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Abstract

Recent advancement in large language mod-001
els (LLMs) has offered a strong potential for002
natural language systems to process informal003
language. A representative form of informal004
language is slang, used commonly in daily con-005
versations and online social media. To date,006
slang has not been comprehensively evaluated007
in LLMs due partly to the absence of a care-008
fully designed and publicly accessible bench-009
mark. Using movie subtitles, we construct a010
dataset that supports evaluation on a diverse011
set of tasks pertaining to automatic process-012
ing of slang. For both evaluation and finetun-013
ing, we show the effectiveness of our dataset014
on two core applications: 1) slang detection,015
and 2) identification of regional and histori-016
cal sources of slang from natural sentences.017
We also show how our dataset can be used to018
probe the output distributions of LLMs for in-019
terpretive insights. We find that while LLMs020
such as GPT-4 achieve good performance in021
a zero-shot setting, smaller BERT-like models022
finetuned on our dataset achieve comparable023
performance. Furthermore, we show that our024
dataset enables finetuning of LLMs such as025
GPT-3.5 that achieve substantially better per-026
formance than strong zero-shot baselines. Our027
work offers a comprehensive evaluation and028
a high-quality slang benchmark based on the029
OpenSubtitles corpus that serves both as a pub-030
licly accessible resource and a platform for ap-031
plying tools for informal language processing.032

1 Introduction033

Large language models (LLM) are the core en-034

gines of widely used applications such as Chat-035

GPT. While the technology is becoming increas-036

ingly pervasive, it is important to understand its037

abilities and limitations with input from diverse038

forms of language use. Here, we focus on the039

case of slang - a common type of informal lan-040

guage that is ubiquitous across day-to-day conver-041

sations (Mattiello, 2005; Eble, 2012). Figure 1 il-042

Figure 1: Overview of tasks used to probe knowledge
of slang in LLMs.

lustrates the relevance of slang in natural language 043

processing (NLP). When describing a good jacket, 044

one can make different word choices such as ex- 045

cellent and blazing. Even though the intended 046

meaning is the same across both word choices, 047

we might expect a significant difference in per- 048

formance caused by an LLM’s lack of knowledge 049

about slang. Recent work in computational model- 050

ing of slang has suggested that pre-trained LLMs 051

assign much lower probabilities to slang compared 052

to their literal equivalents (Sun et al., 2021, 2022), 053

suggesting that models such as BERT (Devlin et al., 054

2019) lack knowledge of slang. 055

Knowledge of slang in LLMs has important 056

implications beyond automated processing of in- 057

formal language. This is the case because the 058

use of slang explicitly reflects one’s social iden- 059

tity (Labov, 1972, 2006; Eble, 2012). For example, 060

the use of blazing to express ‘Something excellent’ 061

emerges from the US whereas it expresses ‘Anger’ 062

in the UK (Green, 2010). Previous work has shown 063

that the performance of NLP systems can substan- 064

tially differ across language generated by different 065

demographic groups stratified by age, gender, re- 066

gion, or ethnicity (Hovy and Søgaard, 2015; Hovy 067

and Spruit, 2016; Blodgett and O’Connor, 2017; 068

Tatman, 2017; Buolamwini and Gebru, 2018; Koe- 069

necke et al., 2020) and can potentially introduce 070

representational harm (Blodgett et al., 2020). Given 071

slang’s close ties with social identity, a competent 072

language model may also accurately reveal a slang 073

user’s identity. While such information can be used 074

to improve NLP performance (Volkova et al., 2013; 075
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Hovy, 2015), the use of slang may also lead to an076

increased risk of personal information exposure.077

Despite these important implications, LLMs078

have not been rigorously evaluated across a wide079

range of models on tasks pertaining to slang. The080

main challenge lies in the lack of high-quality081

datasets that are publically accessible. Furthermore,082

existing dictionary-based data sources (e.g., Green,083

2010) do not include useful meta-data such as the084

literal paraphrase of a slang usage. For example,085

having a pair of sentences as illustrated in Figure 1086

where the only difference lies in the slang and its087

paraphrase (blazing and excellent respectively) al-088

lows us to probe the LLMs in a controlled setting.089

To address these challenges, we collect a new pub-090

lically accessible dataset of slang usages based on091

the OpenSubtitles corpus (Lison and Tiedemann,092

2016). Using this dataset, we systematically evalu-093

ate the LLMs’ knowledge of slang, with a particular094

focus on the widely adopted GPT models (Brown095

et al., 2020; OpenAI, 2023).1 We show that while096

the LLMs contain considerable knowledge about097

slang, task-specific finetuning is still essential in098

achieving state-of-the-art performance.099

We focus on two core tasks illustrated in Fig-100

ure 1. First, we evaluate a model’s knowledge of101

slang’s presence reflected by its ability to detect102

slang in natural sentences. Next, we assess whether103

LLMs can be used to identify regional-historical104

sources of slang usages via a text classification task.105

Finally, we complement the task evaluations by ex-106

amining the semantic knowledge of slang in LLMs107

to obtain interpretive insights in how LLMs pre-108

dict slang usage versus conventional language use.109

Throughout our evaluations, we pay close attention110

to performance discrepancies across different de-111

mographic variables and discuss their implications112

in fairness and privacy.113

We make the following contributions in this pa-114

per: 1) A dataset containing thousands of human an-115

notated slang usages in movie subtitles, contribut-116

ing a novel publically available benchmark of slang117

for evaluation and finetuning; 2) A rigorous evalua-118

tion of large language models’ knowledge of slang,119

including important tasks such as slang detection;120

3) A discussion of the implications of such knowl-121

edge and how it may affect fairness and privacy in122

NLP.2123

1We focus on GPT models but our evaluative framework
can be extended to evaluate other LLMs.

2Anonymous repo: https://tinyurl.com/yj938ssf

2 Related Work 124

2.1 Deep learning for slang 125

Previous work on automatic processing of slang 126

has successfully applied deep learning based tech- 127

niques to address tasks such as detection (Pei et al., 128

2019), generation (Sun et al., 2019, 2021), inter- 129

pretation (Ni and Wang, 2017; Sun et al., 2022), as 130

well as predicting word formations (Kulkarni and 131

Wang, 2018; Wibowo et al., 2021) of slang. These 132

tasks are difficult partly due to slang’s low resource 133

nature. Our work investigates whether the large 134

scale training of LLMs such as GPT-4 can alleviate 135

this difficulty, and if so, whether GPT’s represen- 136

tations reflect semantic knowledge of slang that 137

has been injected in previous methods. We also 138

re-evaluate the slang detection task using modern 139

architectures and contribute the first publically ac- 140

cessible benchmark for slang detection. 141

Recently, mechanisms underlie both language 142

variation (Lucy and Bamman, 2021; Sun and Xu, 143

2022) and semantic change (Keidar et al., 2022) 144

in slang have been extensively studied, with many 145

important features attributed to demographic vari- 146

ables such as age and community membership. We 147

extend this line of work by probing recent large 148

language models for knowledge of slang’s demo- 149

graphic source. 150

2.2 Probing knowledge in LLMs 151

The popularity of deep learning methods in NLP 152

has prompted much work on analyzing the lin- 153

guistic knowledge learned by neural networks (Be- 154

linkov and Glass, 2019; Rogers et al., 2020; Be- 155

linkov, 2022). More recent work has probed LLMs 156

on their knowledge of non-standard language such 157

as metaphors (Aghazadeh et al., 2022; Liu et al., 158

2022; Wicke, 2023) and linguistic anomalies (Li 159

et al., 2021). 160

Two prominent frameworks have been intro- 161

duced to operationalize probing. First, the behav- 162

ioral probing method that assesses differences in 163

behavior of a language model given two similar 164

inputs, where a few tokens of interest differ (e.g., 165

Linzen et al., 2016). For example, by measuring 166

differences in LM scores between alternative words 167

excellent and blazing given the same context “Good 168

choice, that jacket is excellent/blazing”. Another 169

widely adopted probing framework involves the 170

training of probing classifiers (Belinkov, 2022) that 171

append a fine-tuned classification layer to the LM. 172

Instead of finetuning the entire model and strive for 173
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Dataset
Slang detection and probing Slang source identification Publically

accessibleSlang-containing Non-slang Word-level Community of Time of
sentences sentences paraphases emergence emergence

Urban Dictionary ! % % % % !

The Online Slang ! % ! % % %
Dictionary (OSD)

Green’s Dictionary ! % % ! ! %
of Slang (GDoS)

Reddit Glossaries % % % ! % !
(Lucy and Bamman, 2021)

Indonesian Colloquialism % % ! % % !
(Wibowo et al., 2021)

OpenSubtitles-Slang ! ! ! ! ! !
(OpenSub-Slang)

Table 1: Summary of datasets for slang in NLP and the availability of important features for a comprehensive
benchmark. We contribute a new resource (OpenSub-Slang) that captures all desirable features.

the highest accuracy, the probing classifiers eval-174

uate knowledge in a model’s representations by175

freezing all pre-trained weights. One such popu-176

lar probing method is edge probing (Tenney et al.,177

2019), in which representations over all tokens in178

appropriate spans of text are aggregated to predict a179

label. The resulting accuracy of classification indi-180

cates the level of knowledge a model has acquired181

with respect to the probing task.182

We apply behavioral probing to examine an183

LLM’s confidence in predicting slang usage by184

comparing LM probabilities of corresponding slang185

and literal tokens in the same usage context. We186

apply edge probing in slang detection and slang187

source identification to analyze an LLM’s knowl-188

edge of slang’s usage and demographic identity.189

3 Data190

3.1 Limitations of existing resources of slang191

Recent interest in NLP for slang has resulted in192

a good collection of large-scale datasets for slang.193

Although resources such as the Urban Dictionary194

are large in scale, the quality of data can be195

quite poor (Swerdfeger, 2012). Meanwhile, au-196

thoritative sources such as the Green’s Dictionary197

of Slang (Green, 2010) cannot be publically dis-198

tributed due to copyright restrictions.199

The existing datasets are often specified in dictio-200

nary format where each entry corresponds to a pair201

of word and definition sentence. Many datasets202

include additional features (summarized in Table 1)203

such as the usage context of a slang term (e.g., the204

sentence ’Good choice, that jacket is blazing’ is a205

usage context containing the slang blazing), demo-206

graphic sources such as the community and time of207

emergence, and word-level literal paraphrases of 208

the slang (e.g., excellent is a literal paraphrase of 209

blazing). These additional features are often desir- 210

able in model evaluation: The usage contexts are 211

important because they allow the slang usages to be 212

embedded in natural sentences; The demographic 213

sources allow us to analyze how regional-historical 214

variation affects performance; Finally, literal para- 215

phrases of the slang allow us to test our models 216

against comparable literal baselines. 217

Previously, Ni and Wang (2017) released a sub- 218

set of Urban Dictionary data that contains 982,281 219

entries with associated context sentences. While 220

sentence-level paraphrases of informal language 221

have been collected in previous work (Xu et al., 222

2013; Dey et al., 2016; Wibowo et al., 2020; Aji 223

et al., 2021), few exists at word-level. Wibowo et al. 224

(2021) collected a set of word-level literal-to-slang 225

paraphrases in Indonesian but no usage context sen- 226

tences were provided. Sun et al. (2022) manually 227

annotated a small subset of 102 sentences from the 228

Online Slang Dictionary (OSD) with literal para- 229

phrases of the slang word that fit into the context 230

sentence. The existing datasets offer a large pool 231

of examples for training but none captures all desir- 232

able features at a sufficient scale. To address this 233

limitation, we contribute a new benchmark dataset 234

of slang usages from movie subtitles that capture 235

all useful features. 236

3.2 OpenSub-Slang dataset 237

We contribute a new dataset based on movie sub- 238

titles from the OpenSubtitles3 corpus (Lison and 239

Tiedemann, 2016) that captures all of usage context 240

3http://www.opensubtitles.org/
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sentences, demographic information including the241

region (US or UK) and the year to which the cor-242

responding movie was produced, and word-level243

literal paraphrases for all slang terms. We choose244

to construct a dataset based on OpenSubtitles be-245

cause movie subtitles contain utterances that better246

reflect natural conversations, diversifying existing247

dictionary-based resources containing example us-248

age sentences that are specifically selected to con-249

vey the meaning of a slang. Also, metadata asso-250

ciated with the movies allow us to easily obtain251

demographic information about the slang usages.252

Finally, the multilingual nature of OpenSubtitles253

offers potential for multilingual extension in the fu-254

ture, where current NLP research on slang focuses255

primarily on English.256

We sample 100 English movies from the Open-257

Subtitles corpus partitioned evenly across the re-258

gions of US and UK. We annotate randomly sam-259

pled sentences on Amazon Mechanical Turk with260

three annotators per sentence. This results in 7,488261

sentences containing slang (3,583 unique terms),262

of which 2,256 sentences have at least 2/3 anno-263

tators agreeing on the exact slang term. Out of264

the 2,256 sentences, we further annotate them to265

include definition sentences and literal paraphrases.266

After manual inspection followed by the removal of267

nonsensical annotations, we obtain 836 sentences268

with definitions and paraphrases. Detailed annota-269

tion procedures can be found in Appendix A.270

Alongside the slang containing sentences, we271

also contribute a set of 17,512 movie subtitle sen-272

tences that have been agreed by all annotators to273

not contain slang. This allows us to build a robust274

evaluation benchmark for slang detection. Previous275

evaluations such as Pei et al. (2019) combine slang276

containing sentences from slang dictionaries with277

negative samples heuristically drawn from news278

corpora. This approach, however, may jeopardize279

sentence-level detection evaluation as the model280

can rely on dataset-specific features instead of de-281

tecting slang. By having annotated negative sen-282

tences from the same data source, we can evaluate283

slang detection in a more controlled setting where284

the models can no longer rely on dataset-specific285

features to make predictions.286

4 Experiments287

4.1 Models288

We perform all experiments on three BERT-289

like models: BERT (Devlin et al., 2019),290

RoBERTa (Liu et al., 2019), and XLNet (Yang 291

et al., 2019) using the pre-trained bert-large-cased, 292

roberta-large, and xlnet-large-cased models re- 293

spectively from the transformers library (Wolf et al., 294

2020). We also evaluate a series of GPT models ac- 295

cessed via the OpenAI API, including GPT-3 (text- 296

davinci-002), GPT-3.5 (gpt-3.5-turbo-0613), and 297

the latest version of GPT-4 (gpt-4-1106-preview). 298

Whenever applicable, we also apply finetuning on 299

the same GPT-3.5 model, the newest model to 300

which the authors have finetuning access for.4 For 301

model interpretation, we obtain GPT-3 embeddings 302

using text-similarity-davinci-001. 303

4.2 Slang detection 304

We first ask whether large language models can be 305

used to detect slang’s presence in natural sentences. 306

Previous work has found that slang usages have 307

salient features such as Part-of-Speech shifts that 308

are uncommon in literal word usage (Pei et al., 309

2019). A model that encodes knowledge about 310

such characteristics should thus be able to detect 311

slang usages in natural sentences. To evaluate this, 312

we perform edge probing on two slang detection 313

tasks for three BERT-like masked language models: 314

BERT, RoBERTa, and XLNet. In addition, we 315

evaluate the GPT models in both zero-shot and 316

fine-tuned settings. We probe GPT in both a zero- 317

shot setting to evaluate its inherent knowledge and 318

also a fine-tuned variant that has seen the same 319

training examples as the BERT-like models. 320

Task. Given a set of sentences, we evaluate slang 321

detection at both sentence-level and word-level: 322

(S1) Good choice, that jacket is blazing. 323

(S2) Good choice, that jacket is excellent. 324

In the sentences above, S1 contains a slang usage 325

from the word blazing and no slang is used in S2. 326

For sentence-level detection, binary classification 327

will be performed to determine whether a slang 328

usage exists within the sentence. For example, S1 329

containing blazing will be a positive example while 330

S2 with excellent will be a negative example. In 331

word-level detection, we perform a sequence tag- 332

ging task to identify the specific words that are 333

slang. In the example above, the word blazing in S1 334

4Finetuning for GPT-3.5 is completed using a blackbox
API provided by OpenAI. Although it is commonly believed
that OpenAI does not perturb all model weights during fine-
tuning, the authors do not have direct access to GPT-3.5 to
verify the exact training scheme being used.
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(a) Sentence-Level detection
Model P R F1
BERT 80.1 83.3 81.6
RoBERTa 81.3 87.5 84.2
XLNet 67.5 64.3 64.6
GPT-3 zero-shot 90.0 74.4 81.4
GPT-3.5 zero-shot 87.5 80.8 84.0
GPT-4 zero-shot 88.2 80.9 84.4
GPT-3.5 finetuned 84.3 96.8 90.1

(b) Word-Level detection
Model P R F1
BERT 75.5 62.5 68.3
RoBERTa 74.9 68.2 71.4
XLNet 62.4 43.3 51.0
GPT-3 zero-shot 49.2 59.9 54.0
GPT-3.5 zero-shot 57.6 73.2 64.5
GPT-4 zero-shot 60.4 68.2 64.1
GPT-3.5 finetuned 74.5 81.3 77.8

Table 2: Slang detection results of LLMs shown in
precision (P), recall (R), and F1 Scores (F1).

should be labeled as slang while all other words in335

both sentences should have the null label. Detailed336

experiment setup can be found in Appendix B.2337

Results. We evaluate slang detection on sen-338

tences from the OpenSubtitles-Slang dataset. Ta-339

ble 2 shows the results of both sentence-level and340

word-level slang detection. We observe that for341

both tasks, BERT and RoBERTa have much bet-342

ter performance than XLNet on slang detection.343

While the fine-tuned version of GPT-3.5 performs344

substantially better than the BERT-like models, the345

fine-tuned BERT and RoBERTa models can still346

perform comparably or better than the zero-shot347

GPT models although having much less parame-348

ters. For word-level detection, we observe that the349

GPT models often have difficulty conforming to350

sequence labeling instructions without finetuning,351

resulting in low precision. Overall, we find that352

GPT models to encode more relevant knowledge353

that allows the detection of slang’s presence but354

finetuning is nevertheless essential in achieving355

good performance.356

We also partition the test set by region which357

results in 234 sentences from the US and 340 sen-358

tences from the UK. Figure 2 shows the perfor-359

mance discrepancies between the two regions. We360

find a consistent trend that slang usages from the361

UK are being detected much more frequently than362

those from the US, except for the zero-shot GPT-363

3 model on word-level detection as performance364

is generally impoverished. Overall, we observe365

that the performance discrepancy in stronger GPT366

Figure 2: Slang detection performance by region.

(a) OpenSubtitles-Slang - Region

(b) Green’s Dictionary of Slang - Region

(c) Green’s Dictionary of Slang - Age

Figure 3: Classification performance on slang source
identification tasks.

models to widen but not much more than those in 367

smaller BERT-like models. 368

4.3 Slang source identification 369

We directly probe large language models’ knowl- 370

edge in identifying a slang’s demographic identity. 371

Given that slang is highly reflective of a user’s 372

social identity (Labov, 1972, 2006; Eble, 2012), 373

we expect better-performing models to gain such 374

knowledge. We evaluate the extent of such knowl- 375

edge by probing a text classification task. 376

Task. Given a sentence containing a slang usage, 377

we ask the model to classify its source (e.g. region 378

5



and age). For example, the following sentences379

should be classified into US as supposed to UK:380

(S1) Good choice, that jacket is blazing.381

(S2) Good choice, that jacket is [MASK].382

(S3) Good [MASK], that jacket is blazing.383

We compare the classification performance with384

sentences containing slang (S1) and corresponding385

sentences with the slang term masked out (S2). We386

also include another control task by masking out387

a random content word in the sentence other than388

the slang word (S3). For models that use slang389

as a salient feature to identify demographics, we390

expect masking out the slang to result in much in-391

ferior performance but the performance should not392

deteriorate as much when masking out a random393

word.394

Results. Figure 3 shows the source identification395

results on both OpenSubtitles-Slang and Green’s396

Dictionary of Slang for region and age. Overall,397

we observe that the zero-shot GPT-3 model per-398

form comparably with the BERT-like models and399

the GPT-4 model is consistently better at predict-400

ing demographics compared to earlier models. Al-401

though the finetuned GPT-3.5 model achieves the402

best accuracies across all experiments, the perfor-403

mance is not much better compared to zero-shot404

GPT-4 when predicting region, whereas finetuning405

drastically improves the accuracy in age predic-406

tion. Furthermore, we observe that GPT-3 shows407

a consistent trend in using slang as a salient fea-408

ture in predicting demographic identity, indicated409

by much lower classification accuracies when the410

slang terms are removed, while the accuracy loss411

is often not as pronounced when masking out a412

random word. We also observe this trend in newer413

generations of GPT models, though it is less pro-414

nounced compared to GPT-3. This behavior is415

generally not observed in the BERT-like models,416

suggesting that these models lack the ability to tie417

slang usages to user demographics.418

4.4 Model interpretation419

We perform interpretive analysis to examine420

whether large language models have gained struc-421

tural semantic knowledge about slang through large422

scale training. We do so by first comparing the us-423

age probabilities of slang and their corresponding424

literal paraphrase tokens. Here, high model proba-425

bilities on slang tokens reflect a model’s confidence426

Figure 4: Likelihood ratios between samples of corre-
sponding slang and literal tokens.

in predicting the slang term to be used within the 427

specified linguistic context, thus having good distri- 428

butional semantic knowledge of a slang’s meaning. 429

We also analyze sentence embeddings generated 430

by the LLMs on conventional and slang dictionary 431

senses to examine whether geometry of the underly- 432

ing representation space reflects structural semantic 433

knowledge of slang. 434

Task. Given a sentence containing slang, we ex- 435

amine a model’s predictive confidence in a slang 436

usage by measuring the LM probability associated 437

with the slang word. If a literal paraphrase of the 438

word is available, we compare the probability of 439

the slang word with its literal counterpart: 440

(S1) Good choice, that jacket is blazing. 441

(S2) Good choice, that jacket is excellent. 442

For the example sentences above, we measure lan- 443

guage model probabilities assigned to both the 444

slang word blazing and the literal word excellent 445

given the exact preceding context. Detailed experi- 446

ment setup can be found in Appendix B.4 447

Metrics. We report two metrics to compare an 448

LLM’s predictive confidence in slang usages rela- 449

tive to their literal counterparts. Let Si denote the 450

language model probability assigned to the slang 451

word in the i’th sentence and similarly Li for the lit- 452

eral word’s probability. The mean ratio compares 453

the aggregate probability mass assigned to each 454

word type over a sample of sentences: 455

rmean =

∑
i Si∑
i Li

(1) 456

Here, we aggregate over probabilities for each 457

type instead of individual ratios to avoid over- 458

emphasizing outlier slang that the model is either 459
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Figure 5: Median ratios across sentences from different
regions.

Model OSD GDoS UD
fastText 0.35 ± 0.033 0.30 ± 0.010 0.31 ± 0.037
SBERT 0.32 ± 0.033 0.32 ± 0.010 0.28 ± 0.034
GPT-3 0.31 ± 0.032 0.31 ± 0.011 0.30 ± 0.035

Table 3: Normalized ranks (between 0 and 1, lower is
better) of a word’s slang definition embedding towards
its conventional definition embedding over entries in
The Online Slang Dictionary (OSD), Green’s Dictio-
nary of Slang (GDoS) and Urban Dictionary (UD). We
compare the embeddings produced by GPT-3 against
those computed in Sun et al. (2021) using fastText (Bo-
janowski et al., 2017) and Sentence-BERT (SBERT;
Reimers and Gurevych, 2019).

very confident or very impoverished on. For indi-460

vidual ratios between two word types, we report461

the median ratio to downplay the effect of outliers.462

A value above 1 means that more slang words have463

higher probabilities than their literal paraphrases:464

rmedian = mediani
Si

Li
(2)465

Results. Figure 4 summarizes the results for sen-466

tences from OpenSubtitles-Slang. We observe that467

for all of BERT, RoBERTa, and GPT-3,5 the mod-468

els have much higher median ratio than mean ratios,469

suggesting that these models are confident on many470

of the slang terms in the dataset but impoverished471

on a select subset with much higher probabilities472

assigned to the paraphrases. In absolute terms,473

GPT-3 also assigns much higher probability scores474

to slang terms compared to the BERT-like models.475

Next, we examine performance discrepancy by476

partitioning the data based on its region. This re-477

sults in 59 sentence pairs from the US and 161478

5We only perform analysis on GPT-3 because OpenAI no
longer provides token probabilities (on prompted words) and
embeddings for newer generation GPT models.

sentence pairs from the UK. Results from Figure 5 479

show that all models evaluated are much more con- 480

fident in generating US slang compared to UK 481

slang. GPT-3, however, has substantially less dis- 482

crepancy in performance between the two regions 483

due to it being more confident in UK slang. We also 484

measure absolute probabilities assigned to slang to- 485

kens in context sentences extracted from Green’s 486

Dictionary of Slang entries. By stratifying across 487

different age groups and regions, we observe that 488

the systems are much less confident on contempo- 489

rary slang and only within this group that UK slang 490

tends to receive much lower scores than US slang. 491

Details results can be found in Appendix C. 492

Interestingly, we observe a reverse trend in dis- 493

crepancy compared to the case in slang detection. 494

Specifically, being less confident, in terms of prob- 495

ability, on UK slang terms makes it easier for the 496

models to detect them. Indeed, we observe that US 497

slang terms are often assigned higher probability 498

scores than their literal counterparts, suggesting 499

that slang usages from the US have been seen more 500

frequently in the training data and the models use 501

frequency as a salient feature to characterize slang. 502

Analysis. We look at text embeddings produced 503

by GPT-3 to examine whether they encode seman- 504

tic knowledge of slang. We adopt the benchmark 505

proposed by Sun et al. (2021) that compares sen- 506

tence embeddings of definition sentences. In this 507

evaluation, the embedding of a slang definition 508

is taken as an anchor and its semantic distances 509

toward conventional definitions of words are com- 510

puted. The distances are then ranked among all 511

words in the lexicon and we expect the groundtruth 512

word to receive a good rank. As an example, for 513

blazing that can be used as slang to express ‘Some- 514

thing excellent’, we expect the slang definition to 515

be semantically close to the conventional definition 516

of blazing - ‘Burning brightly’ compared to def- 517

initions of other words in the lexicon. Sun et al. 518

(2021, 2022) showed that this metric reflects the se- 519

mantic knowledge of slang encoded in a model and 520

is directly tied to performance in slang generation 521

and interpretation. Table 3 shows the results of this 522

evaluation. While GPT-3 shows better performance 523

on slang than the BERT-like models on extrinsic 524

tasks, we do not observe any significant difference 525

in the underlying geometry of the representations. 526

This gives further evidence that GPT-3’s source of 527

knowledge comes from frequent instances of slang 528

usage seen during training and simply treats them 529

7



Example 1 Example 2
Sentences * We can’t keep doing this sh⋆t, Charlie. * * Knock it off. *

Look, I don’t know what I said to you in there that You’d kill to be in his place.
got you so pissed off but I’m sorry, Charlie, all right?
* All right. * * - Okay b⋆tch, I’m ready. *

Slang pissed kill
Literal paraphrase angry agree
Definition sentence Annoyed; anger. To agree with someone or about something.
Region US US

Model scores BERT RoBERTa GPT-3 BERT RoBERTa GPT-3
Detection 0.697 0.811 0.393 0.644 0.134 0.621
Source identification 0.491 0.436 0.762 0.873 0.710 0.879
Model confidence 0.035 0.057 1.567 9.654 0.170 3.120

Table 4: Example entries and their corresponding model scores from BERT, RoBERTa, and zero-shot GPT-3
respectively. Asterisks indicate extra context sentences not seen by the model.

as additional “conventional” senses. It has yet been530

able to (or decided not to) encode any structural531

knowledge of slang into its representations.532

Examples. We find two entries with definition533

and paraphrase annotation that appear in the test534

set for both slang detection and source identifica-535

tion. For each example, we show the respective536

model performances in Table 4. We show results537

for the best performing BERT-like model BERT538

and RoBERTA, as well as the zero-shot version539

of GPT-3 where probability scores are available.540

For the classification based tasks, we report each541

model’s confidence on the true label (i.e. P (True542

label)). For model confidence, we report the ratio543

between the LM scores of the slang word and its544

literal paraphrase (i.e. Si/Li). For BERT-likes, we545

report the normalized probabilities from the final546

classification layer. For GPT-3, we use the top-5547

probabilities assigned to the response token by the548

OpenAI API. We then sum and normalize all token549

probabilities that correspond to one of the classes.550

We observe that although GPT-3 reliably identi-551

fies and assigns high probabilities to both slang552

usages, it still failed to detect the slang pissed553

in Example 1. We find this trend to be consis-554

tent for slang detection test examples that have555

paraphrase annotations (32 examples) where neg-556

ative correlations exist between model confidence557

scores and detection probability for all of BERT558

(r = −0.433), RoBERTa (r = −0.458), and GPT-559

3 (r = −0.220). This is consistent with our earlier560

finding where all models tend to consider less fre-561

quent usages as slang. We perform a similar exper-562

iment on source identification examples (21 exam-563

ples) and find the correlations to be much weaker564

(BERT: r = 0.020, RoBERTa: r = −0.121, GPT-565

3: r = 0.276), although GPT-3 tend to better iden-566

tify a slang’s region when it has high confidence.567

5 Conclusion 568

We offered a comprehensive investigation of slang 569

knowledge in large language models. We show that 570

larger GPT models are more knowledgeable about 571

slang compared to BERT-like models in 1) better 572

detecting slang in natural sentences, 2) more accu- 573

rately identifying the regional source and time pe- 574

riod of slang usages, and 3) better predicting slang 575

usages relative to their literal counterparts. Despite 576

the superiority of GPT in these slang processing 577

tasks, we did not find evidence that it represents or 578

encodes slang as a special form of language. It is 579

conceivable that GPT has learned to process slang 580

by treating slang usages as rare meanings of words 581

expressed in appropriate linguistic contexts. 582

In the identification of region and age of slang us- 583

ages, we observed that all models tend to perform 584

poorly on slang from the UK (compared to US 585

slang) and more contemporary slang (compared to 586

historical slang), likely due to impoverished train- 587

ing data. However, we found that GPT models are 588

no more biased compared to earlier BERT-based 589

models and that it shows comparable discrepancy 590

in processing slang across regions. Additionally, 591

we observed that GPT models contain good knowl- 592

edge about the demographic identities of a slang 593

usage in context. This capability may have impli- 594

cations for privacy in many scenarios (e.g., auto- 595

matic data annotation), and users should be aware 596

of the increased risk of identity exposure when 597

using slang in LLM-based applications. 598

We have provided the first comprehensive prob- 599

ing analysis of large language models on knowl- 600

edge of slang and have contributed an open bench- 601

mark dataset to facilitate future efforts in evaluating 602

and improving large language models on informal 603

language processing. 604
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Limitations605

In our work, the sets of comparable experiments606

we can perform have been limited by lack of di-607

rect access to GPT models. Finetuning of GPT-3.5,608

for example, is completed using a blackbox API609

provided by OpenAI while newer models such as610

GPT-4 are not available for finetuning. Although611

it is commonly believed that OpenAI does not per-612

turb all model weights during finetuning, the au-613

thors do not have direct access to GPT-3.5 to verify614

the exact training scheme being used. This may615

cause inconsistency in the experiment setup involv-616

ing finetuned models. Also, the lack of access to617

internal layers of GPT hinders the comparison of in-618

termediate representations in LLMs. For example,619

we can only analyze probability values from GPT-620

3 as OpenAI no longer provides access to those621

values in newer generation models like GPT-3.5622

and GPT-4. Finally, the auto-regressive nature of623

GPT necessitates the comparison with the BERT-624

like masked language models in an auto-regressive625

setup. Although approaches such as Donahue et al.626

(2020) have been proposed to enhance GPT-2 to627

consider bidirectional context, we cannot apply628

such methods to GPT given the limited access.629

We also acknowledge that our work is limited630

to studying slang in English and is restricted to631

specific demographic stratum (region and age). We632

hope that the evaluation framework proposed in633

this work would enable future work to extend the634

evaluation towards more varied demographics and635

languages. We selected OpenSubtitles to build our636

dataset because of its potential in extending the637

existing evaluation into a multilingual benchmark.638

Ethics Statement639

We acknowledge that many slang-containing sen-640

tences annotated contain profanity, sexual refer-641

ences, and/or stereotypical views towards specific642

groups of our community. Discretion is advised643

when using the collected datasets. During annota-644

tion, we begin our HIT with a disclaimer informing645

annotators that “this HIT contains language use646

that may be offensive or upsetting.”. If the anno-647

tator does not provide consent in annotating such648

language, they may exit the HIT without penalty.649

All potentially offensive sentences shown in the650

example sections of this paper were taken verba-651

tim from the original data source and do not reflect652

opinions of the authors and their affiliated organi-653

zations. The manuscript has been reviewed and654

approved by an internal ethics committee before 655

submission. 656

We compensate all human annotators via Ama- 657

zon Mechnical Turk, regardless of whether the an- 658

notated entries were kept after quality control. We 659

compensate all annotators $0.10 USD for identi- 660

fying slang in up to 10 sentences and $0.40 USD 661

for defining and paraphrasing slang in up to 10 662

sentences. We run all experiments for BERT-like 663

models (BERT, RoBERTa, and XLNet) using an 664

in-house GPU server with 1 Nvidia Titan V GPU 665

and 12 GB of VRAM available to the authors. All 666

GPT model experiments are executed via OpenAI’s 667

official API and cost $77.22 USD in API credits. 668

We have written permissions to use both The 669

Online Slang Dictionary and Green’s Dictionary of 670

Slang for personal research use from the respective 671

authors. We obtained OpenSubtitles data from the 672

Open Parallel Corpus (OPUS; Tiedemann, 2012) 673

containing user generated movie subtitles. We are 674

not aware of any existing license posted for this 675

dataset but follow all citation requests outlined by 676

its authors. 677
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A Data Collection Procedures 978

We sample 100 English movies from the Open- 979

Subtitles corpus for an even distribution across the 980

regions of US and UK, where we identify the re- 981

gion by querying a movie’s region of production 982

on IMDb6. For each region, we randomly shuffle 983

the list of corresponding movies represented in the 984

OpenSubtitles corpus that are produced after the 985

year 2000 and iterate through the list until we have 986

50 movies. For each movie, the authors manually 987

inspect the corresponding IMDb meta-data to en- 988

sure that the movie has a realistic setting in the 989

appropriate region (i.e. US or UK) and that the plot 990

is set after year 1980 to avoid antiquated slang. We 991

also ensure that the movie would have sufficient 992

sentences by filtering out all movies with less than 993

500 subtitle lines. As a result, the most common 994

genre tags are drama, comedy, crime and romance. 995

A complete list of movie meta-data can be found 996

in Table 5 and Table 6. 997

For each movie, we randomly sample 250 sen- 998

tences for annotation on Amazon Mechanical 999

Turk7. We restrict the set of annotators to native 1000

English speakers who live in the corresponding re- 1001

gion of the movie (i.e. US or UK). We first ask 1002

annotators to detect sentences containing slang us- 1003

age and identify the exact slang terms. To define 1004

what is considered slang, we provide all annota- 1005

tors with 5 positive examples containing slang and 1006

5 negative examples that closely resemble slang 1007

usage. Table 7 shows these examples. We obtain 1008

these examples from a small scale pilot study and 1009

manually verify that all positive examples have 1010

exact definition matches in Green’s Dictionary of 1011

Slang while all slang-like words in the negative 1012

sentences do not have corresponding entries in the 1013

dictionary. For each annotation, the preceding and 1014

succeeding sentences in the movie scripts are also 1015

shown to the annotators for contextual awareness 1016

but they are only asked to find slang in the main 1017

sentence. For each sentence, we ask 3 annotators 1018

to perform the same task. Overall, 7,488 sentences 1019

are flagged by at least one annotator as containing 1020

slang (3,583 unique terms), with 1,844 and 412 1021

sentences flagged by two or all three annotators 1022

respectively. We adopt a majority vote scheme and 1023

only consider sentences with at least 2 annotators 1024

6https://www.imdb.com/
7We opted for random sampling instead of first detecting

slang using language models as it would introduce a selection
bias to our evaluation
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OpenSubtitles ID Year Region Genres

54446 2000 USA Adventure, Comedy, Drama
135737 2000 USA Action, Crime, Thriller
145382 2000 USA Drama, Romance
185218 2001 USA Crime, Drama, Romance
186160 2004 USA Comedy, Sport
241730 2005 USA Comedy, Drama
3151540 2007 USA Drama
3279503 2008 USA Crime, Mystery, Thriller
3372842 2000 USA Action, Adventure, Drama
3468388 2007 USA Crime, Drama
3546395 2009 USA Drama
3558591 2005 USA Comedy, Romance
3562517 2009 USA Comedy, Fantasy, Romance
3618044 2009 USA Comedy, Drama
3692182 2009 USA Crime, Drama, Thriller
3877824 2009 USA Horror, Thriller
3967329 2010 USA Drama
4109374 2010 USA Comedy, Drama, Romance
4185464 2011 USA Crime, Drama
4218973 2011 USA Crime, Drama, Horror
4473014 2011 USA Drama, Mystery, Romance
4574956 2011 USA Comedy
4728198 2001 USA Drama
4744540 2012 USA Drama, Sport
4953583 2013 USA Action, Crime, Thriller
5036434 2012 USA Drama
5166024 2013 USA Adventure, Comedy, Drama
5178727 2010 USA Comedy, Drama
5340423 2013 USA Comedy, Drama, Romance
5450161 2013 USA Comedy, Drama, Romance
5536320 2014 USA Biography, Crime, Drama
5653079 2012 USA Comedy, Drama, Romance
5697912 2012 USA Comedy, Drama, Romance
5791518 2014 USA Comedy, Romance
5836657 2014 USA Comedy, Romance
5838045 2014 USA Sci-Fi, Thriller
5860680 2014 USA Drama, Romance, Sci-Fi
5891414 2014 USA Action, Crime, Thriller
5905224 2012 USA Comedy, Romance
5922900 2012 USA Comedy, Horror, Sci-Fi
5974299 2014 USA Comedy, Drama, Romance
5987878 2006 USA Comedy, Romance
6173232 2014 USA Documentary, Music, Sport
6185084 2015 USA Comedy
6249260 2014 USA Comedy, Musical
6377252 2009 USA Action, Crime, Thriller
6406429 2001 USA Drama, Music
6441036 2013 USA Drama, Family, Fantasy
6692456 2016 USA Crime, Drama, Mystery
6801883 2014 USA Crime, Drama, Mystery

Table 5: Meta-data for all US movies used in constructing OpenSubtitles-Slang.

agreeing but include all sentences and annotator1025

confidence scores in the dataset for future users.1026

For the 885 sentences with at least 2/3 annotator1027

agreement, we further annotate these sentences by1028

asking one annotator to give a definition sentence1029

and a literal paraphrase of the slang. The annotators1030

were directed to both Green’s Dictionary of Slang1031

and Urban Dictionary for reference, in this order of1032

preference, and asked to cite a URL for the defini-1033

tion if possible. We manually inspect the annotator1034

responses and remove all that are nonsensical (e.g.1035

writing down the same definition sentence for all 1036

slang in a batch). After removing such responses, 1037

we obtain 836 sentences with 366 unique slang 1038

terms that have both a definition sentence and a 1039

literal paraphrase. 1040

B Experiment Setup 1041

B.1 Probing classifiers 1042

We implement BERT, RoBERTa, and XLNet clas- 1043

sifiers using the transformers library (Wolf et al., 1044

2020) released by Huggingface. For each model, 1045
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OpenSubtitles ID Year Region Genres

3120452 2006 UK Comedy, Drama, Romance
3121411 2006 UK Crime, Drama, Thriller
3179568 2006 UK Crime, Drama
3320486 2008 UK Comedy, Drama, Romance
3345059 2008 UK Crime, Drama
3357285 2007 UK Drama, Romance
3472293 2009 UK Crime, Drama, Mystery
3552835 2008 UK Crime, Drama, Horror
3564173 2008 UK Drama
3666051 2009 UK Action, Crime, Drama
3670999 2010 UK Biography, Drama, Music
3807079 2005 UK Comedy, Crime
4030209 2003 UK Documentary, Music
4107485 2010 UK Comedy, Thriller
4136037 2010 UK Biography, Documentary, Drama
4177060 2009 UK Action, Crime, Drama
4204063 2009 UK Comedy, Drama, Romance
4259257 2010 UK Comedy, Drama
4398890 2011 UK Action, Thriller
4471635 2010 UK Crime, Drama, Thriller
4527521 2012 UK Crime, Thriller
4629499 2012 UK Crime
4640913 2011 UK Comedy, Drama, Music
4683078 2012 UK Drama, Sport
4864547 2012 UK Crime, Drama, Mystery
4938516 2009 UK Mystery, Thriller
4987950 2011 UK Drama
5052284 2002 UK Crime, Drama, Mystery
5145968 2012 UK Horror, Mystery
5151994 2008 UK Action, Biography, Crime
5167828 2001 UK Drama, Mystery, Thriller
5204705 2012 UK Crime, Drama, Thriller
5461631 2003 UK Comedy, Drama, Romance
5510712 2013 UK Action
5623414 2013 UK Comedy, Music
5681039 2004 UK Comedy, Crime, Drama
5742017 2010 UK Action, Crime, Drama
5778643 2013 UK Documentary, Sport
5814259 2014 UK Drama, Musical, Romance
5837569 2002 UK Horror, Thriller
6010762 2012 UK Crime, Drama
6107374 2010 UK Comedy, Drama
6224678 2014 UK Thriller
6237485 2014 UK Drama
6244263 2014 UK Thriller
6338678 2008 UK Drama, Romance, Thriller
6782316 2009 UK Biography, Drama, Sport
6910409 2014 UK Comedy, Drama
6997754 2012 UK Action, Crime, Drama
7039857 2016 UK Comedy

Table 6: Meta-data for all UK movies used in constructing OpenSubtitles-Slang.

we use the corresponding sequence classification1046

classes for sentence-level detection and source iden-1047

tification, and token classification classes for word-1048

level detection. For all models, we only train1049

weights for the classification layers that are not1050

part of pre-training, except for BERT where we re-1051

train weights for the final pooling layer. We do this1052

to ensure consistency across all models because1053

only BERT has a pre-trained pooling layer used for1054

its next-sentence prediction objective while such a1055

layer does not exist in pre-trained RoBERTa and1056

XLNet. we train each model for 10 epochs and 1057

repeat the experiment 20 times with different ran- 1058

dom initializations. We use Adam (Kingma and 1059

Ba, 2015) with a learning rate of 0.001. Parameters 1060

from the training epoch with the highest validation 1061

performance is saved for testing. 1062

For GPT-3.5 finetuning, We train each model 1063

once using the same set of training and validation 1064

data used to train the BERT-like models and train 1065

the model for four epochs using OpenAI’s API 1066

interface using default parameters with a batch size 1067
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[Positive Examples]
Example 1 * We’re hitting pause after this. *

We get pinched, remember whose idea this was, okay?
* Be ready on Friday. *

Example 2 * Now, if it were up to me and they gave me two minutes and a wet towel I would personally
tasphyxiate his half-wit so we could string you up on a federal M1 and end this story with a bag
on your head and a paralyzing agent running through your veins. *
This isn’t f⋆cking townie hopscotch anymore, Doug.
* Be ready on Friday. *

Example 3 * I can’t do any more time, Dougy. *
So if we get jammed up we’re holding court on the street.
* [KNOCKING] *

Example 4 * She really loves you, I can tell. *
Good news for you is you have an alibi for the Cambridge job.
* The good news for me is I bet you know something about it. *

Example 5 * What do you call a guy who grows up with a group of people, gets to know their secrets
because they trust him, and then turns around and use those secrets against them, put those
people in prison? *
You’d call him a rat, right?
* You know what I call him? *

[Negative Examples]
Example 1 * Any clues? *

Any leads?
* Anything like that? *

Example 2 * With assault rifles. *
You f⋆cking dummies shot a guard.
* Now you’re like a half-off sale at Big and Tall. *

Example 3 * Coughlin, Kristina. *
She had a kid with her.
* The mother’s at Mass General. *

Example 4 * Do me a favor. *
The weight of this thing pack a parachute at least.
* You know the funniest thing about being in prison? *

Example 5 * [SHYNE CRYING] *
I know you’d rather see a rope around my neck!
* You’re getting the f⋆ck out of here. *

Table 7: Positive and negative annotations examples shown to annotators prior to annotation. Candidate slang
terms are italicized. Sentences marked by asterisks indicate extra context sentences that the annotators are asked to
consider but not to make annotations on.

of 20.1068

B.2 Slang detection1069

We use entries from the OpenSub-Slang dataset1070

with an annotator confidence score of 2 or above1071

for positive examples. We use all sentences in1072

which exact one copy of the exact slang identified1073

by the annotators can be found. After filtering,1074

we have 1,913 slang containing sentences. From1075

the set of 17,512 movie subtitle sentences where1076

all 3 annotators labeled as not containing slang,1077

we randomly sample 1,913 sentences to construct1078

a balanced sample. We split the data into 80, 5,1079

15 percent partitions for training, validation and1080

testing respectively.1081

We evaluate three finetuned BERT-like mod- 1082

els: BERT, RoBERTa, XLNet along with GPT- 1083

3, GPT-3.5, and GPT-4. We evaluate each GPT 1084

model’s zero-shot performance with prompting 1085

alone. For GPT-3.5, we also consider a finetuned 1086

variant trained with the same data as the BERT-like 1087

models. 1088

For sequence tagging in word-level detection, we 1089

apply the BIO tagging scheme to all words. During 1090

training, we also mark subword units with inside 1091

tokens when slang words are split into tokens. Dur- 1092

ing evaluation, however, we only consider whole 1093

words splitted by white space to ensure a consis- 1094

tent evaluation metric across models with different 1095

tokenization schemes. 1096
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For GPT models, we evaluate zero-shot perfor-1097

mance by prompting the task instruction along with1098

the input sentence. For sentence-level detection,1099

we use the prompt:1100

»> Is there a slang in the following sentence?1101

Answer only ’Yes’ or ’No’.1102

»> Sentence: [A SENTENCE IN THE DATA]1103

»> Answer:1104

Similarly for word-level detection, we use the1105

prompt:1106

»> Identify slang in the following sentence. If a1107

slang has been found, output the slang only. If1108

no slang has been found, answer ’[No slang]’.1109

»> Sentence: [A SENTENCE IN THE DATA]1110

»> Answer:1111

For GPT-3.5 and GPT-4 under OpenAI’s chat1112

framework, we use the default system message1113

“You are a helpful assistant.” for all prompts.1114

We mimic sequence labeling by searching for1115

the resulting text span in the input sentence. When1116

a match can be found, we set the appropriate be-1117

ginning and inside labels for the detected span. We1118

set the maximum number of generated tokens to1119

be 1 and 20 for sentence-level and word-level de-1120

tection respectively and set temperature to 0 for1121

deterministic generation.1122

For finetuning GPT-3.5, we use ’0’ and ’1’ as bi-1123

nary labels for sentence-level detection. For word-1124

level detection, we use the slang term as specified1125

by the annotators.1126

B.3 Slang source identification1127

We perform region identification on sentences from1128

OpenSub-Slang with at least 2/3 annotator agree-1129

ment, keeping those in which exact one copy of1130

the slang can be found. We sample the sentences1131

to construct an even sample of US and UK sen-1132

tences which results in 1242 sentences for eval-1133

uation. We apply the same sampling scheme to1134

sentences from the Green’s Dictionary of slang for1135

region and age identification. We obtain a sample1136

of 6,096 sentences evenly partitioned across US1137

and UK, as well as 4,008 sentences uniformly parti-1138

tioned across six decades. We split all data samples1139

into 80, 5, 15 percent partitions for training, valida-1140

tion and testing respectively. To determine whether1141

a word is a content word, we refer to the set of En- 1142

glish stop words in NLTK (Bird and Loper, 2004). 1143

We evaluate GPT-3’s zero-shot performance on 1144

slang source identification by promoting the sen- 1145

tence: 1146

»> The following text is most likely produced in 1147

which region? Answer only ’US’ or ’UK’. 1148

»> Text: [A SENTENCE IN THE DATA] 1149

»> Region: 1150

Similarly, we use the following prompt for age 1151

identification: 1152

»> Classify The following text into one of the 1153

following decades based on the language 1154

use. Possible answers include ’1950’, ’1960’, 1155

’1970’, ’1980’, ’1990’, or ’2000’. Answer in 1156

one word. 1157

»> Text: [A SENTENCE IN THE DATA] 1158

»> Decade: 1159

Similar to the slang detection prompts, we use the 1160

default system message “You are a helpful assis- 1161

tant.” for all GPT-3.5 and GPT-4 prompts. 1162

We set the maximum number of generated to- 1163

kens to be 1 for all slang source identification tasks 1164

and set temperature to 0 for deterministic genera- 1165

tion. 1166

We finetune GPT-3.5 using the same set of train- 1167

ing and validation data used to train the BERT-like 1168

models. We use the same labels as in the zero-shot 1169

prompts as the target labels. This includes {US, 1170

UK} for regional identification and {1950, 1960, 1171

1970, 1980, 1990, 2000+} for age identification. 1172

B.4 Probing model confidence 1173

We use slang-containing sentences from OpenSub- 1174

Slang with a confidence score of 2 or above. We 1175

use entries where both the slang word and its para- 1176

phrase tokenize into single tokens by all models8. 1177

Since all GPT models are autoregressive language 1178

models, we truncate all tokens after the slang word 1179

for fair comparison and remove all sentences in 1180

which the slang appears at the beginning. After 1181

pre-processing, we obtain 220 sentence pairs from 1182

OpenSub-Slang. This includes 59 sentence pairs 1183

from US movies and 161 from UK movies. 1184
8We observe that all models have the tendency to assign

much higher probabilities to subword tokens, regardless of
whether they are part of slang or literal tokens. See Ap-
pendix D for a detailed analysis
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B.5 Preprocessing Green’s Dictionary of1185

Slang1186

For each definition entry in Green’s Dictionary of1187

Slang (GDoS), we automatically extract usable us-1188

age context sentences from the entry’s correspond-1189

ing list of citations. For each citation, we apply a1190

simple heuristic to extract potential example sen-1191

tences by matching all text followed by a series of1192

numeric characters and a column (e.g. “212:”). For1193

all extracted sentences, we ensure that the slang1194

word can be found in the sentence after tokeniz-1195

ing by whitespace. This results in 33,181 entries1196

with example sentences attached with a total of1197

99,181 example sentences. From the citation in1198

which an example sentence was extracted from, we1199

associate the corresponding date and region tags of1200

the citation with the example sentence.1201

C Slang Token Probabilities over Time1202

and Region1203

We measure the language model probabilities as-1204

signed to slang tokens for entries in Green’s Dic-1205

tionary of Slang (GDoS). We use a similar task1206

setup as described in Section 4.4. However, since1207

GDoS does not contain any literal paraphrases for1208

the slang tokens, we only measure the absolute1209

probabilities assigned to slang tokens. Here, we1210

focus on how the models perform differently over1211

different sets of slang usages stratified across both1212

time and region.1213

We consider all example sentences in which the1214

corresponding slang word can be represented using1215

a single token by all models. Furthermore, we only1216

consider sentences with a region tag of US or UK1217

and a date tag after the year of 1950. This results1218

in 5,052 sentences in total, with 3,617 sentences1219

from the US and 1,435 from the UK. Of the 5,0521220

sentences, we have 1,285, 1,431, 859, 615, 564 sen-1221

tences from each decade respectively from 1950s1222

to 1990s and 298 sentences from the year 2000 and1223

onwards.1224

Figure 6 shows the result over different time pe-1225

riods and Figure 7 over different regions. Overall,1226

we observe consistent performance across differ-1227

ent time periods and regions from all models. One1228

exception to this is that for both BERT, RoBERTa,1229

and GPT-3 the probabilities drop significantly for1230

contemporary slang usages recorded after 1980.1231

This is especially noticeable for slang usages from1232

the UK. We postulate that the models likely make1233

very little distinction for older slang from both re-1234

(a) Time - All

(b) Time - US

(c) Time - UK

Figure 6: Mean LM probabilities over slang tokens in
sentences across different time periods.

gions, but for newer ones the models are exposed 1235

to slang usages from the US much more frequently 1236

than ones from the UK. We also observe that GPT- 1237

3 is a lot less confident on new slang usages from 1238

after the year 2000. These findings are consistent 1239

with our main results on the OpenSub-Slang dataset 1240

where all slang usages are extracted from movies 1241

produced after the year 2000. 1242

D Effect of Tokenization in Probing 1243

In our experiments shown in Section 4.4 and Ap- 1244

pendix C involving probing probabilities, we only 1245

consider the subset of sentences in which both the 1246
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(a) Region - All

(b) Region - Pre 1980

(c) Region - Post 1980

Figure 7: Mean LM probabilities over slang tokens in
sentences across different regions.

corresponding slang and literal paraphrase (if ap-1247

plicable) can be presented using a single token. We1248

perform this sampling procedure because we ob-1249

serve that all models tend to assign much higher1250

probabilities to subword tokens. That is, regardless1251

of whether a word is used as a slang or a literal1252

paraphrase, words that comprise of subword tokens1253

always attain much higher probabilities. Table 81254

shows probabilities on slang containing sentences1255

from OpenSub-Slang partitioned by tokenization.1256

This is problematic as the tokenization scheme is1257

dictating the magnitute of the probabilities over1258

distributional semantics. We thus control for this1259

(a) BERT
Tokenization Literal Slang

All Single 0.00017 4.24e-05
Slang: Single 0.208 1.81e-05
Literal: Multiple
Slang: Multiple 0.000118 0.252
Literal: Single

(b) RoBERTa
Tokenization Literal Slang

All Single 0.0146 0.00555
Slang: Single 0.265 0.00454
Literal: Multiple
Slang: Multiple 0.0111 0.29
Literal: Single

(c) XLNet
Tokenization Literal Slang

All Single 0.00163 0.000642
Slang: Single 0.118 0.00141
Literal: Multiple
Slang: Multiple 0.00484 0.0831
Literal: Single

(d) GPT-3
Tokenization Literal Slang

All Single 0.0293 0.014
Slang: Single 0.285 0.0125
Literal: Multiple
Slang: Multiple 0.0208 0.182
Literal: Single

Table 8: Mean language model likelihood scores of
slang and literal tokens under different tokenization con-
ditions. The first row in each table shows the probability
scores on sentences where both the slang and literal
tokens are tokenized into single tokens by all models.
The next two rows show results on sentences where the
individual model tokenizes one word type with multiple
tokens but uses a single token to represent the other.

confound by only considering sentences where all 1260

words of interest can be tokenized into a single 1261

token. 1262
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