j−1}\{i}) < α then

14: Aπi,πj = 1 ▷ Add edge πi → πj
15: end if
16: end for
17: end for
18: Output: Topological order π, and adjacency matrix A.

5 CASE STUDY: ROBUSTNESS TO THE LATENT CONFOUNDER IN A BIVARIATE
SETTING

It has been shown that various types of assumption violations may affect the performance of causal
discovery (Reisach et al., 2021; Montagna et al., 2023a; Ng et al., 2024). In this section, we conduct
a case study to analyze the robustness of Algorithm 1 to the latent confounder in a pairwise causal
model given by Eq. (7). We provide theoretical insights into this robustness in Proposition 3, with
experimental results presented in Section 6.

We focus on a three-variable model consisting of two observed variables, X and Y , and one latent
variable, Z, as depicted in Figure 2. The model is formally expressed as:

X = ϕ0(Z) +N0,

Y = λf̃(X) + ϕ1(Z) + σ(X)N1,
(7)

where Ni ∼ qi with qi(n) = qi(−n) and qi ∈ C1(R,R+), for i = 0, 1, and Z ∼ pz(z). In this
model, the effect of the latent confounder has an additive structure, and the conditional standard
deviation σ(X) only depends on the observed variable X , without interaction with the latent variable.
The function f is replaced with λf̃ , where λ > 0 scales the effect of X on Y . To analyze the

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

confounding effects of Z, we vary λ while keeping f̃ , σ, ϕi, qi, and pz(z) fixed. As in Section 3.1,
we assume f̃ , σ ∈ C1(R), σ, σ′ ∈ L∞(R), and that there exists a constant r > 0 such that σ(x) ≥ r.

Z

X Y

ϕ0 ϕ1

λf̃

Figure 2: Three-variable HSNM model with latent confounder given by Eq. (7).

The criterion in Theorem 1 identifies the causal order without requiring exogenous-noise extraction.
This simplicity allows us to quantify the impact of latent confounders. Notably, to recover the causal
direction in the infinite sample limit, Line 6 in Algorithm 1 is equivalent to observing that the score’s
component in the effect coordinate is less skewed than in the cause. The following proposition
shows that in Model (7) with λ large enough, the causal direction X → Y can be identified by
Algorithm 1 in the infinite sample limit, with only mild regularity assumptions on the function f̃ , ϕi,
qi for i ∈ {0, 1}, and pz .

Proposition 3. Suppose two variables X and Y follow the causal models in Eq.(7). Given f̃ , σ, ϕi,
qi for i ∈ {0, 1}, and pz , let pλ(x, y) denote the joint distribution of (X,Y ). Under assumption 4,
there exists λ∗ ∈ R+, such that for every λ ≥ λ∗, we have

SkewScorex(pλ) > SkewScorey(pλ),

where SkewScorex(·), SkewScorey(·) is defined in Definition 1. This indicates the effect Y can be
identified in Line 6 in Algorithm 1 in the infinite sample limit.

Mild regularity conditions on f̃ , ϕ, and pz , that are sufficient for this analysis, are discussed in
Appendix H, where we provide the proof.

Roughly speaking, when λ is sufficiently large, similar to a high signal-to-noise ratio (SNR), the
effect of the latent variable Z can mostly be treated as noise. In this setting, λ serves as an indicator of
how much the observed variables dominate over the latent confounder. The threshold λ∗ is the critical
value beyond which the causal influence of X on Y becomes strong enough that the skewness-based
measure of the causal direction X → Y consistently surpasses that of the reverse direction Y → X .
For λ < λ∗, this skewness-based measure may not clearly distinguish the causal direction. However,
once λ exceeds λ∗, the log-density derivatives of X show much higher skewness, allowing for the
reliable identification of Y as the effect variable, even when there is a latent confounder.

For the multivariate extension, a notable limitation is that the DAG recovery method in Lines 11-17
of Algorithm 1 may lead to spurious direct links when there are latent confounders. A potential way
to mitigate this issue is to leverage the idea from FCI (Spirtes et al., 2001), which will involve more
sophisticated ways of performing conditional independence tests (after obtaining the topological
ordering) and output the Partial Ancestral Graph (PAG) instead of just a DAG.

Finally, we present an explicit analysis of a simplified homoscedastic case of the triangular model
defined by Eq. (7), where the exogenous noises and the cause follow Gaussian distributions, and the
effects of the latent variable Z on both X and Y are assumed to be linear.

Example 4. Consider the following model:{
X = Z +N0,

Y = Z + f(X) +N1,

where Z,Ni for i ∈ {0, 1} are independent variables, all distributed as N (0, 1). Then, we have:{
Skewx = 2

√
2π
π

∣∣∣∫R xf ′(x)(1 + f ′(x))e−
x2

2 dx
∣∣∣ ,

Skewy = 0.
(8)
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The explicit calculation of Eq. (8) can be found in Appendix I. If f is a linear function, then Skewx = 0
and the model is unidentifiable by Algorithm 1. However, in most cases, Skewx > 0, making the
model identifiable by Algorithm 1. For example, for a quadartic function f(x) = ax2 + bx+ c with
a ̸= 0, Skewx > 0 if and only if b ̸= 1

2 . Similarly, for almost all polynomials with a degree greater
than 2, we have Skewx > 0, indicating that Algorithm 1 can effectively determine the causal direction
in the infinite sample limit.

6 EXPERIMENTS

Setup. We compare SkewScore to state-of-the-art causal discovery methods to demonstrate the
effectiveness of our proposed methods. We conduct experiments using synthetic data generated from
HSNMs in three settings: (1) bivariate HSNMs; (2) latent-confounded triangular HSNM setting
(bivariate model with a latent confounder, as discussed in Section 5); and (3) multivariate HSNMs.
For each scenario, noise is sampled from two types of symmetric distributions: Gaussian distribution
and Student’s t distribution. The degree of freedom of the Student’s t distribution is uniformly
sampled from {2, 3, 4, 5}.

For the multivariate setting, the causal conditional mean function f is modeled by a Gaussian process
with a radial basis function (RBF) kernel (unit bandwidth), while the conditional standard deviation,
σ, is parameterized using a sigmoid function. In both the bivariate and triangular settings, two data
generation procedures are used: one with the Gaussian process-sigmoid setup (denoted as “GP-sig”),
the same procedure as the multivariate setting, and another with f modeled as an invertible sigmoid
function and σ set to the absolute function (denoted as “Sig-abs”). In latent-confounded triangular
setting, the latent effects ϕ0 and ϕ1 are set as linear functions with slopes uniformly sampled from
(−2,−0.5) ∪ (0.5, 2). The data is then standardized. The causal graphs are constructed via the
Erdös-Rényi (ER) model, where for a given number of nodes d, the average number of edges is also
set to d, for d ≥ 2. The sample size for all experiments is 5000. The score estimator employs sliced
score matching (SSM) with a 3-layer MLP. We use a batch size of 128 and configure the hidden
dimensions to 128 for d < 10 and 512 for d ≥ 10. Optimization is performed using the Adam
optimizer with a learning rate of 10−3, and we subsample 1000 points for conditional independence
testing after obtaining the topological order.

Comparisons. We empirically evaluate SkewScore against state-of-the-art bivariate causal discov-
ery methods designed for heteroscedastic noise models: HECI (Xu et al., 2022); LOCI (Immer et al.,
2023) and HOST (Duong & Nguyen, 2023). Given that Since HOST can also handle multivariate
settings, we include it in those comparisons. We also test DiffAN (Sanchez et al., 2022), which uses
the second-order derivative of the log-likelihood, estimated through diffusion models. Additionally,
we evaluate NoTEARS (Zheng et al., 2018), which uses continuous optimization for linear DAG
learning, and the MLP version of DAGMA (Bello et al., 2022), which handles nonlinear DAG
learning. For methods that output a DAG, we compute the corresponding topological order. For
baseline methods designed only for cause-effect pairs, we perform comparisons using data generated
from pairwise causal relations with d = 2.

Metrics. For the pairwise causal discovery settings, we report the accuracy of the estimated causal
directions. For multivariate cases, we compute two quantities: the topological order divergence (Rol-
land et al., 2022), and the structural Hamming distance (SHD) between the estimated and the ground
truth graphs. The topological order divergence evaluates how well the estimated topological order
aligns with the ground truth. Given an ordering π and a binary ground-truth adjacency matrix A,
the topological order divergence is defined as Dtop(π,A) =

∑d
i=1

∑
j:πi>πj

Aij . Lower values of
Dtop(π,A) indicate higher accuracy in the estimated topological order, reflecting more precise causal
discovery. The structure Hamming distance (SHD) measures the difference between two directed
acyclic graphs (DAGs) by counting the number of edge additions, deletions, or reversals required to
transform one into the other.

Results. The results of the synthetic experiments for the bivariate, latent-confounded-triangular,
and multivariate scenarios are shown in Figure 3a, Figure 3b and Figure 4, respectively. For the
pairwise causal discovery task, the results are averaged over 100 independent runs, while for the
multivariate task, they are averaged over 10 runs. Our approach, SkewScore, consistently outper-
forms or matches other methods across the bivariate, latent-confounded triangular, and multivariate
settings.
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In pairwise causal discovery tasks (Figure 3), methods designed for heteroscedastic noise models
(HNMs) generally perform well, but tend to make more errors when confounders are present or
when the noise follows a Student’s t distribution. In contrast, methods like NoTEARS, DAGMA,
and DiffAN—which are not specifically designed for HNMs—face performance limitations in both
pairwise and multivariate scenarios. SkewScore demonstrates consistently strong performance in
the latent-confounded triangular setting, supported by the theoretical insights discussed in Section 5.
All HNM-based methods perform well in the latent-confounded setting with the Sig-abs structural
causal model formulation, where LOCI handles both Gaussian and Student’s t-distributed noise
effectively, and HOST performs well for the Gaussian noise case. However, when the latent-
confounded data is generated using the GP-sig formulation, these HNM baselines do not match the
performance of SkewScore. In more challenging multivariate scenarios, our method outperforms
the others, especially as the dimensionality increases. HOST depends on noise extraction and
normality tests, which can be difficult with complex data. DiffAN performs well with a small number
of variables, but its performance drops as dimensionality grows. This is likely due to its non-retraining
approach and the score derived from ANM, which may lead to error accumulation over iterations.
Additionally, all experiments are run on CPUs, though our method can easily be deployed on GPUs.
This suggests the potential for further scalability by leveraging modern computational advancements.
More experiments and discussions are provided in Appendix J.
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(a) Bivariate heteroscedastic noise model.
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(b) Latent-confounded triangular heteroscedastic noise model.

Figure 3: Accuracy of causal direction estimation across different data generation processes for (a) bivariate
heteroscedastic noise models, and (b) latent-confounded triangular heteroscedastic noise models. Results are
averaged over 100 independent runs.
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Figure 4: Topological order divergence and structural Hamming distance (SHD) across different number of
variables (the dimension d). Lower values indicate better performance for both metrics.

7 CONCLUSION

In this study, we introduced a novel criterion—the skewness-of-score criterion—for causal discovery
with heteroscedastic symmetric noise models. Leveraging this criterion, we developed the algorithm
SkewScore, which effectively identifies causal directions without the need for extracting exogenous
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noise. We also conduct a case study on the robustness of our algorithm in a triangle latent-confounded
model, providing theoretical insights into its performance under this setup. Theoretical guarantees
and empirical validations support our methodology.

Future work will focus on extending the method to extremely high-dimensional cases, where the
number of variables and the complexity of their interactions significantly increase. Additionally,
future research will explore causal discovery in causal models involving multiple latent confounders
and more general latent structures.
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A ADDITIONAL DISCUSSION ON THE SkewScore MEAUSURE

This section discusses SkewScore (Definition 1), including intuition and motivation for considering
this measure.

If the conditional density p(xi | x−i) is a symmetric function, then we have SkewScorexi
(p) = 0.

The proof of this result is deferred to the end of this section. For asymmetric distributions, we provide
two one-dimensional examples with explicit computations at the end of this section:

1. For the Gumbel distribution pGumbel(x) =
1
β exp

(
−x−µβ − e

− x−µ
β

)
with β > 0, we have

SkewScore(pGumbel) =
2
β3 .

2. For the Gamma distribution Γ(k, θ), with k > 3, and θ > 0, i.e.,

pGamma(x) =

{
1

Γ(k)θk
xk−1e−

x
θ , x ≥ 0

0, x < 0
(θ > 0, k > 3),

we have SkewScore(pGamma) = θ−3 4
(k−3)(k−2) .

We provide additional discussion on the motivation for considering the skewness of the score, i.e.,
the SkewScore measure. Consider the bivariate HSNM model where the variable X causes Y , i.e.,
X → Y . Figure 1 shows that to identify the causal direction, rather than examining the skewness
of the residuals, we can focus on the skewness of the conditional distribution. However, working
directly with the conditional random variables X|Y and Y |X is often challenging. Therefore, we
introduce an auxiliary random variable,∇ log p(X,Y ), where (X,Y ) follows the data distribution
p. This two-dimensional random variable, induced by the score function on the data distribution,
is represented as the black directed line segments in Figure 5. This auxiliary random vector’s first
element, ∂x log p(X,Y ), is visualized as the orange directed line segment, while the second element,
∂y log p(X,Y ), is shown in blue. Fact 1 connects the conditional distribution p(y|x) and p(x|y) with
this auxiliary random vector, allowing us to transform the conditional-distribution-estimation problem
to a joint-distribution one. Theorem 1 shows that under Assumption 1, the orange directed segment
(representing ∂x log p(X,Y )) follows a skewed distribution, whereas the blue directed segment
(representing ∂y log p(X,Y )) follows a symmetric distribution. This means that SkewScorex(p) ̸= 0
while SkewScorey(p) = 0. We summarize the motivation in Figure 6.

Score
Data points (x, y)

y

x

Data points (x,y) 
Score function: ∇log p(x,y) 
Score's projection on x: ∂x log p(x,y) 
Score's projection on y: ∂x log p(x,y)

 ___________________________________

 ___________________________________■■■y

Figure 5: Score function (a vector field) visualized on data points with projections on the x-axis and y-axis. For
clarity, only the projections for one data point are shown (highlighted in orange and blue). Theorem 1 examines
the skewness of these projections across the data distribution.

Skewness of the
Exogenous Noise N
(Difficult to extract N )

Skewness of the Con-
ditional Distributions

p(x|y), p(y|x)
(Challenging to em-
pirically estimate)

Skewness of the score
∇ log p(X,Y ):

SkewScorex(p) and
SkewScorey(p)
(Our approach)

Figure 6: Conceptual flow from skewness of exogenous noise to skewness of the score.

We present the deferred proof and derivation as follows.
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Proof of: SkewScorexi
(p) = 0 for symmetric p(xi | x−i). By Definition 1, we have

SkewScorexi(p) =
∣∣∣EX∼p

[
(∂xi log p(X))

3
]∣∣∣

=

∣∣∣∣∫
Rd−1

∫
R

[∂xi
p(x1, · · · , xd)]3

p(x1, · · · , xd)2
dxidx−i

∣∣∣∣
The assumption that p(xi | x−i) is symmetric implies: for every x ∈ Rd,

p(x1, · · · , xi, · · · , xd) = p(x1, · · · ,−xi, · · · , xd).
Therefore,

∂xi
p(x1, · · · , xi, · · · , xd) = −∂xi

p(x1, · · · ,−xi, · · · , xd).

Now we fix x−i ∈ Rd−1, and let h(xi) =
[∂xi

p(x1,··· ,xi,··· ,xd]
3

p(x1,··· ,xi,··· ,xd)2
. From the previous analysis, we

derive that h(xi) = −h(−xi). So h is an odd function and thus∫
R
h(xi)dxi = 0.

Consequently, for every x−i ∈ Rd−1,∫
R

[∂xip(x1, · · · , xd)]3

p(x1, · · · , xd)2
dxi = 0.

E
[
∂

∂xi
log p(X1, X2, · · · , Xd)

]
=

∫
Rd

∂
∂xi

p(x1, x2, · · · , xd)
p(x1, x2, · · · , xd)

p(x1, x2, · · · , xd)dx−idxi

=

∫
Rd−1

∫
R

∂

∂xi
p(x1, x2, · · · , xd)dxidx−i.

Thus we prove SkewScorexi(p) = 0. ■

Derivation of SkewScore(pGumbel). Recall that p(x) = 1
β exp

(
−x−µβ − e

− x−µ
β

)
. Then log p(x) =

log
(

1
β

)
−
(
x−µ
β + e−

x−µ
β

)
, and d

dx log p(x) = −
1
β −

(
− 1
β

)
e−

x−µ
β = 1

β

(
−1 + e−

x−µ
β

)
.

SkewScore(pGumbel) =

∫
R

[
1

β

(
−1 + e−

x−µ
β

)]3 1

β
exp

(
−x− µ

β
− e−

x−µ
β

)
dx

z= x−µ
β

=
1

β3

∫
R

(
−1 + e−z

)3
e−(z+e

−z)dz

y=e−z

=
1

β3

∫ ∞

0

(−1 + y)
3
e−ydy.

Finally, since
∫∞
0
yke−ydy = Γ(k + 1) = k!, for k ∈ N, we conclude that SkewScore(p) = 2

β3 . ■

Derivation of SkewScore(pGamma). We first note that k > 3 implies that p(x) ∈ C1 and ensures the
integrals involved are all well-defined. We have log p(x) = (k− 1) lnx− x

θ + ln
(

1
Γ(k)θk

)
, and thus

d
dx log p(x) =

k−1
x −

1
θ . Then we have

SkewScore(p) = E

[(
d

dx
log p(x)

)3
]

=

∫ ∞

0

(
k − 1

x
− 1

θ

)3
1

Γ(k)θk
xk−1e−

x
θ dx

=
1

Γ(k)θk

∫ ∞

0

[
(k − 1)3x−3 − 3(k − 1)2

1

θ
x−2 + 3(k − 1)

1

θ2
x−1 − 1

θ3

]
xk−1e−

x
θ dx

=
θk−3

Γ(k)θk

[
(k − 1)3Γ(k − 3)− 3(k − 1)2Γ(k − 2) + 3(k − 1)Γ(k − 1)− Γ(k)

]
.
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By the property of Gamma function Γ(z + 1) = zΓ(z), we have

E

[(
d

dx
log p(x)

)3
]
=

1

Γ(k)θk
Γ(k)θk−3

[
(k − 1)3

(k − 1)(k − 2)(k − 3)
− 3(k − 1)2

(k − 1)(k − 2)
+

3(k − 1)

k − 1
− 1

]

= θ−3 4

(k − 3)(k − 2)
.

■

B DISCUSSION ON MODEL ASSUMPTION 1
The following proposition demonstrates that Assumption 1 is not overly restrictive and can generally
be satisfied; specifically, the set of models that violate this assumption is relatively small. To establish
this, we fix px, pn, and σ(x), and consider f within a finite-dimensional space with a sufficiently
large dimension to capture the features of the data. We then demonstrate that the set of functions f(x)
that do not satisfy the assumption has zero measure.

Proposition 5. Fix px, pn, and σ(x). Consider f within an M -dimensional linear space V . In this
space V , define the non-compliant set as

Snc(V ) := {f ∈ V : f does not satisfy Assumption 1} .

With the notation in Assumption 1, define h(x) := 3
(∫

R
p′n(u)

2

pn(u)
du

)
A(x)px(x)
σ(x)2 + 3

(∫
R
p′n(u)

3u
pn(u)2

du
)
C(x)px(x)
σ(x)2 ,

c :=
∫ (

A(x) + C(x)
p′n(u)u
pn(u)

)3

pn(u)px(x)dxdu,

which do not involve f .

Since dimV =M , V is isomorphic to RM and thus naturally inherits the Lebesgue measure on RM .
This induced measure does not depend on the choice of basis and is denoted by m. Assume there
exists x0 ∈ R such that h(x0) ̸= 0, then the following holds.

1. If c ̸= 0, then the non-compliant set has zero measure, i.e.,

m(Snc(V )) = 0.

2. If c = 0, assume V is the space of polynomial functions of degree at most M − 1, i.e.,
V =

{∑M−1
i=0 aix

i : a0, a2, . . . , aM−1 ∈ R
}

. Assume
∫
R
(
px(x)

2 + p′x(x)
2
)
eµx

2

dx <

∞, for some µ ∈ (0,+∞). Then there exists M0 ∈ N, such that for every M ≥ M0, the
non-compliant set has zero measure, i.e.,

m(Snc(V )) = 0.

This proposition indicates that Assumption 1 is generally satisfied for most models within a sufficiently
large finite-dimensional space, as the set of functions violating the assumption has zero measure. The
proof is provided in Appendix G.

Remark 6. We note that when σ(x) is not constant (i.e., in the heteroscedastic model), c ̸= 0 in
most cases. However, if σ(x) is constant and px is symmetric, then c = 0. In this scenario, if X is a
Gaussian variable, the assumption in the second case is always satisfied; that is, there exists some
µ ∈ (0,+∞) such that

∫
R
(
px(x)

2 + p′x(x)
2
)
eµx

2

dx <∞.

For the multivariate case, intuitively, the general validity of the assumption in Corollary 2 is similar
to Proposition 5, where the set of functions (fi, σi) that violate Eq. (6) exhibits a property analogous
to having Lebesgue zero measure. Specifically, we parameterize the causal model by parameterizing
functions fθi and σθi , where θ belongs to the parameter space Θ ⊂ RK (e.g., a neural network; see
Example 7). The left-hand side of Eq. (6) defines a function of the parameter θ, and we write it as
F (θ). With this parametrization, the model that violates Eq. (6) corresponds to the solution of the
equation F (θ) = 0. Under regular assumptions on fi, σi, pX , and pNi

, F is a real-analytic function.
Then by applying (Mityagin, 2015, Proposition 0), the violated set Snc(Θ) = {θ ∈ Θ : F (θ) = 0}
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has zero measure as long as the function F is not a zero constant function. It is worth noting, however,
that in the homoscedastic Gaussian linear model, F is identically zero, and thus the proposition from
Mityagin (2015) no longer applies.

We provide the following examples to give a more intuitive understanding of Assumption 1.

Example 7. In this example we consider a Homoscedastic model, where σ(x) = σ is a constant. Let
f be a two-layer Neural Network with Softplus activation function:

f(x) = w2 log(1 + e(w1x+b1)) + b2, w1, w2, b1, b2 ∈ R.

Assuming px is an unimodal distribution symmetric with respect to 0, then Assumption 1 is violated if
and only if w1 = 0 or w2 = 0, i.e., when f is a constant function.

Proof The LHS of Assumption 1 equals to

3w2
1w

2
2

σ2

∫
R

1

(1 + e−(w1x+b))2
p′x(x)dx

∫
R

(p′N (u))2

pN (u)
du.

Notice that (p′N (u))2

pN (u) is always non-negative, so
∫
R

(p′N (u))2

pN (u) du > 0. We only need to prove∫
R

1
(1+e−(w1x+b))2

p′x(x)dx ̸= 0 when w1 ̸= 0.

Notice that px(x) is an even function thus p′x(x) is an odd function, thus∫
R

p′x(x)

(1 + e−(w1x+b))2
dx =

∫ ∞

0

p′x(x)

(1 + e−(w1x+b))2
p′x(x)dx+

∫ 0

−∞

p′x(x)

(1 + e−(w1x+b))2
dx

=

∫ ∞

0

(
1

(1 + e−(w1x+b))2
− 1

(1 + e−(−w1x+b))2

)
p′x(x)dx

=

∫ ∞

0

(2 + e−(w1x+b) + e−(−w1x+b))e−b(ew1x − e−w1x)

(1 + e−(w1x+b))2(1 + e−(−w1x+b))2
p′x(x)dx

Since w1 ̸= 0, and px is an unimodal distribution symmetric with respect to 0. The integrand is
always of the same sign (always strictly greater than 0 or strictly less than 0) over the integration
interval (0,∞). Therefore, the above integral is non-zero.

■

Example 8. In this example we consider the Heteroscedastic case with σ(x) = eλ(x−µ)
2

, where
µ ̸= 0, λ > 0. Let f(x) = ax + b, X ∼ N (0, 1), N ∼ N (0, 1). Then f violates Assumption 1 if
and only if

a = ±
√
− c
γ
,

where γ = 3µλ

[
4e

µ2

2(4λ+1)

(4λ+1)
√
4λ+1

+ 6e
µ2

2(6λ+1)

(6λ+1)
√
6λ+1

]
and c is defined in Proposition 5. Especially, when

c
γ > 0, f always satisfy Assumption 1.

It is evident that the non-compliant set Snc(V ) = {
√
− c
γ } × R ∪ {−

√
− c
γ } × R always has 0

measure (it is an empty set when c
γ < 0), providing an example for proposition 5. Additionally, due to

the simple structure, we already have m(Snc(V )) = 0 when c = 0. Therefore, the discussion of the
second case in Proposition 5 is unnecessary. The proof of this example is provided as follows.

Proof Recall in the proof of proposition 5 (Eq. (16)), we proved that f violates Assumption 1 equals
to ∫

R
f ′(x)2h(x)dx = −c.

As f(x) = ax+ b is linear, it equals to

a2
∫
R
h(x)dx = −c.
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On the other hand, we can simplify h(x) as follows:

h(x) =
3p′X(x)

σ(x)2
− 9pX(x)σ(x)

σ(x)4
= − 3x√

2π
e−

4λ(x−µ)2+x2

2 − 18λ(x− µ)√
2π

e−
6λ(x−µ)2+x2

2 .

Thus we can compute that

∫
R
h(x)dx = 3µλ

[
4e

µ2

2(4λ+1)

(4λ+ 1)
√
4λ+ 1

+
6e

µ2

2(6λ+1)

(6λ+ 1)
√
6λ+ 1

]
.

Then we know that
∫
R h(x)dx ̸= 0. Therefore, we conclude that f violates Assumption 1 if and only

if

a2 = − c∫
R h(x)dx

,

which equals to

a = ±
√
− c
γ
.

■

In the following example, we discuss a case where f does not satisfy Assumption 1.

Example 9. Let σ(x) = σ be a constant and f be linear, then f does not satisfy Assumption 1 if and
only if: ∫

R

p′x(x)
3

px(x)2
dx = 0. (9)

When X follows a symmetric distribution, Eq. (9) holds. Specifically, when X follows a Gaussian
distribution, Eq. (9) holds, implying that f fails to satisfy Assumption 1. This indicates that the
Gaussian Linear model is unidentifiable by our algorithm, consistent with previous research such
as (Hoyer et al., 2008a). However, as illustrated in example 8, if σ(x) is replaced by a non-constant
function, the model becomes identifiable for most cases. The proof of this example is provided as
follows.

Proof We prove it by directly simplifying the formula in Assumption 1. Notice that when σ(x) = σ

is a constant, f(x) = ax+ b is linear, C(x) = 0, B(x) = − a
σ , A(x) = p′x(x)

px(x)
. So f does not satisfy

Assumption 1 equals to ∫
R

p′x(x)
3

px(x)2
dx+

3a2

σ2

∫
R

p′n(u)
2

pn(u)

∫
R
p′x(x)dx = 0.

Notice that
∫
R p

′
x(x)dx = 0, it then equals to∫

R

p′x(x)
3

px(x)2
dx = 0,

thus completing the proof. ■

C DISCUSSION ON THE SKEWNESS DEFINITION

To enhance the flexibility of our algorithm, we redefine the skewness of a random variable W as
Skewψ(W ) = E[ψ(W − EW )], employing a nonlinear odd test function ψ that satisfies ψ(−s) =
−ψ(s). Specifically, in Theorem 1, the chosen function is ψ(s) = s3. Note that for any symmetric
random variable W , Skewψ(W ) = 0 for any odd function ψ, thus upholding the validity of Eq. (4)
under this generalized definition. To ensure that a ψ-analog of Eq. (5) also holds in the anti-causal
direction, it is essential to verify the ψ-analog of Assumption 1. A necessary condition for ψ is
nonlinearity due to Fact 2.
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D PROOFS OF SUPPORTING LEMMAS AND FACTS

Proof of Fact 1 Without loss of generality, it suffices to provide the proof when p ∈ C1(R2). Notice
that the derivative of the log conditional density translates to the derivative of the log joint distribution,
then

∂

∂xi
log p(xi|x−i) =

∂

∂xi
log

(
p(x1, x2, · · · , xd)

p(x−i)

)
=

∂

∂xi
(log p(x1, x2, · · · , xd)− log p(x−i))

=
∂

∂xi
log p(x1, x2, · · · , xd).

■

Proof of Fact 2

E
[
∂

∂xi
log p(X1, X2, · · · , Xd)

]
=

∫
Rd

∂
∂xi

p(x1, x2, · · · , xd)
p(x1, x2, · · · , xd)

p(x1, x2, · · · , xd)dx−idxi

=

∫
Rd−1

∫
R

∂

∂xi
p(x1, x2, · · · , xd)dxidx−i.

Since p is continuously differentiable, we apply the Newton-Leibniz formula to xi. For any
(x1, · · · , xi−1, xi+1, · · ·xd) ∈ Rd−1, we have∫

R

∂

∂xi
p(x1, · · · , xi, · · · , xd)dxi = p(x1, · · · , xi, · · · , xd)|xi=+∞

xi=−∞ = 0− 0 = 0,

where limxi→+∞ p(x1, · · · , xi, · · · , xd) = limxi→−∞ p(x1, · · · , xi, · · · , xd) = 0 because p is a
probability density. Therefore, we have shown that E

[
∂
∂xi

log p(X1, X2, · · · , Xd)
]
= 0. ■

We also note that the assumption pX(x) ∈ C1(Rd,R+) can be relaxed. For example, Fact 2 holds
for uniform distribution on [−1, 1] despite having singularities at −1 and 1, as the densities at these
two endpoints cancel out after the Newton-Leibniz step. More generally, Fact 2 still holds when
p is piecewise continuously differentiable with singularity points w1 < w2 < . . . < wm, and∑m
i=1[p(wi+)− p(wi−)] = 0.

Attentive readers may observe, however, that for the exponential distribution (pexp(x) = λe−λx for
x ≥ 0 and 0 otherwise), Fact 2 does not hold. This is because of its singularity at x = 0, where
pexp(0−) = 0 and pexp(0+) = 1.

E PROOF OF THEOREM 1

Assumption 2 (Regularity assumption for px, pn). pn, px ∈ C1,

1.
∫
R
|(p′n(u))3|
p2n(u)

du <∞,

2.
∫
R

∣∣∣p′x(x)3px(x)2

∣∣∣ dx <∞,
∫
R
|(p′n(u))3u3|

p2n(u)
du <∞.

Assumption 3 (Regularity assumption for f ). f ∈ C1,∫
R

∣∣f ′(x)3∣∣ px(x)dx <∞.
Remark 10. Assumption 2 and 3 ensures all the integrals we discuss here are well-defined.

Proof of Theorem 1 We first prove Eq. (4). As Y = f(X) + σ(X)N , the density of (X,Y ) should
be

p(x, y) = px(x)p(y|x) =
px(x)

σ(x)
pn

(
y − f(x)
σ(x)

)
.
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EX,Y (∂y log p(X,Y ))
3
=

∫
R2

px(x)

σ(x)4

(
p′n

(
y−f(x)
σ(x)

))3

p2n

(
y−f(x)
σ(x)

) dxdy

=

∫
R2

px(x)

σ(x)3
(p′n(u))

3

p2n(u)
dxdu

=

∫
R

px(x)

σ(x)3
dx

∫
R

(p′n(u))
3

p2n(u)
du

= 0.

For Eq. (5), we first expand it explicitly:

EX,Y (∂x log p(X,Y ))
3
=

∫
R2

[
p′x(x)

px(x)
− σ′(x)

σ(x)
− p′n(u)

pn(u)

(
f ′(x)

σ(x)
+
σ′(x)u

σ(x)2

)]3
px(x)pn(u)dxdu

(10)

=

∫
R
px(x)

∫
R

[
A(x) +B(x)

p′n(u)

pn(u)
+ C(x)

p′n(u)u

pn(u)

]3
pn(u)dudx.

(11)

where A(x) = p′x(x)
px(x)

− σ′(x)
σ(x) , B(x) = − f

′(x)
σ(x) and C(x) = σ′(x)

σ(x)2 , as is denoted in Assumption 1.

As pn(u) = pn(−u), we derive
∫
R
p′n(u)

3

pn(u)2
du =

∫
R p

′
n(u)du = 0, so we can can expand Eq. (11) and

get

EX,Y (∂x log p(X,Y ))
3
=

∫
R
px(x)

∫
R

[(
A(x) + C(x)

p′n(u)u

pn(u)

)3

dx (12)

+ 3

(
B(x)

p′n(u)

pn(u)

)2 (
A(x) + C(x)

p′n(u)u

pn(u)

)]
pn(u)du. (13)

By assumption, EX,Y (∂x log p(X,Y ))
3 ̸= 0, thus completing the proof.

■

F PROOF OF COROLLARY 2
Proof of corollary 2 As in prior work, we assume all integrals below are well-defined. We first
compute that: for every k ∈ {1, 2, · · · d},

∂xk
log p(x) =

p′k
σkpk

−
∑

i∈child(k)

(
p′i
pi
· σi∂xk

fi + (xi − fi)∂xk
σi

σ2
i

+
∂xk

σi
σi

)
. (14)

It suffices to notice that the joint distribution of X can be written as:

p(x) =

d∏
i=1

p (xi|pai(x))

log p(x) =

d∑
i=1

log p (xi | pai(x))

=

d∑
i=1

log

(
pNi

(
xi − fi (pai(x))
σi(pai(x))

))
−

d∑
i=1

log σi(pai(x)).

We then differentiate with respect to xk and directly derive Eq. (14).

We are now prepared to prove the first assertion. Considering a sink Xk, we know that child(k) = ∅.
Therefore, by the formula in the first line of the proof:

∂xk
log p(x) =

p′k
σkpk

.
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Then we can compute:

EX (∂xk
log p(X))

3
=

∫
Rd

 p′Nk

(
xk−fk(pak(x))
σk(pak(x))

)
σk(pak(x)) · pNk

(
xk−fk(pak(x))
σk(pak(x))

)
3

d∏
i=1

p (xi|pai(x)) dx

=

∫
Rd

p(pak(x))

σk(pak(x))
4
·

(
p′Nk

(
xk−fk(pak(x))
σk(pak(x))

))3

p2Nk

(
xk−fk(pak(x))
σk(pak(x))

) ∏
i ̸=k

p (xi|pai(x)) dx

=

∫
Rd

p(pak(x))

σk(pak(x))
3
·
(
p′Nk

(u)
)3

p2Nk
(u)

du
∏
i ̸=k

(p (xi|pai(x)) dxi)

=

∫
Rd−1

p(pak(x))

σk(pak(x))
3
·
∏
i ̸=k

(p (xi|pai(x)) dxi)
∫
R

(
p′Nk

(u)
)3

p2Nk
(u)

du

= 0.

We obtain the last equality because
∫
R
(p′Nk

(u))
3

p2Nk
(u)

du = 0. More explicitly, due to the assumption that

p′Nk
(u) is symmetric,

(p′Nk
(u))

3

p2Nk
(u)

is a odd function and thus its integral is 0.

We then prove the second assertion. Recall that

∂xk
log p(x) =

p′k
σkpk

−
∑

i∈child(k)

(
p′i
pi
· σi∂xk

fi + (xi − fi)∂xk
σi

σ2
i

+
∂xk

σi
σi

)
.

Therefore,

EX (∂xi log p(X))
3
=

∫
Rd

[
p′k
σkpk

−
∑

i∈child(k)

(
p′i
pi
· σi∂xk

fi + (xi − fi)∂xk
σi

σ2
i

+
∂xk

σi
σi

)]3 d∏
j=1

pj
σj

dx.

Thanks to our assumption (6), we derive that:

EX (∂xi
log p(X))

3 ̸= 0,

thus completing the proof. ■

G PROOF OF PROPOSITION 5
Lemma 11. If

∫
R
(
px(x)

2 + p′x(x)
2
)
eµx

2

dx <∞ for some µ ∈ (0,+∞), recalling

h(x) := 3

(∫
R

p′n(u)
2

pn(u)
du

)
A(x)px(x)

σ(x)2
+ 3

(∫
R

p′n(u)
3u

pn(u)2
du

)
C(x)px(x)

σ(x)2
,

then we have : ∫
R
h(x)2eµxdx <∞.

Proof As A(x) =
p′x(x)
px(x)

− σ′(x)
σ(x) and C(x) = σ′(x)

σ(x)2 and σ, σ′ are bounded and σ(x) ≥ r > 0,

there exists a constant b > 0 s.t. |A(x)| ≤
∣∣∣p′x(x)px(x)

∣∣∣ + b, |C(x)| ≤ b. Notice that
∫
R
p′n(u)

2

pn(u)
du and∫

R
p′n(u)

3u
pn(u)2

du are all constant, then there exists constant c1 > 0 s.t.

|h(x)| ≤ c1 (px(x) + |p′x(x)|) .
Therefore

|h(x)|2 ≤ 2c21
(
px(x)

2 + p′x(x)
2
)
,

=⇒
∫
R
h(x)2eµxdx ≤

∫
R

(
px(x)

2 + p′x(x)
2
)
eµx

2

dx <∞.

■

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Defining

L2(R, eµx
2

) :=

{
h ∈ L2(R) :

∫
R
h(x)2eµxdx <∞

}
,

lemma 11 equals to saying that h ∈ L2(R, eµx2

). The following lemma is interesting as the integral
is taken over R instead of a finite interval, and thus the Stone Weierstrass theorem cannot be
applied.

Lemma 12. For h ∈ L2(R, eµx2

), if
∫
R x

nh(x)dx = 0 for every n ∈ N, then h = 0 almost
everywhere.

Proof Without loss of generality, we assume µ = 1. It is well known that L2(R, eµx2

) is a Hilbert
space. Then by knowledge of Hermite polynomials, there exist a series of polynomials {Hn}∞n=1

which is a orthogonal basis of L2(R, eµx2

).
∫
R x

nh(x)dx = 0 for every n ∈ N implies that∫
RHn(x)h(x)dx = 0 for every n ∈ N, thus proving h = 0. ■

Proof of Proposition 5 For every finite dimensional subspace V ⊂ V0, f ∈ Snc(V ) equals to

0 =

∫ [(
A(x) + C(x)

p′n(u)u
pn(u)

)3

+ 3
(
B(x)

p′n(u)
pn(u)

)2 (
A(x) + C(x)

p′n(u)u
pn(u)

)]
pn(u)px(x)dxdu.

(15)

In the above equation, only B(x) involves f(x). So we can simplified Eq. (15) into∫
R
f ′(x)2h(x)dx+ c = 0, (16)

where  h(x) = 3
(∫

R
p′n(u)

2

pn(u)
du

)
A(x)px(x)
σ(x)2 + 3

(∫
R
p′n(u)

3u
pn(u)2

du
)
C(x)px(x)
σ(x)2 ,

c =
∫ (

A(x) + C(x)
p′n(u)u
pn(u)

)3

pn(u)px(x)dxdu.

Let fi (1 ≤ i ≤ d) be a basis of V , f =
∑
i aifi, then Eq. (16) equals to∑

1≤i,j≤d

aiaj

∫
R
f ′i(x)f

′
j(x)h(x)dx+ c = 0.

Let JV (a1, a2 · · · , an) :=
∑

1≤i,j≤d aiaj
∫
R f

′
i(x)f

′
j(x)h(x)dx+ c. J is a polynomial and thus a

real analytic function. Define KerJV := {(a1, a2, · · · , ad) : JV (a1, a2, · · · , an) = 0}, then

f ∈ Snc(V ) ⇐⇒ (a1, a2, · · · , an) ∈ KerJV .

We first consider the second case where
∫
R
(
px(x)

2 + p′x(x)
2
)
eµx

2

dx <∞ for some µ ∈ (0,+∞).
By lemma 11,

∫
R h(x)

2eµxdx <∞. If
∫
R x

nh(x)dx = 0 for every n ∈ N, then by lemma 12, h = 0
almost everywhere. Notice that h is also continuous, implying that h(x) = 0 for every x ∈ R. This
contradicts with our assumption on h. So we know that there exist M0, s.t.

∫
R x

M0h(x)dx ̸= 0.
Therefore, for M ≥M0 + 1, if we take V to be the space of polynomials with degree smaller than
M and fi(x) = xi−1, then JV is a non-zero function. By basic knowledge of real analysis Mityagin
(2015)[Proposition 0], KerJV has zero measure. So m(Snc(V )) = m(KerJV ) = 0

For the first case, if c ̸= 0, then JV (0, 0, · · · 0) = c ̸= 0. So JV is a non-zero function for every finite
dimensional space V ⊂ C1(R). Similar to the analysis above, we derive m(Snc(V )) = 0 and thus
completing the proof.

■

H PROOF OF PROPOSITION 3
Let

h(x, v) :=

∫
R
p(z)q0(x− ϕ0(z))σ(x)−1q1

(
v − ϕ1(z)
σ(x)

)
dz.
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Under our assumption in 5, it is easy to verify that h is well-defined and belong to C1,1(R2) ∩ L∞.
Formally, we denote 

A3 = −
∫
R2

f ′(x)3∂vh(x,v)
3

h(x,v)2 dxdv,

A2 = 3
∫
R2

f ′(x)2∂vh(x,v)
2∂xh(x,v)

h(x,v)2 dxdv,

A1 = −3
∫
R2

f ′(x)∂vh(x,v)∂xh(x,v)
2

h(x,v)2 dxdv,

A0 =
∫
R2

∂xh(x,v)
3

h(x,v)2 dxdv.

.

The well-defineness of Ai (0 ≤ i ≤ 3) will be verified in the following lemma.

Assumption 4 (Restriction on Model with a Latent Confounder).

1. (Regularity assumption.) It exists an open subset U ⊂ (0,+∞) s.t. for i ∈ {x, y} and every
λ ∈ U , EX,Y

∣∣∣(∂i log pλ(X,Y ))
3
∣∣∣ <∞.

2. A2
1 +A2

2 +A2
3 ̸= 0.

Lemma 13. Under assumption 4, Ai (i = 0, 1, 2, 3) are all well-defined integral and

EX,Y (∂x log pλ(X,Y ))
3
= A3λ

3 +A2λ
2 +A1λ+A0.

Proof

EX,Y (∂x log pλ(X,Y ))
3
=

∫
R2

(∂x log pλ(x, y))
3
pλ(x, y)dxdy

=

∫
R2

(∂xpλ(x, y))
3

pλ(x, y)2
dxdy

=

∫
R2

(∂xh(x, v)− λf ′(x)∂vh(x, v))3

h(x, v)2
dxdv

,

Consequently we can write the integrand as:

(∂xh(x, v)− λf ′(x)∂vh(x, v))3

h(x, v)2
=

3∑
i=0

gi(x, v)λ
i,

where 
g3(x, v) = − f

′(x)3∂vh(x,v)
3

h(x,v)2 ,

g2(x, v) = 3 f
′(x)2∂vh(x,v)

2∂xh(x,v)
h(x,v)2 ,

g1(x, v) = −3 f
′(x)∂vh(x,v)∂xh(x,v)

2

h(x,v)2 ,

g0(x, v) = ∂xh(x,v)
3

h(x,v)2 .

As h(x, v) > 0, gi are continuous. Taking λk ∈ U (0 ≤ k ≤ 3) s.t. λi ̸= λj for i ̸= j. By

assumption 4, for 0 ≤ k ≤ 3,
∫
R2

∣∣∣∑3
i=0 gi(x, v)λ

i
k

∣∣∣ dxdv <∞, i.e.
∑3
i=0 λ

i
kgi ∈ L1(R2). Notice

that the matrix A = (Aik)0≤i,k≤3 such that Aik = λki is a Vandermonde matrix and thus invertible.
Then since L1(R2) is a linear space, we conclude that gi ∈ L1(R2) for 0 ≤ i ≤ 3. Consequently
Ai =

∫
R2 g(x, v)dxdv is well-defined and

EX,Y (∂x log p(X,Y ))
3
= A3λ

3 +A2λ
2 +A1λ+A0.

■

Proof of Proposition 3

p(x, y, z) = p(z)p(x|z)p(y|x, z) = p(z)q0(x− ϕ0(z))σ(x)−1q1

(
y − λf(x)− ϕ1(z)

σ(x)

)
.
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We write pλ(x, y) as p(x, y) for short, therefore,

p(x, y) =

∫
R
p(z)q0(x− ϕ0(z))σ(x)−1q1

(
y − λf(x)− ϕ1(z)

σ(x)

)
dz.

Let h(x, v) :=
∫
R p(z)q0(x− ϕ0(z))σ(x)

−1q1

(
v−ϕ1(z)
σ(x)

)
dz. Notice that h is independent of λ, f

and h ∈ C1,1(R2) under our assumption. As h(x, y − λf(x)) = p(x, y), we derive:{
∂yp(x, y) = ∂vh(x, y − λf(x)),
∂xp(x, y) = ∂xh(x, y − λf(x))− λf ′(x)∂vh(x, y − λf(x)).

Our first observation is that: EX,Y (∂y log p(X,Y ))
3 is independent of λ and f , as is shown below:

EX,Y (∂y log p(X,Y ))
3
=

∫
R2

(∂y log p(x, y))
3
p(x, y)dxdy

=

∫
R2

(∂yp(x, y))
3

p(x, y)2
dxdy

(By change of variables) =
∫
R2

(∂yp(x, v + λf(x)))
3

p(x, v + λf(x))2
dxdv

=

∫
R2

(∂vh(x, v))
3

h(x, v)2
dxdv.

On the other hand, by lemma 13 we get:∣∣∣EX,Y (∂x log p(X,Y ))
3
∣∣∣ = ∣∣A3λ

3 +A2λ
2 +A1λ+A0

∣∣ .
Consequently, by assumption 4

∣∣∣EX,Y (∂x log p(X,Y ))
3
∣∣∣→ +∞ as λ→ +∞, thus there exists a

constant λ∗ s.t. for every λ ≥ λ∗:∣∣∣EX,Y (∂x log p(X,Y ))
3
∣∣∣ > ∣∣∣EX,Y (∂y log p(X,Y ))

3
∣∣∣ .

■

Remark 14. In particular, if A3 ̸= 0, let R =
∣∣∣EX,Y (∂y log p(X,Y ))

3
∣∣∣, we can set λ∗ = 1 +

max
{

3|A2|
|A3| ,

√
3|A1|
|A3| ,

3

√
3|A0|+R

|A3|

}
. It is easy to verify that

|A3|λ3 − |A2|λ2 − |A1|λ− |A0| > R,

when λ ≥ λ∗.

I EXPLICIT COMPUTATION OF EXAMPLE 4

p(x, y, z) ∼ exp
(
− z

2

2 −
(x−z)2

2 − (y−z−f(x)2)
2

)
,

p(x, y) =

∫
R
p(x, y, z)dz = C exp

(
−2

3

(
x2 + (y − f(x))2 − x(y − f(x))

))
= C exp

(
−2

3

(
y − x

2
− f(x)

)2

− x2

2

)
,

C = 1√
3π

is a normalization constant. Therefore,
∂y log p(x, y) = − 4

3

(
y − x

2 − f(x)
)
,

∂x log p(x, y) = 4
3

(
y − x

2 − f(x)
) (

1
2 + f ′(x)

)
− x

= 2
3 ((1 + 2f ′(x))y − f(x)− 2x− xf ′(x)− 2f(x)f ′(x))

= 2
3 (α(x)y − β(x)) ,
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where α(x) = 1 + 2f ′(x) and β(x) = f(x) + 2x+ xf ′(x) + 2f(x)f ′(x).

Skewy =
64C

27

∣∣∣∣∫
R

∫
R
(y − x

2
− f(x))3e−

2
3 (y−

x
2−f(x))

2

dy e−
x2

2 dx

∣∣∣∣
=

64C

27

∣∣∣∣∫
R

∫
R
u3e−

2
3u

2

du e−
x2

2 dx

∣∣∣∣ = 0.

On the other hand,

Skewx =
8C

27

∣∣∣∣∫
R

∫
R
(α(x)y − β(x))3 e−

2
3 (y−

x
2−f(x))

2

dy e−
x2

2 dx

∣∣∣∣ .
Let γ(x) = x

2 + f(x). Notice that α(x)γ(x)− β(x) = − 3x
2∫

R
(α(x)y − β(x))3 e−

2
3 (y−

x
2−f(x))

2

dy =

∫
R
(α(x)(y + γ(x))− β(x))3 e− 2

3y
2

dy

= 3α(x)2(α(x)γ(x)− β(x))
∫
R
y2e−

2
3y

2

dy + (α(x)γ(x)− β(x))3
∫
R
e−

2
3y

2

dy

= −9

2
xα(x)2

∫
R
y2e−

2
3y

2

dy − 27

8
x3

∫
R
e−

2
3y

2

dy.

Let µ =
∫
R y

2e−
2
3y

2

dy = 3
√
6π
8 ,

∫
R e

− 2
3y

2

dy.

Skewx =
8C

27

∣∣∣∣∫
R

(
−9µ

2
xα(x)2 − 27µ0

8
x3

)
e−

x2

2 dx

∣∣∣∣
=

4Cµ

3

∣∣∣∣∫
R
xα(x)2e−

x2

2 dx

∣∣∣∣
=

4Cµ

3

∣∣∣∣∫
R
x(1 + 2f ′(x))2e−

x2

2 dx

∣∣∣∣
=

16Cµ

3

∣∣∣∣∫
R
x(f ′(x) + f ′(x)2)e−

x2

2 dx

∣∣∣∣
=

2
√
2π

π

∣∣∣∣∫
R
x(f ′(x) + f ′(x)2)e−

x2

2 dx

∣∣∣∣ .
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J ADDITIONAL EXPERIMENTS

Runtime Table 1 presents the runtime, in seconds, for SkewScore using Sliced Score Matching
(SSM) (Song et al., 2020), for various variable counts d = {10, 20, 50}, where the number of edges
is twice the number of variables. All experiments are on 12 CPU cores with 24 GB RAM.

Table 1: Wall-clock runtime (in seconds) of SkewScore on ER2 graph with 1000 samples.

Method d = 10 d = 20 d = 50

SkewScore (SSM) 310.24± 7.17s 704± 19.82s 1825.92± 39.23s

Effect of Non-Symmetric Noise We conducted experiments adhering to the same bivariate HSNM
data generation process outlined in Section 6, except the noise now follows a Gumbel distribution.
Our method remains relatively robust to Gumbel noise, a skewed distribution. The results in the table
2 demonstrate that the reduction in accuracy for SkewScore is less significant than for HOST, which
operates under the assumption of Gaussian noise. LOCI and HECI are designed to handle various
noise types, which unsurprisingly results in strong performance. However, these two methods are
designed for bivariate models.

Table 2: Accuracies of estimated causal relationships in the bivariate case with a non-symmetric Gumbel noise.
The results are averaged over 100 independent runs.

Methods HNMs (Gumbel)

SkewScore 89
LOCI 100
HECI 99
HOST 33
DiffAN 92
DAGMA 27
NoTears 70

Performance on Additive Noise Model (ANM) Though SkewScore is designed for heteroscedas-
tic noise, it is still valid on nonlinear models with homoscedastic noise. We explore the algorithm’s
performance using data generated according to Additive Noise Models (ANM) with a GP as the
nonlinear function and Gaussian noise. After obtaining the topological order with SkewScore,
CAM pruning (Bühlmann et al., 2014) is applied. We calculate the topological order divergence and
the structural Hamming distance (SHD) across varying dimensions, focusing on graphs with d and
2d edges, represented as ER1 and ER2 graphs, respectively. The results, presented in Tables 3 and 4,
indicate that SkewScore maintains adequate performance in ANM settings. Results are averaged
over 10 independent runs.

Table 3: Topological order divergence across dimensionalities (d ∈ {10, 20, 50}) using data generated from
ANMs.

ER1 ER2

Methods d=10 d=20 d=50 d=10 d=20 d=50

SkewScore 1.00± 1.00 3.10± 0.70 8.50± 3.17 3.80± 2.44 11.00± 4.12 23.40± 5.82
HOST 3.90± 1.45 8.40± 2.11 15.00± 3.74 11.70± 2.45 22.20± 3.79 51.60± 3.77
DiffAN 1.80± 0.98 4.50± 3.07 14.89± 2.18 2.70± 1.19 7.00± 2.32 23.43± 2.50
DAGMAMLP 3.70± 1.10 7.70± 1.79 15.70± 4.65 10.20± 0.75 17.10± 1.51 35.00± 2.37

Effect of Sample Size Table 5 illustrates the order divergence for various models on synthetic data
generated, measured across increasing sample sizes n = {100, 1000, 10000}. This analysis was
conducted with a fixed dimension d = 10 with an equal number of edges, utilizing an ER graph model.
The results indicate that our method, specifically SkewScore, demonstrates enhanced performance
as the sample size increases. This trend suggests that SkewScore can efficiently leverage larger
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Table 4: SHD across different dimensionalities (d ∈ {10, 20, 50}) using data generated from ANMs.

ER1 ER2
Methods

d=10 d=20 d=50 d=10 d=20 d=50

SkewScore 2.90± 1.47 7.08± 2.32 19.32± 7.26 8.26± 2.42 30.50± 5.52 76.50± 5.50
HOST 7.20± 2.04 17.30± 3.95 44.70± 6.56 17.80± 2.44 37.10± 4.04 95.70± 6.42
DiffAN 3.50± 1.40 9.90± 1.87 23.56± 1.27 7.31± 1.42 30.10± 4.06 82.29± 5.95
DAGMAMLP 6.90± 1.04 15.60± 1.28 37.60± 4.18 12.30± 0.64 37.50± 1.20 92.40± 1.62

datasets to improve estimation accuracy. Notably, even with smaller sample sizes, SkewScore
maintains commendable performance, underscoring its robustness and effectiveness in scenarios with
limited data availability. This capability makes it particularly advantageous in practical applications
where acquiring large volumes of data may be challenging.

Table 5: Topological order divergence on synthetic data is analyzed as a function of sample size. We fix
d = 10 with the same number of edges, using an ER graph model, and vary the sample size across n =
{100, 1000, 10000}. Results are provided for both the HSNM and the HSNM with latent confounders.

HSNMs HSNMs with Confounders

n=100 n=1000 n=10000 n=100 n=1000 n=10000

SkewScore 1.90± 1.70 0.90± 0.75 0.60± 0.32 2.10± 0.83 1.30± 0.64 1.10± 0.58
HOST 4.40± 1.91 4.40± 1.11 3.80± 1.47 4.56± 1.34 4.20± 1.60 3.90± 1.45
DiffAN 4.70± 1.68 2.30± 1.19 2.40± 0.92 3.60± 1.50 2.80± 1.47 2.75± 1.39

VarSort (Reisach et al., 2021) 2.10± 1.45 2.00± 1.38 1.50± 1.81 2.20± 1.54 2.10± 1.51 1.90± 1.37

Real Data Our method’s accuracy is 62.6% in the Tübingen cause-effect pairs dataset, excluding
multivariates and binary pairs (47, 52-55, 70, 71, 105 and 107) as Immer et al. (2023). According
to the reported results from Immer et al. (2023), our method performance is slightly better than
LOCI. GRCI Strobl & Lasko (2023) performs the best, and QCCD Tagasovska et al. (2020) also
performs quite well. These methods are likely more robust to assumption violation in real data such
as measurement error or low sample complexity.

Multivariate extension of the case study in Section 5 Finally, we conduct experiments to explore
the multivariate extension of the case study in Section 5. The data generation process for experiments
for multivariate HSNMs with latent confounders is based on Montagna et al. (2023a). Let Z ∈ Rd
represent the latent common cause. For each pair of distinct nodes Xi and Xj , a Bernoulli random
variable Cij ∼ Bernoulli(ρ) is sampled, where Cij = 1 implies a confounding effect Z between
Xi and Xj . The parameter ρ determines the sparsity of confounded pairs in the graph. In our
experiments, we choose ρ = 0.2. Data generation follows a HSNM with latent confounders:
Xi = fi(paX(Xi)) + ϕi(paZ(Xi)) + σi(paX(Xi)) · Ni, for each variable i = 1, . . . , d. Here,
paX(Xi) and paZ(Xi) represent the observed and hidden variable parents of Xi, respectively. The
model incorporates the Gaussian processes with an RBF kernel of unit bandwidth to generate the
function fi, a linear function ϕi, and a conditional standard deviation σi modeled as a sigmoid
function of the observed parents’ linear combination. For a given number of observed variables d, we
adjust the sparsity of the sampled graph by setting the average number of edges to either d (ER1)
or 2d (ER2). The results are shown in 6 and 7, where the lower topological order divergence means
better performance. In general, SkewScore, Diffan, and NoTears have the best performances. In
sparser graph (ER1), SkewScore performs the best when d ∈ {10, 20, 30, 40}. In the ER2 graph,
SkewScore and Diffan have similar good performances. The theoretical insights for this extension
of the case study in Section 5 will be the focus of future work.

The data used for the barplots in Figures 3a and 3b are provided in Table 8. SkewScore maintains at
least 95% accuracy across all eight settings in Table 8, while other baselines fall below 85% accuracy
in at least one setting.
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Table 6: Topological order divergence: Synthetic data generated using multivariate HSNM with latent con-
founders with an ER1 graph.

Method d=10 d=20 d=30 d=40 d=50

SkewScore 1.20± 0.98 2.40± 2.33 4.60± 1.80 6.60± 3.29 7.20± 2.64
HOST 4.00± 1.48 8.10± 1.64 10.40± 2.29 14.90± 2.66 17.50± 2.73
DiffAN 2.80± 1.17 5.60± 2.62 8.60± 2.91 9.50± 2.46 11.60± 3.67
DAGMAMLP 6.00± 2.00 14.50± 2.11 19.30± 2.49 27.10± 3.33 34.50± 4.13
NoTears 1.50± 1.02 5.30± 2.45 5.00± 2.57 6.80± 3.97 6.30± 2.45

Table 7: Topological order divergence: Synthetic data generated using multivariate HSNM with latent con-
founders with an ER2 graph.

Method d=10 d=20 d=30 d=40 d=50

SkewScore 3.00± 1.61 8.60± 2.11 14.00± 4.73 16.60± 2.42 25.80± 4.26
HOST 11.80± 2.44 22.80± 4.45 32.90± 5.47 41.90± 6.55 51.80± 6.27
DiffAN 3.30± 2.10 7.20± 2.40 13.20± 3.49 18.10± 3.86 22.10± 4.44
DAGMAMLP 17.60± 1.80 34.90± 2.47 54.20± 2.18 74.40± 2.15 91.20± 3.19
NoTears 8.10± 2.81 16.70± 6.81 20.90± 5.73 25.30± 7.06 27.00± 4.45

Table 8: Accuracy (%) of causal direction estimation across different data generation processes for bivariate and
latent-confounded triangular heteroscedastic noise models. These data were used for the barplots in Figures 3a
and 3b. Additional notes: Dark green bold indicates the best performance, and dark green regular indicates the
second best performance.

Bivariate (no latent confounders) Latent-confounded Triangular

GP-Sig
(Gauss)

GP-Sig
(t)

Sig-abs
(Gauss)

Sig-abs
(t)

GP-Sig
(Gauss)

GP-Sig
(t)

Sig-abs
(Gauss)

Sig-abs
(t)

SkewScore 99 100 98 95 98 97 96 100
LOCI 99 99 98 96 68 83 99 100
HECI 100 95 100 64 54 64 99 83
HOST 100 81 100 89 89 91 100 91
DiffAN 92 89 92 48 76 90 80 35
DAGMA 72 58 58 26 45 61 5 40
NoTears 85 90 100 48 55 55 13 52
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