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Abstract

After a machine learning (ML)-based system is deployed in clinical practice, per-
formance monitoring is important to ensure the safety and effectiveness of the
algorithm over time. The goal of this work is to highlight the complexity of design-
ing a monitoring strategy and the need for a systematic framework that compares
the multitude of monitoring options. One of the main decisions is choosing between
using real-world (observational) versus interventional data. Although the former
is the most convenient source of monitoring data, it exhibits well-known biases,
such as confounding, selection, and missingness. In fact, when the ML algorithm
interacts with its environment, the algorithm itself may be a primary source of
bias. On the other hand, a carefully designed interventional study that randomizes
individuals can explicitly eliminate such biases, but the ethics, feasibility, and cost
of such an approach must be carefully considered. Beyond the decision of the
data source, monitoring strategies vary in the performance criteria they track, the
interpretability of the test statistics, the strength of their assumptions, and their
speed at detecting performance decay. As a first step towards developing a frame-
work that compares the various monitoring options, we consider a case study of an
ML-based risk prediction algorithm for postoperative nausea and vomiting (PONV).
Bringing together tools from causal inference and statistical process control, we
walk through the basic steps of defining candidate monitoring criteria, describing
potential sources of bias and the causal model, and specifying and comparing
candidate monitoring procedures. We hypothesize that these steps can be applied
more generally, as causal inference can address other sources of biases as well.

1 Introduction

After a machine learning (ML)-based system is deployed in clinical practice, performance monitoring
of the algorithm is necessary for mitigating risks [1, 2, 3] and has been recognized by regulators as an
essential aspect of good machine learning practice (GMLP) [4]. Recent regulatory recommendations
[5] have also highlighted how all medical devices—including ML-based algorithms—should institute
quality systems (CFR Title 21 Part 820), which encompasses “monitor[ing] production processes
to ensure that a device conforms to its specifications” (Subpart G). However, compared to the topic
of model development and pre-market evaluation, the topic of post-deployment (i.e., post-market)
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performance monitoring has been relatively overlooked and more of an afterthought [6, 7, 8]. This
work aims to highlight the immense, underappreciated variety of monitoring options that address
various statistical challenges in the post-market setting and the urgent need to develop a systematic
framework to choose among these options.

On the surface, selecting a monitoring procedure appears simple: a natural choice is to monitor the
same metrics used for initial model approval. This approach has been suggested in several works
[9, 10, 11, 12] and appears to satisfy recommendations from regulatory agencies [5]. However,
considering the many ways to measure performance, this is neither the only nor necessarily the best
monitoring option. Procedures for monitoring different performance metrics vary in their trade-offs,
so they should be tailored to suit specific situations. For instance, performance monitoring often
places a strong emphasis on detecting performance decay as quickly as possible and, thus, the number
of individuals exposed to a defective product [13]. In this case, monitoring changes in a measure
like AUC may be suboptimal because it is a relatively “coarse” metric [14]. Instead, as we highlight
later, it may be more effective to monitor other measures that are less commonly assessed for initial
approval but are much more sensitive.

Designing a post-market surveillance strategy encompasses not only the monitoring criteria but also
what data to collect and what assumptions are required. For ML-based medical devices, the most
convenient choice is observational data (e.g., electronic health records). Unfortunately, real-world data
is well-known to contain many potential sources of biases [15]. Moreover, the ML algorithm itself
may be a significant source of bias that changes the data generating process [16, 17]. For instance,
risk prediction models modify treatment patterns, and diagnostic models modify disease verification
[18, 19, 20, 21, 22, 23]. Most monitoring algorithms in the statistical process control (SPC) literature
assume an ideal data setting and are not equipped to analyze real-world data [13, 24]; if directly
applied, they can have overly large false positive rates and/or significantly delayed time to detection.
Recent works that address such biases vary in their monitoring criteria and the assumptions they need
for identifiability. For example, monitoring the mean of a process using inverse weighting typically
requires assuming a nonzero probability of treatment for each subgroup (positivity) and reliable
estimation of the dynamic treatment patterns, on top of conditional exchangeability [25, 26, 27, 28].
In contrast, methods for monitoring algorithmic fairness and conditional performance measures can
make weaker (or even no) assumptions regarding positivity but may be less interpretable [29].

Rather than relying on observational data, one could consider generating interventional data, such as
through randomization of treatment. This forcibly eliminates (some of the) major sources of bias so
that the aforementioned identifiability assumptions are no longer needed. The challenge in gathering
interventional data is determining the ethics and feasibility of such an approach. Nevertheless,
intervention could be acceptable in certain scenarios, particularly if it drastically improves the long-
term safety and effectiveness of the ML algorithm. Indeed, randomization is now being explored
to monitor ML-based algorithms in healthcare [30, 31] and detect changes in patient response to
eHealth interventions [32, 33].

Given the range of monitoring options, how does one choose between the many options for a given
problem setting? Research originated or encouraged by regulatory bodies has been instrumental in
developing roadmaps and reporting standards for evaluating medical products using real-world data
[34, 35, 36, 37, 38]. These efforts have informed regulatory practices, guidelines for industry, and
even approval of medical products [39, 4, 40, 41]. Nevertheless, existing frameworks are more in
line with the problem of performance evaluation and not performance monitoring. There has been
little discussion on how to assess and compare monitoring strategies for ML-based devices in the
post-market setting. To this end, we take the first steps towards such a framework through a case
study, where the goal is to design a monitoring strategy for a hypothetical ML-based risk prediction
algorithm for Postoperative Nausea and Vomiting (PONV)4. Merging ideas from causal inference
with SPC, we walk through four basic steps:

1. Define potential monitoring criteria
2. Enumerate sources of bias and define the causal model
3. Describe candidate monitoring strategies
4. Compare the pros and cons of candidate strategies

4The choice of PONV is to make the problem more realistic, but most conclusions apply to any general
ML-based risk prediction model.
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As the causal framework is well-equipped to analyze various sources of bias (e.g., missingness,
selection bias, and confounding [42, 43, 44]), we hypothesize that these steps form a general roadmap
for enumerating and assessing monitoring options. This case study also highlights the value of
designing monitoring plans proactively: Prior to model deployment (i.e., during the algorithm
development stage and initial assessment stages), we are limited by fewer constraints and can
consider more options, which may ultimately lead to better design choices.

2 The case study: ML-based risk prediction algorithms

Our central case study is an algorithm for predicting a patient’s risk of developing PONV after surgery.
Postoperative nausea and/or vomiting (PONV) is one of the most common side effects of anesthesia.
Suppose the algorithm outputs for each patient an estimate of their risk of PONV if the antiemetic
(i.e., antinausea) medications are or are not given. The clinician decides the treatment strategy based
on the algorithm’s results. Suppose the initial algorithm was approved for clinical use based on its
average negative predictive value (NPV) and positive predictive value (PPV). The ML algorithm is
allowed to evolve based on prior observations, according to some predefined change control plan [5].

Notation. Let Xt represent features for a patient drawn from the population at time t, uniformly at
random. At is a binary variable indicating whether the patient has or has not received antiemetic
medications (at = 1 versus at = 0, respectively). Using potential outcomes notation, Yt(at) is a
binary outcome which indicates if the patient develops PONV under treatment at, where Yt(at) = 1
means the patient does. For convenience, let Yt := Yt(At) denote the observed outcome under the
usual consistency assumption [45]. f̂t(x, a) is the predicted risk from the ML algorithm at time
t, given patient variables x and treatment a. In addition, let ŷt be the binarized version of f̂t, e.g.
ŷt(x, a) = 1{f̂t(x, a) > b} for some threshold b. To formally describe how information accumulates
over time, we define the process {(Xt, At, Yt(0), Yt(1), f̂t) : t = 1, 2, · · · } as being adapted to the
filtration {Ft : t = 1, 2, · · · }, where Ft is the sigma field generated by the collection of observations
up to time t, i.e. (f̂t, Yt−1, At−1, Xt−1, · · · , Y1, A1, X1).

2.1 Step 1: List potential monitoring criteria

The first step is to define a pool of candidate monitoring criteria. That is, what properties can we use
to determine if an ML algorithm is performing up to specifications (also called “in-control” in the
SPC literature)? Here, we take a frequentist view and formally express each monitoring criterion as
a null hypothesis and each monitoring procedure as a sequential hypothesis test. An alarm is fired
when the null hypothesis is rejected.

Below, we list three candidate criteria based on monitoring the PPV/NPV metrics, from the most
interpretable and least strict to the least interpretable and most strict. Increasing stringency of the
criteria also corresponds to increasing strength along the model calibration hierarchy [46] and in their
algorithmic fairness requirements.

Criterion 1: The average PPV/NPVs should be maintained above some thresholds. For prede-
fined thresholds {caυ : a, υ ∈ {0, 1}}, this criterion corresponds to the null hypothesis

Hcausal
0,C1 : Pr (Yt(a) = υ|ŷt(Xt, a) = υ,Ft) ≥ caυ ∀t, a, υ. (1)

Note that by conditioning on Ft in (1), we condition on the ML algorithm f̂t. This avoids the situation
where f̂t is a random variable that needs to be marginalized over. The key benefit of this criterion is
its interpretability, as it is a standard metric used in this case to approve the initial model.

Criterion 2: Subgroup-specific PPV/NPVs should be maintained above their respective thresh-
olds. Motivated by concerns regarding algorithmic fairness, another criterion is that the PPV/NPV is
maintained across predefined subgroups S1, · · · ,SK , such as those defined by protected attributes.
That is, for predefined subgroup-specific thresholds {caυk}, this criterion corresponds to checking
the null hypothesis

Hcausal
0,C2 : Pr (Yt(a) = υ|ŷt(Xt, a) = υ,Xt ∈ Sk,Ft) ≥ caυk ∀t, a, υ, k. (2)

This criterion is stricter than (1) and more sensitive to distribution shifts. However, to decide the
thresholds caυk, we may need to collect more data to estimate the PPV/NPV per subgroup, which
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Definition in the inter-
ventional study

Definition in the ob-
servational study

Potential sources of bias

Study population: Which population is the ML algorithm intended for?
All surgical cases Patients for which the

algorithm was queried
Spectrum/referral bias: The ML algorithm is only queried
for a subset of patients [49, 23], such as only the more difficult
cases or subpopulations the algorithm is believed to perform
well in.

Conditions of use: When is the ML algorithm queried for a risk prediction?
During the pre-
operative phase

Variable timing, de-
pendent on healthcare
provider preferences

Off-label use: ML algorithm may be queried in settings that
are not recommended, e.g. too early or late during a surgical
case [50].

Benchmark/Outcomes: What is the reference or non-reference standard?
An expert panel is as-
sembled to determine
if a patient developed
PONV.

Electronic phenotyp-
ing is used to deter-
mine if a patient devel-
oped PONV.

• Interfering medical interventions: Patients are treated with
differing rates, driven in part by recommendations from the
ML algorithm.

• Differential measurement error: The electronic phenotyp-
ing algorithm has differential error rates [51, 52].

• Circular definitions: The outcome label is biased by the
ML algorithm’s predictions, e.g. PONV is more likely to be
documented for cases predicted to be at high risk [23].

Table 1: Protocol components for monitoring an ML-based risk prediction algorithm for Postoperative
Nausea and Vomiting (PONV)

may delay the time to model deployment. Another concern is that any procedure that tests (2) must
account for multiple testing, so it is unclear how powerful a monitoring procedure for (2) would
ultimately be.

Criterion 3: The predicted probabilities should not be over-confident for any subgroup. Finally,
an even stricter criterion than checking subgroup-specific PPV/NPVs is to check that the algorithm’s
risk predictions are not overly extreme, in that the predicted risk should not be more extreme than
the true adverse event rate for any subgroup for some tolerance δ ≥ 0. Formally, we check the null
hypothesis:

Hcausal
0,C3 : ŝt(x, a)

(
f̂t(x, a)− Pr(Yt(a) = 1|x)

)
≤ δ ∀t, a, x, (3)

where ŝt(x, a) = sign
(
f̂t(x, a)− 0.5

)
is the predicted class assuming a threshold of 0.5. This test

can also be viewed as checking the strong calibration requirement, where the predicted probabilities
are required to be within some distance of the true risk for each individual; models that satisfy the
strong calibration requirement also satisfy strong notions of algorithmic fairness [46, 47, 48]. It is
the strictest criterion among the three and, thus, the most sensitive to dataset shifts. Although this
can accelerate detection, the null hypothesis can be quite sensitive, particularly for small values of δ,
and may be violated only for a very small subgroup. Thus, we must be careful when interpreting
a rejection of (3), as it could indicate a decay in model performance or that the model was not
well-calibrated to begin with.

2.2 Step 2: List sources of bias across various data sources and define causal models.

To check the criteria from Section 2.1, we must consider what data sources may be used and the
biases they exhibit. For this case study, suppose we can collect data from an observational setting
where healthcare providers are free to decide how to use the ML algorithm or an interventional setting
where patients are randomized to the two treatment options. Since PONV is not a life-threatening
complication, hospitals may be willing to randomize, given the benefits in terms of model monitoring.

We use the target trial emulation framework described in [53] to compare the two data sources more
formally. Recall that one view of causal inference is that it makes inferences from observational
data about counterfactual quantities by emulating a target interventional study [54]. As such, we
define the protocol components of the interventional and observational studies, as well as potential
sources of bias that would lead to differences between the two studies. (For reference, protocol
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Figure 1: Causal model describing interfering medical interventions induced by an evolving ML-
based risk prediction algorithm f̂t. Xt denotes variables for the patient being queried for at time t.
Zt denotes non-patient variables that may affect treatment decisions, such as past performance of
the ML algorithm. At denotes treatment assignment and Yt denotes the patient’s outcome. Note that
f̂t(Xt) = (f̂t(Xt, 0), f̂t(Xt, 1)).

components are listed in [55, 56].) By organizing biases in this manner, we ensure no potential source
of bias is missed. As seen in Table 1, the number of potential biases can be quite large. It may be
helpful to prioritize which biases to focus on by identifying which ones are unlikely to occur or are
less problematic. This often requires input from various stakeholders, including model developers,
statistical experts, subject matter experts, and regulators.

For simplicity, among this list of potential biases, suppose we are mainly concerned with the problem
of “interfering medical interventions” (IMI) [18, 57, 19, 20].5 (As we will see, things are complicated
enough, even with just IMI!) IMI is the problem where the ML algorithm modifies treatment patterns,
resulting in dependent “censoring” of counterfactual outcomes. In our case, the primary metric we
want to monitor is NPV. If we estimated the NPV of ŷt(·, a) by directly calculating the NPV among
patients who received treatment a, this estimate would be biased upwards because patients who are
assigned treatment a will tend to have lower risk if the algorithm is performing as expected. As
illustrated in the simulation study in Section 2.4, this can lead to unnecessarily long detection delays.

To define the data-generating mechanism for the observational setting more formally, we assume data
follows the directed acyclic graph (DAG) shown in Figure 1. IMI is caused by the arrows entering the
treatment decision At. More specifically, we assume that At depends on patient variables Xt, output
from the ML algorithm f̂t(Xt, ·), and some other random variable Zt, which represents non-patient
factors that may influence a clinician’s decision to treat. For instance, Zt may be the performance of
the ML algorithm recently.

2.3 Step 3: List the candidate monitoring strategies

We now describe various sequential procedures for detecting violations of the monitoring criteria
listed in Step 1. Recall that sequential monitoring procedures are often defined by a chart statistic
Ĉ(t) and some static or dynamic control limit h(t) at each time t [58]. When the chart statistic
exceeds the control limit, i.e., when Ĉ(t) > h(t), we fire an alarm. The control limit should be
constructed to control behavior under the null, such as Type I error or average time to a false alarm
[59, 60, 24]. It is often helpful to visualize this test via a control chart, which plots the two curves
against each other (Figure 2).

This section presents variants of the CUSUM control chart [61] for monitoring the aforementioned
criteria given interventional versus observational data. The methods vary in what identifiability
assumptions they require and how the chart statistics are defined. The Appendix describes a unified
procedure for constructing control limits that control the Type I error.

2.3.1 Monitoring the average PPV/NPV (Criterion 1)

To motivate the chart statistic for monitoring (1), let us first suppose the counterfactual outcomes are
observed. Over the time window from t1 to t2, the difference between the threshold and the true

5This problem has been previously referred to as “confounding medical interventions.” However, strictly
speaking, predictions from the ML algorithm do not confound the relationship between A and Y . Hence, we
have modified the name of this phenomenon in this paper.
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Figure 2: Example control charts, which plot the chart statistic (solid line) and control limit (dashed
line) over time. An alarm is fired when the chart statistic exceeds the control limit.

PPV/NPV can be estimated by

caυ −
∑t2

i=t1
1{Yi(a) = υ}1{ŷi(Xi, a) = υ}∑t2

i=t1
1{ŷi(Xi, a) = υ}

for a, υ = 0, 1. (4)

Equivalently, we can rescale by the denominator and monitor Pr(Yi(a) = υ, ŷi(Xi, a) = υ|Fi) per

1

t2 − t1 + 1

t2∑
i=t1

(caυ − 1{Yi(a) = υ})1{ŷi(Xi, a) = υ}. (5)

As the actual change time is unknown, we may define a scan statistic that calculates the maximum
scaled differences starting from all possible changepoints. This gives us the CUSUM chart statistic

Ĉcausal(t) = max
a,τ,υ

t∑
i=τ

(caυ − 1{Yi(a) = υ})1{ŷi(Xi, a) = υ}. (6)

Option 1N: A naïve monitoring procedure When we fail to consider the impact of IMI, one may
choose to directly monitor the average PPV/NPV in the observed data using the chart statistic

Ĉ1N(t) = max
a,τ,υ

t∑
i=τ

(caυ − 1{Yi = υ})1{ŷi(Xi, Ai) = υ,Ai = a}. (7)

However, it is clear from the causal model that this quantity can be biased upwards or downwards
depending on the treatment propensities. Thus, the alarm rate for such a procedure may be too high
or too low.

Option 1I (Interventional) To avoid biases introduced by IMI, one option is to randomize treatment
with weights pi(a|x, z, f̂) ∈ (0, 1). By design, we have that

E

[(
caυ − 1{Yi = υ,Ai = a}

pi(Ai|Xi, Zi, f̂i)

)
1 {ŷi(Xi, a) = υ}

]
= E [(caυ − 1{Yi(a) = υ})1 {ŷi(Xi, a) = υ}] ,

(8)

without needing to make any additional identifiability assumptions. Consequently, we can monitor
the CUSUM chart statistic with inverse propensity weights

Ĉ1I(t) = max
τ,a,υ

t∑
i=τ

(
caυ − 1{Yi = υ,Ai = a}

pi(Ai|Xi, Zi, f̂i)

)
1{ŷi(Xi, a) = υ}. (9)

Option 1O (Observational) Let us continue with the above example, but we do not randomize
treatment this time. Although (8) no longer holds in general, it does hold if we assume positivity—
i.e. pt(At = 1|Xt, Zt, f̂t) ∈ (0, 1) almost everywhere for the oracle model pt—and (sequential)
conditional exchangeability—i.e. Yt(a) ⊥ At|Xt, Zt,Ft—for all times t. Under these identifiability
assumptions, we may extend (9) to the observational setting via a two-part solution similar to that in
[25], where we (i) monitor PPV/NPVs assuming the propensity model is constant and (ii) monitor for
changes in the propensity model. As the treatment propensities are unknown, we approximate (9)
using estimates of the propensities instead. That is, letting p̂t denote our estimate of the propensity
model at time t, the chart statistic is defined as

Ĉ1O
a (t) = max

τ,a,υ

t∑
i=τ

(
caυ − 1{Yi = υ,Ai = a}

p̂i(Ai|Xi, Zi, f̂i)

)
1{ŷi(Xi, a) = υ}. (10)
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Because (10) requires an estimate of the propensity model at t = 0, this monitoring procedure
requires conducting a “pre-monitoring study” after the deployment of the algorithm, where the sole
purpose is to learn treatment assignment patterns [29]. During this phase, healthcare providers are
asked to make treatment decisions based on predictions from the ML algorithm, but we only begin
monitoring upon completion of this phase. (This pre-monitoring study is akin to Phase I SPC [24].)
Another drawback of this procedure is that we cannot verify the identifiability assumptions [15].
In fact, violations of the positivity condition are more likely to occur the more accurate the ML
algorithm is [19].

2.3.2 Monitoring subgroup-specific PPV/NPVs (Criterion 2)

We now extend the procedures from above to monitor subgroup-specific PPV/NPVs instead. For the
interventional setting (Option 2I), we define the chart statistic as the maximum of (9) calculated for
each subgroup, i.e.

Ĉ2I(t) = max
τ,a,υ,k

wkυ

t∑
i=τ

(
caυk − 1{Yi = υ,Ai = a}

pi(Ai|Xi, Zi, f̂i)

)
1{ŷi(Xi, a) = υ,Xi ∈ Sk}. (11)

where wkυ is the weight associated with subgroup Sk and label υ. For the observational setting
(Option 2O), the chart statistic Ĉ2O is exactly the same as Ĉ2I except that the oracle propensity
model is replaced by its estimate.

Compared to tests for Criterion 1, these tests are more powerful when performance decay is confined
to only one of the subgroups. Also, in the observational setting, the major benefit of Option 2O
over Option 1O is that the subgroup weights wkυ can be selected to downweight subgroups with
(near-)violations of the positivity condition; we can even remove such subgroups altogether. For
instance, the empirical analyses in Section 2.4 set wkυ to be the inverse of the estimated standard
deviation of the summand in (11) for subgroup Sk, with respect to the pre-change distribution. This
way, the variance of the CUSUM statistic in each subgroup has roughly the same variance.

Potential concerns of these procedures are that: (i) their power depends on the overlap between {Sk}
and the actual subgroup that experiences performance decay, (ii) more data needs to be collected
upfront to estimate the initial PPV/NPV per subgroup and select the subgroup-specific thresholds
cak, and (iii) we must perform multiplicity correction both across subgroups and over time to control
the Type I error.

2.3.3 Checking for over-confident risk predictions (Criterion 3)

To test (3), we note that the expected residual

E

[
ŝt(Xt, a)

(
f̂t(Xt, a)− Yt(a)

)
− δ | Xt = x,Ft

]
(12)

is no larger than zero for almost every x under the null. On the other hand, (12) will take on positive
values at some values of x under the alternative. So to check for violations of (3), one approach is to
check if (12) when averaged over any marginal distribution of Xt | Ft is large. In particular, Option
3I monitors the following chart statistic in the interventional setting:

Ĉ3I(t) = max
τ,k

wkυ

t∑
i=τ

[
ŝt(Xt, a)

(
f̂i(Xi, Ai)− Yi

)
− δ
]
1{Xi ∈ Sk}. (13)

Compared to Options 1I and 2I, a major benefit of this approach is that there are no inverse weights,
so it does not require the positivity assumption. However, the drawback is that (13) does not monitor
a standard performance metric and is thus not very interpretable. Nevertheless, it may still be effective
as a monitoring metric.

Another drawback of this approach is its sensitivity to miscalibration in the model, even in small
subgroups. In addition, this procedure places more weight on checking predictions for treatments
with higher propensities. So compared to the procedures with inverse weights, it will have lower
power when distribution shifts concentrate in low-propensity regions.

In the observational setting, Option 3O assumes sequential conditional exchangeability so that (12)
is equal to the observational quantity E[ŝt(Xt, At)(Yt − f̂t(Xt, At))− δ | At = a,Xt = x,Ft] for
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Procedure Interpretability Fairness Data requirements Assumptions Hyperparameters
1I High None Interventional Positivity None

1O High None Observational, Must conduct
pre-monitoring phase

Positivity, Conditional Ex-
changeability

None

2I High Moderate Interventional Positivity Subgroups, subgroup
PPV/NPV

2O High Moderate Observational, Must conduct
pre-monitoring phase

Positivity, Conditional Ex-
changeability

Subgroups, subgroup
PPV/NPV

3I Medium Strong Interventional None Subgroups, tolerance
level

3O Medium Strong Observational, No pre-
monitoring phase

Conditional Exchangeabil-
ity

Subgroups, tolerance
level

Table 2: Properties of different monitoring procedures

almost every (x, a). As such, chart statistic Ĉ3O is defined exactly the same as Ĉ3I. Compared to
Options 1O and 2O, the benefits of this approach are: (i) there is no need to model the propensity and
the propensity model may even vary over time, (ii) we do not need to conduct a pre-monitoring study
(as opposed to Option 2O), and (iii) the positivity assumption is not needed to control the Type I error.

2.4 Step 4: Compare candidate strategies

Finally, we are ready to compare candidate monitoring procedures. Table 2 summarizes the proce-
dures in terms of their interpretability, fairness, data requirements, identifiability assumptions, and
hyperparameters. In addition, we compare the statistical power of the different monitoring options
using simulated data. As it is unlikely for a single monitoring procedure to perform the best across
all simulation settings, the final decision should be based more heavily on the more likely scenarios.

A comprehensive understanding of how the procedures compare requires performing a breadth
of simulation studies. Settings to vary include randomization weights in the interventional setup,
treatment propensities in the observational setup, the magnitude of the distribution shift, and the
prevalence and time of performance decay. It can also be helpful to analyze the sensitivity of each
procedure to violations of its assumptions. Given that we do not know how exactly the data will
evolve over time, specifying realistic simulation settings will require input from stakeholders.

For this case study, suppose we believe healthcare providers will closely follow the ML algorithm’s
recommendations in the observational setting. We compare against an interventional setting where
randomization weights are defined using a logistic regression model that favors the recommended
treatment but with less extreme propensities. An alternative view of this comparison is that it
illustrates how different levels of clinician trust can impact detection delay. Here we conduct a limited
simulation study to understand how the monitoring strategies from Section 2.3 compare. In practice,
one would conduct a much more comprehensive simulation study to make a final decision.

We simulate a distribution shift at time t = 500, during which the risk under treatment a shifts in 40%
of the population. We consider four simulation settings that vary the treatment (a = 0 versus 1) and
how much the risk increased (10% versus 20%). For all the monitoring criteria, the null hypotheses
allow for only a 2% drop in the NPV or 2% difference in the true risk. As such, none of the null
hypotheses are true. The control limit for each procedure controls the Type I error rate over 4000 time
points at 10%. We implement procedures for Criteria 2 and 3 to monitor only two subgroups that
partition the entire population, where the smaller subgroup corresponds to the one that experiences a
performance decay in the future. Thus these results only reflect the situation where the subgroups
are correctly specified; additional simulations are needed to assess operating characteristics when
subgroups are misspecified. Full details of these simulations are provided in the Appendix.

As shown in Figure 3, there are substantial differences in power across the four simulation settings.
Unsurprisingly, the naïve procedure performed poorly since its estimates are biased. Among the
methods that correctly adjust for IMI, the most powerful approaches were those that monitor criterion
3. Monitoring criterion 2 was the second most powerful. Gaps in performance between criteria 2 and
3 methods were larger when the performance decay was smaller. Procedures for monitoring criterion
1 were the least powerful when the risk under treatment a = 1 shifted, because the inverse propensity
weights for estimating the average PPV/NPV were quite extreme.
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Figure 3: Comparison of monitoring procedures. Statistical power of different procedures, as
characterized by the proportion of alarms fired at each time point. Dashed vertical line is the time of
the distribution shift. Top and bottom rows simulate small and large shifts in the risk, respectively.
Left and right columns simulate a shift in the risk under treatment a = 0 and a = 1, respectively.

Interestingly, collecting interventional data was beneficial only in certain circumstances. In particular,
it led to faster detection when distribution shifted with respect to treatment A = 1 but slower detection
when the shift was with respect to treatment A = 0. This is because the rate of assigning treatment
A = 0 was higher in the observational setting.

Based on Table 2 and results from this limited simulation study, Options 3I and 3O appear to be
reasonable monitoring strategies. Option 3I is better for controlling the worst-case detection delay.
However, if one believes that the worst-case scenario is unlikely to occur, then Option 3O will have
comparable performance while being much more convenient. Regardless, going with either option
implies that one needs to check that the ML algorithm is strongly calibrated prior to deployment and,
if not, one should recalibrate the model.

3 Discussion

The aim of this work is to highlight the complexities behind designing a post-market surveillance
strategy for ML-based medical devices. At a high level, this task can be summarized as choosing
what data source to use and how to use it. To carry this out, one must choose between a multitude
of options. Real-world data is plentiful but contains many sources of bias, while interventional
data explicitly control for these biases but is much more limited in sample size. Given a data
source, we must consider what monitoring criteria to use, which identifiability assumptions are
needed (and reasonable), how to select hyperparameters, and more. Making these decisions requires
input from diverse stakeholders, which is most effective when vendors are transparent regarding
the data collection and analysis plan [41]. Additional regulatory guidelines on the proper design
of monitoring systems may also help steer these conversations. In this case study, we also uncover
an important connection between algorithmic fairness and performance monitoring: checking for
fairness violations can be a powerful approach to detecting model decay early.

In this workshop paper, we explored combining causal inference with statistical process control to
help inform these decisions. Working through a general four-step framework, we enumerated and
compared various approaches for monitoring a hypothetical ML-based risk prediction for PONV.
Although we have only studied a single case study, we hypothesize that this framework is applicable
more broadly and plan to demonstrate the generality of this framework in future work. Other
directions for future research include delayed observation of the patient outcomes, how other types
of monitoring data can be incorporated (e.g., that from instrumental variable designs), how we can
augment observational data with interventional data, understanding interactions between multiple
sources of bias, and monitoring the monitoring pipeline itself.
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A Calculating control limits

For the procedures monitoring Criterion 3, we use the Monte Carlo procedure described in [58, 48]
to construct dynamic control limits (DCL). At each time t, we bootstrap Y ∗

t given Xt under the
worst-case null hypothesis satisfying (3), which corresponds to the case where Pr(Y ∗

t = 1|Xt, f̂t) =

f̂t(Xt, At) + δ. For each of the bootstrap sequences, we calculate the corresponding chart statistics.
The DCL is then chosen to satisfy an alpha spending function. Here, we use an alpha spending
function that uniformly spends the α over time. This procedure provably controls the Type I error in
finite samples [48].

In general, Criteria 1 and 2 are weaker than 3. To conduct a more fair comparison in the simulation
studies, we construct DCLs for their corresponding test statistics to control the Type I error rate under
Criteria 3. Thus the sensitivity of the methods for monitoring Criteria 1 or 2 are actually higher than
they would be otherwise. Also, for illustrative purposes, we make the simplifying assumption in the
simulation studies that the estimation error for the propensity model is negligible; this is true, for
instance, if we had a sufficiently long pre-monitoring phase. To formally adjust for estimation error,
one can use ideas such as that in [62, 63, 29].

B Simulation settings

There are two steps to conducting this simulation study. First, we must simulate a hypothetical ML
algorithm for predicting a patient’s risk of developing PONV. Second, we simulate data to investigate
the operating characteristics of various monitoring procedures. We discuss each step in turn.

Simulating the algorithm. We consider a setup with only two patient variables X ∈ R2, generated
independently from a normal distribution with mean zero and variance 4. In the pre-deployment
setting, we suppose the treatment was assigned uniformly at random. The data is generated from the
logistic regression model

logit(y = 1|x, a) = −0.5x1 − x2 + x1a+ 2x2a.

A random forest classifier is trained using 5000 observations, where f̂t outputs the predicted risk
(probability) of a patient developing PONV under a particular treatment.

Monitoring setup. In settings with no performance drift, we expect the ML algorithm to stay
relatively stable over time. So in this limited simulation study, we do not update the ML algorithm
over time. We suppose that treatment decisions are assigned according to a logistic regression model
of the form

logit(a = 1|x, f̂t) = β
[
f̂t(x, a = 1)− f̂t(x, a = 0))

]
for some β ∈ R. We suppose β = −6 in the observational setting (i.e. clinicians closely follow
recommendations from the ML algorithm) and β = −2 in the interventional setting (i.e. random-
ization weights favor following the ML algorithm). We simulate an increase of the risk in the
subgroup where x1 ∈ (−1, 2) and |x2| < 2.5 under treatment a; this was chosen to reflect the more
clinically interesting scenario where treatment decisions would change due to the distribution shift.
The simulations vary in the magnitude of the increase (10% versus 20%) and the treatment for which
risk increased (a = 0 versus a = 1). For computational speed, observations were monitored in
batches of 50.
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