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ABSTRACT

Semi-supervised domain adaptation (SSDA) adapts a learner to a new domain
by effectively utilizing source domain data and a few labeled target samples. It
is a practical yet under-investigated research topic. In this paper, we analyze
the SSDA problem from two perspectives that have previously been overlooked,
and correspondingly decompose it into two key subproblems: robust domain
adaptation (DA) learning and maximal cross-domain data utilization. (i) From
a causal theoretical view, a robust DA model should distinguish the invariant
“concept” (key clue to image label) from the nuisance of confounding factors across
domains. To achieve this goal, we propose to generate concept-invariant samples
to enable the model to classify the samples through causal intervention, yielding
improved generalization guarantees; (ii) Based on the robust DA theory, we aim
to exploit the maximal utilization of rich source domain data and a few labeled
target samples to boost SSDA further. Consequently, we propose a collaboratively
debiasing learning framework that utilizes two complementary semi-supervised
learning (SSL) classifiers to mutually exchange their unbiased knowledge, which
helps unleash the potential of source and target domain training data, thereby
producing more convincing pseudo-labels. Such obtained labels facilitate cross-
domain feature alignment and duly improve the invariant concept learning. In our
experimental study, we show that the proposed model significantly outperforms
SOTA methods in terms of effectiveness and generalisability on SSDA datasets.

1 INTRODUCTION

Domain Adaptation (DA) aims to transfer training knowledge to the new domain (target D = DT )
using the labeled data available from the original domain (source D = DS), which can alleviate
the poor generalization of learned deep neural networks when the data distribution significantly
deviates from the original domain Wang & Deng (2018); You et al. (2019); Tzeng et al. (2017). In
the DA community, recent works Saito et al. (2019) have shown that the presence of few labeled
data from the target domain can significantly boost the performance of deep learning-based models.
This observation led to the formulation of Semi-Supervised Domain Adaptation (SSDA), which is a
variant of Unsupervised Domain Adaptation (UDA) Venkateswara et al. (2017) to facilitate model
training with rich labels from DS and a few labeled samples from DT . For the fact that we can easily
collect such additional labels on the target data in real-world applications, SSDA has the potential to
render the adaptation problem more practical and promising in comparison to UDA.

Broadly, most contemporary approaches Ganin et al. (2016); Jiang et al. (2020); Kim & Kim (2020);
Yoon et al. (2022) handle the SSDA task based on two domain shift assumptions, where X and
Y respectively denote the samples and their corresponding labels: (i) Covariate Shift, P (X|D =
DS) ̸= P (X|D = DT ); (ii) Conditional Shift, P (Y|X ,D = DS) ̸= P (Y|X ,D = DT ), refers to
the difference of conditional label distributions of cross-domain data. Intuitively, one straightforward
solution for SSDA is to learn the common features to mitigate the domain shift issues. Further
quantitative analyses, however, indicate that the model trained with supervision on a few labeled
target samples and labeled source data can just ensure partial cross-domain feature alignment Kim &
Kim (2020). That is, it only aligns the features of labeled target samples and their correlated nearby
samples with the corresponding feature clusters in the source domain.
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Figure 1: (a) Four DA cases (“Clipart”→ “Real”). (b) Class-wise distribution of source domain and
target domain. (c) A simplified version that indicates how our proposed model facilitates the SSDA.

To systematically study the SSDA problem, we begin by asking two fundamental questions, Q1:What
properties should a robust DA model have? To answer this question, we first present a DA example
in Figure 1(a), which suggests that the image “style” in D = DT is drastically different from the
D = DS . A classifier trained on the source domain may fail to predict correct labels even though
the “concept” (e.g., plane) is invariant with a similar outline. The truth is that the minimalist style
features being invariant in “clipart” domain plays a critical factor in the trained classifier, which may
consequently downplay the concept features simply because they are not as invariant as style features.
Importantly, such an observation reveals the fundamental reason of the two domain shift assumptions,
i.e., P (Style = clipart|D = DS) ̸= P (Style = real|D = DT ). Therefore, a robust DA model
needs to distinguish the invariant concept features in X across domains from the changing style. Q2:
How to maximally exploit the target domain supervision for robust SSDA? As discussed, supervised
learning on the few target labels cannot guarantee the global cross-domain feature alignment, which
hurts the model generalization for invariant learning. A commonly known approach in this few
labeled setting, semi-supervised learning (SSL), uses a trained model on labeled data to predict
convincing pseudo-labels for the unlabeled data. This approach relies on the ideal assumption that
the labeled and unlabeled data have the same marginal distribution of label over classes to generate
pseudo-labels. However, Figure 1(b) indicates these distributions are different in both inter-domain
and intra-domain. This may result in the imperfect label prediction that causes the well-known
confirmation bias Arazo et al. (2020), affecting the model feature alignment capability. Further, in
the SSDA setting, we have three sets of data, i.e., source domain data, labeled and unlabeled target
domain data. One single model for SSDA may be hard to generalize to the three sets with different
label distributions. Thus, the premise of better utilization of labeled target samples is to mitigate
undesirable bias and reasonably utilize the multiple sets. Summing up, these limitations call for
reexamination of SSDA and its solutions.

To alleviate the aforementioned limitations, we propose a framework called CAusal collaborative
proxy-tasKs lEarning (CAKE) which is illustrated in Figure 1(c). In the first step, we formalize the
DA task using a causal graph. Then leveraging causal tools, we identify the "style" as the confounder
and derive the invariant concepts across domains. In the subsequent steps, we build two classifiers
based on the invariant concept to utilize rich information from cross-domain data for better SSDA.
In this way, CAKE explicitly decomposes the SSDA into two proxy subroutines, namely Invariant
Concept Learning Proxy (ICL) and Collaboratively Debiasing Learning Proxy (CDL). In ICL, we
identify the key to robust DA is that the underlying concepts are consistent across domains, and the
confounder is the style that prevents the model from learning the invariant concept (C) for accurate DA.
Therefore, a robust DA model should be an invariant predictor P (Y|X̂ ,D = DT ) = P (Y|X̂ ,D =
DS)) under causal interventions. To address the problem, we devise a causal factor generator (CFG)
that can produce concept-invariant samples X̂ with different style to facilitate the DA model to
effectively learn the invariant concept. As such, our ICL may be regarded as an improved version
of Invariant Risk Minimization (IRM) Arjovsky et al. (2019) for SSDA, which equips the model
with the ability to learn the concept features that are invariant to styles. In CDL, with the invariant
concept learning as the foundation, we aim to unleash the potential of three sets of cross-domain
data for better SSDA. Specifically, we build two correlating and complementary pseudo-labeling
based semi-supervised learning (SSL) classifiers for DS and DT with self-penalization. These two
classifiers ensure that the mutual knowledge is exchanged to expand the number of “labeled" samples
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in the target domain, thereby bridging the feature distribution gap. Further, to reduce the confirmation
bias learned from respective labeled data, we adopt Inverse Propensity Weighting (IPW) Glynn &
Quinn (2010) theory which aims to force the model to pay same attention to popular ones and tail
ones in SSL models. Specifically, we use the prior knowledge of marginal distribution to adjust the
optimization objective from P(Y |X ) to P(X |Y) (Maximizing the probability of each x ∈ X with
different y ∈ Y ) for unbiased learning. Thus, the negative impact caused by label distribution shift
can be mitigated. Consequently, the two subroutines mutually boost each other with respect to their
common goal for better SSDA.

Our contributions are three-fold: (1) We formalize the DA problem using causality and propose the
explicitly invariant concept learning paradigm for robust DA. (2) To unleash the power of cross-
domain data, we develop a collaboratively debiasing learning framework that effectively reduces the
domain gap to enforce invariant prediction. (3) We extensively evaluate the proposed CAKE. The
empirical results show that it outperforms SOTA approaches on the commonly used benchmarks.

2 DOMAIN ADAPTATION THROUGH CAUSAL LENSES: FINDING THE DEVIL
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Figure 2: Causal graph of DA.

We shall start by grounding the domain adaptation (DA) in a causal
framework to illustrate the key challenges of cross-domain general-
ization. As discussed in introduction, given data X and their labels
Y , the main difficulty of DA is that the extracted representation from
X is no longer a strong visual cue for sample label in another domain.
To study this issue in-depth, we first make the following assumption:

Assumption 1 (Disentangled Variables). Data X can be disentan-
gled into concept C, cross-domain style SC and intra-domain style
SI variables which are mutually independent, i.e., X = (C,SC ,SI),
where C ⊥⊥ SC ⊥⊥ SI . Only concept C is relevant for the true
label Y of X , i.e., style changing is concept-preserving.

Under this assumption, we abstract the DA problem into a causal
graph (Figure 2 ). In this figure, D represents the Domain (e.g.,
DS or DT ), while SI (e.g., different appearance of concept in same
domain) and SC (e.g., different background of concept cross-domain)
are the nuisance variables that confound Y . The absence of any style
changing is irrelevant for true label Y . C is the invariant concept
which contains directly causal relationships with Y . Therefore, the
causal graph reveals the fundamental reasons for distinguishing issues across domains, i.e., the
cross/intra-domain style serves as the confounding variables that influence the X → Y .

P (Y|C,D = DS) = P (Y|C,D = DT ) and P (Y|S,D = DS) ̸= P (Y|S,D = DT )

=⇒ P (Y|X ,D = DS) ̸= P (Y|X ,D = DT ), ∀S ∈ {SC ,SI},
(1)

The “devil” for DA problem could be style confounders SC and SI in that they prevent the model from
learning the concept-invariant causality X → Y1. From the causal theoretical view, such confounding
effect can be eliminated by statistical learning with causal intervention Pearl et al. (2000). Putting all
these observations together, we now state the main theorem of the paper.

Theorem 1 (Causal Intervention). Under the causal graph in Figure 2 and Assumption 1, we can
conclude that under this causal model, performing interventions on SC and SI does not change the
P (Y|X ). Thus, in DA problem, the causal effect P (Y|do(X )2,D = DT ) can be computed as:

P (Y|do(X ),D = DT ) = P (Y|do (C,SC ,SI)︸ ︷︷ ︸
Disentangled Variables

,D = DT ) =
∑

D∈{DS ,DT }

∑
ŝC∼SC

∑
ŝI∼SI

P (Y|C, ŝC , ŝI ,D)P (C, ŝC , ŝI ,D) ≈
∑
x̂∼X̂

P (Y|X , X̂ = x̂)P (X , X̂ = x̂),
(2)

1While this assumption may not be true in all settings, we believe that the single image classification can be
approximated by this assumption. More discussion about this assumption is in the appendix.

2P (Y|do(X ),D = DT ) uses the do-operator Glymour et al. (2016). Given random variables X , Y , we
write P (Y = y|do(X = x)) to indicate the probability of Y = y when we intervene and set X to be x.
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where X̂ are the invariant causal factors with the same concepts of X but contain different cross/intra-
domain styles, i.e., invariant concept-aware samples. Realistically, X̂ is often a large set due to the
multiple style combinations. This may block the model’s computational efficiency according to Eq. 2
and hard to obtain such numerous causal factors. However, it is non-trivial to personally determine
the X̂ size to study the deconfounded effect. We employ a compromise solution that significantly
reduces the X̂ size to a small number for causal intervention.

3 CAKE: CAUSAL AND COLLABORATIVE PROXY-TASKS LEARNING

This section describes the CAKE for Semi-Supervised Domain Adaptation (SSDA) based on the
studied causal and collaborative learning. We shall present each module and its training strategy.

3.1 PROBLEM FORMULATION

In the problem of SSDA, we have access to a set of labeled samples Sl = {(x(i)
sl , y

(i)
sl )}

Ns
i=1 i.i.d from

source domain DS . And the goal of SSDA is to adapt a learner to a target domain DT , of which the
training set consists of two sets of data: a set of unlabeled data Tu = {(x(i)

tu )}
Nu
i=1 and a small labeled

set Tl = {(x(i)
tl , y

(i)
tl )}

Nl
i=1. Typically, we have Nl ≤ Nu and Nl ≪ Ns. We solve the problem by

decomposing the SSDA task into two proxy subroutines: Invariant Concept Learning (ICL) and
Collaboratively Debiasing Learning (CDL). Such subroutines are designed to seek a robust learner
M(·; Θ) which performs well on test data from the target domain:

M(·; (ΘI ,ΘC))︸ ︷︷ ︸
Learner CAKE

:MI((Ŝl, T̂l, T̂u)|(Sl, Tu, Tl)); ΘI)︸ ︷︷ ︸
ICL Proxy Subroutine

↔MC((Tp|(Sl, Ŝl, Tl, T̂l, Tu, T̂u)); ΘC)︸ ︷︷ ︸
CDL Proxy Subroutine

(3)

whereMI andMC indicate the ICL model parameterized by ΘI and the CDL model parameterized
by ΘC respectively. In ICL proxy,MI(·; ΘI) learns the causal factors (Ŝl, T̂l, T̂u) for DS and DT
in unsupervised learning paradigm, aiming to generate the invariant causal factors and use Eq. 2
to remove the confounding effect. In CDL aspect, we construct two pseudo labeling-based SSL
techniques: (Sl, Ŝl) → Tu and (Tl, T̂l) → Tu, aiming at utilizing all the training data possible to
bridge the feature discrepancy under the premise of invariant concept learning.

3.2 INVARIANT CONCEPT LEARNING PROXY

As we discussed in Section 2, the key to robust DA is to eliminate the spurious correlations between
styles (SC and SI) and label Y . To tackle this problem, we propose an approximate solution to
kindly remove the confounding effect induced by SC and SI . In detail, we develop the two invariant
causal factor generators that can produce the causal factors X̂ with C. Next, we propose the Invariant
Concept Learning (ICL) loss function, which forces the backbone (e.g., ResNet-34 He et al. (2016) )
to focus on learning concepts that are invariant across a set of domains.

3.2.1 INVARIANT CAUSAL FACTOR GENERATOR

Achieving the invariant concept-aware X̂ is challenging due to the fact that supervised signals are
missing or expensive to obtain. Thus, we resort to the unsupervised learning paradigm, designing
two causal factor generators Cfg(·)=Cfg

C (·) (cross-domain) and Cfg
I (·) (intra-domain) to achieve

X̂ for DS and DT without the reliance on the supervised signals. Take D = DS as an example, the
invariant causal factors of Sl is given by Ŝl = {Ŝtl , Ŝsl } = {C

fg
C (Sl), Cfg

I (Sl)} w.r.t SC and SI :

Cross-domain Causal Factor. Ŝtl are generated by Ng GAN-based techniques Creswell et al.
(2018), enabling the source concept to be preserved during the cross-domain conversion process. By
considering the huge domain discrepancy, we optimize the style transfer loss as follows:

min
Gk

st

max
Dk

t

Lk
st(·; ΘF ) = Exsl∼Sl,xt∼[Tu;Tl][logD

k
t (xt) + log(1−Dk

t (G
k
st(xsl)))

+ Lk
cyc(xsl, xt; ΘF ) + Lk

idt(xsl, xt; ΘF )], k = argmin
{i∈1,··· ,Ng}

Li
st(·; ΘF ),

(4)
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where [·; ·] represents the union of two inputs, Dt is the discriminator to distinguish the original
source of the latent vector if from DT . Lk

cyc and Lk
idt are the cycle and identity loss Zhu et al. (2017).

Gk
st is kth Cfg

C . Through min-max adversarial training, the domain style-changing samples are
obtained.

Intra-domain Causal Factor. We utilize the image augmentations as intra-domain style interven-
tions, e.g., modifying color temperature, brightness, and sharpness. We randomly adjust these image
properties as our mapping function to change the intra-domain style for DS with invariant concept.

Thus, the invariant causal factors Ŝl = {Ŝtl , Ŝsl } are produced. Correspondingly, for the target
domain, T̂l and T̂u are also obtained in the generating learning strategy.

3.2.2 ICL OPTIMIZATION OBJECTIVE

After obtaining a set of invariant concept-aware samples Sl for source domain DS , the goal of the
proposed ICL can thus be formulated as the following optimization problem:

min
Θb

I ,Θ
c
I

Licl(·; (Θb
I ,Θ

c
I)) = E(x̃sl,ysl)∼[Sl,Ŝt

l ,Ŝ
s
l ]
[Lcls(Φ(x̃sl; Θ

b
I), ysl; Θ

c
I) + λir · Lir(·; Θb

I)]

s.t. Θb
I = argmin

Θ̂b
I

∑
xsl∼Sl

(
∑

G∈{C,I}

d(Φ(xsl), f(C
fg
G (xsl))) + d(Φ(Cfg

C (xsl)),Φ(C
fg
I (xsl)))

(5)

where Θb
I and Θc

I are learnable parameters for the backbone and classifier, respectively. Φ(x̃sl; Θ
b
I)

is the backbone extracting feature from x̃sl. λir is the trade-off parameter and d(·) is the euclidean
distance between two inputs. Lcls(Φ(x̃sl; Θ

b
I), ysl; Θ

c
I) is the cross-entropy loss for classification.

To further access the concept-invariant learning effect, we develop the invariant regularization loss
Lir(·; Θb

I) through a regularizer. We feed the Sl, Ŝsl , Ŝtl into the backbone network and explicitly
enforcing them have invariant prediction, i.e., KL(P (Y|Sl), P (Y|Ŝsl ), P (Y|Ŝtl )) ≤ ϵ3. Such regular-
ization is converted to an entropy minimization process McLachlan (1975), which encourages the
classifier to focus on the domain-invariant concept and downplay the domain-variant style. The key
idea of ICL similarly corresponds to the principle of invariant risk minimization (IRM) which aims
to model the data representation for invariant predictor learning. More discussion about IRM and
ICL is in the appendix.

3.3 COLLABORATIVELY DEBIASING LEARNING PROXY

After invariant concept-aware samples generation, we obtain the Ŝl, T̂l and T̂u. Next, we will elaborate
on how to utilize the advantages of the extra supervised signals of target domain data Tl over the
UDA setting. We introduce the Collaboratively Debiasing Learning framework (CDL) based on the
robust DA setting with causal intervention. Specifically, we construct two SSL models:Ms

C(·; Θs
C)

w.r.t {Sl, Ŝl and Tu} andMt
C(·; Θt

C) w.r.t {Tl, T̂l and Tu} as two complementary models with the
same network architecture, which can cooperatively and mutually produce the pseudo-labels for each
other to optimize the parameters Chen et al. (2011); Qiao et al. (2018). For instance, pseudo-label ȳ
of xtu ∼ Tu fromMs

C(·; Θs
C) is given by:

ȳ = argmax
ỹ

(P (ỹ|xtu; Θ
s
C) > τs), where ỹ =Mt

C(xtu; Θ
t
C) if P (ỹ|xtu; Θ

t
C) > τt (6)

where τs and τt are the predefined threshold for pseudo-label selection. We will further elaborate
on the two components in CDL, namely, a debiasing mechanism and a self-penalization technique.
Without loss of generality, we describe the components using one of the SSL modelsMs

C(·; Θs
C).

3.3.1 CONFIRMATION BIAS ELIMINATING MECHANISM

The ultimate objective of most SSL frameworks is to minimize a risk, defined as the expectation of a
particular loss function over a labeled data distribution (X ,Y) ∼ Sl Van Engelen & Hoos (2020).

3Note that any distance measure on distributions can be used in place of the Kullback-Leibler (KL) diver-
gence Van Erven & Harremos (2014)
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Therefore, the optimization problem generally becomes finding Θs
S that minimizes the SSL risk.

min
Θs

C

R(·; Θs
C) = E(xsl,ysl)∼Sl

[Ents((xsl, ysl); Θ
s
C)] +Extu∼Tu [λu · Entu(xtu; Θ

s
C)],

s.t. Θs
C = argmax

Θ̂s
C

∑
(xsl,ysl)∼Sl

logPs(ysl|xsl; Θ̂
s
C)]

(7)

where λu is the fixed scalar hyperparameter denoting the relative weight of the unlabeled loss. Ents(·)
and Entt(·) are the cross-entropy loss function for labeled data Sl and unlabeled data Tu.

Proposition 1 (Origin of Confirmation Bias). SSL methods estimate the model parameters Θs
C via

maximum likelihood estimation according to labeled data (X ,Y) ∼ Sl. Thus, the confirmation bias
Bc in SSL methods is generated from the fully observed instances, namely labeled data.

Under this proposition, the unbiased SSL learner should be impartial for less popular data (e.g., tail
samples Xt) and popular ones (e.g., head samples Xh), i.e., P (Xh|Y) = P (Xt|Y). Inspired by the
inverse propensity weighting Glynn & Quinn (2010) theory, we get the unbiased theorem for SSL.

Theorem 2 (Unbiased SSL Label Propagator). The optimization parameter Θs
C for

SSL model should be taken same attention for all the labeled data, i.e., turn maximizing∑
xsl∈Sl

logP (xsl|ysl); Θs
C) (Complete proof in Appendix.).

Θs
C = argmax

Θ̂s
C

∑
(xsl,ysl)∼Sl

logP (ysl|xsl; Θ̂
s
C) = argmax

Θ̂s
C

∑
xsl∼Sl

logP (xsl|ysl; Θ̂s
C) · SIPW (xsl, ysl)

SIPW (xsl, ysl) =
∑

(xsl,ysl)∼Sl

P (ysl|xsl; Θ̂
s
C)/(logP (ysl|xsl; Θ

s
C)− logP (ysl; Θ̂

s
C))

(8)

where SIPW (·) is the Inverse Probability Weighting score. This formula can be understood as
using the prior knowledge of marginal distribution P (Y; Θs

C) to adjust the optimization objectives
for unbiased learning. To make practical use of this Eq. 20, we estimate P (Y; Θs

C , Bs, t) in each
mini-batch training for error backpropagation at iteration t with batch size Bs. It is noteworthy that
we use a distribution moving strategy over all the iterations to reduce the high-variance estimation
between time adjacent epochs. With the gradual removal of bias from the training process, the
performance gap between classes also shrinks, and both popular and rare classes can be fairly treated.

3.3.2 SELF-PENALIZATION OF INDIVIDUAL CLASSIFIER

We also design a self-penalization that encourages the SSL model to produce more convincing
pseudo-labels for exchanging peer classifier knowledge. Here, the negative pseudo-label indicates
the most confident label (top-1 label) predicted by the network with a confidence lower than the
threshold τs. Since the negative pseudo-label is unlikely to be a correct label, we need to increase the
probability values of all other classes except for this negative pseudo-label. Therefore, we optimize
the output probability corresponding to the negative pseudo-label to be close to zero. The objective
of self-penalization is defined as follows:

min
Θs

C

Lsp(·; Θs
C) = E(xtu,ytu)∼T̂u

[1(max(P (ytu|xtu; Θ
s
C) < τs)) · ytulog(1− P (ytu|xtu; Θ

s
C))] (9)

Such self-penalization is able to encourage the model to generate more faithful pseudo-labels with a
high-confidence score, and hence improve the data utilization for better invariant learning.

4 EXPERIMENTS

4.1 DATASET AND SETTING

Benchmark Datasets. DomainNet is originally a multi-source domain adaptation benchmark.
Following Saito et al. (2019) in its use for SSDA evaluation, we only select 4 domains, which are
Real, Clipart, Painting, and Sketch (abbr. R, C, P and S), each of which contains images of 126
categories. Office-Home Venkateswara et al. (2017) benchmark contains 65 classes, with 12
adaptation scenarios constructed from 4 domains (i.e., R: Real world, C: Clipart, A: Art, P: Product).
Office Saenko et al. (2010) is a relatively small dataset contains three domains including DSLR,
Webcam and Amazon (abbr. D, W and A) with 31 classes.
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Table 1: Accuracy(%) comparison on DomainNet under the settings of 3-shot using Resnet34 as backbone
networks. A larger score indicates better performance. Acronym of each model can be found in Section 4.1.
We color each row as the best , second best , and third best .

Method R to C R to P P to C C to S S to P R to S P to R Mean Accuracy
S+T 60.8 63.6 60.8 55.6 59.5 53.3 74.5 61.2
DANN Ganin et al. (2016) 59.8 62.8 59.6 55.4 59.9 54.9 72.2 60.7
MME Saito et al. (2019) 72.2 69.7 71.7 61.8 66.8 61.9 78.5 68.9
APE Kim & Kim (2020) 76.6 72.1 76.7 63.1 66.1 67.8 79.4 71.7
SSSD Yoon et al. (2022) 75.9 72.1 75.1 64.4 70.0 66.7 80.3 72.1
DECOTA Yang et al. (2021) 80.4 75.2 78.7 68.6 72.7 71.9 81.5 75.6
CDAC Li et al. (2021b) 79.6 75.1 79.3 69.9 73.4 72.5 81.9 76.0
PACL Li et al. (2020) 79.0 77.3 79.4 70.6 74.6 71.6 82.4 76.4

Baseline 75.4 71.8 74.2 65.9 70.3 70.2 78.8 72.4
CAKE (Ours) 83.3 77.6 79.1 72.2 73.0 74.5 83.2 77.6

Implementation Details. We employ the ResNet-34 He et al. (2016) and VGG-16 Simonyan &
Zisserman (2014) as the backbone model on DomainNet and Office-Home, respectively. We
train CAKE with a SGD Bottou (2010) optimizer in all experiments. Besides, we use an identical
set of hyperparameters (B=24, Mo=0.9, Lr, τ=0.5, Tmax=20,000, λs=1, λu=1, λir=0.1, λsp=0.1).
The causal factor generator Cfg

C (·)=CycleGan Zhu et al. (2017) and Cfg
I (·)=Image Augmentation,

MC(·; ΘC)=Mixmatch Berthelot et al. (2019)) 4 across all datasets.

Comparison of Methods. For quantifying the efficacy of the proposed framework, we compare
CAKE with previous SOTA SSDA approaches, including MME Saito et al. (2019), DANN Ganin
et al. (2016), BiAT Jiang et al. (2020), APE Kim & Kim (2020), DECOTA Yang et al. (2021),
CDAC Li et al. (2021b) and SSSD Yoon et al. (2022). More details of baselines are in the appendix.

4.2 EXPERIMENTAL RESULTS AND ANALYSES

Comparison with SOTA Methods. Table 1, and 7 (in appendix) summarize the quantitative three-
shot results of our framework and baselines on DomainNet and Office-Home. The one-shot
results and analysis are in the supplementary material. In general, irrespective of the adaptation
scenario, CAKE achieves the best performance on almost all the metrics to SOTA on the two datasets.
In particular, CAKE outperforms other baselines in terms of Mean Accuracy by a large margin
(DomainNet: 1.2% ∼ 16.4%, Office-Home: 3.3% ∼ 9.7% and Office: 3.8% ∼ 12.0%)
for SSDA task. Notably, our baseline, a simplified variant of CAKE without causal intervention
and debiasing operation also obtained comparable results compared with SOTA (-3.6%). These
results both benefit from the carefully designed ICL and CDL proxy subroutines that demonstrate the
superiority and generalizability of our proposed model.

Individual Effectiveness of Each Component. We conduct an ablation study to illustrate the
effect of each component in Table 2, which indicates the following: Causal Inference is critical to
boost SSDA (Row 5 vs. Row 6), which significantly contributes 2.4% and 1.9% improvement on
DomainNet and Office-Home, respectively. Meanwhile, Row 1 indicates that it suffers from
noticeable performance degradation without the bias-removed mechanism (Row 1) (-1.3% and -1.8%).
Furthermore, the results of Row 3 and Row 4 severally show the performance improvement of the
Invariant Regularization (Lir) and Self-penalization (Lsp). Summing up, We can observe that the
improvement of using either module alone is distinguishable. Combining all the superior components,
our CAKE exhibits steady improvement over the baselines.

Maximally Cross-domain Data Utilization. Here, we evaluate the effectiveness of data utilization
of the proposed method. Figure 3 (a) and (b) show the comparison between CAKE and baseline with
respect to the top-1-accuracy, accuracy and number pseudo-labels on DomainNet (Real→ Clipart).

Subscript S and T represent the learned trained on source domain DS or target domain DT . During
the learning iteration, we observe that the accuracy of CAKE increases much faster and smoother

4B, Mo,Lr and Tmax refer to batch size, momentum, learning rate and max iteration in SGD optimizer. The
MI and MC are orthogonal to other advanced style changing and SSL methods to boost SSDA further.
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(a) Test Accuracy (b) Pseudo-labels (c) Threshold Value (d) Class-wise Accuracy 

Figure 3: Analysis of cross-domain data utilization and debiasing mechanism of CAKE. (a) and
(b) depict the top-1-accuracy and correct pseudo-labels of CAKE and baseline within the first 200K
iterations. (c) Cake’s sensitivity to pseudo-label threshold τ . (d) demonstrates the class-wise accuracy
for head and tail classes in dataset produced by CAKE (w/o)/(w/) confirmation bias.

than baseline, and outperforms baseline by a large margin of accuracy. CAKE also produces more
convincing pseudo-labels than baseline. These pseudo-labels can assist the SSDA in performing global
domain alignment to decrease the intra-domain discrepancy for robust invariant concept learning.
Apart from learning visualization, we also investigate the CAKE’s sensitivity to the confidence
threshold τ for assigning pseudo-labels. Figure 3 (c) empirically provides an appropriate threshold,
i.e., τ=0.5, either increasing or decreasing this value results in a performance decay. What’s more, we
conducted the cooperation vs. solo ablation that verifies the power of collaborative learning in Table 3.
The detached SSL model performs worse, demonstrating that training two correlated models achieves
better adaptation as opposed to only aligning one of them, because collaborative learning allows both
models to learn common knowledge from different domains that in turn facilitates invariant learning.

Table 2: Ablation study that showcases the
impact of individual module.

Method DomainNet Office-Home
-IWP Score 75.3 73.6
-Invariant Regularization 76.7 74.9
-Self-penalization 77.0 74.8
-Causal Intervention 75.2 73.5

CAKE (Ours) 77.6 75.4

The aforementioned observation and analysis verify the
effectiveness of CAKE in being able to deeply mine the po-
tential of cross-domain data, thereby achieving the SSDA
improvement.

Effect of Confirmation Bias Eliminating. To build
insights on the unbiased SSL in CAKE, we perform
an in-depth analysis of the bias-eliminating mecha-
nism in Figure 3(d). In this experiment, we ran-
domly select 10 classes (5 head and 5 tail). The re-
sults suggest that CAKE and its variant CAKE (w/
bias) obtain a comparable performance on the head class. However, CAKE (w/ bias) fails
to maintain the consistent superiority on the tail class while our approach does. (e.g.,
tail class 69, CAKE: 46.0% , CAKE (w/ bias) : 36.2%). This phenomenon is reason-
able since CAKE maintains unbiasedness to each class-wise sample by maximizing P (X|Y).
As the labeled/unlabeled data share the same class distribution, the accuracy of the tail class can
be improved. In contrast, CAKE (w/ bias) focuses more on the head class, which results in an
unbalanced performance for all categories. These results empirically verified our theoretical analysis
and the robustness of the debiasing mechanism, which provides a reliable solution that guarantees the
mutual data knowledge to be exchanged from source and target aspects.

Table 3: Results of cooperation vs. solo.

Method Domain Office-Home
Ms

C 70.6 67.4
Mt

C 68.3 65.8

CAKE (Ours) 77.6 75.4

Number of Invariant Causal Factors. Figure 4(a) reports
the SSDA results of different numbers of Invariant Causal
Factors (ICFs) X̂ (2 × Ng) on DomainNet. Across all
scenes, the best performance is usually achieved with Ng

= 2, except for P→ C. This ablation proves the ICFs of X̂
can be learned from a set of limited style-changing samples.
Appropriately using these ICFs to conduct the deconfounded
operation can effectively improve the SSDA performance.

Grad-CAM Results of Causal Intervention. We systematically present the explicit benefits of
the invariant concept learning (ICL). Figure 4(b) visualizes the most influential part in prediction
generated from Grad-CAM Selvaraju et al. (2017). It’s rather clear to see that CAKE appropriately
captures the invariant part of the concept while CAKE(w/o CI) failed. We also analyze the reason why
CAKE performs better in these cases. For instance, the concept C=“celling fan” has a complicated
background, i.e., style S=“cluttered”. Without causal intervention, CAKE (w/o ICL) tends to focus

8
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(a) Accuracy of Different (c) t-SNE Visualization(b) Class Activation Maps

Test Image CAKE (w/o ICL) CAKE ✓

=“ceiling fan”

✗

C=“dog”=“dog”

teapot

teapot

𝒩𝒩g

𝒩𝒩g

𝓒𝓒

𝓒𝓒

Figure 4: In-depth analysis of CAKE. (a) is the plot of invariant causal factor number Ng against
accuracy(%). (b) Grad-CAM results of CAKE and CAKE(w/o ICL). (c) t-SNE plot of features.

on the irrelevant information of style S= “cluttered", therefore predicting the wrong class. On the
contrary, CAKE can attend to the vital image regions by learning the invariant concept C= "celling
fan" through the deconfounded mechanism.

Cross-domain Feature Alignment. We employ the t-SNE Van der Maaten & Hinton (2008)
to visualize the feature alignment before/after training of adaptation scenarios DS=“Real” and
DT =“Clipart” on DomainNet. We randomly select 1000 samples (50 samples per class). Our
invariant concept learning focuses on making XS and XT alike. It can be observed that as the model
optimization progresses, e.g., C=“teapot”, the target features gradually converge toward target cluster
cores. Each cluster in the target domain also gradually moves closer to its corresponding source
cluster cores, showing a cluster-wise feature alignment effect. This provides an intuitive explanation
of how our CAKE alleviates the domain shift issue.

5 RELATED WORK

Semi-supervised Domain Adaptation. Semi-supervised domain adaptation (SSDA) Saito et al.
(2019); Qin et al. (2020); Jiang et al. (2020); Li & Hospedales (2020); Kim & Kim (2020); Li et al.
(2021b); Yoon et al. (2022) address the domain adaptation problem where some target labels are
available. However, these techniques mainly rely on the two domain shift assumptions of Covariate
Shift and Conditional Shift to conduct SSDA. Such assumptions present intuitive solutions but lack a
solid theoretical explanation for the effectiveness of SSDA, which hinders their further development.
Thus we develop the CAKE, which decomposes the SSDA as two proxy subroutines with causal
theoretical support and reveals the fundamental reason of the two domain shift assumptions.

Invariant Risk Minimization. Recently, the notion of invariant prediction has emerged as an impor-
tant operational concept in the machine learning field, called IRM Rosenfeld et al. (2020); Arjovsky
et al. (2019). IRM proposes to use group structure to delineate between different environments where
the aim is to minimize the classification loss while also ensuring that the conditional variance of the
prediction function within each group remains small. In DA, this idea can be studied by learning
classifiers that are robust against domain shifts Li et al. (2021a) but still has the Covariate Shift
issue. Therefore, we propose the CAKE that enforces the model to learn the local disentangled
invariant-concepts rather than the global invariant-features across domains, thus facilitating the SSDA.

Causality in DA. There are some causality study in DA community. Glynn & Quinn (2010)
considered domain adaptation where both the distribution of the covariate and the conditional
distribution of the target given the covariate change across domains. Gong et al. (2016) consider
the target data causes the covariate, and an appropriate solution is to find conditional transferable
components whose conditional distribution given the target is invariant after proper location-scale
transformations, and estimate the target distribution of the target domain. Different from the two
causal DA handle the DA task that only deals with the Conditional Shift issue, we also consider the
Covariate Shift, which presents a improved IRM view for SSDA.

6 CONCLUSION

We first propose a causal framework to pinpoint the causal effect of disentangled style variables,
and theoretically explain what characteristics should a robust domain adaptation model have. We
next discuss the maximal training data utilization and present a collaboratively debiasing learning
framework to make use of the training data to boost SSDA effectively. We believe that CAKE serves
as a complement to existing literature and provides new insights to the domain adaptation community.
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This is the Appendix for “CAKE: CAusal and collaborative proxy-tasKs lEarning for Semi-Supervised
Domain Adaptation”. Table 4 summarizes the abbreviations and the symbols used in the main paper.

Table 4: Abbreviations and symbols used in the main paper.

Abbreviation/Symbol Meaning
Abbreviation

DA Domain Adaptation
UDA Unsupervised Domain Adaptation
SSDA Semi-supervised Domain Adaptation
SSL Semi-supervised Learning

CAKE Causal and collaborative proxy-tasks learning
ICL Invariant Concept Learning
CDL Collaboratively Debiasing Learning
ICF Invariant Causal Factor

ICFG Invariant Causal Factor Generator
IRM Invariant Risk Minimization

Symbol in Theory
DS Source Domain
DT Target Domain
X Image Data
Y True Label
C Concept
SC Cross-domain Style
SI Intra-domain Style
X̂ Invariant Causal Factors

2×Ng The Number of Causal Factors

Symbol in Algorithm
Sl Source Domain Data
Tl Labeled Target Domain Data
Tu Unlabeled Target Domain Data
MI ICL Proxy Subroutine
MC CDL Proxy Subroutine
ΘI Parameters ofMI
ΘC Parameters ofMC
Ŝl Causal factors for DS
T̂l, T̂u Causal Factors for DT
Licl Loss of Invariant Concept Learning
Lcdl Loss of Collaboratively Debiasing Learning
Lir Invariant Regularization Loss
Lsp Self-penalization Loss

This appendix is organized as follows:

• Section 7 provides the proof about the disentangled X causal intervention, invariant risk
minimization, unbiased eliminating mechanism and further discussion of Assumption 1.

• Section 8 provides the method details of proposed CAKE.

• Section 9 reports more experimental settings of datasets, baselines, implementation details
and training process of CAKE.
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• Section 10 shows the additional experiments on DomainNet and
Office-Home Venkateswara et al. (2017) to verify the effectiveness of CAKE.

• Section 11 lists the limitations of this paper.

7 PROOF AND DERIVATION

This section derives the disentangled causal intervention and the inverse probability weighting theory
for the confirmation of unbiased eliminating mechanism.

7.1 DISENTANGLED X CAUSAL INTERVENTION

We will first provide a brief introduction to the preliminaries of disentangled X causal intervention.
Real-world observations, according to physicists, are the result of a mix of independent physical rules.
This also applies to causal inference Higgins et al. (2018), i.e., the laws are denoted as disentangled
generative factors, such as shape, color, and position. Let the X represent the image data, each X can
be disentangled into concept C, cross-domain style SC and intra-domain style SI variables which are
mutually independent, i.e., a triplet X = (C,SC ,SI), where C ⊥⊥ SC ⊥⊥ SI . Correspondingly, the
invariant causal factors of X are given by X̂ ( style mapping results of X ), where S ∈ {SC ,SI} are
different from X . Only concept C is relevant for the true label Y of X , i.e., style changing is concept-
preserving. In other words, there is a set of independent causal mechanisms ϕ: S → X , X̂ , generating
images from S . To study how can we get the X̂ , we leverage the assumption of disentangled variables
based on Higgins’ definition of disentangled representation Higgins et al. (2018). We state the
definition as follows:

Definition 1 (Group Action on Disentangled Variables). Let G be the group acting on S,
i.e, g · s ∈ S × S transforms s ∈ S, e.g., group element of “turn domain style, real to clipart”
changing the semantic from “real” to “clipart”. Suppose there is a direct product decomposition
G = g1 × g2 × · · · × gq and S = S1 × S2 × · · · × Sq, where gi acts on Si respectively. A feature
representation is disentangled if there exists a group G acting on X such that:

• Theorem 3 ( Decomposable X .) There is a decomposition X = X1 × X2 × · · · × Xq,
such that each Xi is fixed by the action of all gj , where j ̸= i and affected only by gi, e.g.,
changing the “domain style” semantic in S does not affect the “concept” vector in X .

P (Xj = concept|gi · Xi) = P (Xj = concept|Xi) (10)

• Theorem 4 (Equivariant Semantic Changing.) ∀g ∈ G, ∀s ∈ S, f(g · s) = g · f(s),
e.g., the feature of the changed cross-domain style semantic: “real” to “clipart” in S, is
equivalent to directly change the style vector in X from “real” to “clipar”.

P (g · s|S) = P (g · s|X ) (11)

Under this Theorem 3, the disentangled representations are obtained by our Assumption 1, i.e.,
X = (C,SC ,SI). Compared to the previous definition of feature representation which is a static
mapping, the disentangled representation in Definition 1 is dynamic as it explicitly incorporates group
representation Williams (2002), which is a homomorphism from group to group actions on a space,
e.g., G → X × X , and it is common to use the feature space X . What’s more, Theorem 4 indicates
that performing group action of semantic changing (e.g., style changing) g on S is equivariant for S
and X . Thus, X̂ can be obtained by performing different g ∈ G on X .

Next, we can introduce the causality that allows computing how an outcome would have changed,
had some variables taken different values, referred to as a causal intervention. As a prerequisite, X̂
should be calculated following the three steps of computing principles Pearl & Mackenzie (2018):

• In abduction, all the invariant causal factors, i.e., (X̂ = x̂1, X̂ = x̂2, · · · , X̂ = x̂k) are
inferred from X through P (X̂ |X ) .

• In action, X̂ = x̂i is drawn from P (X̂ = x̂i|D = DS) or P (X̂ = x̂i|D = DT ), while the
values of other X̂ are fixed.
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• In prediction, the modified (X̂ = x̂1, X̂ = x̂2, · · · , X̂ = x̂k) is fed to the generative process
P (X|X̂ ) to obtain the output.

More details can be found in Glymour et al. (2016). Based on the computing principles, we consider
G as an embedded function Besserve et al. (2018), i.e., a continuous injective function with continuous
inversion, which generally holds for convolution-based networks as shown in Puthawala et al. (2020).
X̂ are obtained through the generative process G : X → X̂ . X̂ with the invariant concept with X can
be regarded as the causal factors to take a causal theoretical view for the domain adaptation problem.

Proof of the Sufficient Condition. Suppose that the representation is fully disentangled w.r.t. G. By
Definition 1, there exists subspace Xi ∈ X affected only by the action of gi ∈ G. This part aims to
prove the following sufficient condition: if gi intervenes Si, the invariant causal factors(ICFs) are
faithful when the Li

st is smallest or the ith image augmentation have not change the concept. For
a sample xS from D = DS , let g−1(xS) = S = (S1, · · · S2, · · · Sk). We modify style by changing
gi ∈ G drawn from P (gi|D = DT ) (cross-domain style) or P (gi|D = DS) (intra-domain style).
Denote the modified style as Ŝ = (Ŝ1×Ŝ2×· · ·× Ŝk). Denote the sample with style Ŝ as x̂S . Given
gi intervenes S corresponds to a counterfactual outcome when Si is set to Ŝi through intervention.
Now as g−1(xS) = S, using the counterfactual consistency rule, we have gi(xS) = x̂S . As x̂S is
faithful with the Counterfactual Faithfulness theorem Pearl et al. (2000), we prove that gi(xS) is also
faithful, i.e., the smallest Li

st or the ith image augmentation have not change the concept.

7.2 INVARIANT RISK MINIMIZATION

In a seminal work, Arjovsky et al. (2019) consider the question that data are collected from multiple
envrionments with different distributions where spurious correlations are due to dataset biases. This
part of spurious correlation will confuse model to build predictions on unrelated correlations rather
than true causal relations. IRM estimates invariant and causal variables from multiple environments
by regularizing on predictors to find data represenation matching for all environments.

Let X be the image space, Z and Y represent the be feature space and classification output space (e.g.,
the set of all probabilities of belonging to each class), the feature extractor backbone Φ : X → Z and
the classifier w : Z → Y . Let Etrbe a set of training environments, where each e ∈ Etr is a set of
images. Mathematically, IRM phrase these goals as the constrained optimization problem:

min
Φ,w

∑
e∈Etr

Re(·; Φ)︸ ︷︷ ︸
ERM Term

+λ ·
∥∥∇w|w=1.0Re(w · Φ)

∥∥2︸ ︷︷ ︸
Invariant Risk

(12)

whereRe(·; Φ) is the empirical classification risk (ERM) in the environment e, w = 1.0 is a scalar
and fixed “dumm” classifier, the gradient norm penalty is used to measure the optimality of the dummy
classifier at each environment e, and λ ∈ [0,+∞) is a regularizer balancing between predictive
power, and the invariance of the predictor 1 · Φ(x).
In DA problem, IRM can be regarded as the classic ERM term (e.g., classification loss) plus
the invariant risk (e.g., discrepancy between conditional distributions over the features) Li et al.
(2021a). The invariant risk consider about the Conditional Shift assumption (P (Y|X ,D = DS) ̸=
P (Y|X ,D = DS)) to learn the data representation, thereby learning the invariant predictor. However,
IRM may not be the true savior for the DA task which still has two issues:

• Covariate Shift. As we discussed in section 1, the marginal feature distributions are
different across domain, i.e., P (X|D = DS) ̸= P (X|D = DT ). In SSDA task, there are
only few labeled samples in DT , it hard to measure the gap of marginal feature distribution
between two domains. Thus, an alternative is consider the Covariate Shift that reduce the
features discrepancy across domains. However, IRM is not sufficient to tackle this issue.

• Spurious Correlation. The learned global representation of an image still has noise style
information rather than the fine-grained concept. Using such global representation may
leave confused style information in feature space, resulting in inaccurate prediction.

Different from the IRM in DA, our ICL tackled the aforementioned issues at two points: 1) represent-
ing images from the source domain DS to target domain DT by invariant causal factor generator; 2)
eliminating the spurious correlation of style and label by statistical learning with causal intervention.
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In summary, our proposed CAKE not only addressed the two domain shift issue, but also enforced
the model to learn the disentangled invariant-concepts across domains, which can boost the SSDA
reasonably.

7.3 INVERSE PROBABILITY WEIGHTING THEORY

The main content of this paper indicates the unbiased SSL learner should be impartial for less popular
data (e.g., tail samples Xt) and popular ones (e.g., head samples Xh), i.e., P (Xh|Y) = P (Xt|Y).
Inspired by the inverse propensity weighting Glynn & Quinn (2010) theory, which introduces a weight
for each training sample via its propensity score, which reflects how likely the label is observed (e.g.,
its popularity). In this way, IPW makes up a pseudo-balanced dataset by duplicating each labeled
data inversely proportional to its propensity—less popular samples should draw the same attention as
the popular ones—a more balanced imputation. Thus, take D = DS as an example, the optimization
parameter Θs

C for SSL modelMs
C should be taken same attention for all the labeled data. In general

SSL training, Θs
C can be optimized as follows:

Θs
C = argmax

Θ̂s
C

∑
(xsl,ysl)∼Sl

logP (ysl|xsl; Θ̂
s
C) (13)

= argmax
Θ̂s

C

∑
(xsl,ysl)∼Sl

logP (xsl|ysl; Θ̂s
C) ·

P (ysl; Θ̂
s
C)

P (xsl; Θ̂s
C)

(14)

= argmax
Θ̂s

C

∑
(xsl,ysl)∼Sl

logP (xsl|ysl; Θ̂s
C) · P (ysl; Θ̂

s
C) (15)

= argmax
Θ̂s

C

∑
(xsl,ysl)∼Sl

logP (xsl|ysl; Θ̂s
C) ·

logP (xsl|ysl; Θ̂s
C) + logP (ysl; Θ̂

s
C)

logP (xsl|ysl; Θ̂s
C)

(16)

= argmax
Θ̂s

C

∑
(xsl,ysl)∼Sl

logP (xsl|ysl; Θ̂s
C) ·

log
P (ysl|xsl;Θ̂

s
C)P (xsl;Θ̂

s
C)

P (ysl;Θ̂s
C)

+ logP (ysl; Θ̂
s
C)

log
P (ysl|xsl;Θ̂s

C)P (xsl;Θ̂s
C)

P (ysl;Θ̂s
C)

(17)

= argmax
Θ̂s

C

∑
(xsl,ysl)∼Sl

logP (xsl|ysl; Θ̂s
C) ·

log
P (ysl|xsl;Θ̂

s
C)

P (ysl;Θ̂s
C)

+ logP (ysl; Θ̂
s
C)

log
P (ysl|xsl;Θ̂s

C)

P (ysl;Θ̂s
C)

(18)

= argmax
Θ̂s

C

∑
(xsl,ysl)∼Sl

logP (xsl|ysl; Θ̂s
C) ·

logP (ysl|xsl; Θ̂
s
C)

logP (ysl|xsl; Θ̂s
C)− logP (ysl; Θ̂s

C)
(19)

⇒ SIPW (.) =
logP (ysl|xsl; Θ̂

s
C)

logP (ysl|xsl; Θ̂s
C)− logP (ysl; Θ̂s

C)
(20)

where SIPW (·) is the Inverse Probability Weighting score, P (xxl; Θ̂
s
C) is the sampling probability an

empirical distribution which is thus constant. Thus, from (4) to (5) and (7) to (8) in Eq. 13, P (xxl; Θ̂
s
C)

can be ignored. Therefore, we can turn maximizing argmax
Θ̂s

C

∑
(xsl,ysl)∼Sl

logP (ysl|xsl; Θ̂
s
C) to maxi-

mizing argmax
Θs

C

∑
(xsl,ysl)∼Sl

logP (xsl|ysl; Θs
C) according Eq. 13. This formula can be understood as

using the prior knowledge of marginal distribution P (Y; Θs
C) to adjust the optimization objectives

for unbiased learning. Thus, the SSL modelMs
C is unbiased to the class-wise sample by maximizing∑

(xsl,ysl)∼Sl

logP (xsl|ysl; Θs
C), thereby eliminating the undesirable confirmation bias.

7.4 FURTHER DISCUSSION OF ASSUMPTION 1

We would like to clarify the further explanation of our proposed assumption 1 (Disentangled Variables).
Besides, we also give other intuition of this assumption for other tasks.
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Figure 5: Overview of CAKE. In ICL proxy,MI(·; ΘI) first learns the causal factors for DS and
DT in unsupervised learning paradigm, aiming to generate the invariant causal factors and use
causal intervention to remove the confounding effect. In CDL aspect, we construct two pseudo
labeling-based SSL techniques: (Sl, Ŝl)→ Tu and (Tl, T̂l)→ Tu, aiming at utilizing all the training
data possible to bridge the feature discrepancy under the premise of invariant “concept” learning.

• Single classification task. We have already noted that this assumption may not be true in all
settings, but we believe that many image settings can be approximated. For example, in most
of the single classification tasks, a given image (e.g., a dog on the lawn) only has one label.
The annotators tend to focus on the most important region (the dog) which can be regarded
as the concept to give the label. The dog with other colors or appearance can be regarded
as the intra-domain style . The dog in other domain (e.g., clipart domain) with different
backgrounds can refer to the cross-domain style . In other words, and are confounders that
interfere the model to predict the true label given the image.

• Other complex vision tasks. For these tasks, e.g., multi-label task Li et al. (2006), visual
question answer Antol et al. (2015), visual captioning Vinyals et al. (2015), this assumption
may not be applicable. For instance, an image describes “a dog and a cat on the lawn”.
When the image is classified as a dog, besides the style confounders , the cat is also an
extraneous factor called object confounder. Nevertheless, we also investigated this scenario
in and the results systematically show the robustness of the proposed CAKE.

8 METHOD DETAILS

This section presents the method details of the proposed CAKE. Figure. 5 illustrates the overview of
our CAKE framework that contains two proxy subroutines: Invariant Concept Learning (ICL) and
Collaboratively Debiasing Learning (CDL). Next, we will elaborate on the details of cross-domain
style transfer and bias eliminating mechanism in practice.

8.1 CROSS-DOMAIN STYLE TRANSFER

The invariant concept samples with cross-domain style transferring is generated from CycleGAN Zhu
et al. (2017) 5. Here we provide the architectures of generator and discriminator in Table 5.

5https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
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Table 5: Abbreviations and the symbols used in the main paper.

Generator Discriminator
ReflectionPad (3) Conv2D (4,64)
Conv2D (7,64) LeakyReLU (0.2)

InstanceNorm ReLU Conv2D (4,128)
Conv2D (3,128) InstanceNorm

InstanceNorm ReLU× 2 LeakyReLU (0.2)
Conv2D (3,256) Conv2D (4,256)

InstanceNorm ReLU InstanceNorm
ResNetBlock × 2 LeakyReLU (0.2)

InstanceNorm ReLU Conv2D (4,512)
ConvTranspose2D (3,64) InstanceNorm

InstanceNorm ReLU LeakyReLU (0.2)
ReflectionPad (3) Conv2D (4,1)

Conv2D (7,3)
Tanh

Loss of Cross-domain Invariant Causal Factor Generator. The CycleGAN technique transforms
the images to enable the preservation of source concepts during the cross-domain conversion process.
Take DS → DT as an example, we develop Ng CycleGANs, each of them consisting of three-loss
parts to conduct the cross-domain style transfer.

argmin
ΘI

Lk
st = argmin

ΘI

(λadv · Lk
adv + λcyc · Lk

cyc + λidt · Lk
idt), k = argmin

{i∈1,··· ,Ng}
Li
st (21)

where Lk
adv, Lk

cyc and Lk
idt are adversarial loss, cycle loss and identity loss, respectively. λadv,

λcyc and λidt correspond to their trade-off parameters. Specifically, the Lk
adv, Lk

cyc and Lk
idt can be

calculated as follows:

Lk
adv = E

xt∼(Tu,Tl)
[logDk

t (xt)] + E
xsl∼Sl

[log(1−Dk
t (G

k
st(xsl)))] (22)

Lk
cyc = E

xsl∼Sl

[||Gk
ts(G

k
st(xsl))− xsl||] + E

xt∼(Tu,Tl)
[||Gk

st(G
k
ts(xt))− xt||] (23)

Lk
idt = E

xsl∼Sl

[||Gk
ts(xsl)− xsl||] + E

xt∼(Tu,Tl)
[||Gk

st(xt)− xt||] (24)

where ||·|| denote the L1 norm. Dt is the discriminator to distinguish the origin source of the latent
vector if from DT . Gk

st and Gk
ts correspond to the kth DS → DT and DT → DS cross-domain

invariant causal factor generator (ICFG), respectively.

8.2 INTRA-DOMAIN STYLE TRANSFER

For the intra-domain style changing factors, we utilize the data augmentations as intra-domain style
interventions,e.g., color temperature and sharpness according to the cross-domain style changing
samples. The code of the intra-domain style transfer can be found in our online project. Thus, the
invariant causal factors Ŝl = {Ŝtl , Ŝsl } are produced. Correspondingly, for the target domain, T̂l and
T̂u are obtained in the generating learning strategy.
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8.3 INVARIANT CONCEPT LEARNING

After obtaining a set of invariant concept-aware samples Sl for source domain DS , we design the
ICL loss function which has two aspects as follows:

min
Θb

I ,Θ
c
I

Licl(·; (Θb
I ,Θ

c
I)) = Lcls + λir · Lir(·; Θb

I)

min
Θb

I

Licl(·; Θb
I) =

∑
xsl∼Sl

(
∑

G∈{C,I}

d(Φ(xsl), f(C
fg
G (xsl))) + d(Φ(Cfg

C (xsl)),Φ(C
fg
I (xsl)))

(25)

where Θb
I and Θc

I are learnable parameters for the backbone and classifier, respectively. Φ(x̃sl; Θ
b
I)

is the backbone extracting feature from x̃sl. λir is the trade-off parameter and d(·) is the euclidean
distance between two inputs. Lcls(Φ(x̃sl; Θ

b
I), ysl; Θ

c
I) is the cross-entropy loss for classification.

To further access the concept-invariant learning effect, we develop the invariant regularization
loss Lir(·; Θb

I) through a regularizer. Such regularization is converted to an entropy minimization
process McLachlan (1975), which encourages the classifier to focus on the domain-invariant concept
and downplay the domain-variant style.

8.4 CONFIRMATION BIAS ELIMINATING MECHANISM

According to complete proof of IPW theory in section.7.3, we aim to find the optimal Θ̃s
C that

maximizing
∑

(xsl,ysl)∼Sl

logP (xsl|ysl; Θs
C) to implement the debiasing SSL model learning.

Θ̃s
C = argmax

Θs
C

∑
(xsl,ysl)∼Sl

logP (xsl|ysl; Θs
C) = argmax

Θs
C

∑
(ysl,xsl)∼Sl

logP (ysl|xsl; Θ
s
C)

SIPW (.) (26)

To make practical use of this Eq. 20, we estimate P (Y ; Θs
C , Bs, t) in each mini-batch training for

error backpropagation at iteration t with batch size Bs. It is noteworthy that we use a distribution
moving strategy over all the iterations to reduce the high-variance estimation between time adjacent
epochs. The details as below:

Bs∑
i=1

(Mo · P̂ (y
(i)
sl ; Θ

s
C , Bs, t−Bs) + (1−Mo) · P (y

(i)
sl ; Θ

s
C , Bs, t))→

Bs∑
i=1

P̂ (y
(i)
sl ; Θ

s
C , Bs, t)

(27)
where Bt is the batch size and Mo is a momentum coefficient, P̂ (·) is the re-estimated prior. With the
gradual removal of bias from the training process, the performance gap between classes also shrinks,
and both popular and rare classes can be fairly treated.

8.5 OBJECTIVE FUNCTION OF CDL

The full objective function of CDL has three parts, supervised loss Ls(·; ΘC), unsupervised loss
Lu(·; ΘC) and self-penalization loss Lsp(·; ΘC):

min
ΘC
Lcdl(·; ΘC) = E[λs · Ls(·; ΘC) + λu · Lu(·; ΘC) + λsp · Lsp(·; ΘC)], ΘC ∈ {Θs

C ,Θ
t
C} (28)

where λs, λu and λsp denote the pre-defined hyper-parameters.

9 EXPERIMENTAL SETTINGS

Implementation Details. Our work can be checked at the Anonymous Link 6, . Algorithm 1 and 2
presents the pseudocode of training and inference process of CAKE. We use the PyTorch Paszke et al.
(2019) deep learning framework to conduct all our experiments on 8× V100 GPUs and 8× 2080Ti
GPUs. We employ the ResNet-34 He et al. (2016) and VGG-16 Simonyan & Zisserman (2014) (We
also report the results of ResNet-34 on Office-Home ) as the backbone model on DomainNet 7

6https://anonymous.4open.science/r/Cake-A1B0
7http://ai.bu.edu/M3SDA/
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Table 6: Complete list of hyper-parameters.

Hyperparameters Notation Value
Labeled Data Batch-size Bs 24
Confidence Threshold τ 0.5

Momentum Mo 0.9
Learning Rate Lr 0.001
Max Iteration Tmax 20000

HP of Supervised l Loss λs 1
HP of Unsupervised Loss λu 1

HP of Invariant Regularization Loss λir 0.1
HP of Self-penalization Loss λsp 0.1

and Office-Home 8, respectively. We train CAKE with a standard stochastic gradient descent
(SGD) Bottou (2010) optimizer in all experiments. We follow Saito et al. (2019) to replace the last
linear layer with a K-way cosine classifier (e.g., K = 126 for DomainNet) and train it at a fixed
temperature (0.05 in all our setting). Besides, we use an identical set of hyperparameters (B=24,
Mo=0.9, Lr, τ=0.5, Tmax=20,000) 9 across all datasets. We utilize the Mixmatch Berthelot et al.
(2019) 10 as the semi-supervised learning model, the basic loss function for CAKE consists of two
cross-entropy loss terms: a supervised loss Ls applied to labeled data and an unsupervised loss Lu.

Comparison of Methods. For quantifying the efficacy of the proposed framework, we compare
CAKE with previous SOTA SSDA approaches, including MME Saito et al. (2019), DANN Ganin
et al. (2016), BiAT Jiang et al. (2020), APE Kim & Kim (2020), DECOTA Yang et al. (2021),
ELP Inoue et al. (2018), CDAC Li et al. (2021b) and SSSD Yoon et al. (2022). We also present a
simplified version of CAKE as the baseline.

We compare the results of CAKE with a wide range of baselines, including early works and recent
SOTA models on this task:

• Baseline is a simplified version of CAKE without causal intervention, bias eliminating
mechanism, invariant regularization and self-penalization.

• MME Saito et al. (2019) first proposed to solve SSDA by aligning the features from both
domains by means of adversarial learning.

• DANN Ganin et al. (2016) augmented the model with few standard layers and a new gradient
reversal layer based on the features that cannot be discriminated between the source and
target domains.

• ELP Inoue et al. (2018) designed a framework with domain transfer and pseudo labeling to
generate instance-level annotations for the target domain.

• BiAT Jiang et al. (2020) devised a bidirectional strategy with an adaptive adversarial model
and an entropy-penalized virtual adversarial model to guide the direction of generating
adversarial examples.

• APE Kim & Kim (2020) addressed the intra-domain discrepancy issue via attraction,
perturbation, and exploration schemas.

• DECOTA Yang et al. (2021) decomposed SSDA into an SSL and UDA problem as two
models to bridge the gap and exchange expertise between the source and target domains.

• CDAC Li et al. (2021b) developed an adversarial adaptive clustering loss to guide the model
training towards grouping the features of unlabeled target data into clusters and further
performing cluster-wise feature alignment across domains.

8https://www.hemanthdv.org/officeHomeDataset.html
9B, Mo, Lr and Tmax refer to batch size, momentum, learning rate and max iteration in SGD optimizer.

10https://github.com/YU1ut/MixMatch-pytorch
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Algorithm 1: CAKE: Causal Multi-proxy Subroutine Learning Framework
1 Input: Training data Sl from source Domain DS , Tl and Tu from target domain DT , pre-trained

classifiersMC(·; Θs
C) andMC(·; Θt

C) with parameters Θs
C and Θt

C , respectively;
2 Output: Invariant causal factors of Ŝl, T̂l, T̂u, fine-tuned classifierMC(·; Θt

C);
3 Initialization: Randomly initialize the parameters {Θk

st}
Ng

k=1 of Cross-domain ICFGs {Gk
st}

Ng

k=1;
4 repeat
5 if Cross-domain ICFG model in CAKE have not trained then
6 repeat
7 Randomly sample a minibatch;
8 Train cross domain ICFGs {Gst}ki=1 with unpaired Sl, Tl and Tu with cross-domain

style transfer loss Lst;
9 Update {Θk

st}
Ng

k=1 using Eq. 4;
10 until Convergence;

11 until Convergence;
12 Image augmentations for Sl, Tl and Tu;
13 Generate Ŝl = {Ŝtl , Ŝsl }, T̂l = {T̂ t

l , T̂ s
l }, T̂u = {T̂ t

u , T̂ s
u };

14 InitializeMC(·; Θs
C) andMC(·; Θt

C);
15 repeat
16 Randomly sample a minibatch from {Sl, Ŝl} and {Tl, T̂l};
17 Eliminate confirmation bias Bc using Eq. 8;
18 Obtain pseudo-labels using Eq. 6;
19 Calculate CDL loss of Ls, Lu and Lsp;
20 Calculate P (Y|do(X ),D = DS) and P (Y|do(X ),D = DT ) forMC(·; Θs

C) andMC(·; Θt
C)

using Eq. 2;
21 Calculate ICL loss of Lcls and Lir using Eq.25;
22 Update parameters Θs

C and Θt
C ;

23 until Convergence;
24 return ClassifiersMC(·; Θs

C) andMC(·; Θt
C).

Algorithm 2: CAKE Inference
1 Input: Test data Tu from target domain DT , fine-tuned classifierMC(·; Θt

C) with parameters
Θt

C ;
2 Output: Predicted label ŷt;
3 Sample xtu ∼ Tu;
4 Sample invariant causal factors {x̂i

tu}
2Ng

i=1 of xtu;
5 Measure deconfounded effect using Eq. 2;
6 return ŷtu ← argmax P (Y|do(X = xtu),D = DT ).

• SSSD Yoon et al. (2022) exploited the rich sample-to-sample relations using self-distillation
to fill the domain gap, thus facilitating the adaptation.

• IRM Arjovsky et al. (2019) estimates nonlinear, invariant, causal predictors from multiple
training environments, to enable out-of-distribution generalization.

• LIRR Li et al. (2021a) simultaneously learning invariant representations and risks across
domains, leading to a bound minimization algorithm for SSDA.

• PACL Li et al. (2020) uses a data augmentation-based technique to produce highly perturbed
images to mitigate overfitting. The consistency alignment module is incorporated into the
framework, which enforces consistency regularization on the classifier.
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Table 7: Accuracy on Office-Home (%) for three-shot setting with 4 domains, using VGG-16. A larger score
indicates better performance. We color each row as the best , second best , and third best .

Method R to C R to P R to A P to R P to C P to A A to P A to C A to R C to R C to A C to P MEAN
S+T 49.6 78.6 63.6 72.7 47.2 55.9 69.4 47.5 73.4 69.7 56.2 70.4 62.9
DANN Ganin et al. (2016) 56.1 77.9 63.7 73.6 52.4 56.3 69.5 50.0 72.3 68.7 56.4 69.8 63.9
MME Saito et al. (2019) 56.9 82.9 65.7 76.7 53.6 59.2 75.7 54.9 75.3 72.9 61.1 76.3 67.6
APE Kim & Kim (2020) 56.0 81.0 65.2 73.7 51.4 59.3 75.0 54.4 73.7 71.4 61.7 75.1 66.5
DECOTA Yang et al. (2021) 59.9 83.9 67.7 77.3 57.7 60.7 78.0 54.9 76.0 74.3 63.2 78.4 69.3
ELP Inoue et al. (2018) 57.1 83.2 67.0 76.3 53.9 59.3 75.9 55.1 76.3 73.3 61.9 76.1 68.0

Baseline 60.4 82.7 66.6 76.7 58.2 59.8 76.3 55.9 76.2 73.7 63.0 76.0 68.8
CAKE (Ours) 62.4 87.0 70.8 80.6 61.5 64.3 81.4 58.6 79.5 77.3 65.9 81.6 72.6

Table 8: Accuracy(%) comparison on Office under the settings of 1-shot and 3-shot using Alexnet as backbone
networks.

Method W to A D to A MEAN
one-shot three-shot one-shot three-shot one-shot three-shot

S+T 50.4 61.2 50.0 62.4 50.2 61.8
DANN Ganin et al. (2016) 57.0 64.4 54.5 65.2 55.8 64.8
MME Saito et al. (2019) 57.2 67.3 55.8 67.8 56.5 67.6
BiAT Jiang et al. (2020) 57.9 68.2 54.6 68.5 56.3 68.4
APE Kim & Kim (2020) - 67.6 - 69.0 - 68.3
CDAC Li et al. (2021b) 63.4 70.1 62.8 70.0 63.1 70.0

CAKE(Ours) 66.9 74.5 66.0 73.1 66.5 73.8

10 ADDITIONAL EXPERIMENTAL RESULTS

We conducted the additional experiments on two datasets at different aspects (i.e., one-shot setting,
larger shot Learning t-SNE and Grad-CAM visualization of invariant causal factors.) to verify the
strength of CAKE.

One-shot Setting. We report the comparison with baselines in the one-shot setting on DomainNet
in Table 9 and Office-Home in Table 13. CAKE outperforms the SOTA methods by 1.8% and
2.3% on DomainNet (ResNet-34) and Office-Home (VGG-16), respectively. The performance
of CAKE for one-shot learning is better than the three-shot setting, which suggests the almost best
accuracy are obtained (except for P→R on DomainNet, A→C and C→A on Office-Home.). As
shown later, we also employ the Resnet-34 as backbone to compare the SOTA CDAC Li et al. (2021b)
in Table 15. CDAC accuracy is much lower compared with our CAKE on one&three shot setting.
These observations demonstrate the robustness and generalizability of proposed CAKE once again.

Table 9: Accuracy(%) comparison on DomainNet under the settings of one-shot using Resnet34 as backbone
networks.

Method R to C R to P P to C C to S S to P R to S P to R Mean Accuracy
S+T 55.6 60.6 56.8 50.8 56.0 46.3 71.8 56.9
DANN Ganin et al. (2016) 58.2 61.4 56.3 52.8 57.4 52.2 70.3 58.4
MME Saito et al. (2019) 70.0 67.7 69.0 56.3 64.8 61.0 76.1 66.4
APE Kim & Kim (2020) 70.4 70.8 72.9 56.7 64.5 63.0 76.6 67.6
SSSD Yoon et al. (2022) 73.3 68.9 73.4 60.8 68.2 65.1 79.5 69.9
DECOTA Yang et al. (2021) 79.1 74.9 76.9 65.1 72.0 69.7 79.6 73.9
CDAC Li et al. (2021b) 77.4 74.2 75.5 67.6 71.0 69.2 80.4 73.6
PACL Li et al. (2020) 75.3 74.1 75.3 65.0 72.1 68.1 79.7 72.8

Baseline 75.3 71.2 73.4 65.1 68.9 69.5 77.6 71.5
CAKE (Ours) 80.6 76.9 78.3 69.5 72.3 71.9 80.3 75.7
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Table 10: Accuracy(%) comparison of UDA and SSDA of proposed CAKE on DomainNet under the settings
of three-shot using Resnet34 as backbone networks.

Method UDA SSDA R to C R to P P to C C to S S to P R to S P to R Mean Accuracy
CAKE w/o CDL ✓ 77.2 73.0 74.8 66.0 69.8 67.6 79.2 72.5
CAKE w/o ICL ✓ 80.3 75.1 77.8 68.2 71.7 72.4 80.9 75.2
CAKE w/o IPW ✓ 80.1 74.6 78.1 69.0 72.0 72.5 80.8 75.3

CAKE (Ours) ✓ 83.3 77.6 79.1 72.2 73.0 74.5 83.2 77.6

Table 11: Accuracy(%) comparison of one-stage CAKE and baselines on DomainNet under the settings of
3-shot using Resnet34 as backbone networks.

Method R to C R to P P to C C to S S to P R to S P to R Mean Accuracy
CDAC Li et al. (2021b) 79.6 75.1 79.3 69.9 73.4 72.5 81.9 76.0
PACL Li et al. (2020) 79.0 77.3 79.4 70.6 74.6 71.6 82.4 76.4
CAKE (w/o) SC 79.0 77.3 79.4 70.6 74.6 71.6 82.4 76.4

CAKE (Ours) 83.3 77.6 79.1 72.2 73.0 74.5 83.2 77.6

Table 15: Accuracy on Office-Home for one-
and three shot using ResNet-34.

Method One-shot Three-shot
CDAC Li et al. (2021b) 70.6 74.2
CAKE (Ours) 72.8 75.4

UDA Setting. To further evaluate the effectiveness of
the proposed ICL proxy, we tested a variety of ablation
models: (1) CAKE w/o CDL, (2) CAKE w/o ICL (3)
CAKE w/o IPW. From Table 13, one could observe that the
CAKE with UDA setting also obtains comparable results
compared with SSDA models. This table also suggests the
ICL and IPW are both useful to boost SSDA performance,
which contributes to the accuracy of 2.3 and 2.2. These
observations further demonstrate the robustness and generalizability of the proposed ICL and IWP
once again.

Table 16: Results on DomainNet (R → C) at 10,
20, 50-shot setting, using ResNet-34.

Method 10 20 50 Mean
S+T 69.1 72.4 77.5 73.0
DANN 66.2 68.0 71.1 68.4
ENT 77.9 80.0 83.0 80.3
MME 77.0 78.5 80.9 78.8

CAKE (Ours) 83.3 84.0 86.2 84.5

Analysis of Class Imbalance. Table 12 summarizes
the comparison of generated pseudo-labels of CAKE
and CAKE (w/o IWP) on DomainNet. As reported
in Table 12, under the imbalanced labeled and unla-
beled data, Our CAKE can generate more pseudo-
labels with higher accuracy, both in tail class data
and head class data. In contrast, CAKE w/o IWP
generates few correct pseudo-labels, especially for
the tail class data. These results empirically verified
the robustness of the debiasing mechanism that can
generate a more accurate and balanced result. Such
mechanism provides a reliable solution that guaran-
tees the mutual data knowledge exchanging from
source and target aspects.

Larger Shot Learning. We provide 10,20,50-shot SSDA results on DomainNet (R → C) in
Table 16. We randomly select and add additional samples per class from the target domain to the
target labeled pool. The implementation details are the same as those of 1,3-shot. From this table,
CAKE’s performance improved along with more shots and can outperform baselines from 10- to
50-shot settings, which maintains remarkable results consistently.

IRM vs. ICL. As pointed out in Sec., IRM is is not sufficient to ensure reduced discrepancy across
domains. To validate our point, we report the experimental results of IRM vs. ICL (Table 14) and
further analyses to shed light on the point. According to Table 14, ICL-based CAKE outperform IRM-
based approaches by a large margin of mean accuracy (DomainNet:IRM +22.3% and LIRR:20.9%,
OfficeHome, IRM: +10.3% and LIRR +7.5%). IRM asserts that it is critical to minimize the
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Table 12: Comparison of generated pseudo-labels of CAKE and CAKE (w/o IWP) on DomainNet (R to C).

Head Class Data PLs (Head Class) Correct Pls (Head Class) Tail Class Data PLs (Head Class) Correct Pls (Head Class)
CAKE (w/o IWP) 15326 13512 12414 2999 2424 2264

CAKE 15326 13912 12866 2999 2493 2398

Table 13: Accuracy on Office-Home (%) for one-shot setting with 4 domains, using VGG-16.

Method R to C R to P R to A P to R P to C P to A A to P A to C A to R C to R C to A C to P MEAN
S+T 39.5 75.3 61.2 71.6 37.0 52.0 63.6 37.5 69.5 64.5 51.4 65.9 57.4
DANN Ganin et al. (2016) 52.0 75.7 62.7 72.7 45.9 51.3 64.3 44.4 68.9 64.2 52.3 65.3 60.0
MME Saito et al. (2019) 49.1 78.7 65.1 74.4 46.2 56.0 68.6 45.8 72.2 68.0 57.5 71.3 62.7
DECOTA Yang et al. (2021) 47.2 80.3 64.6 75.5 47.2 56.6 71.1 42.5 73.1 71.0 57.8 72.9 63.3
ELP Inoue et al. (2018) 49.2 79.7 65.5 75.3 46.7 56.3 69.0 46.1 72.4 68.2 67.4 71.6 63.1

Baseline 47.8 79.7 64.8 75.1 47.5 56.3 70.9 42.3 73.4 71.3 57.3 72.4 63.2
CAKE (Ours) 50.2 82.4 65.9 76.4 48.6 58.1 73.7 45.9 75.0 74.4 61.5 74.6 65.6

discrepancy between conditional distributions over the features. However, IRM is not sufficient to
ensure reduced feature discrepancy across domains and it makes the model rely more on spurious
correlations (style → label). Instead, ICL not only considers the invariant risk, but also models
the invariant concept by eliminating the confoundin effect of spurious correlations, which further
acknowledges the importance of ICL.

t-SNE and Grad-CAM visualization of ICFs. To further assess the impact of invariant concept
learning, we randomly select two class ( class A :“helicopter”, class B : “camel” in DomainNet
dataset, R→ C scenario) samples with their invariant causal factors (ICFs) and use t-SNE to visualize
their embeddings in 2D space. Overall, as shown in Figure 8 CAKE clusters instances with their
ICFs are apparently classified into two classes. The ICFs preserve the invariant class-wise concept
semantic with different styles that helps the SSDA model distinguish different classes. What’s more,
we visualize four examples with ICFs by Grad-CAM Selvaraju et al. (2017) to further examine the
invariant concept learning. Figure 6 shows CAKE learns the invariant concept and attends to the
similar image pixels in these samples ( same concept with different styles) , e.g., foreground object
shape semantics. For instance, in the “Castle” example, the styles of the four ICFs are drastically
different from the original “Castle” image. Nevertheless, benefitting from the causal interventions,
our CAKE can distinguish the invariant “concept” features across domains and ignores the changing
of the “style”, which yields improved generalization guarantees.

Figure 8: t-SNE visualization of two class
samples (DomainNet, R → C ) with their
ICFs.

Investigation for the Multi-object Scenario. Fig-
ure 9 systematically shows the robustness of our pro-
posed invariant concept learning when there are multi-
ple objects in an image. For instance, in the first case
(Real→ Clipart) with a dog and a cat, our CAKE can
attend to the most influential pixels on one concept
when the classification result is ”dog/cat”. However,
CAKE (w/o ICL) focuses on the two animals, even if
one of them is the obviously extraneous factor. The
truth is that the irrelevant animal plays a critical con-
text in the prediction process for the trained classifier
CAKE (w/o ICL). In other words, this extraneous
animal is a part of the invariant context about the key
concept, which may downplay the key concept fea-
tures simply. In contrast, our CAKE is trained from
a complex and changeable context with the invariant
concept, so it can attend to the appropriate and unique concept even if there are two objects in the
image. This provides a more reliable explanation of the proposed assumption once again.
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Table 14: Accuracy (%) comparison (higher means better) of IRM method and CAKE on OfficeHome and
DomainNet datasets.

Method R to C S to R C to S Mean Accuracy A to R R to P P to C Mean Accuracy
IRM Arjovsky et al. (2019) 60.7 67.8 52.3 60.27 74.7 79.7 59.0 71.3

LIRR Li et al. (2021a) 62.7 69.4 54.1 62.1 76.1 83.6 62.6 74.1

Baseline 81.5 79.6 70.4 77.1 79.7 85.6 65.6 77.0
CAKE 85.9 83.6 79.6 83.0 84.5 88.3 72.2 81.6

Real → Clipart

Clipart → Real

1st ICF 2nd ICF 4th ICF3rd ICFTeapot

Helicopter

Coffee cup

Castle

1st ICF 2nd ICF 4th ICF3rd ICF

1st ICF 2nd ICF 4th ICF3rd ICF

1st ICF 2nd ICF 4th ICF3rd ICF

Figure 6: Class Activation Maps (CAMs) of four cases which correctly predicted by CAKE on
DomainNet dataset (R→ C and C→ R scenes).

11 LIMITATIONS

One limitation of the proposed CAKE is the training time of invariant causal factor generation, i.e.,
CAKE training. the training duration of cross-domain ICFG, which is responsible for generating
the cross-domain style transfer samples, is long in comparison to As shown in Table 17, generating
these ICFs of cross-domain style changing samples requires around 12 days, mainly due to the
large-scale of the benchmark dataset of DomainNet. Although unfavorable, this paper focuses on
the importance of the causal inference for the SSDA task. We believe that introducing the causal
theoretical view into SSDA can provide new insights to the domain adaptation community. Moreover,
we found that the ICFs of cross-domain style samples both preserved the invariant concept shape
with different styles. We believe that an alternative way is only to use the simple image augmentation
methods (e.g., image transformation of brightness, temperature and sharpness) to generate ICFs to
measure the deconfounded effect. As shown in Table. 11, compared with SOTA methods CDAC Li
et al. (2021b), PACL Li et al. (2020) and our CAKE, obtained a comparable results that further
verifies the validity of our method.

25



Under review as a conference paper at ICLR 2023

Castle
Intra-domain Causal Factors

1st ICF 2nd ICF 3rd ICF 4th ICF

Cross-domain Causal Factors

Figure 7: An example of generated intra-domain ICFs and cross-domain ICFs.

Real → Clipart

Clipart → Real

Dog & Cat CAKE (w/o ICL) CAKE Dog & Cat CAKE (w/o ICL) CAKE

Dog & Cat CAKE (w/o ICL) CAKE Dog & Cat CAKE (w/o ICL) CAKE

Figure 9: Class Activation Maps (CAMs) of multi-object cases which predicted by CAKE (w/o ICL)
and CAKE (R→ C and C→ R scenes).

Table 17: Space-time complexity of CAKE

DomainNet Office-Home
Cross-domain ICFG Training Time 12 days 3 days

GPU Memory (Cross-domain ICFG) Around 49GB Around 49GB
CAKE Training Around 8 hours Around 2 hours

GPU Memory (CDL) Around 81MB Around 81MB
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